WorldWideScience

Sample records for acid synthase impacts

  1. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  2. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  3. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  4. Fatty Acid Synthase Inhibitor C75 Ameliorates Experimental Colitis

    OpenAIRE

    Matsuo, Shingo; Yang, Weng-Lang; Aziz, Monowar; Kameoka, Shingo; Wang, Ping

    2013-01-01

    Abnormalities of lipid metabolism through overexpression of fatty acid synthase (FASN), which catalyzes the formation of long-chain fatty acids, are associated with the development of inflammatory bowel disease (IBD). C75 is a synthetic α-methylene-γ-butyrolactone compound that inhibits FASN activity. We hypothesized that C75 treatment could effectively reduce the severity of experimental colitis. Male C57BL/6 mice were fed 4% dextran sodium sulfate (DSS) for 7 d. C75 (5 mg/kg body weight) or...

  5. Fatty acid synthase inhibitors isolated from Punica granatum L

    International Nuclear Information System (INIS)

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC50 value of 10.3 μmol L-1. (author)

  6. Substrate channeling: alpha-ketobutyrate inhibition of acetohydroxy acid synthase in Salmonella typhimurium.

    OpenAIRE

    Shaw, K J; Berg, C M

    1980-01-01

    Excess alpha-ketobutyrate inhibited the growth of Salmonella typhimurium LT2 by inhibiting the acetohydroxy acid synthase-catalyzed synthesis of alpha-acetolactate (a valine precursor). As a result, cells were starved for valine, and both ilvB (encoding acetohydroxy acid synthase I) and ilvGEDA (ilvG encodes acetohydroxy acid synthase II) were derepressed. The addition of valine reversed the effects of alpha-ketobutyrate.

  7. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.

    OpenAIRE

    Shaw, K J; Berg, C M; Sobol, T J

    1980-01-01

    An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defect...

  8. Feedback-Resistant Acetohydroxy Acid Synthase Increases Valine Production in Corynebacterium glutamicum

    OpenAIRE

    Elišáková, Veronika; Pátek, Miroslav; Holátko, Jiří; Nešvera, Jan; Leyval, Damien; Goergen, Jean-Louis; Delaunay, Stéphane

    2005-01-01

    Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesi...

  9. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    Science.gov (United States)

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  10. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  11. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  12. Isolation and partial characterization of the gene for goose fatty acid synthase.

    Science.gov (United States)

    Kameda, K; Goodridge, A G

    1991-01-01

    Fatty acid synthase is regulated by diet and hormones, with regulation being primarily transcriptional. In chick embryo hepatocytes in culture, triiodothyronine stimulates accumulation of enzyme and transcription of the gene. Since the 5'-flanking region of this gene is likely involved in hormonal regulation of its expression, we have isolated and partially characterized an avian fatty acid synthase gene. A genomic DNA library was constructed in a cosmid vector and screened with cDNA clones that contained sequence complementary to the 3' end of goose fatty acid synthase mRNA. A genomic clone (approximately 35 kilobase pairs (kb] was isolated, and a 6.5-kb EcoRI fragment thereof contained DNA complementary to the 3' noncoding region of fatty acid synthase mRNA. Additional cosmid libraries were screened with 5' fragments of previously isolated genomic clones, resulting in the isolation of five overlapping cosmid DNAs. The entire region of cloned DNA spans approximately 105 kb. Exon-containing fragments were identified by hybridization with end-labeled poly(A)+ RNA and by hybridization of labeled exon-containing genomic DNA fragments to fatty acid synthase mRNA. A new set of cDNA clones spanning approximately 3.2 kb was isolated from a lambda-ZAP goose liver cDNA library using the 5'-most exon-containing fragment of the 5'-most genomic DNA clone. This region of mRNA contains a 5'-untranslated sequence and a continuous open reading frame which includes a region that codes for the essential cysteine of the beta-ketoacyl synthase domain. The entire fatty acid synthase gene spans about 50 kb. The 5' 15 kb of the gene contain 7 exons. S1 nuclease and primer extension analyses were used to identify a single site for initiation of transcription, 174 nucleotides upstream from the putative translation initiation codon. Putative "TATA" and "CCAAT" boxes are located 28 and 60 base pairs (bp), respectively, upstream of the site of initiation of transcription. The 5'-flanking 597

  13. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe Brandt; Von Wettstein-Knowles, Penny;

    2007-01-01

    triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its......Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual...... of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding. Udgivelsesdato: 2007-Feb...

  14. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    Science.gov (United States)

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. PMID:26617065

  15. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, G.D.; Woodard, R.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  16. Crystallization of Δ{sup 1}-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa

    Energy Technology Data Exchange (ETDEWEB)

    Shoyama, Yoshinari; Takeuchi, Ayako; Taura, Futoshi [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamada, Taro; Adachi, Motoyasu; Kuroki, Ryota [Neutron Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Shoyama, Yukihiro; Morimoto, Satoshi, E-mail: morimoto@phar.kyushu-u.ac.jp [Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2005-08-01

    Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase from C. sativa was crystallized. The crystal diffracted to 2.7 Å resolution with sufficient quality for further structure determination. Δ{sup 1}-Tetrahydrocannabinolic acid (THCA) synthase is a novel oxidoreductase that catalyzes the biosynthesis of the psychoactive compound THCA in Cannabis sativa (Mexican strain). In order to investigate the structure–function relationship of THCA synthase, this enzyme was overproduced in insect cells, purified and finally crystallized in 0.1 M HEPES buffer pH 7.5 containing 1.4 M sodium citrate. A single crystal suitable for X-ray diffraction measurement was obtained in 0.09 M HEPES buffer pH 7.5 containing 1.26 M sodium citrate. The crystal diffracted to 2.7 Å resolution at beamline BL41XU, SPring-8. The crystal belonged to the primitive cubic space group P432, with unit-cell parameters a = b = c = 178.2 Å. The calculated Matthews coefficient was approximately 4.1 or 2.0 Å{sup 3} Da{sup −1} assuming the presence of one or two molecules of THCA synthase in the asymmetric unit, respectively.

  17. Determination of amino-acidic positions important for Ocimum basilicum geraniol synthase activity

    OpenAIRE

    Fischer, Marc; Meyer, Sophie; Claudel, Patricia; Steyer, Damien; Bergdoll, Marc; Hugueney, Philippe

    2013-01-01

    Terpenes are one of the largest and most diversified families of natural compounds. Although they have found numerous industrial applications, the molecular basis of their synthesis in plants has, until now, not been fully understood. Plant genomes have been shown to contain dozens of terpene synthase (TPS) genes, however knowledge of their amino-acidic protein sequence in not sufficient to predict which terpene(s) will be produced by a particular enzyme. In order to investigate the structura...

  18. Inhibitor of fatty acid synthase induced apoptosis in human colonic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei Lin Huang; Zhen Sheng Dai; Yue Lin Jin; Shi Neng Zhu; Shi Lun Lu

    2000-01-01

    @@INTRODUCTION The treatment of human epithelial malignancies is limited by drug resistance and toxic and side effects,which results in the failure in the treatment of majority of advanced cancer victims. To seek for a new, and specific antineoplastic therapy will provide hope for tumor treatment. Although disordered intermediary metabolism in cancer cells has been known for many years, much of the work focused on abnormal glucose catabolism. At the same time, little attention has been paid to fatty acid synthasis in tumor tissues, dispite of the significance of fatty acid synthase (FAS) in some clinical human ovarian[1], breast[2], colorectal[3],and prostatic cancers[4,5]. Tumor cells which express high levels of fatty acid synthesizing enzymes use endogeneously synthesized fatty acids for membrance biosynthesis and appear to export large amounts of lipid. In contrast, normal cells preferentially utilize diary lipid.

  19. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  20. Fatty Acid Synthase Mediates the Epithelial-Mesenchymal Transition of Breast Cancer Cells

    OpenAIRE

    Li, Junqin; Dong, Lihua; Wei, Dapeng; Wang, Xiaodong; Zhang, Shuo; Li, Hua

    2014-01-01

    This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and...

  1. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  2. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    Science.gov (United States)

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  3. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors. PMID:26864638

  4. Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    Science.gov (United States)

    Pecchia, Paola; Cammareri, Maria; Malafronte, Nicola; Consiglio, M Federica; Gualtieri, Maria Josefina; Conicella, Clara

    2011-11-01

    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus. PMID:22224284

  5. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  6. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.

    Indian Academy of Sciences (India)

    Meng-Jun Li; Ai-Qin Li; Han Xia; Chuan-Zhi Zhao; Chang-Sheng Li; Shu-Bo Wan; Yu-Ping Bi; Xing-Jun Wang

    2009-06-01

    The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, -ketoacyl-ACP synthase (I, II, III), -ketoacyl-ACP reductase, -hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

  7. Para-aminobenzoic acid (PABA synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Zhonglei Lu

    Full Text Available Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  8. The effect of porphyrin and radiation on ferrochelatase and 5-aminolevulinic acid synthase in epidermal cells

    International Nuclear Information System (INIS)

    The effects of ultraviolet A (UVA) and blue light on ferrochelatase protein, and its mRNA level, in 5-aminolevulinic acid (ALA)-loaded A431 cells was evaluated. Western blot analysis of ferrochelatase protein showed a protein band of 43 kDA. There was a decrease in the protein concentration 24 h and 48 h after irradiation of these cells. In contrast, as judged by Northern blot analysis, there was no change in ferochelatase mRNA level. Measurement of ALA synthase activity showed an ALA dose-dependent but radiation-independent decrease of enzyme activity, suggesting an end-product feedback inhibition. Since reactive oxygen species generated by porphyrin-induced photochemical reaction may be involved in the decrease in ferrochelatase protein, the effect of scavengers of reactive oxygen species was evaluated by measuring porphyrin accumulation in irradiated, ALA-loaded A431 cells. Porphyrin accumulation was significantly decreased in the presence of singlet oxygen scavenger sodium azide (0.05 mM, 40.6% suppression) or hydroxyl radical scavenger mannitol (5.0 mM, 45% suppression). These data suggest that the photochemical reaction induced by porphyrin and irradiation resulted in a decrease in ferrochelatase protein content, but had no effect on ferrochelatase mRNA level nor on ALA synthase activity. The decrease in protein was partly mediated by the reactive oxygen species. (au)

  9. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Jia-Hong Zhu

    2015-02-01

    Full Text Available Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7 of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production.

  10. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  11. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.

    Science.gov (United States)

    Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L

    2002-12-01

    Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined. PMID:12502337

  12. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    Science.gov (United States)

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.

  13. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    Science.gov (United States)

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry. PMID:26501439

  14. Prostaglandin H synthase-mediated bioactivation of the amino acid pyrolysate product Trp P-2

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Krauss, R.S.; Eling, T.E.

    1986-08-01

    We report evidence that the mutagen and carcinogen 3-amino-1-methyl-5H pyrido(4,3b)indole (Trp P-2) is a substrate for co-oxidation by prostaglandin H synthase (PHS) in ram seminal vesicle (RSV) microsomes. Trp P-2 serves as a reducing cofactor for the hydroperoxidase activity of PHS as shown by the concentration-dependent inhibition of the hydroperoxidase catalyzed incorporation of molecular oxygen into phenylbutazone. Spectral data suggest that this metabolism results in disruption of the double bond conjugation within the nucleus of the molecule. A single metabolite peak which was dependent upon arachidonic acid and substrate concentration was separated from the parent compound by h.p.l.c. following incubation with RSV microsomes. Co-oxidation of Trp P-2 produced reactive intermediates which bound covalently to microsomal protein (9 nmol/mg) and to calf thymus DNA (475 pmol/mg). Binding was inhibited by indomethacin, and supported by substitution of hydrogen peroxide for arachidonic acid. These data suggest a possible role for PHS in the in situ activation of Trp P-2 to its ultimate carcinogenic form in tissues which contain PHS.

  15. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene

  16. Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures.

    Science.gov (United States)

    Callaghan, Amy V; Davidova, Irene A; Savage-Ashlock, Kristen; Parisi, Victoria A; Gieg, Lisa M; Suflita, Joseph M; Kukor, Jerome J; Wawrik, Boris

    2010-10-01

    Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism. PMID:20504044

  17. Genome-wide changes accompanying knockdown of fatty acid synthase in breast cancer

    Directory of Open Access Journals (Sweden)

    Smith Jeffrey W

    2007-06-01

    Full Text Available Abstract Background The lipogenic enzyme fatty acid synthase (FAS is up-regulated in a wide variety of cancers, and is considered a potential metabolic oncogene by virtue of its ability to enhance tumor cell survival. Inhibition of tumor FAS causes both cell cycle arrest and apoptosis, indicating FAS is a promising target for cancer treatment. Results Here, we used gene expression profiling to conduct a global study of the cellular processes affected by siRNA mediated knockdown of FAS in MDA-MB-435 mammary carcinoma cells. The study identified 169 up-regulated genes (≥ 1.5 fold and 110 down-regulated genes (≤ 0.67 fold in response to knockdown of FAS. These genes regulate several aspects of tumor function, including metabolism, cell survival/proliferation, DNA replication/transcription, and protein degradation. Quantitative pathway analysis using Gene Set Enrichment Analysis software further revealed that the most pronounced effect of FAS knockdown was down-regulation in pathways that regulate lipid metabolism, glycolysis, the TCA cycle and oxidative phosphorylation. These changes were coupled with up-regulation in genes involved in cell cycle arrest and death receptor mediated apoptotic pathways. Conclusion Together these findings reveal a wide network of pathways that are influenced in response to FAS knockdown and provide new insight into the role of this enzyme in tumor cell survival and proliferation.

  18. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    Science.gov (United States)

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy. PMID:22075919

  19. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    Science.gov (United States)

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  20. Electron microscope and small angle neutron scattering studies of chicken liver fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.K.; Wakil, S.J.; Uberbacher, E.C.; Bunick, G.J.

    1986-05-01

    Electron microscopic studies of negatively stained chicken liver fatty acid synthase revealed images of various shapes and sizes. The dimeric structures could be related to each other as rod-life in open form and C-like in closed form. The rods measure 200A and 50A in their major and minor axis, respectively. The C-shaped structures have a diameter ranging from 70-100A, representing the degree to which they are closed. The model that most accurately represents the native enzyme was determined using small angle neutron scattering of the active enzyme in solution. These studies resulted in considerable refinement of the model obtained by electron microscopy. The enzyme has a radius of gyration of 58A and the scattering curves were best fit by a model in which the dimeric enzyme consisted of two side by side ellipsoidal cylinders with overall dimension of 150A X 136A X 60A. The molecule has a cleft extending the length of the major axis with a 5A overlap between the two cylinders. The ellipsoidal cross section of the subunit has a major and minor axis and 70 and 60A, respectively. This model is compatible with the linear functional model proposed earlier.

  1. Biophysical Investigation of the Mode of Inhibition of Tetramic Acids, the Allosteric Inhibitors of Undecaprenyl Pyrophosphate Synthase

    OpenAIRE

    Lee, Lac V.; Granda, Brian; Dean, Karl; Tao, Jianshi; Liu, Eugene; Zhang, Rui; Peukert, Stefan; Wattanasin, Sompong; XIE, XIAOLING; Ryder, Neil S.; Tommasi, Ruben; Deng, Gejing

    2010-01-01

    Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate the C55 undecaprenyl pyrophosphate (UPP). It has been demonstrated that tetramic acids (TAs) are selective and potent inhibitors of UPPS, but the mode of inhibition was unclear. In this work, we used a fluorescent FPP probe to study possible TA binding at the FPP binding site. A photosensitive TA analogue was desi...

  2. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues.

    Science.gov (United States)

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  3. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  4. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases.

    Science.gov (United States)

    Schrepfer, Patrick; Buettner, Alexander; Goerner, Christian; Hertel, Michael; van Rijn, Jeaphianne; Wallrapp, Frank; Eisenreich, Wolfgang; Sieber, Volker; Kourist, Robert; Brück, Thomas

    2016-02-23

    Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.

  5. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  6. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity. PMID:23832368

  7. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  8. Molecular cloning and regulation of murine fatty acid synthase mRNA

    International Nuclear Information System (INIS)

    Mouse liver mRNA that was enriched in sequences coding for fatty acid synthase (FAS) by sucrose-density gradient centrifugation was used as a template for cDNA synthesis. Double-stranded cDNA sequences were inserted into pBR322 and λgt10 and cloned. Clones containing putative cDNA sequences for FAS were identified by differential hybridization where 32P-cDNAs, synthesized from sucrose gradient purified liver mRNA from mice starved or starved and refed a fat-free diet, were used as probes. Two of these clones were further studied and found to contain sequences complementary to FAS mRNA by hybrid-selected translation and specific immunoprecipitation. Using these clones as probes, they selected 33 additional clones containing cDNA sequences for FAS. Partial DNA sequence data for these clones were obtained. Northern blot analysis revealed a single mRNA size of 9.3 kb when a cDNA clone with a 3.1 kb insert was used as a probe. This is in contrast to rat liver FAS which showed two mRNAs sizes of 9.2 and 10.0 kb. They also studied FAS mRNA level of 3T3-L1 preadipocytes during differentiation into adipocytes. An approximate 10-fold increase in FAS mRNA content was observed which corresponded with an increased rate of FAS synthesis indicating pretranslational regulation. The FAS cDNA probe was also employed to demonstrate that induction of FAS in the livers of previously starved mice that were fed a fat-free diet was controlled pretranslationally by a parallel modulation of the FAS mRNA concentration

  9. Effect of estrogen on gene expression of fatty acid synthase in periosteum

    Institute of Scientific and Technical Information of China (English)

    ZHENG Rui-min; LIN Shou-qing; LIU Yong; HUANG Man-ting; GONG Wei-yan; WU Zhi-hong

    2009-01-01

    Background Estrogen deficiency contributes to postmenopausal osteoporosis.Periosteum might be a potential target of estrogen,but the underlying mechanism at gene level is far from being elucidated.The objective of this study was to investigate the correlation between estrogen and fatty acid synthase(FAS)expression in periosteum.Methods Human periosteum cells were cultured in vitro.Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR.The expression of FAS in periosteum of ovarectomized(OVX)SD rats was investigated.Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR.Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control.The estradiol levels were(20.81±12.62)pg/ml,(19.64±4.35)pg/ml and(13.47+1.84)pg/ml in the sham group,the control,and the OVX group,respectively.The estradiol levels in the OVX group was significantly lower(P=0.0386).The FAS gene expression in periosteum in the OVX group,sham group,and control group was 3.09±1.97,1.33±0.47 and 1.51±1.32,respectively.The gene expression in the OVX group was significantly higher (P=0.0372).Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.

  10. Acid sphingomyelinase gene knockout ameliorates hyperhomocysteinemic glomerular injury in mice lacking cystathionine-β-synthase.

    Directory of Open Access Journals (Sweden)

    Krishna M Boini

    Full Text Available Acid sphingomyelinase (ASM has been implicated in the development of hyperhomocysteinemia (hHcys-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs and Asm mouse gene by cross breeding Cbs(+/- and Asm(+/- mice. Given that the homozygotes of Cbs(-/-/Asm(-/- mice could not survive for 3 weeks. Cbs(+/-/Asm(+/+, Cbs(+/-/Asm(+/- and Cbs(+/-/Asm(-/- as well as their Cbs wild type littermates were used to study the role of Asm(-/- under a background of Cbs(+/- with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs(+/- mice with different copies of Asm gene compared to Cbs(+/+ mice with different Asm gene copies. Cbs(+/-/Asm(+/+ mice had significantly increased renal Asm activity, ceramide production and O(2.(- level compared to Cbs(+/+/Asm(+/+, while Cbs(+/-/Asm(-/- mice showed significantly reduced renal Asm activity, ceramide production and O(2.(- level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs(+/-/Asm(-/- mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs(+/-/Asm(-/- mice compared to Cbs(+/-/Asm(+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O(2.(- production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme

  11. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    International Nuclear Information System (INIS)

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the β-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution

  12. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soo-Ik (Harvard Medical School, Boston, MA (USA)); Hammes, G.G. (Univ. of California, Santa Barbara (USA))

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  13. Starvation for ilvB operon leader amino acids other than leucine or valine does not increase acetohydroxy acid synthase activity in Escherichia coli.

    OpenAIRE

    Tsui, P; Freundlich, M

    1985-01-01

    Eleven different amino acids are encoded in the ilvB leader mRNA. Starvation for leucine or valine, but not for any of the other nine amino acids, resulted in high levels of acetohydroxy acid synthase I. These results are discussed in terms of a report (C.A. Hauser and G.W. Hatfield, Proc. Natl. Acad. Sci. U.S.A. 81:76-79, 1984) which suggests that threonine and alanine, in addition to leucine and valine, are involved in the regulation of the ilvB operon.

  14. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity.

    Directory of Open Access Journals (Sweden)

    Damien Garrido

    2015-02-01

    Full Text Available Fatty acid (FA metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1 works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell

  15. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  16. Increased fatty acid synthase as a potential therapeutic target in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    Wei-qin WANG; Xiao-ying ZHAO; Hai-yan WANG; Yun LIANG

    2008-01-01

    Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors. In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPMI8226. U266 cells were treated with cerulenin at various concentrations (5 to 320μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/PI (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with20 μg/ml cerulenin for 12 and 24h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V+/PI+ cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V+/PI+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines

  17. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase.

    Science.gov (United States)

    Austin, Michael B; Saito, Tamao; Bowman, Marianne E; Haydock, Stephen; Kato, Atsushi; Moore, Bradley S; Kay, Robert R; Noel, Joseph P

    2006-09-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two approximately 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis. PMID:16906151

  18. Functional and structural impact of target uridine substitutions on the H/ACA ribonucleoprotein particle pseudouridine synthase.

    Science.gov (United States)

    Zhou, Jing; Liang, Bo; Li, Hong

    2010-07-27

    Box H/ACA ribonucleoprotein protein particles catalyze the majority of pseudouridylation in functional RNA. Different from stand alone pseudouridine synthases, the RNP pseudouridine synthase comprises multiple protein subunits and an RNA subunit. Previous studies showed that each subunit, regardless its location, is sensitive to the step of subunit placement at the catalytic center and potentially to the reaction status of the substrate. Here we describe the impact of chemical substitutions of target uridine on enzyme activity and structure. We found that 3-methyluridine in place of uridine inhibited its isomerization while 2'-deoxyuridine or 4-thiouridine did not. Significantly, crystal structures of an archaeal box H/ACA RNP bound with the nonreactive and the two postreactive substrate analogues showed only subtle structural changes throughout the assembly except for a conserved tyrosine and a substrate anchoring loop of Cbf5. Our results suggest a potential role of these elements and the subunit that contacts them in substrate binding and product release.

  19. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  20. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    Energy Technology Data Exchange (ETDEWEB)

    Enderle, Mathias [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany); McCarthy, Andrew [EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9 (France); Paithankar, Karthik Shivaji, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Grininger, Martin, E-mail: paithankar@em.uni-frankfurt.de [Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany); Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried (Germany)

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  1. Impact of obesity and nitric oxide synthase gene G894T polymorphism on essential hypertension.

    Science.gov (United States)

    Wrzosek, M; Sokal, M; Sawicka, A; Wlodarczyk, M; Glowala, M; Wrzosek, M; Kosior, M; Talalaj, M; Biecek, P; Nowicka, G

    2015-10-01

    Hypertension is a multifactorial disease caused by environmental, metabolic and genetic factors, but little is currently known on the complex interplay between these factors and blood pressure. The aim of the present study was to assess the potential impact of obesity, and angiotensin-converting enzyme (ACE) I/D polymorphism and endothelial nitric oxide synthase gene (NOS3) 4a/4b, G894T and -T786C variants on the essential hypertension. The study group consisted of 1,027 Caucasian adults of Polish nationality (45.5 ± 13.6 years old), of which 401 met the criteria for hypertension. Body weight, height and blood pressure were measured and data on self-reported smoking status were collected. Fasting blood glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides were determined by standard procedures. The ACE I/D polymorphism and three polymorphisms in NOS3 gene (4a/4b, G894T, -T786C) were detected by the PCR method. Multivariable logistic regression demonstrated that age above 45 years, diabetes, dyslipidemia, smoking and male sex are important risk factors for hypertension and no significant influence of variants in ACE and NOS3 genes on this risk was recognized. Obese subjects had a 3.27-times higher risk (OR = 3.27, 95% CI: 2.37 - 4.52) of hypertension than non-obese, and in obese the NOS3 894T allele was associated with 1.37 fold higher risk of hypertension (P = 0.031). The distribution of NOS3 G894T genotypes supported the co-dominant (OR = 1.35, P = 0.034, Pfit = 0.435) or recessive (OR = 2.00, P = 0.046, Pfit = 0.286), but not dominant model of inheritance (P = 0.100). The study indicates that in obese NOS3 G894T polymorphism may enhance hypertension risk. However, in the presence of such strong risk factors as age, diabetes and smoking, the impact of this genetic variant seems to be attenuated. Further studies are needed to reveal the usefulness of G894T polymorphism in hypertension risk assessment in obese. PMID:26579574

  2. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  3. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum

    OpenAIRE

    Bitencourt, Tamires Aparecida; Komoto, Tatiana Takahasi; Massaroto, Bruna Gabriele; Miranda, Carlos Eduardo Saraiva; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2013-01-01

    Background Fatty acid synthase (FAS) is a promising antifungal target due to its marked structural differences between fungal and mammalian cells. The aim of this study was to evaluate the antifungal activity of flavonoids described in the scientific literature as FAS inhibitors (quercetin, trans-chalcone, ellagic acid, luteolin, galangin, and genistein) against the dermatophyte Trichophyton rubrum and their effects on fatty acid and ergosterol synthesis. Methods The antifungal activity of th...

  4. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Archer, Michael C., E-mail: m.archer@utoronto.ca [Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2 (Canada)

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  5. Role of Plant Fatty acid Elongase (3 keto acyl-CoA Synthase gene in Cuticular Wax Biosynthesis

    Directory of Open Access Journals (Sweden)

    Uppala Lokesh

    2013-12-01

    Full Text Available Plant surfaces are ensheathed by cuticular wax, amorphous intra-cuticular embedded in cutin polymer and crystalloid epi-cuticular that imparts a whitish appearance, confers drought resistance by reducing stomatal transpiration and also protects from U.V Radiation, phytophagous insects etc. Very long chain fatty acids acts as precursors for cuticular wax bio-synthesis. Wax bio-synthesis begins with fatty acid synthesis in the plastid (de novo synthesis of C16 and C18 and elongation of fatty acids in endoplasmic reticulum (C20 – C34 by four distinct enzymes 3-ketoacyl-CoA synthase, 3-ketoacyl-CoA reductase, 3-hydroxacyl-CoA dehydratase, trans-2,3-enoyl-CoA reductase (KCS, KCR, HCD, ECR. The KCS, a fatty acid elongase, determines the chain length and substrate specificity of the condensation reaction, a rate limiting step and the subsequent elongated products alkanes, aldehydes, primary alcohols, secondary alcohols, ketones and wax esters. 21 KCS genes were annotated in Arabidopsis thaliana Genome of which some KCSs were identified involved in cuticle formation (CER6 (CUT1, KCS1, KCS2, (DAISY, KCS20 and FDH.The current review will focus on the bio-chemical, genetic and molecular approaches on KCSs genes, predominantly KCS1 in plants particularly useful in identifying and characterizing gene products involved in wax bio-synthesis, secretion and function for developing transgenic crops that combat various stresses. INTRODUCTION

  6. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  7. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Nataliya E Chorna

    Full Text Available Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN, the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ of the dentate gyrus (DG and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v. microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.

  8. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    Science.gov (United States)

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  9. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  10. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  11. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  12. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  13. Functional and Structural Impact of Target Uridine Substitutions on the H/ACA Ribonucleoprotein Particle Pseudouridine Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing; Liang, Bo; Li, Hong (FSU)

    2010-09-17

    Box H/ACA ribonucleoprotein protein particles catalyze the majority of pseudouridylation in functional RNA. Different from stand alone pseudouridine synthases, the RNP pseudouridine synthase comprises multiple protein subunits and an RNA subunit. Previous studies showed that each subunit, regardless its location, is sensitive to the step of subunit placement at the catalytic center and potentially to the reaction status of the substrate. Here we describe the impact of chemical substitutions of target uridine on enzyme activity and structure. We found that 3-methyluridine in place of uridine inhibited its isomerization while 2{prime}-deoxyuridine or 4-thiouridine did not. Significantly, crystal structures of an archaeal box H/ACA RNP bound with the nonreactive and the two postreactive substrate analogues showed only subtle structural changes throughout the assembly except for a conserved tyrosine and a substrate anchoring loop of Cbf5. Our results suggest a potential role of these elements and the subunit that contacts them in substrate binding and product release.

  14. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    Science.gov (United States)

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  15. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges

    Directory of Open Access Journals (Sweden)

    Ahmed M. Naglah

    2016-04-01

    Full Text Available A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a–c. The chemical structures of the new Schiff bases (5b and 5d–h were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the lipopolysaccharide (LPS-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%–42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition at the same concentration (10 μM. The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a–c, and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  16. Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Tian, Yong-Sheng; Xu, Jing; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2011-12-01

    A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

  17. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  18. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  19. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    Science.gov (United States)

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  20. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Science.gov (United States)

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

  1. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas.

    Science.gov (United States)

    Ueda, Stefanie M; Yap, Kai Lee; Davidson, Ben; Tian, Yuan; Murthy, Vivek; Wang, Tian-Li; Visvanathan, Kala; Kuhajda, Francis P; Bristow, Robert E; Zhang, Hui; Shih, Ie-Ming

    2010-01-01

    Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN). Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P 1 in serous carcinomas was associated with a worse overall survival time (P NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  2. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas

    Directory of Open Access Journals (Sweden)

    Stefanie M. Ueda

    2010-01-01

    Full Text Available Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1, we chose to further characterize fatty acid synthase (FASN. Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P1 in serous carcinomas was associated with a worse overall survival time (P<.01. Finally, C93, a new FASN inhibitor, induced massive apoptosis in carboplatin/paclitaxel resistant ovarian cancer cells. In conclusion, we show that NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  3. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  4. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects

    Science.gov (United States)

    Finck, Jonas; Berdan, Emma L.; Mayer, Frieder; Ronacher, Bernhard; Geiselhardt, Sven

    2016-01-01

    Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level. PMID:27677406

  5. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  6. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  7. Protection of INS-1 Cells from Free Fatty Acid-induced Apoptosis by Inhibiting the Glycogen Synthase Kinase-3

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LUO Xiaoping

    2007-01-01

    To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 dia-betes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhib-ited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS-1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmol/L of LiCl, a inhibitor of GSK-3, the OA-induced apop-tosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.

  8. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  9. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS).

    Science.gov (United States)

    Waldbauer, Katharina; Seiringer, Günter; Nguyen, Dieu Linh; Winkler, Johannes; Blaschke, Michael; McKinnon, Ruxandra; Urban, Ernst; Ladurner, Angela; Dirsch, Verena M; Zehl, Martin; Kopp, Brigitte

    2016-01-13

    Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.

  10. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition. PMID:20127879

  11. Fatty Acid Synthase Cooperates with Glyoxalase 1 to Protect against Sugar Toxicity

    OpenAIRE

    Damien Garrido; Thomas Rubin; Mickael Poidevin; Brigitte Maroni; Arnaud Le Rouzic; Jean-Philippe Parvy; Jacques Montagne

    2015-01-01

    Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storag...

  12. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  13. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source.

    OpenAIRE

    Dailey, F E; Cronan, J E

    1986-01-01

    Escherichia coli K-12 has two acetohydroxy acid synthase (AHAS) isozymes (AHAS I and AHAS III). Both of these isozymes catalyze the synthesis of alpha-aceto-alpha-hydroxybutyrate and alpha-acetolactate, which are key intermediates of the isoleucine-valine biosynthetic pathway. Strains lacking either isozyme but not both activities have been previously shown to grow well in minimal media in the absence of isoleucine and valine on any of several commonly used carbon sources (e.g., glucose or su...

  14. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe) Varieties

    OpenAIRE

    Ehsan Karimi; Jaafar, Hawa Z. E.; Ali Ghasemzadeh

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10−3 M and 10−5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced t...

  15. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    International Nuclear Information System (INIS)

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins

  16. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Geun [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of); Park, Chin-Ju [Gwangju Institute of Science and Technology, Division of Liberal Arts and Sciences and Department of Chemistry (Korea, Republic of); Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa, E-mail: joonhwa@gnu.ac.kr [Gyeongsang National University, Department of Chemistry and Research Institute of Natural Science (Korea, Republic of)

    2015-02-15

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3{sub 10}-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  17. Comparative Amino Acids Studies on Phac Synthases and Proteases as Well as Establishing a New Trend in Experimental Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2012-04-01

    Full Text Available ABSTRACT: A question addressed in this study is: why similar enzymes are classified into different subclasses? As an example, PhaC synthases are classified according to four different classes (I, II, III and IV. To answer this question we proposed that besides the catalytic residues, the overall amino acids (AAs present are responsible for the differences observed. The AAs’ composition affects the structure/function/substrate specificity (SFS of these enzymes. The differences between the classes in various PhaC synthases and proteases were analysed to support our argument. Homology and phylogenic tree of some selected PhaC synthases of different strains (representing the four classes were demonstrated. The properties of a specific class of enzyme could not be changed into those of another by changing the catalytic residues. Moreover, these differences could not be detected from the proteins’ 3D structures, despite clear differences at the AAs level. Another question was also addressed: could we benefit from the various existing protein databases in the field of biotechnology? To answer this, we introduced a model for an Experimental Design based on the information in the protein database (for strains available in our lab regarding their ability to degrade castor oil. Two enzymes in the phenol degradation pathway, phenol 2-monooxygenase and catechol 1,2-dioxygenase, and a lipase enzyme were analysed. These enzymes were screened and analysed according to the BLAST-protein database and BRENDA. The comprehensive enzyme information system compared six strains against each other, including: Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Bacillus thuringiensis, Bacillus licheniformis, and Geobacillus stearothermophilus. Only P. aeruginosa proved to have the three required enzymes and was suitable for the production of lipases from castor oil (crude castor oil is usually contaminated with phenol as indicated by the databases. In

  18. Investigation of a 6-MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6-MSA-derived Aculinic Acid, Aculins A-B and Epi-Aculin A

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Holm, Dorte Koefoed; Gotfredsen, Charlotte Held;

    2015-01-01

    . In this study we identified a 6-methylsalicylic acid (6-MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully 13C-labeled 6-MSA revealed that 6-MSA is incorporated into aculinic acid, which...... further incorporates into three compounds that we name aculins A and B, and epi-aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6-MSA....

  19. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael;

    2010-01-01

    The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  20. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    Science.gov (United States)

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  1. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  2. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).

    Science.gov (United States)

    Jiang, Wen; Jiang, Yanfang; Bentley, Gayle J; Liu, Di; Xiao, Yi; Zhang, Fuzhong

    2015-08-01

    Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only β-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids. PMID:25788017

  3. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    Science.gov (United States)

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  4. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    Science.gov (United States)

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  5. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  6. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  7. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    OpenAIRE

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of...

  8. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  9. Biosynthesis of Dictyostelium Discoideum Differentation-Inducing Factor by a Hybrid Type I Fatty Acid A-Type III polyketide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Austin,M.; Saito, T.; Bowman, M.; Haydock, S.; Kato, A.; Moore, B.; Kay, R.; Noel, J.

    2006-01-01

    Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two {approx}3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis.

  10. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    Science.gov (United States)

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  11. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    Science.gov (United States)

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. PMID:26388428

  12. Impact of the Xba1-polymorphism of the human muscle glycogen synthase gene on parameters of the insulin resistance syndrome in a Danish twin population

    DEFF Research Database (Denmark)

    Fenger, M; Poulsen, P; Beck-Nielsen, H;

    2000-01-01

    : The Xba1-polymorphism of the human muscle glycogen synthase gene is correlated to insulin resistance and to diastolic blood pressure. The polymorphism does not involve any known transcription factor or any structural change in GYS1, and these correlations are therefore most probably caused by linkage......AIMS: To establish the impact on the insulin resistance syndrome of the intron 14 Xba1-polymorphism in human muscle glycogen synthase (GYS1). METHODS: Parameters related to the insulin resistance syndrome were measured in 244 monozygotic twins and 322 dizygotic twins with or without impaired...... and the remainder had the genotype A1A2. No A2A2-genotypes were detected. In 11 genotypic discordant dizygotic twin pairs the insulin resistance was significantly increased in the twins carrying the A1A2 genotype regardless of sex (HOMA index 1.81 (A1A1) vs. 2.57 (A1A2), P

  13. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  14. Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

    Science.gov (United States)

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A; Meredith, Timothy C

    2012-10-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.

  15. First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Patrick C Y Woo

    Full Text Available BACKGROUND: The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes. METHODOLOGY/PRINCIPAL FINDINGS: All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05. There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05. CONCLUSIONS/SIGNIFICANCE: The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid

  16. Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C.

    Science.gov (United States)

    Kabala, Anna Magdalena; Lasserre, Jean-Paul; Ackerman, Sharon H; di Rago, Jean-Paul; Kucharczyk, Roza

    2014-05-01

    Mutations in the human mitochondrial ATP6 gene encoding ATP synthase subunit a/6 (referred to as Atp6p in yeast) are at the base of neurodegenerative disorders like Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. In previous studies, using the yeast Saccharomyces cerevisiae as a model we were able to better define how several of these mutations impact the ATP synthase. Here we report the construction of yeast models of two other ATP6 pathogenic mutations, T9185C and T9191C. The first one was reported as conferring a mild, sometimes reversible, CMT clinical phenotype; the second one has been described in a patient presenting with severe LS. We found that an equivalent of the T9185C mutation partially impaired the functioning of yeast ATP synthase, with only a 30% deficit in mitochondrial ATP production. An equivalent of the mutation T9191C had much more severe effects, with a nearly complete block in yeast Atp6p assembly and an >95% drop in the rate of ATP synthesis. These findings provide a molecular basis for the relative severities of the diseases induced by T9185C and T9191C.

  17. Three-factor reciprocal cross mapping of a gene that causes expression of feedback-resistant acetohydroxy acid synthase in Escherichia coli K-12.

    Science.gov (United States)

    Jackson, J H; Davis, E J; Madu, A C; Braxter, S E

    1981-01-01

    The ilv-662 allele was previously identified as a mutation that caused acetohydroxy acid synthase activity to be resistant to feedback inhibition by valine (Davis et al. 1977). This allele was mapped between thr and leu by cotransduction analysis and labeled ilvJ. This report describes the mapping of ilvJ relative to genes that lie between thr and leu (ara, carA and pdxA) by three factor reciprocal cross analyses. We find that the probable gene order is thr-carA-pdxA-ilvJ-ara-leu. Although the phenotypic properties of ilvJ662 appear to be quite distinct from brnS, a gene reported to involve branched chain amino acid transport (Guardiola et al. 1974), we do not rule out possible allelism because of the uncertainty of the map position of brnS.

  18. Impact of Seasalt Deposition on Acid Soils in Maritime Regions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-Hua

    2003-01-01

    The characteristics of seasalt deposition and its impact on acid soils in maritime regions are reviewed. It is pointed out that studies involving the impact of seasalt deposition on acid soils have been concentrated on short-term effects on soil and water acidification. A deep consideration of long-term effects on soil acidification in maritime regions is still needed.

  19. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  20. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    Science.gov (United States)

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  1. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  2. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  3. Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros ketoacyl-ACP synthase

    Directory of Open Access Journals (Sweden)

    Huiya eGu

    2016-05-01

    Full Text Available The isolation or engineering of algal cells synthesizing high levels of medium-chain fatty acids (MCFAs is attractive to mitigate the high clouding point of longer chain fatty acids in algal based biodiesel. To develop a more informed understanding of MCFA synthesis is photosynthetic microorganisms, we isolated several algae from Great Salt Lake and screened this collection for MCFA accumulation to identify strains naturally accumulating high levels of MCFA. A diatom, Chaetoceros sp. GSL56, accumulated particularly high levels of C14 (up to 40%, with the majority of C14 fatty acids (~2/3 allocated in triacylglycerols. Using whole cell transcriptome sequencing and de novo assembly, putative genes encoding fatty acid synthesis enzymes were identified. Enzymes from this Chaetoceros sp. were expressed in the cyanobacterium Synechococcus sp. PCC 7002 to validate gene function and to determine whether eukaryotic enzymes lacking bacteria evolutionary control mechanisms could be used to improve MCFA production in this promising production strains. Replacement of the Synechococcus 7002 native FabH with a Chaetoceros ketoacyl-ACP synthase III increased MCFA synthesis up to five fold. The level of increase is dependent on promoter strength and culturing conditions.

  4. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    Science.gov (United States)

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  5. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  6. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lin, Jen-Kun

    2012-02-01

    Although green tea extract has been reported to suppress hyperlipidemia, it is unclear how tea extracts prepared from green, oolong, black and pu-erh teas modulate fatty acid synthase expression in rats fed on a high-fructose diet. In this animal study, we evaluated the hypolipidemic and hypoleptinemia effect of these four different tea leaves fed to male Wistar rats for 12 weeks. The results showed that a fructose-rich diet significantly elevated serum triacylglycerols, cholesterol, insulin, and leptin concentrations, as compared with those in the control group. Interestingly, consuming tea leaves for 12 weeks almost normalized the serum triacylglycerols concentrations. Again, rats fed with fructose/green tea and fructose/pu-erh tea showed the greatest reduction in serum TG, cholesterol, insulin and leptin levels. In contrast, serum cholesterol and insulin concentrations of the fructose/oolong tea-fed rats did not normalize. The relative epididymal adipose tissue weight was lower in all rats supplemented with tea leaves than those fed with fructose alone. There was molecular evidence of improved lipid homeostasis according to fatty acid synthase (FAS) protein expression. Furthermore, supplementation of green, black, and pu-erh tea leaves significantly decreased hepatic FAS mRNA and protein levels, and increased AMPK phosphorylation, compared with those of rats fed with fructose only. These findings suggest that the intake of green, black, and pu-erh tea leaves ameliorated the fructose-induced hyperlipidemia and hyperleptinemia state in part through the suppression of FAS protein levels and increased AMPK phosphorylation.

  7. The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: Restricted substrate preference towards very long chain fatty acyl thioesters

    Directory of Open Access Journals (Sweden)

    Shi Xiangyu

    2010-11-01

    Full Text Available Abstract Background The apicomplexan Cryptosporidium parvum genome possesses a 25-kb intronless open reading frame (ORF that predicts a multifunctional Type I fatty acid synthase (CpFAS1 with at least 21 enzymatic domains. Although the architecture of CpFAS1 resembles those of bacterial polyketide synthases (PKSs, this megasynthase is predicted to function as a fatty acyl elongase as our earlier studies have indicated that the N-terminal loading unit (acyl-[ACP] ligase prefers using intermediate to long chain fatty acids as substrates, and each of the three internal elongation modules contains a complete set of enzymes to produce a saturated fatty acyl chain. Although the activities of almost all domains were confirmed using recombinant proteins, that of the C-terminal reductase domain (CpFAS1-R was yet undetermined. In fact, there were no published studies to report the kinetic features of any reductase domains in bacterial PKSs using purified recombinant or native proteins. Results In the present study, the identity of CpFAS1-R as a reductase is confirmed by in silico analysis on sequence similarity and characteristic motifs. Phylogenetic analysis based on the R-domains supports a previous notion on the bacterial origin of apicomplexan Type I FAS/PKS genes. We also developed a novel assay using fatty acyl-CoAs as substrates, and determined that CpFAS1-R could only utilize very long chain fatty acyl-CoAs as substrates (i.e., with activity on C26 > C24 > C22 > C20, but no activity on C18 and C16. It was capable of using both NADPH and NADH as electron donors, but prefers NADPH to NADH. The activity of CpFAS1-R displayed allosteric kinetics towards C26 hexacosanoyl CoA as a substrate (h = 2.0; Vmax = 32.8 nmol min-1 mg-1 protein; and K50 = 0.91 mM. Conclusions We have confirmed the activity of CpFAS1-R by directly assaying its substrate preference and kinetic parameters, which is for the first time for a Type I FAS, PKS or non-ribosomal peptide

  8. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay;

    2002-01-01

    exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE...

  9. Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory

    Institute of Scientific and Technical Information of China (English)

    Qiuyun Tu; Xiangqi Tang; Zhiping Hu

    2008-01-01

    BACKGROUND: Clinical practice and modern pharmacology have confirmed that ehlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005.MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 μL kainic acid (0.4 mg/mL) into the hippocampus.METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5 μ L physiological saline into the hippocampus, and 2 days later, they received an intragastric administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device.RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P > 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 0.05). At day 7 following intervention, the number

  10. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  11. Review on Chlorobenzoic Acids Biodegradation and Their Environmental Impacts

    Institute of Scientific and Technical Information of China (English)

    LuWenming; QiYun; ZhaoLin; TanXin

    2005-01-01

    Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.

  12. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  13. Ecological impact of acid precipitation. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Drabloes, D.; Tollan, A. (eds.)

    1980-10-01

    Separate abstracts were prepared for 134 of the papers presented in these proceedings. Investigations into: transport and deposition, vegetation and soils, water quality, aquatic biota, impacts on soils and indirect effects on vegetation, effects on water quality, effects on aquatic biota, and various integrated studies are all discussed. Six papers were previously input to the data base.

  14. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    Science.gov (United States)

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  15. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    Science.gov (United States)

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  16. Methylenetetrahydrofolate reductase 677C>T and methionine synthase 2756A>G mutations: no impact on survival, cognitive functioning, or cognitive decline in nonagenarians

    DEFF Research Database (Denmark)

    Bathum, Lise; von Bornemann Hjelmborg, Jacob; Christiansen, Lene;

    2007-01-01

    BACKGROUND: Several reports have shown an association between homocysteine, cognitive functioning, and survival among the oldest-old. Two common polymorphisms in the genes coding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and methionine synthase (MTR 2756A>G) have an impact on plasma...... homocysteine level. METHODS: We examined the effect of the MTHFR 677C>T and MTR 2756A>G genotypes on baseline cognitive functioning, cognitive decline over 5 years measured in three assessments, and survival in a population-based cohort of 1581 nonagenarians. Cognitive functioning was assessed by using...... (p mean MMSE was lower for women than for men. However, considering the group participating in all three assessments, there were no sex-related differences in MMSE (p =.34). The cognitive decline in the group participating in all...

  17. Impact of d-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception.

    Science.gov (United States)

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Costell, Elvira; Carbonell, Inmaculada; Rojas, Cristina; Peña, Leandro

    2017-02-15

    Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food. PMID:27664619

  18. Impact of d-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception.

    Science.gov (United States)

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Costell, Elvira; Carbonell, Inmaculada; Rojas, Cristina; Peña, Leandro

    2017-02-15

    Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food.

  19. High Level Waste System Impacts from Acid Dissolution of Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  20. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong-Whan [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Jung-Eun [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang-Min [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Hui-Sun; Choe, Han [Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Seung-Chul [CrystalGenomics, Seoul (Korea, Republic of); Kim, Dong-Hou, E-mail: dhkim@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  2. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: anne.kultti@uku.fi [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Pasonen-Seppaenen, Sanna [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland); Jauhiainen, Marjo [Department of Pharmaceutical Chemistry, University of Kuopio, FIN-70211 Kuopio (Finland); Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I. [Institute of Biomedicine, Anatomy, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio (Finland)

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  3. M-CSF from Cancer Cells Induces Fatty Acid Synthase and PPARβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression

    Directory of Open Access Journals (Sweden)

    Jonghanne Park

    2015-03-01

    Full Text Available We investigate crosstalk between cancer cells and stromal myeloid cells. We find that Lewis lung carcinoma cells significantly induce PPARβ/δ activity in myeloid cells in vitro and in vivo. Myeloid cell-specific knockout of PPARβ/δ results in impaired growth of implanted tumors, and this is restored by adoptive transfer of wild-type myeloid cells. We find that IL-10 is a downstream effector of PPARβ/δ and facilitates tumor cell invasion and angiogenesis. This observation is supported by the finding that the CD11blowIL-10+ pro-tumoral myeloid cell is scarcely detected in tumors from myeloid-cell-specific PPARβ/δ knockout mice, where vessel densities are also decreased. Fatty acid synthase (FASN is shown to be an upstream regulator of PPARβ/δ in myeloid cells and is induced by M-CSF secreted from tumor cells. Our study gives insight into how cancer cells influence myeloid stromal cells to get a pro-tumoral phenotype.

  4. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Karimi, Ehsan

    2012-01-01

    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased

  5. Involvement of Salicylic Acid on Antioxidant and Anticancer Properties, Anthocyanin Production and Chalcone Synthase Activity in Ginger (Zingiber officinale Roscoe Varieties

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi

    2012-11-01

    Full Text Available The effect of foliar application of salicylic acid (SA at different concentrations (10−3 M and 10−5 M was investigated on the production of secondary metabolites (flavonoids, chalcone synthase (CHS activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231 in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS enzyme activity (involving flavonoid synthesis and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10−5 M SA treatment. As the SA concentration was decreased from 10−3 M to 10−5 M, the free radical scavenging power (FRAP increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL−1, the DPPH antioxidant activity recorded the highest value of 58.30%–72.90% with the 10−5 M SA treatment followed by the 10−3 M SA (52.14%–63.66% treatment. The lowest value was recorded in the untreated control plants (42.5%–46.7%. These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10−5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of

  6. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    Science.gov (United States)

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (Ptranslation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; Pexposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; Ptranslation as an important consequence of obesity. PMID:27532680

  7. A Mutant of Hepatitis B Virus X Protein (HBxΔ127 Promotes Cell Growth through A Positive Feedback Loop Involving 5-Lipoxygenase and Fatty Acid Synthase

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2010-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide. Hepatitis B virus X protein (HBx contributes to the development of HCC, whereas HBx with COOH-terminal deletion is a frequent event in the HCC tissues. Previously, we identified a natural mutant of HBx-truncated 27 amino acids at the COOH-terminal (termed HBxΔ127, which strongly enhanced cell growth. In the present study, we focused on investigating the mechanism. Accordingly, fatty acid synthase (FAS plays a crucial role in cancer cell survival and proliferation; thus, we examined the signaling pathways involving FAS. Our data showed that HBxΔ127 strongly increased the transcriptional activities of FAS in human hepatoma HepG2 and H7402 cells. Moreover, we found that 5-lipoxygenase (5-LOX was responsible for the up-regulation of FAS by using MK886 (an inhibitor of 5-LOX and 5-LOX small interfering RNA. We observed that HBxΔ127 could upregulate 5-LOX through phosphorylated extracellular signal-regulated protein kinases 1/2 and thus resulted in the increase of released leukotriene B4 (LTB4, a metabolite of 5-LOX by ELISA. The additional LTB4 could upregulate the expression of FAS in the cells as well. Interestingly, we found that FAS was able to upregulate the expression of 5-LOX in a feedback manner by using cerulenin (an inhibitor of FAS. Collectively, HBxΔ127 promotes cell growth through a positive feedback loop involving 5-LOX and FAS, in which released LTB4 is involved in the up-regulation of FAS. Thus, our finding provides a new insight into the mechanism involving the promotion of cell growth mediated by HBxΔ127.

  8. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  9. Conjugated Linoleic Acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells

    OpenAIRE

    Donnelly, Christina; Olsen, Arne M.; Lewis, Lionel D; Eisenberg, Burton L.; Eastman, Alan; Kinlaw, William B

    2009-01-01

    Spot 14 (THRSP, S14) is a nuclear protein involved in the regulation of genes required for fatty acid synthesis in normal and malignant mammary epithelial and adipose cells. Havartine and Bauman reported that conjugated linoleic acid (CLA) inhibits S14 gene expression in bovine mammary and mouse adipose tissues, and reduces milk fat production in cows. We hypothesized that CLA inhibits S14 gene expression in human breast cancer and liposarcoma cells, and that this will retard their growth. Ex...

  10. 脂肪酸合酶与冠心病的关系%Fatty Acid Synthase:Association with Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    杜建青; 赵婷婷

    2011-01-01

    脂肪酸合酶是催化内源性脂肪酸合成的关键酶,由其介导生成的饱和脂肪酸是动脉粥样斑块的构成成分之一.脂肪酸合酶还通过影响巨噬细胞对氧化低密度脂蛋白的摄取及胆固醇流出,参与粥样斑块的形成.此外,脂肪酸舍酶参与脂类代谢,抑制该酶活性具有减轻体重、增加胰岛素敏感性等作用,可使肥胖、糖尿病等冠心痛的危险因素逆转,因此,脂肪酸合酶与冠心病的发生发展密切相关.%Deregulation of fatty acid synthase (FASN) catalyzed de novo fatty acids biogenesis could play a central role in the pathogenesis of atherosclerosis. We reviewed pharmacological and genetic alterations of FASN activity that have been shown to significantly influence artherosclerosis and its risk factors including obesity, type 2 diabetes. First,the endogenous fatty acids which are catalyzed by the key enzyme FASN are one of atheroaclerotic plaque compositions.Secondly, FASN influences the oxidized low density lipoprotein intake and cholesterol efflux in macrophage, which would absolutely affect the plaque formation. Thirdly, FASN plays a key role in monocytes differentiation. Inhibitting FASN may reduce the formation of foam cells. In addition, FASN involved in lipid metabolism is also associated with metabolic diseases, such as obesity and diabetes which are the risk factors for coronary heart disease. We propose that the development or the progression of artherosclerosis can be prevented or reversed by the modulation of FASN status. The use of FASN inhibitors might be a valuable therapeutic approach for coronary disease.

  11. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    Science.gov (United States)

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  12. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  13. Valproic acid-mediated transcriptional regulation of human GM3 synthase (hST3Gal V) in SK-N-BE(2)-C human neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Haw-young KWON; Nam-young KANG; Hyun-mi DAE; Kyoung-sook KIM; Cheorl-ho KIM; Su-il DO; Young-choon LEE

    2008-01-01

    Aim:To investigate whether valproic acid (VPA) modulates human GM3 syn-thase (hST3Gal V) mRNA expression, as a part of ganglioside GM3 biosynthe-sis, in human neuroblastoma cells. Methods: Using RT-PCR and immunofluo-rescent confocal microscopy, we examined hST3Gal V mRNA and GM3 levels during VPA-induced differentiation of human neuroblastoma SK-N-BE(2)-C cells. We characterized the VPA-inducible promoter region within the hST3-Gal V gene using luciferase constructs carrying 5'-deletions of the hST3Gal V promoter. Results: RT-PCR indicated that VPA-mediated hST3Gal V induction is transcriptionally regulated. Functional analysis of the 5'-flanking region of the hST3Gal V gene demonstrated that the -177 to -83 region, which contains a cAMP-responsive element (CRE) at -143, functions as the VPA-inducible promoter by actively binding CRE binding protein (CREB). In addition, site-directed mutagenesis and electrophoretic mobility shift assay indicated that the CRE at -143 is crucial for the VPA-induced expression of hST3Gal V in SK-N-BE(2)-C cells. Conclusion: Our results isolated the core promoter region in the hST3Gal V promoter, a CRE at -143, and demonstrated that it is essential for transcriptional activation of hST3Gal V in VPA-induced SK-N-BE(2)-C cells. Subsequent CREB binding to this CRE mediates VPA-dependent upregulation of hST3Gal V gene expression.

  14. Persistent induction of nitric oxide synthase in tumours from mice treated with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid.

    Science.gov (United States)

    Moilanen, E; Thomsen, L L; Miles, D W; Happerfield, D W; Knowles, R G; Moncada, S

    1998-01-01

    An anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (5,6-MeXAA) induced nitric oxide synthase (NOS) in the tumour, spleen, thymus and small intestine, but not in the lung, liver, kidney, heart or skeletal muscle in B6D2F1 mice bearing subcutaneous colon 38 tumours. This pattern of induction is distinct from that caused by agents such as endotoxin, muramyl dipeptide or Corynebacterium parvum. The induction of NOS (iNOS) in the tumour was more persistent (maximal at 3 days) than in other tissues (maximal at 12 h). Immunohistochemical staining suggested that iNOS was located in macrophages and endothelial cells within and around the tumour. Treatment with 5,6-MeXAA also caused substantial increases in plasma nitrite and nitrate (NOx) concentrations that peaked at 8-12 h after 5,6-MeXAA. The increase in plasma NOx was prevented by a NOS inhibitor N-iminoethyl-L-ornithine (L-NIO), indicating that it was due to enhanced production of NO. Tumour-bearing mice were more responsive than controls to 5,6-MeXAA both in their plasma NOx increase and in their lower maximally tolerated dose. L-NIO was unable to prevent the complete tumour necrosis and regression caused by 5,6-MeXAA at a dose that substantially inhibited the increase of plasma NOx. In conclusion, the experimental anti-tumour agent 5,6-MeXAA induced NO synthesis in tumour-associated macrophages and in immunologically active tissues in parallel with its effects on tumour growth. The experiments with a non-selective NOS inhibitor L-NIO, however, suggest that NO is not a significant component in the mechanism of the anti-tumour action of 5,6-MeXAA in this particular model. PMID:9472639

  15. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase.

    Science.gov (United States)

    Algire, Carolyn; Amrein, Lilian; Zakikhani, Mahvash; Panasci, Lawrence; Pollak, Michael

    2010-06-01

    The molecular mechanisms responsible for the association of obesity with adverse colon cancer outcomes are poorly understood. We investigated the effects of a high-energy diet on growth of an in vivo colon cancer model. Seventeen days following the injection of 5x10(5) MC38 colon carcinoma cells, tumors from mice on the high-energy diet were approximately twice the volume of those of mice on the control diet. These findings were correlated with the observation that the high-energy diet led to elevated insulin levels, phosphorylated AKT, and increased expression of fatty acid synthase (FASN) by the tumor cells. Metformin, an antidiabetic drug, leads to the activation of AMPK and is currently under investigation for its antineoplastic activity. We observed that metformin blocked the effect of the high-energy diet on tumor growth, reduced insulin levels, and attenuated the effect of diet on phosphorylation of AKT and expression of FASN. Furthermore, the administration of metformin led to the activation of AMPK, the inhibitory phosphorylation of acetyl-CoA carboxylase, the upregulation of BNIP3 and increased apoptosis as estimated by poly (ADP-ribose) polymerase (PARP) cleavage. Prior work showed that activating mutations of PI3K are associated with increased AKT activation and adverse outcome in colon cancer; our results demonstrate that the aggressive tumor behavior associated with a high-energy diet has similar effects on this signaling pathway. Furthermore, metformin is demonstrated to reverse the effects of the high-energy diet, thus suggesting a potential role for this agent in the management of a metabolically defined subset of colon cancers. PMID:20228137

  16. Combined Phosphatase and Tensin Homolog (PTEN Loss and Fatty Acid Synthase (FAS Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xuehua Zhu

    2012-08-01

    Full Text Available We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN, to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC. The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, p < 0.0001. Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, p < 0.0001. Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (p = 0.043 for histological grades I–II versus grade III. Loss of total PTEN was significantly correlated with FAS overexpression (p = 0.014. Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (p = 0.049. Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (p = 0.011. Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS

  17. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Noelle [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University (Canada); Wong, Michael [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Holloway, Alison C. [Department of Obstetrics and Gynecology, McMaster University (Canada); Hardy, Daniel B., E-mail: Daniel.Hardy@schulich.uwo.ca [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Children' s Health Research Institute, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada)

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  18. Infection with HIV and HCV enhances the release of fatty acid synthase into circulation: evidence for a novel indicator of viral infection

    Directory of Open Access Journals (Sweden)

    Aragonès Gerard

    2010-08-01

    Full Text Available Abstract Background Fatty acid synthase (FASN is an enzyme synthesized by the liver and plays an important role in lipogenesis. The present study aimed to investigate whether serum FASN concentration may provide a direct link between HIV and/or HCV viral infections and lipid metabolic disorders commonly observed in HIV/HCV-infected patients. Methods We evaluated serum FASN concentration in 191 consecutive HIV-infected patients in the absence or presence of HCV co-infection. For comparison, 102 uninfected controls were included. Metabolic and inflammatory phenotype was also compared with respect to the presence of HCV co-infection. Results Serum FASN concentration was significantly higher in HIV-infected patients than in healthy participants and HCV co-infected patients showed higher levels than those without co-infection. Levels were also affected by treatment regimen, but marginally influenced by virological variables. Insulin concentration was the sole variable among metabolic parameters that demonstrated a significant correlation with serum FASN concentrations. Serum alanine aminotransferase (ALT values correlated significantly with serum FASN concentration and provided the best discrimination with respect to the presence or absence of HCV co-infection. In multivariate analysis, only ALT, monocyte chemoattractant protein-1 (MCP-1 and the presence of antiretroviral treatment regimen significantly contributed to explain serum FASN concentration in HIV/HCV co-infected patients. Conclusion Serum FASN concentration is significantly increased in HIV-infected individuals. The release of FASN into the circulation is further enhanced in patients who are co-infected with HCV. Subsequent studies should explore the usefulness of this indicator to monitor the effect of viral infections on disease progression and survival.

  19. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase.

    Science.gov (United States)

    Sehdev, Ann Smith; Kurman, Robert J; Kuhn, Elisabetta; Shih, Ie-Ming

    2010-06-01

    Serous tubal intraepithelial carcinoma (STIC) has been proposed as a precursor for many pelvic high-grade serous carcinomas. Our previous analysis of the ovarian cancer genome identified several genes with oncogenic potential that are amplified and/or overexpressed in the majority of high-grade serous carcinomas. Determining whether these genes are upregulated in STICs is important in further elucidating the relationship of STICs to high-grade serous carcinomas and is fundamental in understanding the molecular pathogenesis of high-grade serous carcinomas. In this study, 37 morphologically defined STICs were obtained from 23 patients with stage IIIC/IV high-grade serous carcinomas. Both STICs and the high-grade serous carcinomas were analyzed for expression of Rsf-1 (HBXAP), cyclin E, fatty acid synthase (FASN) and mucin-4. In addition, they were examined for expression of established markers including p53, Ki-67 and p16. We found that diffuse nuclear p53 and p16 immunoreactivity was observed in 27 (75%) of 36 and 18 (55%) of 33 STICs, respectively, whereas an elevated Ki-67 labeling index (>or=10%) was detected in 29 (78%) of 37 STICs. Cyclin E nuclear staining was seen in 24 (77%) of 35 STICs, whereas normal tubal epithelial cells were all negative. Increased Rsf-1 and FASN immunoreactivity occurred in 63%, and 62% of STICs, respectively, compared with adjacent normal-appearing tubal epithelium. Interestingly, only one STIC showed increased mucin-4 immunoreactivity. Carcinomas, when compared with STICs, overexpressed p16, Rsf-1, cyclin E and FASN in a higher proportion of cases. In conclusion, STICs express several markers including Rsf-1, cyclin E and FASN in high-grade serous carcinomas. In contrast, mucin-4 immunoreactivity either did not change or was reduced in most STICs. These results suggest that overexpression of Rsf-1, cyclin E and FASN occurs early in tumor progression.

  20. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit.

    Science.gov (United States)

    Starrett, D A; Laties, G G

    1991-03-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A(+)) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening.

  1. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  2. Impact of humic acids on EYL liposome membranes: ESR method

    Directory of Open Access Journals (Sweden)

    Pytel Barbara

    2015-07-01

    Full Text Available In this paper, the effects of model (commercial and natural (extracted from peat humic substances on the membrane of liposomes formed with egg yolk lecithin (EYL are presented. In our research, mass concentrations of fulvic and humic acids were used, which in relation to lecithin varied from 0% to 13%. To study membrane fluidity, electron spin resonance (EPR was used with two spin probes, penetrating various regions of the lipid bilayer. The effects of model and natural humic substances (humic acids – HAs and fulvic acids – FAs on the lipid membrane in different regions were researched: the lipid-water interphase, and in the middle of the lipid bilayer. It was shown that FA and HA impact the fluidity of liposome membranes in different ways. Increased mass concentrations of HAs decreased membrane fluidity in both acids: extracted from peat and the model. However, increased mass concentration of FAs extracted from peat, decreased membrane fluidity in the surface region, at the same time stiffening the central part of the bilayer. Increasing the concentration of FAs extracted from peat had the opposite effect when compared to model FA. This effect may be related to the complexation of xenobiotics present in the soil environment and their impact on biological membranes.

  3. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer: uptake of radiolabeled acetate as a predictor of the targeted therapy outcome.

    Directory of Open Access Journals (Sweden)

    Yukie Yoshii

    Full Text Available Fatty acid synthase (FASN expression is elevated in several cancers, and this over-expression is associated with poor prognosis. Inhibitors of FASN, such as orlistat, reportedly show antitumor effects against cancers that over-express FASN, making FASN a promising therapeutic target. However, large variations in FASN expression levels in individual tumors have been observed, and methods to predict FASN-targeted therapy outcome before treatment are required to avoid unnecessary treatment. In addition, how FASN inhibition affects tumor progression remains unclear. Here, we showed the method to predict FASN-targeted therapy outcome using radiolabeled acetate uptake and presented mechanisms of FASN inhibition with human prostate cancer cell lines, to provide the treatment strategy of FASN-targeted therapy. We revealed that tumor uptake of radiolabeled acetate reflected the FASN expression levels and sensitivity to FASN-targeted therapy with orlistat in vitro and in vivo. FASN-targeted therapy was noticeably effective against tumors with high FASN expression, which was indicated by high acetate uptake. To examine mechanisms, we established FASN knockdown prostate cancer cells by transduction of short-hairpin RNA against FASN and investigated the characteristics by analyses on morphology and cell behavior and microarray-based gene expression profiling. FASN inhibition not only suppressed cell proliferation but prevented pseudopodia formation and suppressed cell adhesion, migration, and invasion. FASN inhibition also suppressed genes involved in production of intracellular second messenger arachidonic acid and androgen hormones, both of which promote tumor progression. Collectively, our data demonstrated that uptake of radiolabeled acetate is a useful predictor of FASN-targeted therapy outcome. This suggests that [1-(11C]acetate positron emission tomography (PET could be a powerful tool to accomplish personalized FASN-targeted therapy by non

  4. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    Science.gov (United States)

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice. PMID:21619871

  5. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.

    Science.gov (United States)

    Wakuta, Shinji; Suzuki, Erika; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-06-17

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.

  6. Fatty Acid Synthase and Hormone-sensitive Lipase Expression in Liver Are Involved in Zinc-α2-glycoprotein-induced Body Fat Loss in Obese Mice

    Institute of Scientific and Technical Information of China (English)

    Feng-ying Gong; Jie-ying Deng; Hui-juan Zhu; Hui Pan; Lin-jie Wang; Hong-bo Yang

    2010-01-01

    Objective To explore the effects of zinc-a2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HFD)-induced obesity in mice and the possible mechanism.Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respec-tively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) in liver tissue were de-termined by reverse transcription-polymerase chain reaction.Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P<0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P<0.001), epididymal fat mass (r=-0. 67, P<0.001), percentage of epididymal fat (r=-0.65, P<0.001 ), and increased weight (r=-0.57, P<0.001) in simple SF-and HFD-fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididy-mal fat. Furthermore, FAS mRNA expression decreased (P<0.01) and HSL mRNA expression increased (P<0.001) in the liver in ZAG over-expressing mice.Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and in-creased HSL expression in the liver of obese mice.

  7. Genotoxic effect of ethacrynic acid and impact of antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  8. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...

  9. N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) suppresses microglial inducible nitric oxide synthase (iNOS) expression and activity induced by interferon-γ (IFN-γ)

    OpenAIRE

    Platten, Michael; Wick, Wolfgang; Wischhusen, Jörg; WELLER, MICHAEL

    2001-01-01

    Microglial cells up-regulate inducible nitric oxide synthase (iNOS) expression in response to various pro-inflammatory stimuli including interferon-γ (IFN-γ), allowing for the release of nitric oxide (NO). Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) is an antiallergic compound with suppressive effects on the activation of monocytes.Here, we show that N9 murine microglial cells express iNOS mRNA and protein and release nitric oxide into the culture medium in response to IFN-γ (200 ...

  10. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  11. The impact of gallic acid on iron gall ink corrosion

    Science.gov (United States)

    Rouchon-Quillet, V.; Remazeilles, C.; Bernard, J.; Wattiaux, A.; Fournes, L.

    Many old manuscripts suffer from iron-gall ink corrosion, threatening our graphic heritage. Corroded papers become brown and brittle with age. The chemical reactions involved in this corrosion are relatively well known: they include both acidic hydrolysis and oxidation catalysed by free iron(II). Yet, a great variety of iron-gall ink recipes, including a wide range of constituents can be found in the literature and the visual aspect of old inks, can be very different from one inscription to another, even if they have been written on the same sheet of paper. This suggests that even if the free iron(II) plays a dominant role in the paper alteration, the contribution of other ingredients should not be neglected. For this reason, we explored the impact gallic acid may have on the corrosion mechanisms and in particular on the oxidation reactions. These investigations were carried out on laboratory probes prepared with paper sheets immersed in different solutions, all containing the same amount of iron sulphate, and different gallic acid concentrations. These probes were then artificially aged and their degradation state was evaluated by bursting strength measurements, FTIR spectrometry and Mössbauer spectrometry. All these analyses lead us to conclude that gallic acid has an influence on the iron(III)/iron(II) ratio, probably because of its reducing properties.

  12. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling

    OpenAIRE

    Wakuta, Shinji; SUZUKI, ERIKA; Saburi, Wataru; Matsuura, Hideyuki; Nabeta, Kensuke; Imai, Ryozo; Matsui, Hirokazu

    2011-01-01

    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our...

  13. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.

    Science.gov (United States)

    Menendez, Javier A; Vellon, Luciano; Colomer, Ramon; Lupu, Ruth

    2005-05-20

    The relationship between breast cancer-associated fatty acid synthase (FAS; oncogenic antigen-519) and chemotherapy-induced cell damage has not been studied. We examined the ability of C75, a synthetic slow-binding inhibitor of FAS activity, to modulate the cytotoxic activity of the microtubule-interfering agent Taxol (paclitaxel) in SK-Br3, MDA-MB-231, MCF-7 and multidrug-resistant MDR-1 (P-Glycoprotein)-overexpressing MCF-7/AdrR breast cancer cells. When the combination of C75 with Taxol in either concurrent (C75 + Taxol 24 hr) or sequential (C75 24 hr --> Taxol 24 hr) schedules were tested for synergism, addition or antagonism using the isobologram and the median-effect plot analyses, co-exposure of C75 and Taxol mostly demonstrated synergistic effects, whereas sequential exposure to C75 followed by Taxol mainly showed additive or antagonistic interactions. Because the nature of the cytotoxic interactions was definitely schedule-dependent in MCF-7 cells, we next evaluated the effects of C75 on Taxol-induced apoptosis as well as Taxol-activated cell death and cell survival-signaling pathways in this breast cancer cell model. An ELISA for histone-associated DNA fragments demonstrated that C75 and Taxol co-exposure caused a synergistic enhancement of apoptotic cell death, whereas C75 pre-treatment did not enhance the apoptosis-inducing activity of Taxol. Co-exposure to C75 and Taxol induced a remarkable nuclear accumulation of activated p38 mitogen-activated protein kinase (p38 MAPK), which was accompanied by a synergistic nuclear accumulation of the p53 tumor-suppressor protein that was phosphorylated at Ser46, a p38 MAPK-regulated pro-apoptotic modification of p53. As single agents, FAS blocker C75 and Taxol induced a significant stimulation of the proliferation and cell survival mitogen-activated protein kinase extracellular signal-regulated kinase (ERK1/ERK2 MAPK) activity, whereas, in combination, they interfered with ERK1/ERK2 activation. Moreover, the

  14. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  15. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    Science.gov (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  16. Identification of the Leishmania major Proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as Components of Fatty Acid Synthase II

    Directory of Open Access Journals (Sweden)

    Aner Gurvitz

    2009-01-01

    Full Text Available Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP of mitochondrial fatty acid synthase type 2 (FASII plays a crucial role in parasite survival. Additionally, 3-oxoacyl-ACP synthase TbKASIII as well as TbHTD2 representing 3-hydroxyacyl-ACP dehydratase were also identified; however, 3-oxoacyl-ACP reductase TbKAR1 has hitherto evaded positive identification. Here, potential Leishmania FASII components LmjF07.0440 and LmjF07.0430 were revealed as 3-hydroxyacyl-ACP dehydratases LmHTD2-1 and LmHTD2-2, respectively, whereas LmjF27.2440 was identified as LmKAR1. These Leishmania proteins were ectopically expressed in Saccharomyces cerevisiae htd2Δ or oar1Δ respiratory deficient cells lacking the corresponding mitochondrial FASII enzymes Htd2p and Oar1p. Yeast mutants producing mitochondrially targeted versions of the parasite proteins resembled the self-complemented cells for respiratory growth. This is the first identification of a FASII-like 3-oxoacyl-ACP reductase from a kinetoplastid parasite.

  17. Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition

    OpenAIRE

    Georgiou, D. N.; Karakasidis, T.E.; Nieto, J J; Torres, A.

    2009-01-01

    Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou's pseudo amino acid composition correspondence: Corresponding author. Tel.: +302421074163. (Karakasidis, T.E.) (Karakasidis, T.E.) University of Patras, Department of Mathematics - 265 00 Patras--> - GREECE (Georgiou, D.N.) University of Thessaly, Department of Civil Engineering - 383 34 Volos--> - GREECE (Karakas...

  18. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    OpenAIRE

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-t...

  19. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion

    OpenAIRE

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2007-01-01

    Abstract The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. In anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of saturated fatty acid (SFA) is observed that induces significant modification of phospholipid profile [1]. ...

  20. Highly Efficient Synthesis of Two Hyaluronan Trisaccharide Analogues for Potential Hyaluronic Acid Synthases Inhibitors%透明质酸三糖模拟物的高效合成

    Institute of Scientific and Technical Information of China (English)

    魏国华; 杜宇国; Khushi L. Matta

    2009-01-01

    The syntheses of two hyaluronan trisaccharide analogues, naphthyl 0-(3-methoxy-B-D-glucopy-ranosyluronic acid)-(1,3)-O-(2-acetamido-2-deoxy-B-D-glucopyranosyl)-(1,4)-0-B-D-glucopyranosyluronic acid and naphthyl O-(3-methoxy-2-acetamido-2-deoxy-B-D-glucopyranosyl)-(1,4)-O-(B-D-glucopyranosylu-ronic acid)-(1,3 )-O-2-acetamido-2-deoxy-B-D-glucopyranoside, were described. Construction of the target molecules was achieved through a combination of BF_3·Et_2O/toluene system and trichloroacetimidate glycosyia-tion methodology. This is the first report on the synthesis of the 3-methoxyl derivatives, which represent the smallest fragments that incorporate all the structural features of polymeric hyaluronan and can be used for potential hyaluronic acid synthases inhibitors.%设计合成了2个透明质酸(HA)模拟物1和2, 通过最小基团MeO的引入修饰, 模拟天然HA片段的特性, 用于透明质酸合成酶(HAS)催化机理与抑制剂的研究.

  1. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  2. Cloning and Expression of Poly-glutamic Acid Synthase Gene in Escherichia coli%γ-PGA合成酶基因在大肠杆菌中的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    乔广军; 汪晨; 周志蕙; 张凯; 蔡恒

    2013-01-01

      研究了γ-PGA合成酶基因pgsBCA在大肠杆菌中的克隆和表达,以pET28a(+)为载体,构建表达载体pET28a (+)-pgsBCA,导入宿主Escherichia coli Rosetta中,诱导使之表达.将发酵液离心去除菌体,得到上清液用旋转蒸发仪浓缩后,采用SDS-PAGE电泳检测重组菌E.coli Rosetta/pET28a-pgsBCA产生的γ-PGA分子量在200-300kDa之间,将产物水解,采用薄层层析法鉴定产物由单一的谷氨酸组成,表明γ-PGA合成酶基因pgsBCA在大肠杆菌中成功表达.%Studied poly-glutamic acid synthase gene pgsBCA cloned and expressed in the the E.coli, pET28a (+) was selected as the carrier to construct the expression vector pET28a (+)-pgsBCA and to be imported into host E. coli Rosetta, and induced it to express. Dealing with fermentation broth, centrifuged to remove bacteria body and obtained supernatant, using SDS-PAGE electrophores to detect the PGA molacular weight between 200-300kDa pro-duced by recombinant bacteria, hydrolysised the product, using the thin-layer chromatography identification, we found that the product was composed by a single glutamic acid, which showed that-PGA synthase gene pgsBCA was successfully expressed in E.coli.

  3. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    Science.gov (United States)

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  4. Impact of scaling on the nitric-glycolic acid flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  5. Carbon fluxes in an acid rain impacted boreal headwater catchment

    Science.gov (United States)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m‑2 yr‑1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42‑ accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  6. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  7. Caenorhabditis elegans F09E10.3 Encodes a Putative 3-Oxoacyl-Thioester Reductase of Mitochondrial Type 2 Fatty Acid Synthase FASII that Is Functional in Yeast

    Directory of Open Access Journals (Sweden)

    Aner Gurvitz

    2009-01-01

    Full Text Available Caenorhabditis elegans F09E10.3 (dhs-25 was identified as encoding a 3-oxoacyl-thioester reductase, potentially of the mitochondrial type 2 fatty acid synthase (FASII system. Mitochondrial FASII is a relatively recent discovery in metazoans, and the relevance of this process to animal physiology has not been elucidated. A good animal model to study the role of FASII is the nematode C. elegans. However, the components of nematode mitochondrial FASII have hitherto evaded positive identification. The nematode F09E10.3 protein was ectopically expressed without an additional mitochondrial targeting sequence in Saccharomyces cerevisiae mutant cells lacking the homologous mitochondrial FASII enzyme 3-oxoacyl-ACP reductase Oar1p. These yeast oar1Δ mutants are unable to respire, grow on nonfermentable carbon sources, or synthesize sufficient levels of lipoic acid. Mutant yeast cells producing a full-length mitochondrial F09E10.3 protein contained NAD+-dependent 3-oxoacyl-thioester reductase activity and resembled the corresponding mutant overexpressing native Oar1p for the above-mentioned phenotype characteristics. This is the first identification of a metazoan 3-oxoacyl-thioester reductase (see Note Added in Proof.

  8. Folate/Folic Acid Knowledge, Intake, and Self-Efficacy of College-Aged Women: Impact of Text Messaging and Availability of a Folic Acid-Containing Supplement

    Science.gov (United States)

    Rampersaud, Gail C.; Sokolow, Andrew; Gruspe, Abigail; Colee, James C.; Kauwell, Gail P. A.

    2016-01-01

    Objective: To evaluate the impact of educational text messages (TMs) on folate/folic acid knowledge and consumption among college-aged women, and to evaluate the impact of providing folic acid supplements on folate/folic acid intake among college-aged women. Participants: A total of 162 women (18-24 years) recruited from a university. Methods: The…

  9. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    Science.gov (United States)

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  10. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    Science.gov (United States)

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer.

  11. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer.

    Science.gov (United States)

    Oladokun, Olayide; Tarrega, Amparo; James, Sue; Smart, Katherine; Hort, Joanne; Cook, David

    2016-08-15

    Thirty-four commercial lager beers were analysed for their hop bitter acid, phenolic acid and polyphenol contents. Based on analytical data, it was evident that the beers had been produced using a range of different raw materials and hopping practices. Principal Components Analysis was used to select a sub-set of 10 beers that contained diverse concentrations of the analysed bitter compounds. These beers were appraised sensorially to determine the impacts of varying hop acid and polyphenolic profiles on perceived bitterness character. Beers high in polyphenol and hop acid contents were perceived as having 'harsh' and 'progressive' bitterness, whilst beers that had evidently been conventionally hopped were 'sharp' and 'instant' in their bitterness. Beers containing light-stable hop products (tetrahydro-iso-α-acids) were perceived as 'diminishing', 'rounded' and 'acidic' in bitterness. The hopping strategy adopted by brewers impacts on the nature, temporal profile and intensity of bitterness perception in beer. PMID:27006233

  12. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii:the impact of citric acid and tartaric acid

    Institute of Scientific and Technical Information of China (English)

    Ling-li LU; Sheng-ke TIAN; Xiao-e YANG; Hong-yun PENG; Ting-qiang LI

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils.Organic acid has been suggested to be involved in toxic metallic element tolerance,translocation,and accumulation in plants.The impact of exogenous organic acids on cadmium(Cd)uptake and translocation in the zinc(Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study.By the addition of organic acids,short-term(2 h)root uptake of 109Cd increased significantly,and higher 109Cd contents in roots and shoots were noted 24 h after uptake,when compared to controls.About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid(CA)treatments,as compared with 75% within controls.No such effect was observed for tartaric acid(TA).Reduced growth under Cd stress was significantly alleviated by low CA.Long-term application of the two organic acids both resulted in elevated Cd in plants,but the effects varied with exposure time and levels.The results imply that CA may be involved in the processes of Cd uptake,translocation and tolerance in S.alfredii,whereas the impact of TA is mainly on the root uptake of Cd.

  13. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    Science.gov (United States)

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  14. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    Science.gov (United States)

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  15. Impact of dietary aromatic amino acids on osteoclastic activity.

    Science.gov (United States)

    Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-Ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Chutkan, Norman; Robbins, Richard; Nadeau, Hugh; Johnson, Maribeth; Hamrick, Mark W; Isales, Carlos M

    2014-08-01

    We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.

  16. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  17. Identifying and assessing the impact of wine acid-related genes in yeast.

    Science.gov (United States)

    Chidi, Boredi S; Rossouw, Debra; Bauer, Florian F

    2016-02-01

    Saccharomyces cerevisiae strains used for winemaking show a wide range of fermentation phenotypes, and the genetic background of individual strains contributes significantly to the organoleptic properties of wine. This strain-dependent impact extends to the organic acid composition of the wine, an important quality parameter. However, little is known about the genes which may impact on organic acids during grape must fermentation. To generate novel insights into the genetic regulation of this metabolic network, a subset of genes was identified based on a comparative analysis of the transcriptomes and organic acid profiles of different yeast strains showing different production levels of organic acids. These genes showed significant inter-strain differences in their transcription levels at one or more stages of fermentation and were also considered likely to influence organic acid metabolism based on existing functional annotations. Genes selected in this manner were ADH3, AAD6, SER33, ICL1, GLY1, SFC1, SER1, KGD1, AGX1, OSM1 and GPD2. Yeast strains carrying deletions for these genes were used to conduct fermentations and determine organic acid levels at various stages of alcoholic fermentation in synthetic grape must. The impact of these deletions on organic acid profiles was quantified, leading to novel insights and hypothesis generation regarding the role/s of these genes in wine yeast acid metabolism under fermentative conditions. Overall, the data contribute to our understanding of the roles of selected genes in yeast metabolism in general and of organic acid metabolism in particular. PMID:26040556

  18. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  19. 结直肠癌患者血清脂肪酸合成酶水平的检测及其临床意义%Serum levels of fatty acid synthase in colorectal cancer patients and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    闾晨涛; 韩潞; 江勇; 韩东兴

    2014-01-01

    背景与目的:脂肪酸合成酶(fatty acid synthase, FAS)是唯一有能力在细胞内合成长链脂肪酸的蛋白。由于肿瘤组织对脂肪酸的需求旺盛,包括结直肠癌在内的多种恶性肿瘤组织中常见FAS过表达。本实验研究结直肠癌患者血清FAS水平与肿瘤病理特征的关系。方法:选择2013年3月-2014年3月接受根治性手术治疗的60例结直肠癌患者为研究组,另选20名健康志愿者为对照组。采用酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)检测血清FAS水平,分析结直肠癌患者血清FAS水平与其临床病理特征的关系。结果:研究组FAS平均为20.77±10.56 mg/L,对照组FAS水平为10.33±5.65 mg/L,差异有统计学意义(P0.05)。结论:血清FAS水平可能与结直肠癌的发生、发展有一定关系,可以对其作为评估肿瘤进展情况的标志物的可行性作进一步研究。%Background and purpose:Fatty acid synthase (FAS) is the sole protein in the human genome capable of intracellular synthesis of long-chain fatty acids. FAS overexpression is detected in various cancer tissues including colorectal cancer because of the increasing requirement of tumor for long-chain fatty acid. This study was to investigate the association between serum levels of FAS in patients with colorectal cancer and clinicopathological characteristics of colorectal cancer.Methods:A total of 60 patients who underwent radical surgical resection for colorectal cancer from Mar. 2013 to Mar. 2014 were selected as the study group, while 20 healthy volunteers were selected as the control group. The serum levels of FAS were measured by enzyme-linked immunosorbent assay (ELISA) methods. Differences of serum levels of FAS in patients with various clinicopathological characteristics of colorectal cancer were analyzed.Results:The serum levels of FAS in the study group were signiifcantly different with those in the control group. Serum FAS levels of

  20. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  1. Ursolic acid and luteolin-7-glucoside improves rat plasma lipid profile and increases liver glycogen content through glycogen synthase kinase-3

    OpenAIRE

    Azevedo, Marisa; Camsari, Çagri; Sá, Carla M.; Lima, Cristóvão F.; Ferreira, Manuel Fernandes; Wilson, Cristina Pereira

    2010-01-01

    Documento submetido para revisão pelos pares. A publicar em Phytotherapy Research. ISSN 0951-418X In the present study, two phytochemicals – ursolic acid (UA) and luteolin-7-glucoside (L7G) – were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profi le (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucos...

  2. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  3. Infrared studies of sulfuric acid and its impact on polar and global ozone

    Science.gov (United States)

    Iraci, Laura Tracy

    Sulfuric acid aerosols are present throughout the lower stratosphere and play an important role in both polar and global ozone depletion. In the polar regions, stratospheric sulfate aerosols (SSAs) act as nuclei for the growth of polar stratospheric clouds (PSCs). Heterogeneous reactions can occur on these PSCs, leading to chlorine activation and catalytic ozone destruction. This thesis addresses the issue of polar ozone depletion through laboratory studies which examine the nucleation of PSCs on sulfuric acid. In addition, chemistry which occurs directly on sulfate aerosols may impact ozone at midlatitudes, and studies describing one such reaction are presented as well. To study the growth of type I PSCs on sulfuric acid, thin H2SO4 films were exposed to water and nitric acid vapors at stratospheric temperatures. Fourier transform infrared spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films which condensed. Supercooled liquid sulfuric acid films showed uptake of HNO3 to form ternary solutions, followed by crystallization of nitric acid trihydrate (NAT). When crystalline sulfuric acid tetrahydrate (SAT) films were exposed to nitric acid and water, condensation of a supercooled HNO3/H2O layer was often observed. As predicted by theory, some of the SAT crystal then dissolved, creating a ternary H2SO4/HNO3/H2O solution. From this solution, NAT nearly always crystallized, halting the phase change of sulfuric acid. If a supercooled nitric acid layer did not condense on frozen sulfuric acid, crystalline NAT was not deposited from the gas phase when SNAT/leq41. At significantly higher supersaturations, NAT could be forced to condense on sulfuric acid, regardless of its phase. Calculations of the contact parameter from experimental data indicate that mSAT, predicting a significant barrier to nucleation of NAT from the gas phase. While PSCs can form only in the cold polar regions of the stratosphere, sulfuric acid aerosols can

  4. Detecting acid precipitation impacts on lake water quality

    Science.gov (United States)

    Loftis, Jim C.; Taylor, Charles H.

    1989-09-01

    The United States Environmental Protection Agency is planning to expand its long-term monitoring of lakes that are sensitive to acid deposition effects. Effective use of resources will require a careful definition of the statistical objectives of monitoring, a network design which balances spatial and temporal coverage, and a sound approach to data analysis. This study examines the monitoring objective of detecting trends in water quality for individual lakes and small groups of lakes. Appropriate methods of trend analysis are suggested, and the power of trend detection under seasonal (quarterly) sampling is compared to that of annual sampling. The effects of both temporal and spatial correlation on trend detection ability are described.

  5. Low-velocity impact behavior of woven jute/poly(lactic acid) composites

    Science.gov (United States)

    Russo, Pietro; Simeoli, Giorgio; Papa, Ilaria; Acierno, Domenico; Lopresto, Valentina; Langella, Antonio

    2016-05-01

    Biocomposite laminates based on poly(lactic acid) (PLA) and woven jute fabric were obtained by film stacking and compression molding techniques. Sample laminates were systematically characterized by impact tests with a falling dart at impact energies equal to 5, 10 and 20 J. Tests showed that, investigated PLA/jute fabric plates suffer only barely visible damages at the first two levels of impact energy while they result to be perforated at 20 J as highlighted by photographic images taken on low and back side of impacted surfaces.

  6. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  7. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    Science.gov (United States)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  8. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    C.C.N. van Schie; M.A. Haring; R.C. Schuurink

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  9. Non-enzymatic modifications of prostaglandin H synthase 1 affect bifunctional enzyme activity - Implications for the sensitivity of blood platelets to acetylsalicylic acid.

    Science.gov (United States)

    Kassassir, Hassan; Siewiera, Karolina; Talar, Marcin; Stec-Martyna, Emilia; Pawlowska, Zofia; Watala, Cezary

    2016-06-25

    Due to its ability to inhibit the blood platelet PGHS-1, acetylsalicylic acid (ASA, Aspirin(®)) is widely used as a preventive agent in atherothrombotic diseases. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair effective ASA-mediated acetylation process. On the other hand, it is proposed that ASA can prevent some of the late complications of diabetes by lowering the extent of glycation at protein free amino groups. The aim of this work was to evaluate the extents of non-enzymatic N-glycosylation (glycation) and acetylation of blood platelet PGHS-1 (COX-1) and the competition between glycation and acetylation was investigated in order to demonstrate how these two reactions may compete against platelet PGHS-1. When PGHS-1 was incubated with glycating/acetylating agents (glucose, Glu; 1,6-bisphosphofructose, 1,6-BPF; methylglyoxal, MGO, acetylsalicylic acid, ASA), the enzyme was modified in 13.4 ± 1.6, 5.3 ± 0.5, 10.7 ± 1.2 and 6.4 ± 1.1 mol/mol protein, respectively, and its activity was significantly reduced. The prior glycation/carbonylation of PGHS-1 with Glu, 1,6-BPF or MGO decreased the extent of acetylation from 6.4 ± 1.1 down to 2.5 ± 0.2, 3.6 ± 0.3 and 5.2 ± 0.2 mol/mol protein, respectively, but the enzyme still remained susceptible to the subsequent inhibition of its activity with ASA. When PGHS-1 was first acetylated with ASA and then incubated with glycating/carbonylating agents, we observed the following reductions in the enzyme modifications: from 13.4 ± 1.6 to 8.7 ± 0.6 mol/mol protein for Glu, from 5.3 ± 0.5 to 3.9 ± 0.3 mol/mol protein for 1,6-BPF and from 10.7 ± 1.2 to 7.5 ± 0.5 mol/mol protein for MGO, however subsequent glycation/carbonylation did not significantly affect PGHS-1 function. Overall, our outcomes allow to better understand the structural aspects of the chemical competition between glycation and acetylation of PGHS-1

  10. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    Science.gov (United States)

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. PMID:24447914

  11. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, Eran (Chelsea, MI)

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  12. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  13. Geochemical Processes Controlling the Generation and Environmental Impacts of Acid Mine Drainage in Semi Arid Conditions

    OpenAIRE

    Magombedze, Chris

    2006-01-01

    This study evaluates the geochemical processes that control the geochemistry of acid mine drainage in semi arid conditions. The central objective is to characterise and understand the evolution of acid mine drainage and its potential environmental impacts on the Mazowe River sub-catchment, in north east Zimbabwe. The work is based on a case study at three neighbouring metal sulphide mines, namely Trojan Nickel Mine, Mazowe Gold Mine and Iron Duke Pyrites.The methodology used in this research ...

  14. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    Science.gov (United States)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  15. The impact of high fructose on cardiovascular system: Role of α-lipoic acid.

    Science.gov (United States)

    Saygin, M; Asci, H; Cankara, F N; Bayram, D; Yesilot, S; Candan, I A; Alp, H H

    2016-02-01

    The aim of this study was to evaluate the role of α-lipoic acid (α-LA) on oxidative damage and inflammation that occur in endothelium of aorta and heart while constant consumption of high-fructose corn syrup (HFCS). The rats were randomly divided into three groups with each group containing eight rats. The groups include HFCS, HFCS + α-LA treatment, and control. HFCS was given to the rats at a ratio of 30% of F30 corn syrup in drinking water for 10 weeks. α-LA treatment was given to the rats at a dose of 100 mg/kg/day orally for the last 6 weeks. At the end of the experiment, the rats were killed by cervical dislocation. The blood samples were collected for biochemical studies, and the aortic and cardiac tissues were collected for evaluation of oxidant-antioxidant system, tissue bath, and pathological examination. HFCS had increased the levels of malondialdehyde, creatine kinase MB, lactate dehydrogenase, and uric acid and showed significant structural changes in the heart of the rats by histopathology. Those changes were improved by α-LA treatment as it was found in this treatment group. Immunohistochemical expressions of tumor necrosis factor α and inducible nitric oxide synthase were increased in HFCS group, and these receptor levels were decreased by α-LA treatment. All the tissue bath studies supported these findings. Chronic consumption of HFCS caused several problems like cardiac and endothelial injury of aorta by hyperuricemia and induced oxidative stress and inflammation. α-LA treatment reduced uric acid levels, oxidative stress, and corrected vascular responses. α-LA can be added to cardiac drugs due to its cardiovascular protective effects against the cardiovascular diseases. PMID:25825413

  16. Moderately high intake of folic acid has a negative impact on mouse embryonic development

    Science.gov (United States)

    The incidence of neural tube defects has diminished considerably since the implementation of food fortification with folic acid (FA). However, the impact of excess FA intake, particularly during pregnancy, requires investigation. In a recent study, we reported that a diet supplemented with 20-fold h...

  17. Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems

    Science.gov (United States)

    Parnell, Roderic A.; Burke, Kelly J.

    1990-07-01

    Emissions of acidic gases and thermal waters from Nevado del Ruiz volcano have recently increased in concert with the November 13, 1985 eruption. This study examines the downwind and downstream effects of these emissions on alpine ecosystems high on the slopes of the volcano (4100 m) and on coffee plantations at lower elevations ( 30 km). Samples of bulk deposition, rain, soils, soil solutions, and streams were collected over a six-month period (January-July, 1987) to examine the impacts of this volcanogenic acidity. Bulk deposition falling on the higher slopes of the volcano is usually acidified; however, deposition reaching the distal coffee plantations seldom is acidic. The sources of the acids are hydrogen chloride and sulfur dioxide in the plume of the volcano. Although sulfur dioxide is by far the more abundant gas, hydrogen chloride is most responsible for acidification of rain falling on the slopes of the volcano. With distance from the vent, the chloride/sulfate ratio drops exponentially. The only major influence on regional precipitation chemistry in addition to the volcano appears to be land-use-related activities around the coffee plantations. Deposition on these areas is enriched by an order of magnitude in nitrate and base cations, compared to all other stations. Throughfall chemistry in the coffee plantations shows a dramatic response to occasional acid-rain events. A base-leaching process on coffee plant leaves is triggered by acid rain. For each equivalent of hydrogen ion in rain on the leaf surface, over 23 equivalents of potassium ion are leached from the leaf. In spite of this dramatic response by the vegetation, the plantation soils appear relatively unaffected by acidic deposition. In contrast, the alpine soils on the volcano exhibit low pHs, high sulfate and chloride concentrations in soil solutions, and high extractable sulfate concentrations. All of these factors indicate that these soils have undergone significant acid loading. While the

  18. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  19. Microbial exoenzymes as bioindicators of acid rock drainage impacts in the Finniss River

    International Nuclear Information System (INIS)

    Sediment samples were collected from several sites along the East Branch of the Finniss River during the dry season (June, 1999), when the East Branch is drying into a series of ponds. The sites included those upstream from the Rum Jungle mine site (EB8A, EB8B, FCA, FCB), a site receiving acid leachate from the waste rock (WO), sites downstream from the mine that are impacted by acid and metal contamination (EB6, TCP, EB5D, EB4U, EB2) and reference sites not subject to acid rock drainage (HS, EB4S, LFRB). Exoenzyme activities were measured with a spectrofluorometric technique that involved measuring the increase in fluorescence when an artificial fluorogenic substrate (that mimics the natural substrate) is hydrolysed to a highly fluorescent product. The present findings indicate that the acid rock drainage impacted sediments contain acidophilic, heterotrophic microorganisms, bacteria and/or fungi, producing extracellular enzymes adapted to the acid conditions. This study has demonstrated that measurements of extracellular enzyme activities in river sediments provide a rapid, sensitive technique for determining microbial activity and productivity. In aquatic ecosystems some exoenzymes, particularly leucine-aminopeptidase, could be used as bioindicators of pollution from acid rock drainage

  20. Impact of acetic acid concentration of fermented liquid feed on growth performance of piglets

    DEFF Research Database (Denmark)

    Canibe, Nuria; Pedersen, Anni Øyan; Jensen, Bent Borg

    2010-01-01

    of microbial metabolites, namely acetic acid, possibly in combination with low feed pH, has been suggested to be determinant in reducing feed intake by impairing palatability. However, this hypothesis has never been investigated. A study was carried out to determine the impact of increasing levels of acetic...... acid in FLF on feed intake of weaners. Three experimental FLF diets were prepared to contain varying levels of acetic acid (30, 60, and 120 mM). Twenty piglets per treatment, weaned at 4 weeks of age and housed individually, were fed the experimental diets during six weeks starting at weaning. Feed...... intake and body weight were registered weekly. The results showed that high acetic acid concentration in FLF, accompanied by a slight lower pH level, tended to decrease feed intake without affecting body weight gain. This discrepancy could partly be explained by the difficulty in measuring accurately...

  1. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  2. Economic burden of neural tube defects and impact of prevention with folic acid: a literature review.

    Science.gov (United States)

    Yi, Yunni; Lindemann, Marion; Colligs, Antje; Snowball, Claire

    2011-11-01

    Neural tube defects (NTDs) are the second most common group of serious birth defects. Although folic acid has been shown to reduce effectively the risk of NTDs and measures have been taken to increase the awareness, knowledge, and consumption of folic acid, the full potential of folic acid to reduce the risk of NTDs has not been realized in most countries. To understand the economic burden of NTDs and the economic impact of preventing NTDs with folic acid, a systematic review was performed on relevant studies. A total of 14 cost of illness studies and 10 economic evaluations on prevention of NTDs with folic acid were identified. Consistent findings were reported across all of the cost of illness studies. The lifetime direct medical cost for patients with NTDs is significant, with the majority of cost being for inpatient care, for treatment at initial diagnosis in childhood, and for comorbidities in adult life. The lifetime indirect cost for patients with spina bifida is even greater due to increased morbidity and premature mortality. Caregiver time costs are also significant. The results from the economic evaluations demonstrate that folic acid fortification in food and preconception folic acid consumption are cost-effective ways to reduce the incidence and prevalence of NTDs. This review highlights the significant cost burden that NTDs pose to healthcare systems, various healthcare payers, and society and concludes that the benefits of prevention of NTDs with folic acid far outweigh the cost. Further intervention with folic acid is justified in countries where the full potential of folic acid to reduce the risk of NTDs has not been realized.

  3. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    Science.gov (United States)

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  4. Impacts of atmospheric pollution on the plant communities of British acid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Richard J., E-mail: r.payne@mmu.ac.uk [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Stevens, Carly J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ (United Kingdom); Dise, Nancy B. [School of Science and the Environment, Manchester Metropolitan University, Chester St., Manchester M1 5GD (United Kingdom); Gowing, David J. [Faculty of Science, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pilkington, Michael G.; Phoenix, Gareth K. [Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN (United Kingdom); Emmett, Bridget A. [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW (United Kingdom); Ashmore, Michael R. [Environment Department, University of York, Heslington, York YO10 5DD (United Kingdom)

    2011-10-15

    Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent. - Highlights: > Ozone exposure, N and base cation deposition modify UK acid grassland composition. > Ozone influences community composition without reducing species richness. > Nitrogen and base cation deposition have interacting impacts. > Distinct species responses to pollutants suggest potential for bioindication. - Ozone exposure and nitrogen deposition have distinct but additive impacts on the plant communities of British acid grasslands.

  5. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar t...... into plasmid vectors under control of the lac and tac promoters. These constructs direct the synthesis of catalytically active enzyme to the extent of 2% of total soluble protein....

  6. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  7. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    Science.gov (United States)

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars. PMID:26604353

  8. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  9. Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Liu Deng; Yang Xiaofen; Wang Hongmei; Li Jihong; Su Nian

    2008-01-01

    Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmorillonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmorillonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystoncs in the formation of hydrocarbon source rocks in the earth's history.

  10. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  11. Formation of Carbonic Acid in Impact of CO2 on Ice and Water.

    Science.gov (United States)

    Hirshberg, Barak; Gerber, R Benny

    2016-08-01

    A new mode of formation is proposed for carbonic acid in the atmosphere. It involves impact of vibrationally excited gas-phase CO2 molecules on water or ice particles. This is a first mechanism that supports formation on ice as well as on liquid water surfaces. Results of ab initio molecular dynamics simulations are presented on collisions of CO2 with (H2O)n clusters (n = 1, 4, 8, 12). Efficient formation of carbonic acid is seen with product lifetimes exceeding 100 ps. The reaction is feasible even for collision of CO2 with a single water molecule but in a different mechanism than for larger clusters. For clusters, the transition state shows charge separation into H3O(+)···HCO3(-), which transforms into neutral carbonic acid as the product, hydrated by the remaining waters. Possible atmospheric implications of the results are discussed.

  12. Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Prinn, Ronald G.; Fegley, Bruce, Jr.

    1987-01-01

    Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. In the framework of a proposal addressed by Lewis et al. (1982), it is shown that, while the impact projectiles themselves do not shock-heat the atmosphere very extensively, the supersonic plume of water vapor and rock produced on impact does shock the atmosphere up to global scales and the shock is of sufficient intensity to produce abundant nitric oxide. For example, an ice-rich long-period comet with a mass of 1.25 x 10 to the 16th kg and a velocity of 65 km/s striking the earth would produce about 7 x 10 to the 40th molecules NO through shock-heating of the atmosphere by the high-velocity ejecta plume fragments. Specific attention is given to the fraction of the atmosphere shock-heated, the global circulation of the nitrogen oxides, the effects of the ejecta plume water on acid rain (AR) predictions, the effects of AR on continental soils, the relationship between AR production rates and the total amount of acid needed to acidify the surface oceans, and the longevity of the oceanic acidity event and the exhaled CO2 event and their implications for the environment in the first millenia or so after the impact.

  13. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    Science.gov (United States)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-10-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  14. Investigation of microemulsion microstructure and its impact on skin delivery of flufenamic acid.

    Science.gov (United States)

    Mahrhauser, Denise-Silvia; Kählig, Hanspeter; Partyka-Jankowska, Ewa; Peterlik, Herwig; Binder, Lisa; Kwizda, Kristina; Valenta, Claudia

    2015-07-25

    Microemulsions are well known penetration enhancing delivery systems. Several properties are described that influence the transdermal delivery of active components. Therefore, this study aimed to characterize fluorosurfactant-based microemulsions and to assess the impact of formulation variables on the transdermal delivery of incorporated flufenamic acid. The microemulsion systems prepared in this study consisted of bistilled water, oleic acid, isopropanol as co-solvent, flufenamic acid as active ingredient and either Hexafor(TM)670 (Hex) or Chemguard S-550-100 (Sin) as fluorosurfactant. Characterization was performed by a combination of techniques including electrical conductivity measurements, small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) self-diffusion experiments. In vitro skin permeation experiments were performed with each prepared microemulsion using Franz type diffusion cells to correlate their present microstructure with their drug delivery to skin. Electrical conductivity increased with added water content. Consequently, the absence of a conductivity maximum as well as the NMR and SAXS data rather suggest O/W type microemulsions with spherical or rod-like microstructures. Skin permeation data revealed enhanced diffusion for Hex- and Sin-microemulsions if the shape of the structures was rather elongated than spherical implying that the shape of droplets had an essential impact on the skin permeation of flufenamic acid. PMID:26022888

  15. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Stêfany Bruno De Assis Cau

    2012-06-01

    Full Text Available Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO bioavailability and altered vascular expression and activity of NO synthase (NOS enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS-derived NO, while increased inducible NOS (iNOS expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen, statins, resveratrol and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.

  16. Impact of potato psyllid (Hemiptera: Triozidae) feeding on free amino acid composition in potato

    Institute of Scientific and Technical Information of China (English)

    Xiang-Bing Yang; Nasir S. A. Malik; Jose L. Perez; Tong-Xian Liu

    2011-01-01

    The impacts of potato psyllid (Bactericera cockerelli) feeding on potato foliage on the free amino acids (FAAs) composition in potato leaf and tubers were determined under greenhouse conditions.The free amino acids in plant extracts were separated by high-performance liquid chromatography,and in both leaf and tuber samples,at least 17 FAAs were detected.Psyllid feeding significantly changed the levels of several FAAs in both leaf and tuber samples.The concentration of leucine increased 1.5-fold,whereas that of serine and proline increased 2- and 3-fold,respectively.In contrast,the concentrations of glutamic acid,aspartic acid and lyscine were significantly reduced by 42.0%,52.1% and 27.5%,respectively.There were also significant changes in the levels of FAAs in the Zebra chip (ZC) infected tubers compared with the healthy tubers,and the levels of six of the FAAs increased,and the levels of nine of the FAAs decreased.The results from this study indicate that potato psyllid causes major changes in free amino acid composition of plant tissues,and this change in plant metabolism may contribute to the plant stress as indicated by increased levels of proline in the leaves and hence promoting the development of plant diseases such as ZC disease.

  17. Impact of moxifloxacin on serum free amino acid and cytokines in patients with tuberculosis treated by

    Institute of Scientific and Technical Information of China (English)

    Zhao-Zhi Wang

    2015-01-01

    Objective:To explore the impact of serum free amino acid and cytokines in patients with tuberculosis treated by Moxifloxacin.Methods:Chose 130 cases pulmonary tuberculosis patients,they were divided into observation group and control group according to random number table method, 65 cases in each group, all patients were given tuberculosis standard treatment, and on this basis, patients in control group were given levofloxacin tablets, patients in observation group were given moxifloxacin hydrochloride oral, they were treated for 6 months, compared the serum free amino acid and cytokine interleukin-18 (IL-18), tumor necrosis factor alpha-gamma (TNF-α), interferon (IFN-γ), interleukin-10 (IL-10) between two groups before and after treatment. The serum isoleucine, phenylalanine, threonine, leucine, valine, aspartic acid, glutamic acid and arginine in two groups after were increased significantly than before treatment, the difference was statistically significant, acquired aspartic acid, glutamic acid in observation group after treatment were significantly higher than the control group after treatment, the difference was statistically significant; The serum IL-18, IFN-γ, TNF-α and IL-10 in two groups after treatment were significantly reduced, the difference was statistically significant (P<0.05); the serum IL-18, IFN-γ, TNF-α and IL-10 in observation group after treatment were significantly lower than the control group after treatment, the difference was statistically significant.Conclusion:Compared with levofloxacin, moxifloxacin treatment tuberculosis can improve the patients' serum free amino acid levels, adjust the Th1/Th2 balance.

  18. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.

  19. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    Science.gov (United States)

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  20. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function.

    Science.gov (United States)

    Kampranis, Sotirios C; Ioannidis, Daphne; Purvis, Alan; Mahrez, Walid; Ninga, Ederina; Katerelos, Nikolaos A; Anssour, Samir; Dunwell, Jim M; Degenhardt, Jörg; Makris, Antonios M; Goodenough, Peter W; Johnson, Christopher B

    2007-06-01

    Terpene synthases are responsible for the biosynthesis of the complex chemical defense arsenal of plants and microorganisms. How do these enzymes, which all appear to share a common terpene synthase fold, specify the many different products made almost entirely from one of only three substrates? Elucidation of the structure of 1,8-cineole synthase from Salvia fruticosa (Sf-CinS1) combined with analysis of functional and phylogenetic relationships of enzymes within Salvia species identified active-site residues responsible for product specificity. Thus, Sf-CinS1 was successfully converted to a sabinene synthase with a minimum number of rationally predicted substitutions, while identification of the Asn side chain essential for water activation introduced 1,8-cineole and alpha-terpineol activity to Salvia pomifera sabinene synthase. A major contribution to product specificity in Sf-CinS1 appears to come from a local deformation within one of the helices forming the active site. This deformation is observed in all other mono- or sesquiterpene structures available, pointing to a conserved mechanism. Moreover, a single amino acid substitution enlarged the active-site cavity enough to accommodate the larger farnesyl pyrophosphate substrate and led to the efficient synthesis of sesquiterpenes, while alternate single substitutions of this critical amino acid yielded five additional terpene synthases. PMID:17557809

  1. Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations

    OpenAIRE

    Gray, Vanessa E.; Kimberly R Kukurba; Kumar, Sudhir

    2012-01-01

    Summary: Site-directed mutagenesis is frequently used by scientists to investigate the functional impact of amino acid mutations in the laboratory. Over 10 000 such laboratory-induced mutations have been reported in the UniProt database along with the outcomes of functional assays. Here, we explore the performance of state-of-the-art computational tools (Condel, PolyPhen-2 and SIFT) in correctly annotating the function-altering potential of 10 913 laboratory-induced mutations from 2372 protei...

  2. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    Science.gov (United States)

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group.

  3. Structure and Mechanism of Human UDP-xylose Synthase

    OpenAIRE

    Eixelsberger, Thomas; Sykora, Sabine; Egger, Sigrid; Brunsteiner, Michael; Kavanagh, Kathryn L; Oppermann, Udo; Brecker, Lothar; Nidetzky, Bernd

    2012-01-01

    UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-d-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with ...

  4. The Domain Responsible for Sphingomyelin Synthase (SMS) Activity

    OpenAIRE

    Yeang, Calvin; Varsheny, Shweta; Wang, Renxiao; ZHANG, YA; Ye, Deyong; Jiang, Xian-Cheng

    2008-01-01

    Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this s...

  5. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  6. Purification, crystallization and preliminary crystallographic analysis of human cystathionine β-synthase

    International Nuclear Information System (INIS)

    This article describes the crystallization and preliminary crystallographic analysis of a protein construct (hCBS516–525) that contains the full-length cystathionine β-synthase from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525. Human cystathionine β-synthase (CBS) is a pyridoxal-5′-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the β-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS516–525) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a = 124.98, b = 136.33, c = 169.83 Å and diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme

  7. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  8. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    Science.gov (United States)

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  9. Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice

    OpenAIRE

    Deng, Liyuan; Elmore, C. Lee; Lawrance, Andrea K.; Matthews, Rowena G.; Rozen, Rima

    2008-01-01

    Low dietary folate and polymorphisms in genes of folate metabolism can influence risk for pregnancy complications and birth defects. Methionine synthase reductase (MTRR) is required for activation of methionine synthase, a folate- and vitamin B12-dependent enzyme. A polymorphism in MTRR (p.I22M), present in the homozygous state in 25% of many populations, may increase risk for neural tube defects. To examine the impact of MTRR deficiency on early development and congenital heart defects, we u...

  10. Assessing the costs and market impacts of carbon sequestration, climate change, and acid rain

    International Nuclear Information System (INIS)

    This thesis provides fourteen journal articles and papers. Thirteen of these papers were published in referred journals, covering environmental economics, policy modelling, policy analysis, and the physical sciences. One paper was published as a USDA Forest Service research report. The papers in the thesis are divided into three topical areas: 1) Section 2: The Economics of Carbon Sequestration. Eight papers plus Appendix A of the thesis cover the development and application of models to estimate the economic costs and management consequences of policies to sequester carbon emissions by planting trees on agricultural land in the US or through more intensive forest management. 2) Section 3: The Economics of Climate Change Damages. Two papers of the thesis cover the development of models that can be used to estimate the market and nonmarket damages associated with the impacts of climate change on water resources in the US. 3) Section 4: The Economics of Acid Rain Damages. Three papers in the thesis examine the methods that were developed to estimate the damages due to acid rain in the US by the National Acid Precipitation Assessment Program (NAPAP) and discuss more generally the role of economic policy analysis in this assessment. (EHS)

  11. Exploratory study of acid-forming potential of commercial cheeses: impact of cheese type.

    Science.gov (United States)

    Gore, Ecaterina; Mardon, Julie; Guerinon, Delphine; Lebecque, Annick

    2016-06-01

    Due to their composition, cheeses are suspected to induce an acid load to the body. To better understand this nutritional feature, the acid-forming potential of five cheeses from different cheese-making technologies and two milk was evaluated on the basis of their potential renal acid load (PRAL) index (considering protein, P, Cl, Na, K, Mg and Ca contents) and organic anions contents. PRAL index ranged from -0.8 mEq/100 g edible portion for fresh cheese to 25.3 mEq/100 g for hard cheese Cantal and 28 mEq/100 g for blue-veined cheese Fourme d'Ambert. PRAL values were greatly subjected to interbatch fluctuations. This work emphasized a great imbalance between acidifying elements of PRAL calculation (Cl, P and proteins elements) and alkalinizing ones (Na and Ca). Particularly, Cl followed by P elements had a strong impact on the PRAL value. Hard cheeses were rich in lactate, thus, might be less acidifying than suspected by their PRAL values only. PMID:27050124

  12. Impact of the in situ formed salivary pellicle on enamel and dentine erosion induced by different acids

    OpenAIRE

    Wiegand, A.; Bliggenstorfer, S; Magalhães, A C; Sener, B.; Attin, T.

    2008-01-01

    OBJECTIVE: To investigate and compare the protective impact of the in situ formed salivary pellicle on enamel and dentine erosion caused by different acids at pH 2.6. METHODS: Bovine enamel and dentine samples were exposed for 120 min in the oral cavity of 10 healthy volunteers. Subsequently, enamel and dentine pellicle-covered specimens were extraorally immersed in 1 ml hydrochloric, citric or phosphoric acid (pH 2.6, 60 s, each acid n=30 samples). Pellicle-free samples (each acid n=10) serv...

  13. Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations.

    Science.gov (United States)

    Gray, Vanessa E; Kukurba, Kimberly R; Kumar, Sudhir

    2012-08-15

    Site-directed mutagenesis is frequently used by scientists to investigate the functional impact of amino acid mutations in the laboratory. Over 10,000 such laboratory-induced mutations have been reported in the UniProt database along with the outcomes of functional assays. Here, we explore the performance of state-of-the-art computational tools (Condel, PolyPhen-2 and SIFT) in correctly annotating the function-altering potential of 10,913 laboratory-induced mutations from 2372 proteins. We find that computational tools are very successful in diagnosing laboratory-induced mutations that elicit significant functional change in the laboratory (up to 92% accuracy). But, these tools consistently fail in correctly annotating laboratory-induced mutations that show no functional impact in the laboratory assays. Therefore, the overall accuracy of computational tools for laboratory-induced mutations is much lower than that observed for the naturally occurring human variants. We tested and rejected the possibilities that the preponderance of changes to alanine and the presence of multiple base-pair mutations in the laboratory were the reasons for the observed discordance between the performance of computational tools for natural and laboratory mutations. Instead, we discover that the laboratory-induced mutations occur predominately at the highly conserved positions in proteins, where the computational tools have the lowest accuracy of correct prediction for variants that do not impact function (neutral). Therefore, the comparisons of experimental-profiling results with those from computational predictions need to be sensitive to the evolutionary conservation of the positions harboring the amino acid change. PMID:22685075

  14. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng.

    Science.gov (United States)

    Liu, Zhi; Xia, Juan; Wang, Chong-Zhi; Zhang, Jin-Qiu; Ruan, Chang-Chun; Sun, Guang-Zhi; Yuan, Chun-Su

    2016-07-01

    Panax ginseng contains many chemical components, including acidic ginsenosides and organic acids. However, whether these acidic substances play a role in ginsenoside transformation during steaming treatment has not yet been explored. In this paper, the content of neutral ginsenosides, acidic ginsenosides, and their degradation products in unsteamed and steamed P. ginseng were simultaneously quantified by high-performance liquid chromatography. We observed that neutral ginsenosides were converted to rare ginsenosides during the root steaming but not during the individual ginsenoside steaming. In contrast, acidic malonyl ginsenosides released malonic acid and acetic acid through demalonylation, decarboxylation, deacetylation reactions during the steaming at 120 °C. These malonyl ginsenosides not only were converted to rare ginsenosides but also promoted the degradation of neutral ginsenosides. Further studies indicated that a low concentration of organic acid was the determining factor for the ginsenoside conversion. The related mechanisms were deduced to be mainly acidic hydrolysis and dehydration. In summary, acidic ginsenosides and organic acids remarkably affected ginsenoside transformation during the steaming process. Our results provide useful information for precisely understanding the ginsenoside conversion pathways and mechanisms underlying the steaming process.

  15. THE IMPACT OF CONJUGATED LINOLEIC ACID ADDITION ON PH VALUE OF LONGISSIMUS DORSI MUSCLE

    Directory of Open Access Journals (Sweden)

    Przemysław WASILEWSKI

    2009-08-01

    Full Text Available The subject of research was 60 crossbred gilts, divided into 6 groups, fed the fodder with addition of conjugated linoleic acid (CLA or sunflower oil (SFO in amount: 0.5; 1.0; and 2.0 %, respectively. Animals were slaughtered with the body weight ca. 95 kg. The aim of research was to determine pH value of loin meat tissue (Longissimus dorsi of right half-carcass in 45 minutes, 2, 3, 4, 5, 6 hours and 24 hours after slaughter. Results were statistically elaborated using one-way variance analysis. Longissimus dorsi muscle pH values measured 45 minutes after slaughter in case of all groups of pigs were in range from 6.34 up to 6.47, what shows good meat quality. The lowest pH1 (measured 45 minutes after slaughter had meat of fatteners where addition of 2 % sunflower oil was given into fodder and the highest value of this trait was in group of individuals where also was given sunflower oil in 1 % amount. Statistical significant differences in pH value measured in different time after slaughter i.e. after 45 minutes, 2, 3, 4, 6 and 24 hours between tested groups of pigs were not stated. The exception is the result of pH measurement 5 hours after slaughter. Statistical significant differences were between group of pigs getting 0.5 % addition of conjugated linoleic acid characterized by the highest pH value of meat and group of animals fed the fodder with 1 % addition of conjugated linoleic acid (P≤0.01. On the basis of the results obtained in presented paper may be stated that feeding pigs with addition of conjugated linoleic acid in amounts 0.5; 1.0 and 2.0 % did not impact negatively on meat quality defined by pH value.

  16. Novel type III polyketide synthases from Aloe arborescens.

    Science.gov (United States)

    Mizuuchi, Yuusuke; Shi, She-Po; Wanibuchi, Kiyofumi; Kojima, Akiko; Morita, Hiroyuki; Noguchi, Hiroshi; Abe, Ikuro

    2009-04-01

    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85-96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 degrees C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. PMID:19348024

  17. Ozone stress induces the expression of ACC synthase in potato plants

    Energy Technology Data Exchange (ETDEWEB)

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J. (Pennsylvania State Univ., University Park (United States))

    1993-05-01

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACC synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.

  18. Assessment of Salicylic Acid Impacts on Seedling Characteristic of Cucumber (Cucumis sativus L. under Water Stress

    Directory of Open Access Journals (Sweden)

    Hossein MARDANI

    2012-02-01

    Full Text Available Impacts of various concentrations of salicylic acid (SA on cucumber (Cucumis sativus L. seedling characteristic were evaluated under different water stress levels by using a factorial arrangement based on completely randomized design with three replications at experimental greenhouse of Ferdowsi University of Mashhad, Iran. The studied factors included three water deficit levels (100% FC, 80% FC, and 60% FC considered as first factor and five levels of SA concentrations (0, 0.25, 0.5, 0.75, and 1 mM as second factor. Results showed that foliar application of SA at the highest concentration enhanced leaf area, leaf and dry weight while decreased stomatal conductance under high level of water deficit stress. Though, severe water deficit stress sharply raised the SPAD reading values. In general, exogenous SA application could develop cucumber seedling characteristic and improve water stress tolerance.

  19. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  20. Impact of HIV Infection and Zidovudine Therapy on RBC Parameters and Urine Methylmalonic Acid Levels

    Directory of Open Access Journals (Sweden)

    Adewumi Adediran

    2016-01-01

    Full Text Available Background. Anaemia is a common complication of human immunodeficiency virus (HIV infection. The aim of this study was to investigate the impact of HIV infection and zidovudine on red blood cells (RBC parameters and urine methylmalonic acid (UMMA levels in patients with HIV infection. Material and Methods. A cross-sectional study involving 114 subjects, 94 of which are HIV-infected nonanaemic and 20 HIV negative subjects (Cg as control. Full blood count parameters and urine methylmalonic acid (UMMA level of each subject were determined. Associations were determined by Chi-square test and logistic regression statistics where appropriate. Results. Subjects on zidovudine-based ART had mean MCV (93 fL higher than that of control group (82.9 fL and ART-naïve (85.9 fL subjects and the highest mean RDW. Mean UMMA level, which reflects vitamin B12 level status, was high in all HIV-infected groups but was significantly higher in ART-naïve subjects than in ART-experienced subjects. Conclusion. Although non-zidovudine therapy may be associated with macrocytosis (MCV > 95 fL, zidovudine therapy and ART naivety may not. Suboptimal level of vitamin B12 as measured by high UMMA though highest in ART-naïve subjects was common in all HIV-infected subjects.

  1. Impact of biomass burning on rainwater acidity and composition in Singapore

    Science.gov (United States)

    Balasubramanian, R.; Victor, T.; Begum, R.

    1999-11-01

    The Indonesian forest fires that took place from August through October 1997 released large amounts of gaseous and particulate pollutants into the atmosphere. The particulate emissions produced a plume that was easily visible by satellite and significantly affected regional air quality in Southeast Asia. This prolonged haze episode provided an unprecedented opportunity to examine the effects of biomass burning on regional atmospheric chemistry. We undertook a comprehensive field study to assess the influence of biomass burning impacted air masses on precipitation chemistry in Singapore. Major inorganic and organic ions were determined in 104 rain samples collected using an automated wet-only sampler from July through December 1997. Mean pH values ranged from 3.79 to 6.20 with a volume-weighted mean of 4.35. There was a substantially large number of rain events with elevated concentrations of these ions during the biomass burning period. The relatively high concentrations of SO2-4, NO-3, and NH+4 observed during the burning period are attributed to a long residence time of air masses, leading to progressive gas to particle conversion of biomass burning emission components. The decrease in pH of precipitation in response to the increased concentrations of acids is only marginal, which is ascribed to neutralization of acidity by NH3 and CaCO3.

  2. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine.

    Science.gov (United States)

    Haghikia, Aiden; Jörg, Stefanie; Duscha, Alexander; Berg, Johannes; Manzel, Arndt; Waschbisch, Anne; Hammer, Anna; Lee, De-Hyung; May, Caroline; Wilck, Nicola; Balogh, Andras; Ostermann, Annika I; Schebb, Nils Helge; Akkad, Denis A; Grohme, Diana A; Kleinewietfeld, Markus; Kempa, Stefan; Thöne, Jan; Demir, Seray; Müller, Dominik N; Gold, Ralf; Linker, Ralf A

    2015-10-20

    Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis. PMID:26488817

  3. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China

    Science.gov (United States)

    Sun, Jing; Tang, Changyuan; Wu, Pan; Strosnider, William H. J.; Han, Zhiwei

    2013-11-01

    A paired catchment study was used to assess karst hydrogeochemistry of two streams.Chemistry of streams with and without acid mine drainage (AMD) was very different.The observation was supported by PHREEQC modeling of equilibrium conditions.Ionic fluxes of AMD-impacted water were higher than that of non-AMD-impacted water.The higher ionic fluxes were predominantly controlled by the oxidation of pyrite.

  4. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  5. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Science.gov (United States)

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  6. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    Science.gov (United States)

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard. PMID:25704705

  7. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules

    NARCIS (Netherlands)

    Cai, G.; Faleri, C.; Casino, C.; Emons, A.M.C.; Cresti, M.

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tub

  8. Effect of gamma-aminobutyric acid B receptor on nitric oxide/nitric oxide synthase system during recurrent febrile seizures%反复热性惊厥过程中γ-氨基丁酸B受体对一氧化氮/一氧化氮合酶体系的调节作用

    Institute of Scientific and Technical Information of China (English)

    韩颖; 秦炯; 卜定方; 杨志仙; 常杏芝; 杜军保

    2006-01-01

    目的:探讨γ-氨基丁酸B受体(γ-aminobutyric acid B receptor,GABABR)对热性惊厥(febrile seizure,FS)大鼠一氧化氮(nitric oxide,NO)/一氧化氮合酶(nitric oxide synthase,NOS)体系表达的影响.方法:将21 d龄SD大鼠随机分为对照组、FS组、FS+巴氯芬(baclofen)组和FS+法克罗芬(phaclofen)组.采用热水浴诱导大鼠FS,隔日诱导1次,共10次.采用分光光度计法测定大鼠血浆中NO含量;用原位杂交方法观察神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)mRNA表达情况;用免疫组化方法观察nNOS蛋白表达情况.结果:FS+baclofen组NO含量低于FS组[(19.02±9.31)μmol/L比(40.03±9.12)μmol/L],同时nNOS蛋白和mRNA表达也较FS组减弱;而FS+phaclofen组NO含量高于FS组[(66.46±8.15)μmol/L比(40.03±9.12)μmol/L],同时nNOS蛋白和mRNA表达也较FS组增强.结论:反复热性惊厥过程中,GABABR的改变可影响NO/NOS体系的表达.

  9. CJ-15,183, a new inhibitor of squalene synthase produced by a fungus, Aspergillus aculeatus.

    Science.gov (United States)

    Watanabe, S; Hirai, H; Ishiguro, M; Kambara, T; Kojima, Y; Matsunaga, T; Nishida, H; Suzuki, Y; Sugiura, A; Harwood, H J; Huang, L H; Kojima, N

    2001-11-01

    A new squalene synthase (SSase) inhibitor, CJ-15,183 (I) was isolated from the fermentation broth of a fungus, Aspergillus aculeatus CL38916. The compound potently inhibited rat liver and Candida albicans microsomal SSases and also inhibited the human enzyme. It also showed antifungal activities against filamentous fungi and a yeast. The structure was determined to be an aliphatic tetracarboxylic acid compound consisting of an alkyl gamma-lactone, malic acid and isocitric acid moieties by spectroscopic studies.

  10. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice

    OpenAIRE

    Ali, Nusrat; Paul, Soumitra; Gayen, Dipak; Sarkar, Sailendra Nath; Datta, Swapan K.; Datta, Karabi

    2013-01-01

    Background Phytic acid (InsP6) is considered as the major source of phosphorus and inositol phosphates in cereal grains. Reduction of phytic acid level in cereal grains is desirable in view of its antinutrient properties to maximize mineral bioavailability and minimize the load of phosphorus waste management. We report here RNAi mediated seed-specific silencing of myo-inositol-3-phosphate synthase (MIPS) gene catalyzing the first step of phytic acid biosynthesis in rice. Moreover, we also stu...

  11. Translocation of the potato 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase into isolated spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M. (Purdue Univ., West Lafayette, IN (USA))

    1990-05-01

    A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised against the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.

  12. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    Science.gov (United States)

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  13. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

    OpenAIRE

    Moura, A. Vilela; Schuller, Dorit Elisabeth; Faia, A. Mendes; Silva, Rui D.; Chaves, S R; Sousa, Maria João; Côrte-Real, Manuela

    2011-01-01

    Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a byproduct of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this minireview, we present an o...

  14. Impacts of Deacetylation Prior to Dilute Acid Pretreatment on the Bioethanol Process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Shekiro, J.; Franden, M. A.; Wang, W.; Johnson, D. K.; Zhang, M.; Kuhn, E.; Tucker, M. P.

    2011-12-01

    Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: (1) cleavage of the xylosidic bonds, and (2) cleavage of covalently bonded acetyl ester groups. Results: In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions: Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

  15. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-02-01

    Full Text Available Abstract Background Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1 cleavage of the xylosidic bonds, and 2 cleavage of covalently bonded acetyl ester groups. Results In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield.

  16. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    Science.gov (United States)

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. PMID:24001823

  17. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  18. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  19. Product Variability of the ‘Cineole Cassette'Monoterpene Synthases of Related Nicotiana Species

    Institute of Scientific and Technical Information of China (English)

    Anke F(a)hnrich; Katrin Krause; Birgit Piechulla

    2011-01-01

    Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the ‘cineole cassere' comprising 1,8-cineole,limonene,myrcene,α-pinene,β-pinene,sabinene,and α-terpineol.We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes,which produced the characteristic monoterpenes of this ‘cineole cassette' with α-terpineol being most abundant in the volatile spectra.The amino acid sequences of both terpineol synthases were 99% identical.The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum.The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N.alata and N.langsdorfii were less efficient compared to the ‘cineole cassette′ monoterpene synthases of Arabidopsis thaliana,N.suaveolens,Salvia fruticosa,Salvia officinalis,and Citrus unshiu.The terpineol synthases of N.alata and N.langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals.The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N.alata was highest at the transition from day to night (diurnal rhythm).

  20. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  1. Molecular Cloning and Bacterial Expression of Germacrene A Synthase cDNA from Crepidiastrum sonchifolium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Germacrene A synthase(GAS) catalyzes the biosynthesis of germacrene A, which is a key precursor for sesquiterpene lactones. Cloning of a novel full-length cDNA encoding GAS from the medicinal plant Crepidiastrum sonchifolium(designated CsGAS) is reported in this study. The cDNA is 1837 bp long and contains a 1680-bp open reading frame encoding a 559 amino-acid protein. The functional expression of the cDNA in Escherichia coli, as an N-terminal thioredoxin fusion protein, with the pET32a vector yielding a recombinant enzyme. Sequence analysis was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco, and the effect of possible involvement of a number of amino acids in sesquiterpene synthase on product specificity was also discussed.

  2. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes.

    Science.gov (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton

    2008-02-01

    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  3. Impact of Ellagic Acid in Bone Formation after Tooth Extraction: An Experimental Study on Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mazen M. Jamil Al-Obaidi

    2014-01-01

    Full Text Available Objectives. To estimate the impact of ellagic acid (EA towards healing tooth socket in diabetic animals, after tooth extraction. Methods. Twenty-four Sprague Dawley male rats weighing 250–300 g were selected for this study. All animals were intraperitoneally injected with 45 mg/kg (b.w. of freshly prepared streptozotocin (STZ, to induce diabetic mellitus. Then, the animals were anesthetized, and the upper left central incisor was extracted and the whole extracted sockets were filled with Rosuvastatin (RSV. The rats were separated into three groups, comprising 8 rats each. The first group was considered as normal control group and orally treated with normal saline. The second group was regarded as diabetic control group and orally treated with normal saline, whereas the third group comprised diabetic rats, administrated with EA (50 mg/kg orally. The maxilla tissue stained by eosin and hematoxylin (H&E was used for histological examinations and immunohistochemical technique. Fibroblast growth factor (FGF-2 and alkaline phosphatase (ALP were used to evaluate the healing process in the extracted tooth socket by immunohistochemistry test. Results. The reactions of immunohistochemistry for FGF-2 and ALP presented stronger expression, predominantly in EA treated diabetic rat, than the untreated diabetic rat. Conclusion. These findings suggest that the administration of EA combined with RSV may have accelerated the healing process of the tooth socket of diabetic rats, after tooth extraction.

  4. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  5. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    Directory of Open Access Journals (Sweden)

    Sarah E Pabian

    Full Text Available Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  6. Purification and preliminary characterization of (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin.

    Science.gov (United States)

    Parry, R J; Hoyt, J C

    1997-02-01

    Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase. PMID:9023226

  7. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  8. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    Energy Technology Data Exchange (ETDEWEB)

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  9. Altering small and medium alcohol selectivity in the wax ester synthase.

    Science.gov (United States)

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  10. Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2014-10-01

    Full Text Available A novel poly-lactic acid (PLA based biocomposite reinforced with unidirectional high-strength magnesium alloy (Mg-alloy wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method (FEM, respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached 20 vol%, the impact strength of the composite could achieve 93.4 kJ/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation. Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.

  11. Potential radiological impacts of recovery of uranium from wet-process phosphoric acid. Final report to the Environmental Protection Agency

    International Nuclear Information System (INIS)

    A study was made to determine the radiological impacts associated with recovery of uranium from wet-process (WP) phosphoric acid in central Florida. Removal of U and other radionuclides from phosphoric acid prevents their distribution on farm lands and urban gardens and grasses via fertilizers; this results in a positive impact (decreased dose commitment) on the associated populations. This study considers the potential negative impacts of current and project recovery processes in a site-specific manner using detailed state-of-the-art methodologies. Positive impacts are treated in a generic sense using U.S. average values for important variables such as average and maximum fertilizer application rates and quantities of radionuclides in fertilizer. Three model plants to recover U from WP phosphoric acid were selected and source terms for release of radionuclides are developed for all three and for two treatment methods for airborne particulates. Costs for radwaste treatment were developed. Field measurements were conducted at the only commercial uranium recovery plant in operation. Radiological doses to the population surrounding release points during plant operation were estimated

  12. Aromatic polyketide synthases from 127 Fusarium: pas de deux for chemical diversity

    Science.gov (United States)

    Fusarium species collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including mycotoxins, of great concern. Many Fusarium NPs are derived from polyketide synthases (PKSs), large enzymes that catalyze the condensation of simple carboxylic acids. To gain ...

  13. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne;

    2015-01-01

    PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate...

  14. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments during these periods. In both monoculture and LKC environmental cultures, dissolution rates were highest when sulfur-substrate was limited and CO2 was supplied with no organic carbon. Under these conditions δ13C values were as much as 20‰ higher than abiotic conditions and signifies autotrophic carbon fixation which discriminates against 13C. 16S rRNA sequences confirm that autotrophic SOB dominate within this reactor. In contrast, when acetate was supplied with no supplied CO2, δ13C was relatively constant, maintaining values between -31‰ and as low as -37‰. This signifies heterotrophic metabolism

  15. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  16. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence

    OpenAIRE

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-01-01

    Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene...

  17. Impact of L-Carnitine and Cinnamon on Insulin-Like Growth Factor-1 and Inducible Nitric Oxide Synthase Gene Expression in Heart and Brain of Insulin Resistant Rats

    Directory of Open Access Journals (Sweden)

    Mona A. Mohamed

    2010-01-01

    Full Text Available Problem statement: Evaluate the effects of daily administration of L-carnitine and cinnamon extract for two weeks on the expression of Insulin-like Growth Factor-1 (IGF-1 and inducible Nitric Oxide Synthase (iNOS genes in cardiac and brain tissues of rats with Insulin Resistance (IR. Approach: Rats were divided into 4 groups (8 animals each: Group (1 rats fed control diet (60% starch as control while groups (2, 3 and 4 fed high fructose diet (60% fructose. At the beginning of the 3rd week of feeding, rats of group (3 were treated with L-carnitine (300 mg kg-1 body weight/day, i.p. and animals of group (4 received a daily oral dose of cinnamon aqueous extract (0.5 mL rat-1. The animals were maintained in their respective groups for 4 weeks. Results: Feeding high fructose diet causes significant reduction in Insulin Receptor Substrate-1 (IRS-1 (amounted 30.65% and elevation in iNOS expression (reached 51% in the cardiac tissues as compared to control. In brain tissues, the IGF-1 mRNA was reduced in fructose loaded groups (28.81%. Administration of either L-carnitine or cinnamon extract significantly improves the expression of the cardiac studied genes but with no effects on the brain tissues. Conclusion: The present study illustrated that CE was more potent than L-carnitine in improving the IR.

  18. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  19. Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults.

    Science.gov (United States)

    Külzow, Nadine; Witte, A Veronica; Kerti, Lucia; Grittner, Ulrike; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2016-01-01

    As the process of Alzheimer's disease (AD) begins years before disease onset, searching for prevention strategies is of major medical and economic importance. Nutritional supplementation with long-chain polyunsaturated omega-3 fatty acids (LC-n3-FA) may exert beneficial effects on brain structure and function. However, experimental evidence in older adults without clinical dementia is inconsistent, possibly due to low sensitivity of previously employed test batteries for detecting subtle improvements in cognition in healthy individuals. Here we used LOCATO, recently described as a robust and sensitive tool for assessing object-location memory (OLM) in older adults, to evaluate the impact of LC-n3-FA supplementation on learning and memory formation. In a double-blind placebo-controlled proof-of-concept study, 44 (20 female) cognitively healthy individuals aged 50-75 years received either LC-n3-FA (2,200 mg/day, n = 22) or placebo (n = 22) for 26 weeks. Before and after intervention, memory performance in the OLM-task (primary) was tested. As secondary outcome parameters, performance in Rey Auditory Verbal Learning Test (AVLT), dietary habits, omega-3-index, and other blood-derived parameters were assessed. Omega-3 index increased significantly in the LC-n3-FA group compared with the placebo group. Moreover, recall of object locations was significantly better after LC-n3-FA supplementation compared with placebo. Performance in the AVLT was not significantly affected by LC-n3-FA. This double-blind placebo-controlled proof-of-concept study provides further experimental evidence that LC-n3-FA exert positive effects on memory functions in healthy older adults. Our findings suggest novel strategies to maintain cognitive functions into old age. PMID:26890759

  20. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  1. Synthèse bibliographique: la divinyl éther synthase de plantes

    Directory of Open Access Journals (Sweden)

    Fauconnier M.L.

    2001-01-01

    Full Text Available Divinyl ether synthase in plants: a review. Divinyl ether synthase, an enzyme of the lipoxygenase pathway transforms, in potato tubers, 9-hydroperoxides of fatty acids into colneleic and colnelenic acid, two divinyl ethers of fatty acids. The enzyme has been described in a limited number of quite different plants. The enzyme has also been detected in tomato roots, garlic bulbs, tobacco plants and in marine algae. The enzyme is bound to membranes and is located in the microsomal fraction. The molecular weight of the enzyme exceeds 100,000 Da, its optimal pH is around 9 and its high specificity for 9-hydroperoxides as substrate is described. The reactional mechanism has been elucidated using radio-labelled molecules. Colneleic and colnelenic acid can be degraded enzymatically or not into aldehydes and oxo-acids. Those last compounds are also formed by the action of hydroperoxide lyase on 9-hydroperoxides of fatty acids. As other enzymes of the lipoxygenase pathway, reaction products of divinyl ether synthase are involved in pathogenic resistance. Colneleic and colnelenic acid content in potato plants has been corelated with resistance to Phytophthora infestans.

  2. Inducible nitric oxide synthase and inflammation.

    Science.gov (United States)

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  3. Nitric Oxide Synthases and Atrial Fibrillation

    OpenAIRE

    CynthiaAnnCarnes; ArunSridhar; SandorGyorke

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases, which normally produce nitric oxide in the heart. Two nitric oxide synthase isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of nitric oxide syn...

  4. Unique animal prenyltransferase with monoterpene synthase activity

    Science.gov (United States)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  5. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization.

    Science.gov (United States)

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Akono, Céline; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2015-12-25

    Carbon nanotubes (CNT) and nano-graphite (NG) are graphene-based nanomaterials which share exceptional physicochemical properties, but whose health impacts are unfortunately still not well understood. On the other hand, carbon black (CB) is a conventional and widely studied material. The comparison of these three carbon-based nanomaterials is thus of great interest to improve our understanding of their toxicity. An acid functionalization was carried out on CNT, NG and CB so that, after a thorough characterization, their impacts on RAW 264.7 macrophages could be compared for a similar surface chemistry (15 to 120 μg·mL(-1) nanomaterials, 90-min to 24-h contact). Functionalized nanomaterials triggered a weak cytotoxicity similar to the pristine nanomaterials. Acid functionalization increased the pro-inflammatory response except for CB which did not trigger any TNF-α production before or after functionalization, and seemed to strongly decrease the oxidative stress. The toxicological impact of acid functionalization appeared thus to follow a similar trend whatever the carbon-based nanomaterial. At equivalent dose expressed in surface and equivalent surface chemistry, the toxicological responses from murine macrophages to NG were higher than for CNT and CB. It seemed to correspond to the hypothesis of a platelet and fiber paradigm.

  6. Characterization of α-humulene synthases responsible for the production of sesquiterpenes induced by methyl jasmonate in Aquilaria cell culture.

    Science.gov (United States)

    Kumeta, Yukie; Ito, Michiho

    2016-07-01

    The resinous portions of Aquilaria and Gyrinops plants are known as 'agarwood' and have a distinctive fragrance. To examine the biosynthesis of these fragrant compounds, we previously established cell cultures of Aquilaria crassna in which the production of three sesquiterpenes (α-guaiene, α-humulene, and δ-guaiene) could be induced by methyl jasmonate (MJ), and showed that cloned δ-guaiene synthase from MJ-treated cells is involved in the synthesis of these three compounds, although only very small amounts of α-humulene are produced. In the present study, cDNAs encoding α-humulene synthases were also isolated. Three putative sesquiterpene synthase clones (AcHS1-3) isolated from the MJ-treated cells had very similar amino acid sequences and shared 52 % identity with δ-guaiene synthases. The recombinant enzymes catalyzed the formation of α-humulene as a major product. Expression of transcripts of the α-humulene synthase and δ-guaiene synthase genes in cultured cells increased after treatment with MJ. These results revealed that these α-humulene and δ-guaiene synthases are involved in the synthesis of three sesquiterpenes induced by MJ treatment. PMID:27180085

  7. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    Science.gov (United States)

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. PMID:26880289

  8. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Crock, John E. (Moscow, ID)

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  9. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  10. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  11. The Experiment Study of Kaiyuqingre's Prescription on the Expression of Sterol Regulatory Element Binding Protein-1c and Fatty Acid Synthase in Peritoneal Adipose Tissue of Spontaneous Type 2 Diabetes Mellitus Rats(OLETF rats)%开郁清热方干预自发2型糖尿病大鼠腹腔脂肪组织SREBP-1c、FAS表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    朴春丽; 仝小林; 韩笑

    2011-01-01

    目的:研究开郁清热方对自发2型糖尿病大鼠(OLETF大鼠)腹腔脂肪组织SIREBP-1c、FAS蛋白及mRNA表达的影响.方法:将成模OLETF大鼠随机分为模型组、二甲双胍组、开郁清热方组,以LETO大鼠为空白对照组.采用免第疫组化、RT-PCR法检测腹腔脂肪组织SREBP-1c、FAS蛋白及mRNA的表达.结果:开郁清热方组的脂肪组织SBEBP-1c、FAS蛋白及mPNA表达水平较模型组明显减低(P<0.01,P<0.05).结论:开郁清热方具有降低自发2型糖尿病大鼠脂肪组织SREBP-lc、FAS蛋白及mRNA表达的作用.%Objective: To observe the effect of Kaiyuqingre's Prescription on the protein and mRNA expression of sterol regulatory element binding protein - 1c and fatty acid synthase in peritoneal adipose tissue of spontaneous Type 2 Diabetes Mellitus rats(OLEFF rats). Methods :A control study was carried out between the OLETF rats and LETO rats,and all OLETF rats were divided into three groups randomly:Model group,Metformin group and Kaiyuqingre′s Prescription group. Immunohistochemical method and real-time flourescent quantitative polymerase chain reaction(PCR)technology were used to detect the expression of sterol regulatory element binding protein - 1c and fatty acid synthaso in adipose tissue from the protein and gene levels in each group. Results: The sterol regulatory dement binding protein - 1c and fatty acid synthase protein and mRNA expression in rats 'adipose tissue:Contrast to Modal group,the Kaiyuqingre′s Prescription group is significantly lower. Conclusion :Kaiyuqingre's Prescription has a role of reducing the expression of protein and mRNA of sterol regulatory dement binding protein - 1c and fatty acid synthase in adipose tissue of spontaneous Type 2 Diabetes Mellitus rats.

  12. Understanding hypertriglyceridemia in women: clinical impact and management with prescription omega-3-acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Thomas D Dayspring

    2011-03-01

    Full Text Available Thomas D DayspringNorth Jersey Institute of Menopausal Lipidology, Wayne, NJ, USABackground: Elevated triglycerides (TGs are a common lipid disorder in the US and are associated with comorbidities such as pancreatitis, obesity, type 2 diabetes, and metabolic syndrome. TGs are generally elevated in postmenopausal women compared with premenopausal women. Meta-analysis has shown that elevated TGs are associated with an increased risk of coronary heart disease (CHD.Objective: This article provides a general overview of TG metabolism and reviews data on the epidemiology and risk of elevated TGs in women, as pregnancy and menopause, in particular, have been associated with unfavorable changes in the lipoprotein profile, including elevations in TGs. In addition, this review seeks to explain the recommended TG goals and treatment options for hypertriglyceridemia with an emphasis on severe hypertriglyceridemia (TGs ≥ 500 mg/dL and its respective treatment with prescription omega-3-acid ethyl esters (P-OM3.Methods: MedLine was searched for articles published through August 2009 using the terms “hypertriglyceridemia” and “dyslipidemia”, with subheadings for “prevalence”, “women”, “treatment”, “guidelines”, “risk”, and “omega-3 fatty acids”. Publications discussing the epidemiology of hypertriglyceridemia, CHD risk, treatment guidelines for lipid management, or clinical trials involving P-OM3 were selected for review. The reference lists of relevant articles were also examined for additional citations.Results: Hypertriglyceridemia is associated with increased CHD risk. Women, especially those with polycystic ovarian syndrome, type 2 diabetes, or who are postmenopausal, should be monitored regularly for the impact of hypertriglyceridemia on their lipid profile. Cardiovascular risk of TGs can be indirectly assessed by monitoring non-high-density lipoprotein cholesterol (non-HDL-C levels. There are multiple sets of guidelines

  13. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  14. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  15. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    Energy Technology Data Exchange (ETDEWEB)

    Schoenitzer, Veronika [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Eichner, Norbert [Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Clausen-Schaumann, Hauke [Munich University of Applied Sciences, Lothstrasse 34, D-80335 Muenchen, Germany, and Center for NanoScience (CeNS), Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Weiss, Ingrid M., E-mail: ingrid.weiss@inm-gmbh.de [INM - Leibniz Institute for New Materials, Biomineralisation Group, Campus D2.2, D-66123 Saarbruecken (Germany); Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  16. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua.

    Science.gov (United States)

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg(2+) and Mn(2+) were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn(2+) for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  17. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    Science.gov (United States)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  18. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  19. Identification and characterization of a second isogene encoding γ-terpinene synthase in Thymus caespititius.

    Science.gov (United States)

    Mendes, Marta D; Barroso, José G; Oliveira, M Margarida; Trindade, Helena

    2014-07-15

    Thymus caespititius Brot. is an Iberian endemic species, whose essential oils possess high polymorphism. They consist mostly of mono- and sesquiterpene, some of them with interest for the pharmaceutical and food industries. The search for terpene synthase genes was performed in three in vitro T. caespititius genotypes. For these plants, the expression of a previously described γ-terpinene synthase gene, Tctps2, was confirmed, occurring concomitantly with a new gene encoding an enzyme with similar activity, named Thymus caespititius terpene synthase 4 (Tctps4). The two isogenes were isolated and functionally characterized in the three plant genotypes. Alignment of the two Tctps revealed a transit peptide much shorter in Tctps4 than in Tctps2 (3-4 amino acids instead of 47). The Tctps4 open reading frame is shorter than Tctps2 (1665 bp versus 1794 bp). The amino acid sequence of both γ-terpinene synthases shared an 88% pairwise identity. The fact that T. caespititius carries two isogenes for γ-terpinene synthases, suggests gene duplication along the evolutionary process, followed by mutations leading to the differentiation of both genes. These mutations didn't compromise protein activity. A high accumulation of transcripts from both genes was found in shoots of in vitro plantlets, while in roots they could not be detected. Still, γ-terpinene levels in aerial parts were reduced, probably due to fast conversion into carvacrol and thymol, the main components from T. caespititius essential oils. This study is a contribution to the identification of terpene synthase genes in Lamiaceae.

  20. Niacinamide therapy for osteoarthritis--does it inhibit nitric oxide synthase induction by interleukin 1 in chondrocytes?

    Science.gov (United States)

    McCarty, M F; Russell, A L

    1999-10-01

    Fifty years ago, Kaufman reported that high-dose niacinamide was beneficial in osteoarthritis (OA) and rheumatoid arthritis. A recent double-blind study confirms the efficacy of niacinamide in OA. It may be feasible to interpret this finding in the context of evidence that synovium-generated interleukin-1 (IL-1), by inducing nitric oxide (NO) synthase and thereby inhibiting chondrocyte synthesis of aggrecan and type II collagen, is crucial to the pathogenesis of OA. Niacinamide and other inhibitors of ADP-ribosylation have been shown to suppress cytokine-mediated induction of NO synthase in a number of types of cells; it is therefore reasonable to speculate that niacinamide will have a comparable effect in IL-1-exposed chondrocytes, blunting the anti-anabolic impact of IL-1. The chondroprotective antibiotic doxycycline may have a similar mechanism of action. Other nutrients reported to be useful in OA may likewise intervene in the activity or synthesis of IL-1. Supplemental glucosamine can be expected to stimulate synovial synthesis of hyaluronic acid; hyaluronic acid suppresses the anti-catabolic effect of IL-1 in chondrocyte cell cultures, and has documented therapeutic efficacy when injected intra-articularly. S-adenosylmethionine (SAM), another proven therapy for OA, upregulates the proteoglycan synthesis of chondrocytes, perhaps because it functions physiologically as a signal of sulfur availability. IL-1 is likely to decrease SAM levels in chondrocytes; supplemental SAM may compensate for this deficit. Adequate selenium nutrition may down-regulate cytokine signaling, and ample intakes of fish oil can be expected to decrease synovial IL-1 production; these nutrients should receive further evaluation in OA. These considerations suggest that non-toxic nutritional regimens, by intervening at multiple points in the signal transduction pathways that promote the synthesis and mediate the activity of IL-1, may provide a substantially superior alternative to NSAIDs

  1. Molecular evolution of dihydrouridine synthases

    Directory of Open Access Journals (Sweden)

    Kasprzak Joanna M

    2012-06-01

    Full Text Available Abstract Background Dihydrouridine (D is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS. DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as “predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family”. Results To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model. Conclusions We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS

  2. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  3. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Zhang, Li; Li, Xin; Yong, Qiang; Yang, Shang-Tian; Ouyang, Jia; Yu, Shiyuan

    2016-03-01

    Inhibitors generated in the pretreatment and hydrolysis of corn stover and corn cob were identified. In general, they inhibited cell growth, lactate dehydrogenase, and lactic acid production but with less or no adverse effect on alcohol dehydrogenase and ethanol production in batch fermentation by Rhizopus oryzae. Furfural and 5-hydroxymethyl furfural (HMF) were highly toxic at 0.5-1 g L(-1), while formic and acetic acids at less than 4 g L(-1) and levulinic acid at 10 g L(-1) were not toxic. Among the phenolic compounds at 1 g L(-1), trans-cinnamic acid and syringaldehyde had the highest toxicity while syringic, ferulic and p-coumaric acids were not toxic. Although these inhibitors were present at concentrations much lower than their separately identified toxic levels, lactic acid fermentation with the hydrolysates showed much inferior performance compared to the control without inhibitor, suggesting synergistic or compounded effects of the lignocellulose-degraded compounds on inhibiting lactic acid fermentation. PMID:26724548

  4. Brain docosahexaenoic acid (DHA levels of young rats are related to alpha-linolenic acid (ALA levels and fat matrix of the diet: impact of dairy fat*

    Directory of Open Access Journals (Sweden)

    Delplanque Bernadette

    2011-11-01

    Full Text Available Dososahexaenoate (DHA is highly concentrated in mammalian nervous and visual systems and its deficiency during gestation, lactation and early life, could have dramatic impacts on brain functions and mental health. Achieving an appropriate DHA status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how a-linolenic acid (ALA provided by different dietary fat matrices improved DHA content in the brains of both young male and female rats. Young rats born from dams fed during gestation and lactation with a low ALA diet (0.4% of fatty acids were subjected for 6 weeks after weaning to an anhydrous dairy fat blend-based diet that provided 1.5% ALA or to a palm oil blend-based diet that provided the same ALA level: either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid (ARA. With each diet the n-6/ n-3 ratio was similar (10 to follow the values generally recommended for infant formula. Fatty acids analysis in whole brain showed that 1.5% ALA dairy fat blend was superior to both 1.5% ALA palm-oil blends, supplemented or not with dietary DHA, for increasing brain DHA. Females compared to males had significantly higher brain DHA with the 1.5% ALA palm-blend diet, but the dietary supplementation with DHA smoothed the differences by a specific increase of males DHA brain. In conclusion, dairy fat blend enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of post-weaning rats. Inclusion of dairy fat in infant formulas should be reconsidered.

  5. Possibility of Production of Amino Acids by Impact Reaction Using a Light-Gas Gun as a Simulation of Asteroid Impacts

    Science.gov (United States)

    Okochi, Kazuki; Mieno, Tetsu; Kondo, Kazuhiko; Hasegawa, Sunao; Kurosawa, Kosuke

    2015-06-01

    In order to investigate impact production of carbonaceous products by asteroids on Titan and other satellites and planets, simulation experiments were carried out using a 2-stage light gas gun. A small polycarbonate or metal bullet with about 6.5 km/s was injected into a pressurized target chamber filled with 1 atm of nitrogen gas, to collide with a ice + iron target or an iron target or a ice + hexane + iron target. After the impact, black soot including fine particles was deposited on the chamber wall. The soot was carefully collected and analyzed by High Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Laser Desorption Time-of-Flight Mass Spectrometry (LD-ToF-MS). As a result of the HPLC analysis, about 0.04-8 pmol of glycine, and a lesser amount of alanine were found in the samples when the ice + hexane + iron target was used. In case of the ice + iron target and the iron target, less amino acids were produced. The identification of the amino acids was also supported by FTIR and LD-ToF-MS analysis.

  6. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...... gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise...... combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained...

  7. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  8. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    Science.gov (United States)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  9. Limestone fluidized bed treatment of acid-impacted water at the Craig Brook National Fish Hatchery, Maine, USA

    Science.gov (United States)

    Sibrell, P.L.; Watten, B.J.; Haines, T.A.; Spaulding, B.W.

    2006-01-01

    Decades of atmospheric acid deposition have resulted in widespread lake and river acidification in the northeastern U.S. Biological effects of acidification include increased mortality of sensitive aquatic species such as the endangered Atlantic salmon (Salmo salar). The purpose of this paper is to describe the development of a limestone-based fluidized bed system for the treatment of acid-impacted waters. The treatment system was tested at the Craig Brook National Fish Hatchery in East Orland, Maine over a period of 3 years. The product water from the treatment system was diluted with hatchery water to prepare water supplies with three different levels of alkalinity for testing of fish health and survival. Based on positive results from a prototype system used in the first year of the study, a larger demonstration system was used in the second and third years with the objective of decreasing operating costs. Carbon dioxide was used to accelerate limestone dissolution, and was the major factor in system performance, as evidenced by the model result: Alk = 72.84 ?? P(CO2)1/2; R2 = 0.975. No significant acidic incursions were noted for the control water over the course of the study. Had these incursions occurred, survivability in the untreated water would likely have been much more severely impacted. Treated water consistently provided elevated alkalinity and pH above that of the hatchery source water. ?? 2005 Elsevier B.V. All rights reserved.

  10. Analysis of Natural Buffer Systems and the Impact of Acid Rain

    Science.gov (United States)

    Powers, David C.; Yoder, Claude H.; Higgs, Andrew T.; Obley, Matt L.; Hess, Kenneth R.; Leber, Phyllis A.

    2005-01-01

    The environmental significance of acid rain on water systems of different buffer capacities is discussed. The most prevalent natural buffer system is created by the equilibrium between carbonate ions and carbon dioxide.

  11. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana;

    2014-01-01

    in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.......i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...... fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma...

  12. Impact of bile acids on the growth of human cholangiocarcinoma via FXR

    Directory of Open Access Journals (Sweden)

    Zhang Yinxin

    2011-10-01

    Full Text Available Abstract Background The objective of the study was to investigate the effect of different types of bile acids on proliferation of cholangiocarcinoma and the potential molecular mechanisms. Methods PCR assay and Western blot were performed to detect the expression of farnesoid × receptor (FXR in mRNA and protein level. Immunohistochemical analysis was carried out to monitor the expression of FXR in cholangiocarcinoma tissues from 26 patients and 10 normal controls. The effects on in vivo tumor growth were also studied in nude mouse model. Results Free bile acids induced an increased expression of FXR; on the contrary, the conjugated bile acids decreased the expression of FXR. The FXR effect has been illustrated with the use of the FXR agonist GW4064 and the FXR antagonist GS. More specifically, when the use of free bile acids combined with FXR agonist GW4064, the tumor cell inhibitory effect was even more pronounced. But adding FXR antagonist GS into the treatment attenuated the tumor inhibitory effect caused by free bile acids. Combined treatment of GS and CDCA could reverse the regulating effect of CDCA on the expression of FXR. Administration of CDCA and GW 4064 resulted in a significant inhibition of tumor growth. The inhibitory effect in combination group (CDCA plus GW 4064 was even more pronounced. Again, the conjugated bile acid-GDCA promoted the growth of tumor. We also found that FXR agonist GW4064 effectively blocked the stimulatory effect of GDCA on tumor growth. And the characteristic and difference of FXR expressions were in agreement with previous experimental results in mouse cholangiocarcinoma tissues. There was also significant difference in FXR expression between normal and tumor tissues from patients with cholangiocarcinoma. Conclusions The imbalance of ratio of free and conjugated bile acids may play an important role in tumorigenesis of cholangiocarcinoma. FXR, a member of the nuclear receptor superfamily, may mediate the

  13. Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II

    OpenAIRE

    Kauppi, P.; Kaemaeri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1985-01-01

    Acidification is an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are sources of acidification. Acidification causes a risk of damage to plant roots and a subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of acid stress and the buffer mechanisms of the soil. ...

  14. Acidification of Forest Soils: Model Development and Application for Analyzing Impacts of Acidic Deposition in Europe

    OpenAIRE

    P. E. Kauppi; KÀmÀri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1984-01-01

    Acidification is considered as an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known as sources of acidification. Acidification causes the risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of the acid stress and the buff...

  15. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  16. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-05-05

    Low-pressure membrane systems such as Microfiltration (MF) and Ultrafiltration (UF) have been presented as viable option to pre-treatment systems in potable water applications. UF membranes are sporadically backwashed with ultra-filtered water to remove deposited matter from the membrane and restore it. Several factors that may cause permeability and selectivity decrease are involved and numerous procedures are applicable to achieve this objective. Membrane cleaning is the most important step required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater reverse osmosis (SWRO) pretreatment. To accomplish this, the questions made were: Does the acid addition (before or after the alkali CEB) influence the overall CEB cleaning effectiveness on Dow UF membrane? Does the CEB order of alkali (NaOCl) and acid (H2SO4) affect the overall CEB cleaning effectiveness? If yes, which order is better/worse? What is the optimal acid CEB frequency that will ensure the most reliable performance of the UF?. To answer this queries, a series of sequences were carried out with different types of chemical treatments: Only NaOCl, daily NaOCl plus weekly acid, daily NaOCl plus daily acid, and weekly acid plus daily NaOCl. To investigate the consequence of acid by studying the effect of operational data like the trans-pressure membrane, resistance or permeability and support that by the analytical experiments (organic, inorganic and microbial characterization). Microorganisms were removed almost completely at hydraulic cleaning and showed no difference with addition of acid. As a conclusion of the operational data the organic and inorganic chatacterization resulted in the elimination of the first sequence due to the acummulation of fouling over time, which produces that the cleaning increases downtime

  17. Atypical expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in subcutaneous adipose tissue of male rats.

    Science.gov (United States)

    Thumelin, S; Kohl, C; Girard, J; Pégorier, J P

    1999-06-01

    The mRNAs encoding mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mtHMG-CoA synthase), the rate limiting enzyme in ketone body production, are highly expressed in subcutaneous (SC) and, to a lesser extent, in peri-epididymal (PE) rat adipose tissues. This atypical mtHMG-CoA synthase gene expression is dependent on the age (from 9 weeks of age) and sex (higher in male than in female) of the rats. In contrast, the expression of mtHMG-CoA synthase in SC adipose deposit is independent of the nutritional state (fed versus starved) or of the thermic environment (24 degrees C versus 4 degrees C). The expression of mtHMG-CoA synthase is suppressed in SC fat pads of castrated male rats whereas treatment of castrated rats with testosterone restores a normal level of expression. Moreover, testosterone injection induces the expression mtHMG-CoA synthase in SC adipose tissue of age-matched females. The presence of the mtHMG-CoA synthase immunoreactive protein confers to mitochondria isolated from SC adipose deposits, the capacity to produce ketone bodies at a rate similar to that found in liver mitochondria (SC = 13.7 +/- 0.7, liver = 16.4 +/- 1.4 nmol/min/mg prot). mtHMG-CoA synthase is expressed in the stromal vascular fraction (SVF) whatever the adipose deposit considered. While acetyl-CoA carboxylase (ACC) is only expressed in mature adipocytes, the other lipogenic enzymes, fatty acid synthase (FAS) and citrate cleavage enzyme (CCE), are expressed both in SVF cells and mature adipocytes. The expression of lipogenic enzyme genes is markedly reduced in adipocytes but not in SVF cells isolated from 48-h starved male rats. When SVF is subfractionated, mtHMG-CoA synthase mRNAs are mainly recovered in two fractions containing poorly digested structures such as microcapillaries whereas the lowest expression is found in the pre-adipocyte fraction. Interestingly, FAS and CCE mRNAs co-segregate with mtHMG-CoA synthase mRNA. The possible physiological relevance of such

  18. 氯苯甲酸生物降解及环境影响研究进展%Review on Chlorobenzoic Acids Biodegradation and Their Environmental Impacts

    Institute of Scientific and Technical Information of China (English)

    吕文明

    2005-01-01

    Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.

  19. Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger tropical river

    DEFF Research Database (Denmark)

    Boëchat, Iola; Krüger, Angela; Chavez, R.C.;

    2014-01-01

    Land-use change, such as agricultural expansion and urbanization, can affect riverine biological diversity and ecosystem functioning. Identifying the major stressors associated with catchment land-use change is a prerequisite for devising successful river conservation and restoration strategies....... Here, we analyzed land-use effects on the fatty acid (FA) composition and concentrations in suspended particulate organic matter (SPOM) along a fourth-order tropical river, the Rio das Mortes. Thereby, we aimed at testing the potential of fatty acids in riverine suspended particulate organic matter...... (SPOM-FAs) as indicators of land-use change in tropical catchments, and at identifying major human impacts on the biochemical composition of SPOM, which represents an important basal energy and organic matter resource for aquatic consumers. River water SPOM and total FA concentrations ranged between 2...

  20. Amoxicillin and clavulanic acid vs ceftazidime in the surgical extraction of impacted third molar: a comparative study.

    Science.gov (United States)

    Sisalli, U; Lalli, C; Cerone, L; Maida, S; Manzoli, L; Serra, E; Dolci, M

    2012-01-01

    The objective of this work is to compare the effectiveness and the side effects of two different drugs, amoxicillin and clavulanic acid vs ceftazidime, used as antibiotic prophylaxis in the surgical extraction of third molars and to demonstrate that the use of second choice antibiotic has no significant advantages in comparison with a first choice antibiotic. One hundred and seven patients with impacted third molar were selected and divided into two groups: amoxicillin and clavulanic acid were administered to group 1 and ceftazidime to group 2 for five days after surgery and we observed the postoperative period. The statistical analysis showed no differences between the two groups which lead to the conclusion that there is no indication to routinely administrate intramuscular second-choice antibiotic prophylatic therapy (ceftazidime) in case of surgical extraction of the third molar.

  1. Impact of individual acid flue gas components on mercury capture by heat-treated activated carbon

    Institute of Scientific and Technical Information of China (English)

    Jian-ming ZHENG; Jin-song ZHOU; Zhong-yang LUO; Ke-fa CEN

    2012-01-01

    Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor.The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was studied and the effects of common acid gas constituents were evaluated individually to avoid complications resulting from the coexistence of multiple components.The results suggest that surface functional groups (SFGs) on activated carbon (AC) are vital to Hg0 capture in the absence of acid gases.Meanwhile,the presence of acid gas components coupled with defective graphitic lattices on TAC plays an important role in effective Hg0 capture.The presence of HCl,NO2,and NO individually in basic gases markedly enhances Hg0 capture on TAC due to the heterogeneous oxidation of Hg0 on acidic sites created on the carbon surface and catalysis by the defective graphitic lattices on TAC.Similarly,the presence of SO2 improves Hg0 capture by about 20%.This improvement likely results from the deposition of sulfur groups on the AC surface and oxidation of the elemental mercury by SO2 due to catalysis on the carbon surface.Furthermore,O2 exhibits a synergistic effect on Hg0 oxidation and capture when acid gases are present in the flue gases.

  2. Preliminary crystallographic analysis of sugar cane phosphoribosylpyrophosphate synthase

    International Nuclear Information System (INIS)

    X-ray diffraction data have been collected from crystals of recombinant sugar cane phosphoribosylpyrophosphate synthase (PRS) and analysis has revealed its quaternary structure, localizing this PRS into the class of enzymes forming an hexameric oligomer of 223 kDa. Phosphoribosylpyrophosphate synthases (PRS; EC 2.7.6.1) are enzymes that are of central importance in several metabolic pathways in all cells. The sugar cane PRS enzyme contains 328 amino acids with a molecular weight of 36.6 kDa and represents the first plant PRS to be crystallized, as well as the first phosphate-independent PRS to be studied in molecular detail. Sugar cane PRS was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Using X-ray diffraction experiments it was determined that the crystals belong to the orthorhombic system, with space group P21212 and unit-cell parameters a = 213.2, b = 152.6, c = 149.3 Å. The crystals diffract to a maximum resolution of 3.3 Å and a complete data set to 3.5 Å resolution was collected and analysed

  3. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  4. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  5. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    OpenAIRE

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. ...

  6. 脂肪酸合成酶在高脂饮食诱导的肥胖易感和肥胖抗性大鼠白色脂肪组织中的表达差异%Different expression of fatty acid synthase (FAS) in adipose tissue from high-fat diet induced obesity-prone and obesity-resistant rats

    Institute of Scientific and Technical Information of China (English)

    曾凡勇; 秦锐; 郭锡熔

    2007-01-01

    目的 探讨高脂饮食诱导下肥胖易感(obesity-prone,OP)与肥胖抗性(obesity-resistant,OR)大鼠白色脂肪组织(white adipose tissue,WAT)中脂肪酸合成酶(fatty acid synthase,FAS)的表达差异.方法 72只SD大鼠,随机选取12只为标准对照组,基础饲料饲养7周,余60只基础饲料饲养1周后,按体重增值分为OP组、OR组和高脂组,分组后改用高脂饲料继续饲养6周.观察各大鼠体重变化、Lee's指数、脂肪湿重等;用RT-PCR技术分析WAT中FAS基因mRNA表达水平,Western blotting检测WAT中FAS的蛋白表达差异.结果 OP组体重增值、Lee's指数及脂肪湿重均高于OR组(P<0.05);OP组FAS基因mRNA表达水平高于OR组(P<0.05);OP组FAS蛋白表达显著高于OR组(P<0.001).结论 OP与OR大鼠的白色脂肪组织中存在FAS基因表达差异,其差异与大鼠发生肥胖的易感程度有关.

  7. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    OpenAIRE

    Beld, Joris; Jillian L Blatti; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2013-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the p...

  8. Impact of fatty acid status on immune function of children in low-income countries.

    Science.gov (United States)

    Prentice, Andrew M; van der Merwe, Liandré

    2011-04-01

    In vitro and animal studies point to numerous mechanisms by which fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFA), can modulate the innate and adaptive arms of the immune system. These data strongly suggest that improving the fatty acid supply of young children in low-income countries might have immune benefits. Unfortunately, there have been virtually no studies of fatty acid/immune interactions in such settings. Clinical trial registers list over 150 randomized controlled trials (RCTs) involving PUFAs, only one in a low-income setting (the Gambia). We summarize those results here. There was evidence for improved growth and nutritional status, but the primary end point of chronic environmental enteropathy showed no benefit, possibly because the infants were still substantially breastfed. In high-income settings, there have been RCTs with fatty acids (usually LCPUFAs) in relation to 18 disease end points, for some of which there have been numerous trials (asthma, inflammatory bowel disease and rheumatoid arthritis). For these diseases, the evidence is judged reasonable for risk reduction for childhood asthma (but not in adults), as yielding possible benefit in Crohn's disease (insufficient evidence in ulcerative colitis) and for convincing evidence for rheumatoid arthritis at sufficient dose levels, though formal meta-analyses are not yet available. This analysis suggests that fatty acid interventions could yield immune benefits in children in poor settings, especially in non-breastfed children and in relation to inflammatory conditions such as persistent enteropathy. Benefits might include improved responses to enteric vaccines, which frequently perform poorly in low-income settings, and these questions merit randomized trials. PMID:21366869

  9. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-07-01

    Full Text Available Halloysite (HNT is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1, 3 h (H3, 8 h (H8, and 21 h (H21. The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR. The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  10. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    Science.gov (United States)

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-01-01

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid

  11. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    Science.gov (United States)

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-01-01

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid

  12. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes.

    Science.gov (United States)

    Petrescu, Anca D; Huang, Huan; Martin, Gregory G; McIntosh, Avery L; Storey, Stephen M; Landrock, Danilo; Kier, Ann B; Schroeder, Friedhelm

    2013-02-01

    Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes.

  13. Interaction between DAHP synthase and chorismate mutase endows new regulation on DAHP synthase activity in Corynebacterium glutamicum.

    Science.gov (United States)

    Li, Pan-Pan; Li, De-Feng; Liu, Di; Liu, Yi-Ming; Liu, Chang; Liu, Shuang-Jiang

    2013-12-01

    Previous research on Corynebacterium glutamicum revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DSCg, formerly DS2098) interacts with chorismate mutase (CMCg, formerly CM0819). In this study, we investigated the interaction by means of structure-guided mutation and enzymatic assays. Our results show that the interaction imparted a new mechanism for regulation of DAHP activity: In the absence of CMCg, DSCg activity was not regulated by prephenate, whereas in the presence of CMCg, prephenate markedly inhibited DSCg activity. Prephenate competed with the substrate phosphoenolpyruvate, and the inhibition constant (K i) was determined to be 0.945 mM. Modeling based on the structure of the complex formed between DAHP synthase and chorismate mutase of Mycobacterium tuberculosis predicted the interaction surfaces of the putative DSCg-CMCg complex. The amino acid residues and structural domains that contributed to the interaction surfaces were experimentally identified to be the (212)SPAGARYE(219) sequence of DSCg and the (60)SGGTR(64) loop and C-terminus ((97)RGKLG(101)) of CMCg. PMID:23467831

  14. Impact of postharvest ripening strategies on 'Hass' avocado fatty acid profiles

    NARCIS (Netherlands)

    Pedreschi Plasencia, Romina; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, Eelke; Berg-Somhorst, van de Dianne; Ferreyra, R.; Defilippi, B.G.

    2016-01-01

    Persea americana Mill. cv 'Hass' is a subtropical fruit highly appreciated as a rich source of fatty acids mostly of the monounsaturated type. Commonly commercially applied postharvest ripening strategies for the ready to eat market based on high temperature (15 and 20 °C) and external ethylene (

  15. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain

    NARCIS (Netherlands)

    C. Eschauzier; E. Beerendonk; P. Scholte-Veenendaal; P. de Voogt

    2012-01-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, du

  16. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. PMID:26766370

  17. Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Ikuo Morita

    2013-08-01

    Full Text Available Polyunsaturated fatty acids (PUFAs, especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.

  18. Genome data mining of lactic acid bacteria: the impact of bioinformatics

    NARCIS (Netherlands)

    Siezen, R.J.; Enckevort, F.H.J. van; Kleerebezem, M.; Teusink, B.

    2004-01-01

    Lactic acid bacteria (LAB) have been widely used in food fermentations and, more recently, as probiotics in health-promoting food products. Genome sequencing and functional genomics studies of a variety of LAB are now rapidly providing insights into their diversity and evolution and revealing the mo

  19. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.).

    Science.gov (United States)

    Okada, Y; Ito, K

    2001-01-01

    Resin and essential oil derived from hop (Humulus lupulus L.) cones are very important compounds for beer brewing, and they specifically accumulate in the lupulin gland of hop cones. In order to identify the genes responsible for the biosynthetic pathway of these compounds and use the identified genes for hop breeding using Marker Assisted Selection and transformation techniques, genes expressed specifically in the lupulin gland were cloned and sequenced. One of them was suggested to be similar to the chalcone synthase gene from the DNA sequence. The translation product of the gene had the activity of valerophenone synthase, which catalyzes a part of the synthesis reaction of alpha-acid and beta-acid. Northern analysis showed that the valerophenone synthase gene seemed to be expressed specifically in the lupulin gland.

  20. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.).

    Science.gov (United States)

    Okada, Y; Ito, K

    2001-01-01

    Resin and essential oil derived from hop (Humulus lupulus L.) cones are very important compounds for beer brewing, and they specifically accumulate in the lupulin gland of hop cones. In order to identify the genes responsible for the biosynthetic pathway of these compounds and use the identified genes for hop breeding using Marker Assisted Selection and transformation techniques, genes expressed specifically in the lupulin gland were cloned and sequenced. One of them was suggested to be similar to the chalcone synthase gene from the DNA sequence. The translation product of the gene had the activity of valerophenone synthase, which catalyzes a part of the synthesis reaction of alpha-acid and beta-acid. Northern analysis showed that the valerophenone synthase gene seemed to be expressed specifically in the lupulin gland. PMID:11272819

  1. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  2. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    V. Falara; T.A. Akhtar; T.T.H. Nguyen; E.A. Spyropoulou; P.M. Bleeker; I. Schauvinhold; Y. Matsuba; M.E. Bonini; A.L. Schilmiller; R.L. Last; R.C. Schuurink; E. Pichersky

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  3. Hyaluronan synthase in trabecular meshwork cells

    OpenAIRE

    Usui, T; Nakajima, F.; Ideta, R; Kaji, Y; Suzuki, Y; Araie, M.; Miyauchi, S; P. Heldin; Yamashita, H.

    2003-01-01

    Background/aims: Hyaluronan is present in the trabecular meshwork where it is involved in the pathophysiology of aqueous outflow environment. In this study, the expression and regulation of hyaluronan synthase (HAS), which is the enzyme synthesising hyaluronan, in trabecular meshwork cells were investigated.

  4. Activities and regulation of peptidoglycan synthases

    NARCIS (Netherlands)

    Egan, Alexander J F; Biboy, Jacob; van 't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have b

  5. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  6. Impact

    NARCIS (Netherlands)

    Lohse, Detlef; Bergmann, Raymond; Mikkelsen, Rene; Zeilstra, Christiaan; Meer, van der Devaraj; Versluis, Michel

    2004-01-01

    A lot of information on impacts of solid bodies on planets has been extracted from remote observations of impact craters on planetary surfaces; experiments however with large enough impact energies as compared to the energy stored in the ground are difficult. We approach this problem by downscaled e

  7. Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network

    Directory of Open Access Journals (Sweden)

    H. Laudon

    2007-09-01

    Full Text Available DOC concentrations have increased in many surface waters in Europe and North America over the past few decades. As DOC exerts a strong influence on pH this DOC increase could have detrimental effects on acid sensitive biota in many streams and lakes. To investigate the potential implications of changes in the DOC concentration on stream water biota, we have used a mesoscale boreal stream network in northern Sweden as a case study. The network was sampled for stream water chemistry at 60 locations during both winter base flow and spring flood periods, representing the extremes experienced annually in these streams both in terms of discharge and acidity. The effect of changing DOC on pH was modeled for all sampling locations using an organic acid model, with input DOC concentrations for different scenarios adjusted by between –30% and +50% from measured present concentrations. The resulting effect on pH was then used to quantify the proportion of stream length in the catchment with pH below the acid thresholds of pH 5.5 and pH 5.0. The results suggest that a change in stream water DOC during base flow would have only a limited effect on pH and hence on the stream length with pH below the acid thresholds. During the spring flood on the other hand a change in DOC would strongly influence pH and the stream length with pH below the acid thresholds. For example an increase in DOC concentration of 30% at all sites would increase the proportion of stream length with pH below 5.5 from 37% to 65%, and the proportion of stream length with pH below 5.0 would increase from 18% to 27%. The results suggest that in poorly-buffered high DOC waters, even a marginal change in the DOC concentration could impact acid sensitive biota in a large portion of the aquatic landscape.

  8. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles.

    Science.gov (United States)

    Imran, Muhammad; Shaharoona, Baby; Crowley, David E; Khalid, Azeem; Hussain, Sabir; Arshad, Muhammad

    2015-10-01

    The aim of this study was to examine the stability of structurally different azo dyes in soil and their impact on the microbial community composition by analyzing phospholipid fatty acid (PLFA) profiles. Sterile and non-sterile soils were amended with three azo dyes, including: Direct Red 81, Reactive Black 5 and Acid Yellow 19 at 160mgkg(-1) soil. The results showed that the azo dyes were quite stable and that large amounts of these dyes ranging from 17.3% to 87.5% were recoverable from the sterile and non-sterile soils after 14 days. The maximum amount of dye was recovered in the case of Direct Red 81. PLFA analysis showed that the azo dyes had a significant effect on microbial community structure. PLFA concentrations representing Gram-negative bacteria in dye-amended soil were substantially less as compared to the PLFA concentration of Gram-positive bacteria. Acid Yellow 19 dye had almost similar effects on the PLFA concentrations representing bacteria and fungi. In contrast, Reactive Black 5 had a greater negative effect on fungal PLFA than that on bacterial PLFA, while the opposite was observed in the case of Direct Red 81. To our knowledge, this is the first study reporting the stability of textile azo dyes in soil and their effects on soil microbial community composition.

  9. Impact of gestational bisphenol A on oxidative stress and free fatty acids: Human association and interspecies animal testing studies.

    Science.gov (United States)

    Veiga-Lopez, Almudena; Pennathur, Subramaniam; Kannan, Kurunthachalam; Patisaul, Heather B; Dolinoy, Dana C; Zeng, Lixia; Padmanabhan, Vasantha

    2015-03-01

    Bisphenol A (BPA) is a high production volume chemical and an endocrine disruptor. Developmental exposures to BPA have been linked to adult metabolic pathologies, but the pathways through which these disruptions occur remain unknown. This is a comprehensive interspecies association vs causal study to evaluate risks posed by prenatal BPA exposure and to facilitate discovery of biomarkers of relevance to BPA toxicity. Samples from human pregnancies during the first trimester and at term, as well as fetal and/or adult samples from prenatally BPA-treated sheep, rats, and mice, were collected to assess the impact of BPA on free fatty acid and oxidative stress dynamics. Mothers exposed to higher BPA during early to midpregnancy and their matching term cord samples displayed increased 3-nitrotyrosine (NY), a marker of nitrosative stress. Maternal samples had increased palmitic acid, which was positively correlated with NY. Sheep fetuses and adult sheep and rats prenatally exposed to a human-relevant exposure dose of BPA showed increased systemic nitrosative stress. The strongest effect of BPA on circulating free fatty acids was observed in adult mice in the absence of increased oxidative stress. This is the first multispecies study that combines human association and animal causal studies assessing the risk posed by prenatal BPA exposure to metabolic health. This study provides evidence of the induction of nitrosative stress by prenatal BPA in both the mother and fetus at time of birth and is thus supportive of the use of maternal NY as a biomarker for offspring health. PMID:25603046

  10. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  11. A plant type III polyketide synthase that produces pentaketide chromone.

    Science.gov (United States)

    Abe, Ikuro; Utsumi, Yoriko; Oguro, Satoshi; Morita, Hiroyuki; Sano, Yukie; Noguchi, Hiroshi

    2005-02-01

    A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes. PMID:15686354

  12. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    Science.gov (United States)

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  13. PPARγ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid

    Directory of Open Access Journals (Sweden)

    Tamotsu Tsukahara

    2013-01-01

    Full Text Available Lysophospholipid (LPL has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA, alkyl glycerol phosphate (AGP, cyclic phosphatidic acid (cPA, and sphingosine-1-phosphate (S1P. These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ. In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPARγ and then provide an update of lysophospholipids PPARγ ligands that are under investigation as a therapeutic compound and which are targets of PPARγ relevant to diseases.

  14. Impact of bile acids on the growth of human cholangiocarcinoma via FXR

    OpenAIRE

    Zhang Yinxin; Dong Ying; Shi Yihui; Wang Hongxia; Dai Jiaqi; Wang Jian

    2011-01-01

    Abstract Background The objective of the study was to investigate the effect of different types of bile acids on proliferation of cholangiocarcinoma and the potential molecular mechanisms. Methods PCR assay and Western blot were performed to detect the expression of farnesoid × receptor (FXR) in mRNA and protein level. Immunohistochemical analysis was carried out to monitor the expression of FXR in cholangiocarcinoma tissues from 26 patients and 10 normal controls. The effects on in vivo tumo...

  15. Evaluation of the Impact of Ruminant Trans Fatty Acids on Human Health: Important Aspects to Consider.

    Science.gov (United States)

    Kuhnt, Katrin; Degen, Christian; Jahreis, Gerhard

    2016-09-01

    The definition and evaluation of trans fatty acids (TFA) with regard to foodstuffs and health hazard are not consistent. Based on the current situation, the term should be restricted only to TFA with isolated double bonds in trans-configuration. Conjugated linoleic acids (CLA) should be separately assessed. Ideally, the origin of the consumed fat should be declared, i.e., ruminant TFA (R-TFA) and industrial TFA (non-ruminant; I-TFA). In ruminant fat, more than 50% of R-TFA consists of vaccenic acid (C18:1 t11). In addition, natural CLA, i.e., c9,t11 CLA is also present. Both are elevated in products from organic farming. In contrast to elaidic acid (t9) and t10, which occur mainly in partially hydrogenated industrial fat, t11 is partially metabolized into c9,t11 CLA via Δ9-desaturation. This is the major metabolic criterion used to differentiate between t11 and other trans C18:1. t11 indicates health beneficial effects in several studies. Moreover, CLA in milk fat is associated with the prevention of allergy and asthma. An analysis of the few studies relating to R-TFA alone makes clear that no convincing adverse physiological effect can be attributed to R-TFA. Only extremely high R-TFA intakes cause negative change in blood lipids. In conclusion, in most European countries, the intake of R-TFA is assessed as being low to moderate. Restriction of R-TFA would unjustifiably represent a disadvantage for organic farming of milk. PMID:25746671

  16. Bacteriophages of lactic acid bacteria and their impact on milk fermentations

    OpenAIRE

    Garneau, Josiane E.; Moineau, Sylvain

    2011-01-01

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures w...

  17. The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt

    Science.gov (United States)

    Lin, Jinzhong; Hua, Baozhen; Xu, Zhiping; Li, Sha; Ma, Chengjie

    2016-01-01

    The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth. PMID:27621698

  18. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    Science.gov (United States)

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  19. Impacts of Choerospondias axillaris Growth on Acidity of Udic Ferrosols in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LI Qing-Man; WANG Xing-Xiang; BI Shu-Ping

    2005-01-01

    Changes in acidity of Udic Ferrosols, caused by growth of Choerospondias axillaris (Roxb.) Burtt et Hill, in comparison to wild grass, were investigated for pH distribution in the soil profile, exchangeable acidity, and cation status in the soil leachate of a simulated leaching experiment. Soils were sampled in profiles at 5 cm intervals to a depth of 100 cm. In the15-60 cm layer the soils with 10-year old C. axillaris had significantly lower pH (P < 0.05), with the largest difference being 0.41; and in the 25-75 cm soil depths, especially in the 30-55 cm layer, the soils had a significantly higher exchangeable acidity, ranging 1.93 to 3.02 cmolc kg-1. There was also higher aluminum, potassium, and sodium contents in the soil leachate under C. axillaris than with wild grasses. This suggested that the growth of C. axillaris accelerated acidification of Udic Ferrosols and promoted soil clay mineral weathering.

  20. The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt.

    Science.gov (United States)

    Lin, Jinzhong; Hua, Baozhen; Xu, Zhiping; Li, Sha; Ma, Chengjie

    2016-01-01

    The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth. PMID:27621698

  1. Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present in Plukenetia huayllabambana Seed

    Directory of Open Access Journals (Sweden)

    Rosana Chirinos

    2016-01-01

    Full Text Available The effect of roasting of Plukenetia huayllabambana seeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, and p-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of the studied components. The values of acidity, peroxide, and p-anisidine in the sacha inchi oil from roasted seeds increased during roasting. The treatment of 100°C for 10 min successfully maintained the evaluated bioactive compounds in the seed and quality of the oil, while guaranteeing a higher extraction yield. Our results indicate that P. huayllabambana seed should be roasted at temperatures not higher than 100°C for 10 min to obtain snacks with high levels of bioactive compounds and with high oxidative stability.

  2. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296

  3. Characterization of commercial humic acid samples and their impact on growth of fungi and plants

    Directory of Open Access Journals (Sweden)

    Asma Lodhi, Shermeen Tahir, Zafar Iqbal, Ansar Mahmood, Muhammad Akhtar, Tariq Mahmood Qureshi, Muhammad Yaqub and Asif Naeem

    2013-05-01

    Full Text Available Naturally occurring humates like leonardite and brown coal or lignite are marketed under different brand names e.g. Pak Humates, Humate Fertilizer, Pak Humax, Humkara and Humide etc. However, their efficacy is needed to be confirmed before their use. Different studies were conducted for the comparison of four commercial humates for their physico-chemical, optical properties, plant growth promoting ability in terms of seed germination and seedling vigour in wheat (cv Sehr, mung bean (Mung-54, maize (C-12 and sesbania and their effect on growth of some fungi. Moisture content of four humates varied from 0.52 to 71.11%, while solubility in water varied from 30.2 to 98.2% and density differed from 1.67 to 4.17. A 2% solution of humates had pH and EC varying from 5.39 to 10.11 and 3.140 to 1.143 mS cm-1, respectively. Carbon and nitrogen concentrations varied from 22.95 to 36.56% and 0.658 to 1.183, respectively with a C/N ratio of 30.91 to 44.16. Humates dissolved in 0.1N NaOH were partitioned into humic acid and fulvic acid fractions. Of the total C in humates, 40.3 to 77.5% was ranged in humic acid and 22.5 to 59.7% in fulvic acid fraction. The HA was also studied for optical properties at 400, 500, 600, and 700 nm besides that at 465 and 665 to calculate E4/E6 (extinction coefficient; the later varied between 3.64 and 5.48. Optical density of the humic acid decreased at increasing wavelength and was correlated significantly with the carbon contents of humic compounds. Three fungi, Trichoderma harzianum, T. hamatum and Alternaria alternata showed maximum growth at 0.025% HA in the growth medium on the basis of colony diameter. Humates inhibited seed germination in wheat, maize and mung bean except for sesbania. Root length and shoot dry matter increased in wheat and maize but no effect was found in mung bean and sesbania. The studies revealed that humates available in the market vary widely and therefore some sort of quality monitoring is required

  4. Sevoflurane and nitric oxide synthase expression in rat cochlea

    Institute of Scientific and Technical Information of China (English)

    Yuantao Li; Qingzhong Hou; Mingguang Wu; Xiaolei Huang; Jun Cao; Yin Gu; Xiaofei Qi; Yawen Li

    2010-01-01

    Sevoflurane exhibits anesthetic action by inhibiting the auditory cortex,brain stem nitric oxide synthase activity,and reducing nitric oxide(NO),thereby interfering with the hearing process.However,the influence of sevoflurane on peripheric receptor(cochlea)NO remains poorly understood.Results from the present study showed that sevoflurane downregulated cochlear inducible NO synthase,endothelial NO synthase and neuronal NO synthase expression in a dose dependent manner.This suggests that sevoflurane can decrease cochlear NO synthase expression in a dose dependent manner.

  5. The Primary Diterpene Synthase Products of Picea abies Levopimaradiene/Abietadiene Synthase (PaLAS) Are Epimers of a Thermally Unstable Diterpenol*

    Science.gov (United States)

    Keeling, Christopher I.; Madilao, Lina L.; Zerbe, Philipp; Dullat, Harpreet K.; Bohlmann, Jörg

    2011-01-01

    The levopimaradiene/abietadiene synthase from Norway spruce (Picea abies; PaLAS) has previously been reported to produce a mixture of four diterpene hydrocarbons when incubated with geranylgeranyl diphosphate as the substrate: levopimaradiene, abietadiene, neoabietadiene, and palustradiene. However, variability in the assay products observed by GC-MS of this and orthologous conifer diterpene synthases over the past 15 years suggested that these diterpenes may not be the initial enzyme assay products but are rather the products of dehydration of an unstable alcohol. We have identified epimers of the thermally unstable allylic tertiary alcohol 13-hydroxy-8(14)-abietene as the products of PaLAS. The identification of these compounds, not previously described in conifers, as the initial products of PaLAS has considerable implications for our understanding of the complexity of the biosynthetic pathway of the structurally diverse diterpene resin acids of conifer defense. PMID:21518766

  6. Inhibition of flower formation by antisense repression of mitochondrial citrate synthase in transgenic potato plants leads to a specific disintegration of the ovary tissues of flowers.

    OpenAIRE

    Landschütze, V; Willmitzer, L.; Müller-Röber, B

    1995-01-01

    The tricarboxylic acid (TCA) cycle constitutes a major component of the mitochondrial metabolism of eucaryotes, including higher plants. To analyze the importance of this pathway, we down-regulated mitochondrial citrate synthase (mCS; EC 4.1.3.7), the first enzyme of the TCA cycle, in transgenic potato plants using an antisense RNA approach. Several transformants were identified with reduced citrate synthase activity (down to approximately 6% of wild-type activity). These plants were indistin...

  7. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    Science.gov (United States)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  8. Changing the omega-6 to omega-3 fatty acid ratio in sow diets alters serum, colostrum, and milk fatty acid profiles, but has minimal impact on reproductive performance.

    Science.gov (United States)

    Eastwood, L; Leterme, P; Beaulieu, A D

    2014-12-01

    This experiment tested the hypothesis that reducing the omega-6 (n-6) to omega-3 (n-3) fatty acid (FA) ratio in sow diets will improve performance, characterized by increased litter size, decreased preweaning mortality, and improved growth performance. Second, we determined if the FA profile in sow and piglet blood, colostrum, and milk are altered when sows are fed diets with varied n-6:n-3 ratios and if the dietary FA ratio impacts circulating concentrations of IgG, IgA, eicosapentaenoic (EPA), or docosahexaenoic (DHA) acid. Sows (n=150) were assigned to 1 of 5 treatments (each divided into gestation and lactation diets) on d 80 of gestation. Period 1 (P1) is defined as d 80 of gestation to weaning and Period 2 (P2) refers to the subsequent breeding to weaning. Diets were wheat and barley based (5% crude fat) and treatments consisted of a control (tallow), 3 diets with plant oil-based n-6:n-3 ratios (9:1P, 5:1P, and 1:1P), and a 5:1 fish oil diet (5:1F). Litter size was unaffected by treatment during P1 and P2 (P>0.10). In P1, birth weight was unaffected by diet (P>0.10); however, weaning weight (P=0.019) and ADG from birth to weaning (P=0.011) were greatest for piglets born to 9:1P and 5:1P sows. During P2, 5:1F sows consumed 10% less feed during lactation (P=0.036), tended to have reduced piglet birth weights (P=0.052), and piglet weaning weight was reduced by 0.8 kg (P=0.040) relative to the other diets. Colostrum and piglet serum IgA and IgG concentrations were unaffected by diet (P>0.10). Serum n-3 FA were greatest in sows (Psows and EPA and DHA were greatest in 5:1F sows (P0.10). Relative to piglets of sows consuming the control diet, EPA was 2.5-fold greater in the 1:1P group and 4-fold greater in 5:1F group (Psows (Psows (PFeeding diets with plant-based n-6:n-3 ratios of 5:1 or 1:1 did not impact performance relative to a control group but improved the conversion of ALA into EPA and increased the transfer of n-3 to piglets through milk. When a fish-based 5

  9. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    OpenAIRE

    Masato Yano; Tadashi Yamamoto; Naotaka Nishimura; Tomomi Gotoh; Ken Watanabe; Kazutaka Ikeda; Yohei Garan; Ryo Taguchi; Koichi Node; Toshiro Okazaki; Yuichi Oike

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vit...

  10. A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium's Own F1Fo ATP Synthase

    OpenAIRE

    Lee, Eun-Jin; Pontes, Mauricio H.; Groisman, Eduardo A.

    2013-01-01

    Several intracellular pathogens including Salmonella enterica and Mycobacterium tuberculosis require the virulence protein MgtC to survive within macrophages and to cause a lethal infection in mice. We now report that, unlike secreted virulence factors that target the host vacuolar ATPase to withstand phagosomal acidity, the MgtC protein acts on Salmonella's own F1Fo ATP synthase. This complex couples proton translocation to ATP synthesis/ hydrolysis and is required for virulence. We establis...

  11. The Impact of Acid Rain on the Aquatic Ecosystems of Eastern Canada

    OpenAIRE

    Mariam, Yohannes

    1999-01-01

    In the past environmental management practices have been based on disparate analysis of the impacts of pollutants on selected components of ecosystems. However, holistic analysis of emission reduction strategies is necessary to justify that actions taken to protect the environment would not unduly punish economic growth or vice versa. When environmental management programs are implemented, it would be extremely difficult for the industry to attain the targeted emission reduction in a sing...

  12. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  13. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion.

    Science.gov (United States)

    Lyles, Christopher N; Le, Huynh M; Beasley, William Howard; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  14. Alkyl chain length impacts the antioxidative effect of lipophilized ferulic acid in fish oil enriched milk

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Lyneborg, Karina Sieron; Villeneuve, Pierre;

    2015-01-01

    Lipophilization of phenolics by esterification with fatty alcohols may alter their localization in an emulsion and thereby their antioxidant efficacy. In this study, synthesized unbranched alkyl ferulates were evaluated as antioxidants in fish oil enriched milk. Lipid oxidation was determined...... by peroxide values and concentration of volatile oxidation products. A cut-off effect in the antioxidant efficacy in relation to the alkyl chain length was observed. The most efficient alkyl ferulate was methyl ferulate followed by ferulic acid and butyl ferulate, whereas octyl ferulate was prooxidative...

  15. Acyl carrier protein (ACP) inhibition and other differences between b-ketoacyl synthase (KAS) I and II

    DEFF Research Database (Denmark)

    McGuire, Kirsten Arnvig; McGuire, J.N.; Wettstein-Knowles, Penny von

    2000-01-01

    Escherichia coli b-ketoacyl synthases (KAS) I and II carry out the elongation steps in fatty acid synthesis. Analyses using the cross-linker BS3 [bis(sulphosuccinimidyl) suberate] and surface-enhanced laser desorption/ionization–time-of-flight MS disclosed only monomeric and dimeric forms of KAS ...

  16. Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA.

    Science.gov (United States)

    Huang, L; Ku, J; Pookanjanatavip, M; Gu, X; Wang, D; Greene, P J; Santi, D V

    1998-11-10

    Several putative Escherichia coli pseudouridine (Psi) synthases have been identified by iterative searching of genomic databases for ORFs homologous to known Psi synthases [Gustafsson et al. (1996) Nucleic Acids Res. 24, 3756-3762]. Of these, yceC and yfiI were proposed to encode Psi synthases which modify 23S rRNA. In the present work, yceC and yfiI were cloned and overexpressed in E. coli, and the encoded enzymes, YceC and YfiI, were purified to homogeneity. Both proteins converted Urd residues of rRNA to Psi, thus confirming their identities as Psi synthases. However, in in vitro experiments both enzymes extensively modified Urd residues of both 23S rRNA and 16S rRNA. Gene-disruption of yceCresulted in the absence of Psi modification at positions U955, 2504, and 2580 of 23S RNA, thus identifying these sites as in vivo targets for YceC. Likewise, yfiI disruption resulted in the absence of Psi modification at positions U1911, 1917, and possibly 1915 of 23S RNA. Disruption of yceC did not affect the growth under the conditions tested, whereas yfiI-disrupted cells showed a dramatic decrease in growth rate. Since YceC and YfiI hypermodify RNA in vitro, factors in addition to ribonucleotide sequence must contribute to the in vivo specificity of these enzymes.

  17. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    Science.gov (United States)

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired. PMID:18258282

  18. Pregnancy-Related Changes of Amino Acid and Acylcarnitine Concentrations: The Impact of Obesity

    Science.gov (United States)

    Ryckman, Kelli K.; Donovan, Brittney M.; Fleener, Diedre K.; Bedell, Bruce; Borowski, Kristi S.

    2016-01-01

    Objective Our primary objective was to assess the difference in amino and fatty acid biomarkers throughout pregnancy in women with and without obesity. Interactions between biomarkers and obesity status for associations with maternal and fetal metabolic measures were secondarily analyzed. Methods Overall 39 women (15 cases, 24 controls) were enrolled in this study during their 15- to 20-weeks' visit at the University of Iowa Hospitals and Clinics. We analyzed 32 amino acid and acylcarnitine concentrations with tandem mass spectrometry for differences throughout pregnancy as well as among women with and without obesity (body mass index [BMI] ≥ 35, BMI obesity, C8:1 (second trimester) and C2, C4-OH, C18:1 (third trimester) were higher in women with obesity compared with women without obesity. Several metabolites were marginally (0.002 obesity status and trimester. Conclusions Understanding maternal metabolism throughout pregnancy and the influence of obesity is a critical step in identifying potential mechanisms that may contribute to adverse outcomes in pregnancies complicated by obesity.

  19. PPAR γ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid.

    Science.gov (United States)

    Tsukahara, Tamotsu

    2013-01-01

    Lysophospholipid (LPL) has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA), alkyl glycerol phosphate (AGP), cyclic phosphatidic acid (cPA), and sphingosine-1-phosphate (S1P). These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPAR γ ). In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPAR γ and then provide an update of lysophospholipids PPAR γ ligands that are under investigation as a therapeutic compound and which are targets of PPAR γ relevant to diseases. PMID:23476786

  20. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Carly J., E-mail: c.j.stevens@open.ac.uk [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Dupre, Cecilia [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, Edu [Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, PO Box 80.058, 3508 TB Utrecht (Netherlands); Gaudnik, Cassandre [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Gowing, David J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bleeker, Albert [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten (Netherlands); Diekmann, Martin [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Alard, Didier [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bobbink, Roland [B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, David [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Corcket, Emmanuel [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Mountford, J. Owen [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, Vigdis [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway)

    2011-10-15

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha{sup -1} yr{sup -1}) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: > N deposition is negatively correlated with forb richness as a proportion of species richness. > Soil C:N ratio increased with increasing N deposition. > Soil extractable nitrate and ammonium were not related to nitrogen deposition. > Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  1. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    Science.gov (United States)

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  2. Ingestion of Domoic Acid and Its Impact on King Scallop(Pecten maximus,Linnaeus 1758)

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; Maeve S. Kelly; Dirk A. Campbell; DONG Shuanglin; ZHU Jianxin; WANG Sufeng

    2007-01-01

    A simple method for spiking formulated feed with domoic acid (DA) was developed in this study. DA feed was prepared by mixing 0.15 mL 100 μg mL-1 DA with 0.1 g formulated feed, and drying the mixture at room temperature for 2 h. The prepared DA feed contained 0.19 pg DA per particle. Of the added DA, 46.72% was retained in the feed. Relatively high DA retention (about 50%) was recorded after DA feed was soaked in water for 2h. Exposure to DA feed for 7d did not cause the increase of tissue DA level of adult king scallop (Pecten maximus) significantly in 60 d. The increase of their gonad index after DA exposure was not significantly different from the control. No significant change in DA level was found in spermary, ovary or fertilized eggs after DA exposure. These results indicated that DA excretion may be more efficient than DA accumulation under the current experimental conditions, and the mechanism of domoic acid incorporation in P. maximus may involve intracellular biotransformation.

  3. Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration.

    Science.gov (United States)

    Wada, Keisuke; Yu, Weiling; Elazizi, Mohamad; Barakat, Sandrine; Ouimet, Michelle A; Rosario-Meléndez, Roselin; Fiorellini, Joseph P; Graves, Dana T; Uhrich, Kathryn E

    2013-10-10

    Diabetes mellitus (DM) involves metabolic changes that can impair bone repair, including a prolonged inflammatory response. A salicylic acid-based poly(anhydride-ester) (SA-PAE) provides controlled and sustained release of salicylic acid (SA) that locally resolves inflammation. This study investigates the effect of polymer-controlled SA release on bone regeneration in diabetic rats where enhanced inflammation is expected. Fifty-six Sprague-Dawley rats were randomly assigned to two groups: diabetic group induced by streptozotocin (STZ) injection or normoglycemic controls injected with citrate buffer alone. Three weeks after hyperglycemia development or vehicle injection, 5mm critical sized defects were created at the rat mandibular angle and treated with SA-PAE/bone graft mixture or bone graft alone. Rats were euthanized 4 and 12weeks after surgery, then bone fill percentage in the defect region was assessed by micro-computed tomography (CT) and histomorphometry. It was observed that bone fill increased significantly at 4 and 12weeks in SA-PAE/bone graft-treated diabetic rats compared to diabetic rats receiving bone graft alone. Accelerated bone formation in normoglycemic rats caused by SA-PAE/bone graft treatment was observed at 4weeks but not at 12weeks. This study shows that treatment with SA-PAE enhances bone regeneration in diabetic rats and accelerates bone regeneration in normoglycemic animals.

  4. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Koeberle, Andreas; Northoff, Hinnak; Werz, Oliver

    2009-08-01

    Prostaglandin E(2) (PGE(2)) plays a crucial role in the apparent link between tumor growth and chronic inflammation. Cyclooxygenase (COX)-2 and microsomal PGE(2) synthase-1, which are overexpressed in many cancers, are functionally coupled and thus produce massive PGE(2) in various tumors. Curcumin, a polyphenolic beta-diketone from tumeric with anti-carcinogenic and anti-inflammatory activities, was shown to suppress PGE(2) formation and to block the expression of COX-2 and of microsomal PGE(2) synthase-1. Here, we identified microsomal PGE(2) synthase-1 as a molecular target of curcumin and we show that inhibition of microsomal PGE(2) synthase-1 activity is the predominant mechanism of curcumin to suppress PGE(2) biosynthesis. Curcumin reversibly inhibited the conversion of PGH(2) to PGE(2) by microsomal PGE(2) synthase-1 in microsomes of interleukin-1beta-stimulated A549 lung carcinoma cells with an IC(50) of 0.2 to 0.3 micromol/L. Closely related polyphenols (e.g., resveratrol, coniferyl alcohol, eugenol, rosmarinic acid) failed in this respect, and isolated ovine COX-1 and human recombinant COX-2 were not inhibited by curcumin up to 30 micromol/L. In lipopolysaccharide-stimulated human whole blood, curcumin inhibited COX-2-derived PGE(2) formation from endogenous or from exogenous arachidonic acid, whereas the concomitant formation of COX-2-mediated 6-keto PGF(1)alpha and COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid was suppressed only at significant higher concentrations. Based on the key function of PGE(2) in inflammation and carcinogenesis, inhibition of microsomal PGE(2) synthase-1 by curcumin provides a molecular basis for its anticarcinogenic and anti-inflammatory activities.

  5. Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase.

    Science.gov (United States)

    Fischer, Markus; Haase, Ilka; Kis, Klaus; Meining, Winfried; Ladenstein, Rudolf; Cushman, Mark; Schramek, Nicholas; Huber, Robert; Bacher, Adelbert

    2003-02-21

    6,7-Dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyses the penultimate step in the biosynthesis of riboflavin. In Bacillus subtilis, 60 lumazine synthase subunits form an icosahedral capsid enclosing a homotrimeric riboflavin synthase unit. The ribH gene specifying the lumazine synthase subunit can be expressed in high yield. All amino acid residues exposed at the surface of the active site cavity were modified by PCR assisted mutagenesis. Polar amino acid residues in direct contact with the enzyme substrates, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate, could be replaced with relative impunity with regard to the catalytic properties. Only the replacement of Arg127, which forms a salt bridge with the phosphate group of 3,4-dihydroxy-2-butanone 4-phosphate, reduced the catalytic rate by more than one order of magnitude. Replacement of His88, which is believed to assist in proton transfer reactions, reduced the catalytic activity by about one order of magnitude. Surprisingly, the activation enthalpy deltaH of the lumazine synthase reaction exceeds that of the uncatalysed reaction. On the other hand, the free energy of activation deltaG of the uncatalysed reaction is characterised by a large entropic term (TdeltaS) of -37.8 kJmol(-1), whereas the entropy of activation (TdeltaS) of the enzyme-catalysed reaction is -6.7 kJmol(-1). This suggests that the rate enhancement by the enzyme is predominantly achieved by establishing a favourable topological relation of the two substrates, whereas acid/base catalysis may play a secondary role. PMID:12581640

  6. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    2015-01-01

    to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown...... to augment SCFA production, with the strongest relative effect on butyrate. When arabinoxylans were provided as a concentrate, the effect was only on total SCFA production. Increased SCFA production in the large intestine was shown by the concentration in the portal vein, whereas the impact...... on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting...

  7. A Size Exclusion HPLC Method for Evaluating the Individual Impacts of Sugars and Organic Acids on Beverage Global Taste by Means of Calculated Dose-Over-Threshold Values

    Directory of Open Access Journals (Sweden)

    Luís G. Dias

    2014-09-01

    Full Text Available In this work, the main organic acids (citric, malic and ascorbic acids and sugars (glucose, fructose and sucrose present in commercial fruit beverages (fruit carbonated soft-drinks, fruit nectars and fruit juices were determined. A novel size exclusion high performance liquid chromatography isocratic green method, with ultraviolet and refractive index detectors coupled in series, was developed. This methodology enabled the simultaneous quantification of sugars and organic acids without any sample pre-treatment, even when peak interferences occurred. The method was in-house validated, showing a good linearity (R > 0.999, adequate detection and quantification limits (20 and 280 mg L−1, respectively, satisfactory instrumental and method precisions (relative standard deviations lower than 6% and acceptable method accuracy (relative error lower than 5%. Sugars and organic acids profiles were used to calculate dose-over-threshold values, aiming to evaluate their individual sensory impact on beverage global taste perception. The results demonstrated that sucrose, fructose, ascorbic acid, citric acid and malic acid have the greater individual sensory impact in the overall taste of a specific beverage. Furthermore, although organic acids were present in lower concentrations than sugars, their taste influence was significant and, in some cases, higher than the sugars’ contribution towards the global sensory perception.

  8. Amino acid supplementation and impact on immune function in the context of exercise.

    Science.gov (United States)

    Cruzat, Vinicius Fernandes; Krause, Maurício; Newsholme, Philip

    2014-01-01

    Moderate and chronic bouts of exercise may lead to positive metabolic, molecular, and morphological adaptations, improving health. Although exercise training stimulates the production of reactive oxygen species (ROS), their overall intracellular concentration may not reach damaging levels due to enhancement of antioxidant responses. However, inadequate exercise training (i.e., single bout of high-intensity or excessive exercise) may result in oxidative stress, muscle fatigue and muscle injury. Moreover, during the recovery period, impaired immunity has been reported, for example; excessive-inflammation and compensatory immunosuppression. Nutritional supplements, sometimes referred to as immuno-nutrients, may be required to reduce immunosuppression and excessive inflammation. Herein, we discuss the action and the possible targets of key immuno-nutrients such as L-glutamine, L-arginine, branched chain amino acids (BCAA) and whey protein. PMID:25530736

  9. Assessing the evolutionary impact of amino acid mutations in the human genome

    DEFF Research Database (Denmark)

    Boyko, Adam R; Williamson, Scott H; Indap, Amit R;

    2008-01-01

    Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population...... of demographic and selective effects to patterning amino acid variation in the human genome. We find evidence of an ancient population expansion in the sample with African ancestry and a relatively recent bottleneck in the sample with European ancestry. After accounting for these demographic effects, we find...... with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution...

  10. Field validation of specific ecotoxicological tools for aquatic systems impacted with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, I.; Goncalves, F.; Nogueira, A.; Soares, A.M.V.M.; Ribeiro, R. [Instituto do Ambiente e Vida, Coimbra (Portugal). Departamento de Zoologia da Universidade de Coimbra

    2000-07-01

    Acid mine drainage (AMD) is characterised by very low pH and high heavy metal concentrations. Serious ecotoxicological effects, often leading to the complete disruption of the ecosystem, can be observed at the regions suffering this kind of contamination. Those effects can be caused either by low pH itself or by other contaminants that emerge with water acidification (mobilisation and increased solubility of heavy metals). The discrimination between the toxicity due to each of these two factors is not possible with the existing toxicity tests; the addition of chelating agents or serial dilution methods seriously alter the chemical and physical properties of the effluent. A toxicity test, based on the survival time of Ceriodaphnia dubia (Crustacea, Cladocera) neonates exposed to the unchanged effluent was developed and field validated, on an AMD contaminated site. 28 refs.

  11. Exposure or release of ferulic acid from wheat aleurone: impact on its antioxidant capacity.

    Science.gov (United States)

    Rosa, Natalia N; Dufour, Claire; Lullien-Pellerin, Valérie; Micard, Valérie

    2013-12-01

    The relationship between the aleurone cell integrity and the exposure or release of bioavailable ferulic acid (FA) with the antioxidant capacity of aleurone in in vitro and under simulated gastric conditions was explored. The antioxidant capacity of aleurone was increased by around 2-fold when its median particle size was reduced to under 50 μm. The opening of aleurone cells increased the physical exposure of FA bound to the insoluble polysaccharides, which seemed to be responsible of the increased antioxidant capacity. Synergistic combination of xylanase and feruloyl esterase was found to be the most efficient enzymatic treatment releasing up to 86% of total FA in bioaccessible forms. This enzymatic treatment significantly enhanced the radical scavenging activity of aleurone by up to 4-fold, which overlapped the overall antioxidant potential estimated from the total content of FA in aleurone. The improvement in the antioxidant capacity of aleurone was also observed in the simulated gastric digestion by inhibition of lipid oxidation.

  12. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  13. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization

    OpenAIRE

    Li, Zhiqiang; Hailemariam, Tiruneh K.; Zhou, Hongwen; Li, Yan; Duckworth, Dale C.; Peake, David A.; Zhang, Youyan; Kuo, Ming-Shang; Cao, Guoqing; Jiang, Xian-Cheng

    2007-01-01

    Sphingomyelin plays a very important role both in cell membrane formation that may well have an impact on the development of diseases like atherosclerosis and diabetes. However, the molecular mechanism that governs intracellular and plasma membrane SM levels is largely unknown. Recently, two isoforms of sphingomyelin synthase (SMS1 and SMS2), the last enzyme for SM de novo synthesis, have been cloned. We have hypothesized that SMS1 and SMS2 are the two most likely candidates responsible for t...

  14. 反复热性惊厥过程中γ-氨基丁酸B受体对硫化氢的调节作用%Gamma-aminobutyric acid B receptor regulates the expression of hydrogen sulfide /cystathionine-β-synthase system in recurrent febrile seizures

    Institute of Scientific and Technical Information of China (English)

    韩颖; 秦炯; 卜定方; 常杏芝; 杨志仙; 杜军保

    2006-01-01

    目的热性惊厥(febrile seizure,FS)是婴幼儿时期最常见的惊厥性疾患之一,阐明其发生机制一直是该领域的重要研究课题.该课题前期的研究证明,γ-氨基丁酸B受体(γ-aminobutyric acid B receptor,GABABR)亚基和气体信号分子硫化氢(H2S)均在反复热性惊厥中发挥了重要作用.该文使用GABABR激动剂ba-clofen,抑制剂Phaclofen,探讨GABABR对FS大鼠硫化氢/胱硫醚-β-合成酶(cystathionine-β-synthase,CBS)体系表达的影响.方法大鼠随机分为对照组,FS组,FS+baclofen组,FS+phaclofen组.采用热水浴诱导大鼠FS,隔日诱导1次,共10次.采用分光光度计法测定大鼠血浆中H2S含量;用原位杂交方法观察CBS mRNA表达情况;用免疫组化方法观察CBS蛋白表达情况.结果FS+baclofen组H2S含量较FS组升高427.45±15.91μmoL/L vs362.14±19.71 μmol/L,同时CBS表达也较FS组增强;而FS+phaclofen组H2S含量较FS组降低189.72±21.53μmol/L vs 362.14±19.71 μmol/L,同时CBS表达也较FS组减弱.结论反复热性惊厥过程中,GABABR的改变可影响H2S/CBS体系的表达.

  15. The tomato terpene synthase gene family

    OpenAIRE

    Falara, V.; Akhtar, T.A.; NGUYEN, T. T. H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R. C.; Pichersky, E

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28 which are functional or potentially functional. Of these 28 TPS genes, 25 were expressed in at least some parts of the plant. The enzymatic functions of eight of the TPS proteins were previously r...

  16. Nitric oxide synthase in the pineal gland

    OpenAIRE

    Lopez-Figueroa, M.O.; Moller, M.

    1996-01-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

  17. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  18. Preliminary assessment of the current impact and potential risk of acidic deposition on walleye populations in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Wales, D.L.; Liimatainen, V.A.

    1987-01-01

    Netting survey and field bioassay data were used to determine a pH threshold for survival of walleye. Established pH thresholds were then used to assess the current impact and potential risk of acidic deposition on walleye populations in Ontario. Extinction of walleye appeared to occur in lakes with pH < 5.5. Some losses may also have occurred in lakes with pH 5.5-6.0. An estimated 0.3% (number of lakes (N)=12) of the Ontario walleye lakes currently have pH < 5.5 and have likely lost walleye populations. A further 1.5% (N=60) of the lakes have pH 5.5-6.0 and may show signs of acidification stress. An estimated 2.0% (N=79) of the province's walleye lakes have very low alkalinities (0.0-2.0 mg/l) and are classified as extremely sensitive to continued high deposition of acidic precipitation. 19 refs., 4 figs., 7 tabs.

  19. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    Science.gov (United States)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  20. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  1. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    Science.gov (United States)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  2. Temperature impact on the trophic transfer of fatty acids in the congeneric copepods Acartia tonsa and Acartia clausi

    Science.gov (United States)

    Werbrouck, Eva; Tiselius, Peter; Van Gansbeke, Dirk; Cervin, Gunnar; Vanreusel, Ann; De Troch, Marleen

    2016-06-01

    Copepods of the genus Acartia occur worldwide and constitute an important link to higher trophic levels in estuaries. However, biogeographical shifts in copepod assemblages and colonization of certain European estuaries by the invader A. tonsa, both driven or enhanced by increasing ocean temperature, raise the pressure on autochthonous copepod communities. Despite the profound effect of temperature on all levels of biological organization, its impact on the fatty acid (FA) dynamics of Acartia species is understudied. As certain FAs exert a bottom-up control on the trophic structure of aquatic ecosystems, temperature-induced changes in FA dynamics of Acartia species may impact higher trophic levels. Therefore, this study documents the short-term temperature responses of A. tonsa and A. clausi, characterized by their warm- versus cold-water preference respectively, by analyzing the FA profiles of their membrane and storage lipids under 5 and 15 °C. Copepods that were fed an ad libitum diet of the diatom Thalassiosira weissflogii (bloom conditions) under 15 °C increased their storage FA content substantially. Furthermore, the membrane FA composition of A. tonsa showed a more profound temperature response compared with A. clausi which might be linked with the eurythermal character of the former.

  3. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  4. EPA's catalyst research program: environmental impact of sulfuric acid emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.E. Jr.; Duffield, F.V.

    1977-01-01

    A sulfuric acid review conference sponsored by EPA's automotive catalyst research program was held recently at Hendersonville, NC, for researchers whose work is funded by EPA. Emissions characterization research indicated that in-use catalyst-equipped vehicles emit low levels of H/sub 2/SO/sub 4/, averaging 2.7 mg/mile for 49-state cars and 15 mg/mile for California cars. Research on measurement methodology for H/sub 2/SO/sub 4/ and other sulfate compounds has led to the development of several promising techniques based on selective volatilization. In-roadway and off-roadway monitoring programs are providing sulfate data which can lead to improved mathematical predictive models. Acute toxicity studies to date indicate that morphological, biochemical, physiological, and pharmacological alterations due to inhaled H/sub 2/SO/sub 4/ alone do not appear to occur at levels less than 1 mg/m/sup 3/. However, striking effects are noted with combinations of H/sub 2/SO/sub 4/ and other pollutants. Participants identified the need for long term chronic H/sub 2/SO/sub 4/ exposure studies.

  5. Planning of an Integrated Acidification Study and Survey on Acid Rain Impacts in China. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lydersen, Espen; Angell, Valter; Eilertsen, Odd; Muniz, Ivar P. [Norsk Inst. for Naturforskning, Trondheim (Norway); Larssen, Thorbjoern; Seip, Hans Martin; Aagaard, Per; Vogt, Rolf D. [Oslo Univ. (Norway); Mulder, Jan

    1997-12-31

    This is the final report from the PIAC project, which was a multidisciplinary survey on acid rain in China. One goal was to document effects of airborne acidifying compounds on vegetation, soil, soil- and surface-water and aquatic biota. Other goals were to exchange knowledge between Chinese and Norwegian scientists, and to visit research sites in highly polluted areas in China and evaluate their need of support in a future collaborative monitoring and research programme. Samples have been collected from over 20 sites in three areas. Negative effects of air pollution are found on all ecosystem levels investigated. The concentration of sulfur in the air in urban and near-urban areas is very high. The concentration of volatile organic compounds is generally high, which means that increased NOx emissions in coming years may increase the ozone problems. Reduced photosynthesis activities were found in some plants and acidification observed in soil and surface water. Aquatic biota also reflect the acidification status of the surface waters investigated. However, it is difficult to assess the degree of damage in these regions because the survey includes too few sites. Surface water acidification is currently not a major environmental problem in China and is unlikely to be one during the next decades. The report includes a status report on acidification in China and a proposed framework for a monitoring programme based on Norwegian experiences. 139 refs., 16 figs., 45 tabs.

  6. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    Science.gov (United States)

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. PMID:24856135

  7. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Ju-Xin eRuan

    2016-05-01

    Full Text Available Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry (GC-MS detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate (MeJA, salicylic acid (SA and gibberellin (GA, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

  8. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    OpenAIRE

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-01-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction se...

  9. Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from Brazilian naphthenic acids by gas chromatography coupled to mass spectrometry with electron impact ionization.

    Science.gov (United States)

    Vaz de Campos, Maria Cecília; Oliveira, Eniz Conceição; Filho, Pedro José Sanches; Piatnicki, Clarisse Maria Sartori; Caramão, Elina Bastos

    2006-02-10

    Naphthenic acids, C(n)H(2n+Z)O(2), are a complex mixture of alkyl-substituted acyclic and cycle-aliphatic carboxylic acids. The content of naphthenic acids and their derivatives in crude oils is very small, which hinders their extraction from matrixes of wide and varied composition. In this work, liquid-liquid extraction, followed by solid phase extraction with an ion exchange resin (Amberlyst A-27) and ultrasound desorption were used to isolate the acid fraction from heavy gas oil of Marlim petroleum (Campos, Rio de Janeiro, Brazil). The analysis was accomplished through gas chromatography coupled to mass spectrometry with electron impact ionization, after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoracetamide (MTBDMSTFA). The results indicate the presence of carboxylic acids belonging to families of alicyclic and naphthenic compounds which contain up to four rings in the molecule. PMID:16439253

  10. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.; Camaioni, Donald M.; Lercher, Johannes A.

    2015-08-19

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact the catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological

  11. Serum Uric Acid Level and Diverse Impacts on Regional Arterial Stiffness and Wave Reflection

    Directory of Open Access Journals (Sweden)

    Suyan Bian

    2012-08-01

    Full Text Available Background: Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China.Methods: Cross-sectional data from 2374 adults (mean age 58.24 years who underwent routine laboratory tests, regional pulse wave velocity (PWV and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level.Results: Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05, and the carotid-femoral PWV (PWVc-f was higher in women (P< 0.001 while the augmentation index was marginally lower in men (P = 0.049. Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027 when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness.Conclusions: Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia.

  12. Lynch syndrome and exposure to aristolochic acid in upper-tract urothelial carcinoma: its clinical impact?

    Science.gov (United States)

    Colin, Pierre; Seisen, Thomas; Mathieu, Romain; Shariat, Sharohkh F.

    2016-01-01

    The purpose of the current review was to describe the clinical risk for Lynch syndrome (LS) after exposure to aristolochic acid (AA) in cases of upper urinary-tract urothelial carcinoma (UTUC). A systematic review of the scientific literature was performed using the Medline database (National Library of Medicine, PubMed) using the following keywords: epidemiology, risk factor, AA, Balkan nephropathy (BNe), LS, hereditary cancer, hereditary non-polyposis colorectal cancer (HNPCC), mismatch repair genes, urothelial carcinomas, upper urinary tract, renal pelvis, ureter, Amsterdam criteria, genetic counselling, mismatch repair genes, genetic instability, microsatellite, and Bethesda guidelines. LS is a specific risk for UTUC, which is the third most frequent cancer (in its tumor spectrum) after colon and uterine lesions. Mutation of the MSH2 gene is the most commonly described cause of UTUC in LS. Diagnosis is based on clinical suspicion and is guided by Bethesda and Amsterdam criteria. It is secondarily confirmed by immunohistochemical analyses of the tumor and a search for gene mutations. The presence of LS in patients with UTUC is a favorable prognosis factor for survival during follow-ups. AA is a specific environmental risk factor for UTUC and tubulo-interstitial nephropathy. It has been involved in the development of nephropathies in link with the Balkan disease and intake of Chinese herbal medicine. More broadly, the use of traditional plant medicines from the genus Aristolochia has created worldwide public-health concerns. UTUCs share common risk factors with other urothelial carcinomas such as tobacco or occupational exposure. However, these tumors have also specific risk factors such as AA exposure and LS that clinicians should be aware of because of their clinical implication in further management and follow-up.

  13. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    OpenAIRE

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.; Mahoney, Melissa J.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cel...

  14. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  15. Unexpected property of ectoine synthase and its application for synthesis of the engineered compatible solute ADPC.

    Science.gov (United States)

    Witt, Elisabeth M H J; Davies, Noel W; Galinski, Erwin A

    2011-07-01

    A new cyclic amino acid was detected in a deletion mutant of the moderately halophilic bacterium Halomonas elongata deficient in ectoine synthesis. Using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) techniques, the substance was identified as 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylate (ADPC). We were able to demonstrate that ADPC is the product of a side reaction of lone ectoine synthase (EC 4.2.1.108), which forms ADPC by cyclic condensation of glutamine. This reaction was shown to be reversible. Subsequently, a number of ectoine derivatives, in particular 4,5-dihydro-2-methylimidazole-4-carboxylate (DHMICA) and homoectoine, were also shown to be cleaved by ectoine synthase, which is classified as a hydro-lyase. This study thus reports for the first time that ectoine synthase accepts more than one substrate and is a reversible enzyme able to catalyze both the intramolecular condensation into and the hydrolytic cleavage of cyclic amino acid derivatives. As ADPC supports growth of bacteria under salt stress conditions and stabilizes enzymes against freeze-thaw denaturation, it displays typical properties of compatible solutes. As ADPC has not yet been described as a natural compound, it is presented here as the first man-made compatible solute created through genetic engineering.

  16. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues.

    Science.gov (United States)

    Spedaliere, C J; Hamilton, C S; Mueller, E G

    2000-08-01

    On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.

  17. Cloning, Expression and Identification of a New Trehalose Synthase Gene from Thermobifida fusca Genome

    Institute of Scientific and Technical Information of China (English)

    Yu-Tuo WEI; Ri-Bo HUANG; Qi-Xia ZHU; Zhao-Fei LUO; Fu-Shen LU; Fa-Zhong CHEN; Qing-Yan WANG; Kun HUANG; Jian-Zhong MENG; Rong WANG

    2004-01-01

    A new open reading frame in Thermobifida fusca sequenced genome was identified to encode a new trehalose synthase, annotated as "glycosidase" in the GenBank database, by bioinformatics searching and experimental validation. The gene had a length of 1830 bp with about 65% GC content and encoded for a new trehalose synthase with 610 amino acids and deduced molecular weight of 66 kD. The high GC content seemed not to affect its good expression in E. coli BL21 in which the target protein could account for as high as 15% of the total cell proteins. The recombinant enzyme showed its optimal activities at 25 ℃ and pH 6.5 when it converted substrate maltose into trehalose. However it would divert a high proportion of its substrate into glucose when the temperature was increased to 37 ℃, or when the enzyme concentration was high Its activity was not inhibited by 5 mM heavy metals such as Cu2+, Mn2+, and Zn2+ but affected by high concentration of glucose. Blasting against the database indicated that amino acid sequence of this protein had maximal 69% homology with the known trehalose synthases, and two highly conserved segments of the protein sequence were identified and their possible linkage with functions was discussed.

  18. Fatty acid biosynthesis in actinomycetes

    OpenAIRE

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation fo...

  19. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm.

    Science.gov (United States)

    Harn, C; Knight, M; Ramakrishnan, A; Guan, H; Keeling, P L; Wasserman, B P

    1998-07-01

    Two starch synthase clones, zSSIIa and zSSIIb, were isolated from a cDNA library constructed from W64A maize endosperm. zSSIIa and zSSIIb are 3124 and 2480 bp in length, and contain open reading frames of 732 and 698 amino acid residues, respectively. The deduced amino acid sequences of the two clones share 58.1% sequence identity. Amino acid sequence identity between the zSSIIa and zSSIIb clones and the starch synthase II clones of potato and pea ranges between 45 to 51%. The predicted amino acid sequence from each SSII cDNA contains the KXGGL consensus motif at the putative ADP-Glc binding site. Both clones also contain putative transit peptides followed by the VRAA(E)A motif, the consensus cleavage site located at the C-terminus of chloroplast transit peptides. The identity of the zSSIIa and zSSIIb clones as starch synthases was confirmed by expression of enzyme activity in Escherichia coli. Genomic DNA blot analysis revealed two copies of zSSIIa and a single copy of zSSIIb. zSSIIa was expressed predominantly in the endosperm, while transcripts for zSSIIb were detected mainly in the leaf at low abundance. These findings establish that the zSSIIa and zSSIIb genes are characteristically distinct from genes encoding granule-bound starch synthase I (Waxy protein) and starch synthase I. PMID:9687068

  20. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.C.; Brown, R.M. Jr.; Drake, R.R. Jr.; Haley, B.E. (Univ. of Texas, Austin (USA))

    1990-03-25

    Photoaffinity labeling of purified cellulose synthase with (beta-32P)5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of (beta-32P)5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.

  1. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    Science.gov (United States)

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. PMID:25752706

  2. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  3. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    Science.gov (United States)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  4. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  5. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    cellular compartments and suggest that NO may have specific actions in relation to its site of production. The localization of type I NO synthase in the vicinity of mitochondria supports a specific action of NO on mitochondrial respiration, whereas the localization of type III NO synthase in vascular......The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  6. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes

    DEFF Research Database (Denmark)

    Pazarbasi, Meric Batioglu; Milosevic, Nemanja; Malaguerra, Flavio;

    2013-01-01

    To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater–surface water interface. Highest herbicide mass...

  7. The Impact of Streptozotocin-induced Diabetes Mellitus on Cyclic Nucleotide Regulation of Skeletal Muscle Amino Acid Metabolism in the Rat

    OpenAIRE

    Garber, Alan J.

    1980-01-01

    The impact of diabetes on cyclic nucleotide-associated mechanisms regulating skeletal muscle protein and amino acid metabolism was assessed using epitrochlaris preparations from streptozotocin-induced diabetic rats. 1 nM epinephrine inhibited alanine and glutamine release from control preparations, but no inhibition was observed from diabetic preparations with

  8. Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs.

    Science.gov (United States)

    Yang, Yu-Xiang; Dai, Zhao-Lai; Zhu, Wei-Yun

    2014-11-01

    Bacteria in pig intestine can actively metabolize amino acids (AA). However, little research has focused on the variation in AA metabolism by bacteria from different niches. This study compared the metabolism of AA by microorganisms derived from the lumen and epithelial wall of the pig small intestine, aiming to test the hypothesis that the metabolic profile of AA by gut microbes was niche specific. Samples from the digesta, gut wall washes and gut wall of the jejunum and ileum were used as inocula. Anaerobic media containing single AA were used and cultured for 24 h. The 24-h culture served as inocula for the subsequent 30 times of subcultures. Results showed that for the luminal bacteria, all AA concentrations except phenylalanine in the ileum decreased during the 24-h in vitro incubation with a increase of ammonia concentration, while 4 AA (glutamate, glutamine, arginine and lysine) in the jejunum decreased, with the disappearance rate at 60-95 %. For tightly attached bacteria, all AA concentrations were generally increased during the first 12 h and then decreased coupled with first a decrease and then an increase of ammonia concentration, suggesting a synthesis first and then a catabolism pattern. Among them, glutamate in both segments, histidine in the jejunum and lysine in the ileum increased significantly during the first 12 h and then decreased at 24 h. The concentrations of glutamine and arginine did not change during the first 12 h, but significantly decreased at 24 h. Jejunal lysine and ileal threonine were increased for the first 6 or 12 h. For the loosely attached bacteria, there was no clear pattern for the entire AA metabolism. However, glutamate, methionine and lysine in the jejunum decreased after 24 h of cultivation, while glutamine and threonine in the jejunum and glutamine and lysine in the ileum increased in the first 12 h. During subculture, AA metabolism, either utilization or synthesis, was generally decreased with disappearance

  9. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases.

    Directory of Open Access Journals (Sweden)

    Tomas Majtan

    Full Text Available Cystathionine beta-synthase (CBS is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS, fruit fly (dCBS and yeast (yCBS enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme's catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet; however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme's catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.

  10. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    Science.gov (United States)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  11. Impacts

    NARCIS (Netherlands)

    Hellmuth, M.; Kabat, P.

    2003-01-01

    Even without the impacts of climate change, water managers face prodigious challenges in meeting sustainable development goals. Growing populations need affordable food, water and energy. Industrial development demands a growing share of water resources and contaminates those same resources with its

  12. Chemical pathology of homocysteine. V. Thioretinamide, thioretinaco, and cystathionine synthase function in degenerative diseases.

    Science.gov (United States)

    McCully, Kilmer S

    2011-01-01

    Hyperhomocysteinemia was first associated with degenerative disease by observation of accelerated arteriosclerosis in children with inherited disorders of cystathionine synthase, methionine synthase, and methylene tetrohydrofolate reductase. The metabolic blockade of sulfate synthesis from homocysteine thiolactone in malignant cells is ascribed to a deficiency of a chemopreventive derivative of homocysteine thiolactone that occurs in normal cells. Its chemical structure was elucidated by the organic synthesis of thioretinamide from retinoic acid and homocysteine thiolactone. Oxidation of the sulfur atom of homocysteine is inhibited in scorbutic guinea pigs, demonstrating ascorbate function in sulfate synthesis from homocysteine. Studies of homocysteine metabolism in protein energy malnutrition led to the conclusion that the biosynthesis of thioretinamide from the retinol of transthyretin is catalyzed by dehydroascorbate and superoxide generated from the heme oxygenase group of cystathionine synthase. Newly synthesized thioretinamide is complexed with cobalamin to form thioretinaco, which is activated by ozone and oxygen to function as the active site of oxidative phosphorylation. In accordance with the trophoblastic theory of cancer, pancreatic enzymes are believed to be oncolytic because they hydrolyze the homocysteinylated proteins, nucleic acids and glycosaminoglycans of malignant tissues. The clonal selection of malignant cells that are deficient in the heme oxygenase function of cystathionine synthase produces cells dependent upon glycolysis for ATP synthesis, since they are deficient in synthesis of thioretinamide, thioretinaco and thioretinaco ozonide. The vulnerable plaque of arteriosclerosis originates from complexes of microbes with homocysteinylated lipoproteins, obstructing vasa vasorum narrowed by endothelial dysfunction, causing arterial ischemia, and intimal micro-abscesses. Degenerative diseases may be ameliorated by a proposed therapeutic protocol

  13. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage

    International Nuclear Information System (INIS)

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ66Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰ ± 0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ66Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰ ± 0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. - Highlights: ► Zinc isotopes of water were measured in samples

  14. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase.

    Science.gov (United States)

    Srividya, Narayanan; Davis, Edward M; Croteau, Rodney B; Lange, B Markus

    2015-03-17

    Crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) were used to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity, indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). These results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. The potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed. PMID:25733883

  15. Impact of fumaric acid esters on cardiovascular risk factors and depression in psoriasis: a prospective pilot study.

    Science.gov (United States)

    Schmieder, Astrid; Poppe, Manuel; Hametner, Christian; Meyer-Schraml, Hanna; Schaarschmidt, Marthe-Lisa; Findeisen, Peter; Benoit, Sandrine; Bauer, Boris; Schmid, Sybille; Goebeler, Matthias; Goerdt, Sergij; Ludwig-Peitsch, Wiebke K

    2015-07-01

    Patients with psoriasis have an increased risk of cardiovascular disease that is partly attributable to chronic systemic inflammation. The aim of our prospective pilot study was to investigate the impact of fumaric acid esters (FAE), a first-line systemic antipsoriatic treatment in Germany, on cardiovascular risk parameters. Participants with moderate-to-severe psoriasis from the University Medical Center Mannheim and the University Hospital Würzburg were treated with FAE for 16 weeks according to standard dosage recommendations. Disease severity, life quality and depression scores as well as biomarkers of inflammation, lipid and glucose metabolism were assessed prior to initiation of FAE and after 16 weeks. Out of 39 participants recruited, 27 completed the study. 44% of all participants and 63% of those completing the 16-week treatment achieved PASI 50 response and 27 or 37% PASI 75 response. Clinical improvement was paralleled by significant improvement in quality of life, high treatment satisfaction and significant reduction of depressive symptoms. Adverse events, most frequently mild gastrointestinal complaints, flush and lymphocytopenia occurred in 89%. FAE did not modify glucose metabolism or inflammatory parameters substantially. However, a highly significant increase in serum levels of the atheroprotective cytokine adiponectin was noted after 16 weeks (median 4.7 vs. 8.9 µg/ml; p = 0.0002). Our study demonstrates a significant beneficial impact of FAE on adiponectin, indicating a potential cardioprotective effect. It will be interesting to verify this finding in larger cohorts and to assess the long-term influence of FAE on cardiovascular risk and disease.

  16. Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    OpenAIRE

    Subathra, Marimuthu; Qureshi, Asfia; Luberto, Chiara

    2011-01-01

    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 r...

  17. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  18. The handling of the mechanistic probe 5-fluorouridine by the pseudouridine synthase TruA and its consistency with the handling of the same probe by the pseudouridine synthases TruB and RluA.

    Science.gov (United States)

    McDonald, Marguerite K; Miracco, Edward J; Chen, Junjun; Xie, Yizhou; Mueller, Eugene G

    2011-01-25

    RNA containing 5-fluorouridine (F(5)U) had previously been used to examine the mechanism of the pseudouridine synthase TruA, formerly known as pseudouridine synthase I [Gu et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 14270-14275]. From that work, it was reasonably concluded that the pseudouridine synthases proceed via a mechanism involving a Michael addition by an active site aspartic acid residue to the pyrimidine ring of uridine or F(5)U. Those conclusions rested on the assumption that the hydrate of F(5)U was obtained after digestion of the product RNA and that hydration resulted from hydrolysis of the ester intermediate between the aspartic acid residue and F(5)U. As reported here, (18)O labeling definitively demonstrates that ester hydrolysis does not give rise to the observed hydrated product and that digestion generates not the expected mononucleoside product but rather a dinucleotide between a hydrated isomer of F(5)U and the following nucleoside in RNA. The discovery that digestion products are dinucleotides accounts for the previously puzzling differences in the isolated products obtained following the action of the pseudouridine synthases TruB and RluA on F(5)U in RNA.

  19. IMPACTS !

    CERN Multimedia

    2008-01-01

    (Photo courtesy of Don Davis / NASA)The University of Geneva (UNIGE) and the Ecole Polytechnique Fédérale of Lausanne (EPFL) are organising the 4th series of public lectures on astronomy, on the theme of "Impacts". The schedule is as follows: Il y a 100 ans : une explosion dans la Tunguska – Dr. Frédéric COURBIN, EPFL Les impacts sur Terre – Prof. Didier Queloz, UNIGE La fin des dinosaures – Dr. Stéphane Paltani, UNIGE Wednesday 7 May 2008, from 7.00 p.m. to 9.00 p.m. Auditoire CO1, EPFL, Ecublens Thursday 08 May 2008, from 7.00 p.m. to 9.00 p.m. Auditoire Rouiller, Uni-Dufour, Genève All 3 lectures will be givent each evening! Admission free Information: 022 379 22 00

  20. The impact of long term exposure to phthalic acid esters on reproduction in Chinese rare minnow (Gobiocypris rarus)

    International Nuclear Information System (INIS)

    The environmental risk of phthalic acid esters (PAEs) is of great concern. We investigated the reproductive impairment of di-(2-ethylhexyl)-phthalate (DEHP) on Chinese rare minnow, an endemic fish inhabiting the upper streams of the Yangtze River. Chinese rare minnow larvae were exposed to environmentally relevant concentrations of DEHP (0, 4.2, 13.3, and 40.8 μg/L) for 6 months. Plasma testosterone and 17β-estradiol levels decreased in females, accompanied by downregulation of cyp19a and cyp17 gene transcription in ovary. Increases in plasma testosterone concentration were observed in males, accompanied by downregulation of cyp19a gene transcription in testes. Hepatic VTG gene transcription was upregulated in males and females. Exposure to DEHP reduced egg production and inhibited oocyte maturation in females and retarded spermiation in males. Decreased egg protein content was measured in F1 embryos. These results indicate that long-term exposure to low concentrations of DEHP (13.3 μg/L) causes endocrine disruption and impairs fish reproduction. - Highlights: • PAEs in the aquatic environment may pose risk to endemic fish species. • Long-term exposure to DEHP affected sex hormone levels in rare minnow. • DEHP affected gonad development. • Long-term exposure caused reduction of fecundity, but not sex ratio. • Environmentally relevant concentrations of DEHP impair fish reproduction. - Long-term exposure to low concentrations of DEHP adversely impact Chinese rare minnow reproduction

  1. Impact of dissolved humic acid on the bioavailability of acenaphthene and chrysene assessed by membrane-based passive samplers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dissolved organic carbon (DOC) is known to reduce the bioavailability of hydrophobic organic compounds (HOCs) in aqueous environments. This reduction occurs as a result of adsorption to DOC, apparently reducing the freely dissolved concentration of HOCs. In the present study, triolein-embedded cellulose acetate membrane (TECAM) and Japanese medaka (Oryzias latipes) were used to measure the uptake of acenaphthene and chrysene in the presence of commercial humic acid (HA) at different concentrations (0―15 mg C·L-1) under controlled laboratory conditions. Apparent uptake rate constants for PAHs in TECAM and medaka were compared and DOC-water partition coefficients (KDOCs) of two PAHs were calculated with different sampling methods by model fit. Results showed that HA present in water significantly reduced the uptake of PAHs in TECAM and medaka. The obtained values of log KDOC of acenaphthene and chrysene measured by TECAM were 4.63 and 5.83, respectively, whereas biologically determined values were 4.52 and 5.76, respectively. These log KDOC values were comparable to earlier published KDOCs toward commercial HA, thereby indicating that TECAM accumulated only the freely dissolved fraction of chemicals and uptake PAHs in a manner similar to that of fish. All these results suggested that the TECAM method can provide a good means for assessing the impact of DOC on bioavailability of PAHs in the aqueous environment.

  2. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology. PMID:24423552

  3. Impact of Biochemical Composition on Susceptibility of Algal Biomass to Acid-Catalyzed Pretreatment for Sugar and Lipid Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tao; Van Wychen, Stefanie; Nagle, Nick; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-09-01

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timing on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritional metabolic phases. Four cultivation conditions of high (= 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent either mid or late stage harvest cultivation regimes. The results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass.

  4. Trichinella spiralis thymidylate synthase: cDNA cloning and sequencing, and developmental pattern of mRNA expression.

    Science.gov (United States)

    Dabrowska, M; Jagielska, E; Cieśla, J; Płucienniczak, A; Kwiatowski, J; Wranicz, M; Boireau, P; Rode, W

    2004-02-01

    The persistent expression of thymidylate synthase activity has previously been demonstrated not only in adult forms, but also in non-developing muscle larvae of Trichinella spiralis and T. pseudospiralis, pointing to an unusual pattern of cell cycle regulation, and prompting further studies on the developmental pattern of T. spiralis thymidylate synthase gene expression. The enzyme cDNA was cloned and sequenced, allowing the characterization of a single open reading frame of 307 amino acids coding for a putative protein of 35,582 Da molecular weight. The amino acid sequence of the parasite enzyme was analysed, the consensus phylogenetic tree built and its stability assessed. The aa sequence identity with thymidylate synthase was confirmed by the enzymatic activity of the recombinant protein expressed in E. coli. As compared with the enzyme purified from muscle larvae, it showed apparently similar Vmax value, but higher Km(app) values desscribing interactions with dUMP (28.8 microM vs. 3.9 microM) and (6RS,alphaS)-N(5,10)-methylenetetrahydrofolate (383 microM vs. 54.7 microM). With the coding region used as a probe, thymidylate synthase mRNA levels, relative to 18S rRNA, were found to be similar in muscle larvae, adult forms and newborn larvae, in agreement with muscle larvae cells being arrested in the cell cycle. PMID:15030008

  5. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne;

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  6. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  7. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  8. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  9. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  10. Impact of citric acid and calcium ions on acid solubilization of mechanically separated turkey meat: effect on lipid and pigment content.

    Science.gov (United States)

    Hrynets, Y; Omana, D A; Xu, Y; Betti, M

    2011-02-01

    Increased demand for poultry products has resulted in an increased availability of by-products, such as the neck, back, and frame, that can be processed into mechanically separated poultry meat. The major problems with mechanically separated poultry meat are its high lipid content, color instability, and high susceptibility to lipid oxidation. The present work was undertaken to determine the effect of different concentrations of citric acid and calcium ions on protein yield, color characteristics, and lipid removal from protein isolates prepared using an acid-aided extraction process. Six levels of citric acid (0, 2, 4, 6, 8, and 10 mmol/L) and 2 levels of calcium chloride (0 and 8 mmol/L) were examined. The entire experiment was replicated 3 times, resulting in 36 extractions (3 × 6 × 2). The highest (P citric acid. In general, all the combinations removed an average of 90.8% of the total lipids from mechanically separated turkey meat, ranging from 86.2 to 94.7%. The lowest amount (1.14%) of total lipids obtained was for samples treated with 4 mmol/L of citric acid. Maximum removal of neutral lipids (96.5%) and polar lipids (96.4%) was attained with the addition of 6 and 2 mmol/L of citric acid, respectively. Polar lipid content was found to be significantly (P = 0.0045) affected by the presence of calcium chloride. The isolated proteins were less (P citric acid. Addition of calcium chloride had a negative effect on total pigment content. The study revealed that acid extractions with the addition of citric acid resulted in substantial removal of lipids and pigments from mechanically separated turkey meat, improved stability of the recovered proteins against lipid oxidation, and appreciable protein recovery yields.

  11. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress.

    Science.gov (United States)

    Gharbi, Emna; Martínez, Juan-Pablo; Benahmed, Hela; Fauconnier, Marie-Laure; Lutts, Stanley; Quinet, Muriel

    2016-10-01

    This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.

  12. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  13. BIOINFORMATICS AND BIOSYNTHESIS ANALYSIS OF CELLULOSE SYNTHASE OPERON IN ZYMOMONAS MOBILIS ZM4

    Directory of Open Access Journals (Sweden)

    Sheik Abdul Kader Sheik Asraf, K. Narayanan Rajnish, and Paramasamy Gunasekaran

    2011-03-01

    Full Text Available Biosynthesis of cellulose has been reported in many species of bacteria. The genes encoding cellulose biosynthetic enzymes of Z. mobilis have not been studied so far. Preliminary sequence analysis of the Z. mobilis ZM4 genome revealed the presence of a cellulose synthase operon comprised of Open Reading Frames (ORFs ZMO01083 (bcsA, ZMO1084 (bcsB and ZMO1085 (bcsC. The first gene of the operon bcsA encodes the cellulose synthase catalytic subunit BcsA. The second gene of the operon bcsB encodes the cellulose synthase subunit B (BcsB, which shows the presence of BcsB multi-domain and is inferred to bind c-di-GMP, the regulator of cellulose biosynthesis. The third gene of the operon bcsC encodes the cellulose synthase operon C domain protein (BcsC, which belongs to super family of teratrico peptide repeat (TPR that are believed to mediate protein – protein interactions for the formation of cellulose. Multiple sequence alignment of the deduced amino acid sequences of BcsA and BcsC with other closely related homologs showed the presence of PVDPYE, HAKAGNLN, DCD motif and TPR motif, the characteristic motifs of bacterial cellulose synthases. Analysis of the nucleotide sequence of the ORF ZMO1085 and neighboring ORFs namely ZMO1083 and ZMO1084 indicated that all the ORFs are translationally linked and form an operon. Transcript analysis using Real-time PCR indicated the expression of the genes involved in cellulose synthase operon in Zymomonas mobilis ZM4. Z. mobilis colonies grown on RM-glucose containing Congo red displayed a characteristic bright red-brown colour. Z. mobilis colonies grown on RM-glucose medium supplemented with Calcoflour exhibited fluorescence. The arrangement of Calcofluor stained microfibrils can be seen in fluorescence microscopy which is an indicative for cellulose biosynthesis. AFM micrograph of the extracellular matrix of Z. mobilis shows a relatively dense matrix with bacterial cell residues. The presence of cellulose was

  14. Impact of using sodium or calcium salts of fatty acids as sources of energy in buffalo rations during late gestation

    International Nuclear Information System (INIS)

    mammary adipose tissue and subsequent milk yield. Soapstock is produced from seeds oil refining processes as a by-product potentially harmful to the environment but can use it as dietary fat source. The aim of this study were to study impact of adding either Na-SFA or Ca-SFA as a energy source instead of corn grains in buffalo rations on rumen activities and performance of late pregnant buffalo. Thirty pregnant buffaloes expected to calve within 60-75 day were divided into three balanced groups. First group received the control ration consisted of concentrate diet (75% concentrate feed mixture with 25% yellow corn) plus berseem hay and rice straw. In the second and third rations, yellow corn was replaced with either Na-SFA or Ca-SFA. Chemical composition of Na-SFA, Ca- SFA and the experimental rations are presented. Content of AEE in Ca-SFA was lower than that of Na-SFA, while TFA's in Ca-SFA was higher. Incubation of teased rations in the rumen showed reduction in DM, OM and CP disappearances, also ED and PD with ration containing Na-SFA. Undegradable values increased with adding Na- SFA compared to adding Ca-SFA or control diet. As a result of foaming and physical coating of the fibre with added Na-SFA has been proposed as a possible theory for the sometimes observed depressed DM, OM and CP disappearances. Digestion coefficient of DM, OM, CP and WCS were decreased with feeding ration containing Na-SFA compared to that containing Ca-SFA, while no significant differences were found between ration containing Ca-SFA and control one. These results might be due to the effect of LCFA in Na-SFA, which reflects on rumen fermentation, and consequently affect fibre digestibility. Nutritive values as TDN and DCP were decreased (P 3-N. These results might be due to release of FFA's in the rumen when feeding Na-SFA decreased both NH3-N and TVFA's. Fatty acids, especially unsaturated fatty acids, are antimicrobial and interfere with normal function of the ruminal microbes

  15. Impact of sorbic acid and other mild preservation stresses on germination and outgrowth of Bacillus cereus spores

    NARCIS (Netherlands)

    Melis, van C.C.J.

    2013-01-01

      Weak organic acids such as sorbic acid, lactate, and acetic acid are widely used by the food industry as preservatives to control growth of micro-organisms. With the current trend towards milder processing of food products, opportunities arise for spore-forming spoilage and pathogenic microo

  16. Ethylene Production and 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase Gene Expression in Tomato(Lycopsicon esculentum Mill.) Leaves Under Enhanced UV-B Radiation

    Institute of Scientific and Technical Information of China (English)

    Lizhe An; Xunling Wang; Xiaofeng Xu; Hongguan Tang; Manxiao Zhang; Zongdong Hou; Yanhong Liu; Zhiguang Zhao; Huyuan Feng; Shijian Xu

    2006-01-01

    Tomato (Lycopsicon esculentum Mill.) plants grown in a greenhouse were irradiated with two different levels of UV-B, namely 8.82 (T1) and 12.6 kJ/m2 per day (T2). Ethylene production, 1-aminocyclopropane-1carboxylate (ACC) content, 1-(malonylamino) cyclopvopane-1-carboxylic acid (MACC) content, gene expression of ACC synthase (EC 4.4.1.14), and ACC oxidase activity in tomato leaves were determined. The results indicated that ACC content, the activity of ACC synthase and ACC oxidase, and ethylene production increased continuously under low doses of UV-B radiation, whereas at high doses of radiation these parameters increased during the first 12 d and then started to decrease. The MACC content increased continuously over 18 d under both doses of UV-B irradiation. The changes in ACC content, ACC synthase activity,ACC oxidase activity, the transcriptional level of the ACC synthase gene, and ethylene production were consistent with each other, suggesting that ACC synthase was the key enzyme in ethylene biosynthesis and that ethylene production in tomato leaf tissues under UV-B radiation could be regulated by the expression of the ACC synthase gene. The results also indicate that the change in ethylene metabolism may be an adaptive mechanism to enhanced UV-B radiation.

  17. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity.

    Science.gov (United States)

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  18. The impact of acid sulphate soils on water bodies and fish deaths in Finland; Happamien sulfaattimaiden aiheuttamat vesistoevaikutukset ja kalakuolemat Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Sutela, T.; Vuori, K.-M.; Louhi, P. [and others

    2012-05-15

    We have compiled in this review a comprehensive presentation of the impacts of acid sulphate soils (ASS) on water quality, biota, and fish kills in Finnish water bodies. This review is a result of extensive collaboration among research scientists in connection with the CATERMASS project co-ordinated by the Finnish Environment Institute (SYKE). Acid sulphate soils were formed in the eutrophic coastal waters of the Baltic Sea 4,000-8,000 years ago as microbes reduced the sulphate contained in saline seawater into sulphide. Sulphide clay soils emerging through land uplift have since been reclaimed and drained for cultivation use. Sulphur released in the resultant oxidation process reacted with soil water to form sulphuric acid, which draws toxic metals such as aluminium, cadmium, and copper from the soil. Heavy rains and the waters of springtime thawing transported acids and metals to the water bodies. In recent decades, the drainage depth of fields has increased because of the growing popularity of subterranean drainage methods, thus exacerbating the adverse ASS impacts on water bodies. Acidity and the attendant proliferation of toxic forms of metals induce changes in all organism groups of water biota, among them fish, macroinvertebrates, macrophytes, and bottom algae. On the specimen level, malformations have been discovered, such as structural pupae impairment in aquatic insects. The defence mechanism employed by fish against harmful substances in the surrounding water is to increase mucus exudation in the gills, which results in reduced respiration function. Exposure to acidity and metals harms the reproduction cycle of fish by delaying the development of follicles into mature eggs and by hindering eggs' fertilisation and embryo development. On the biota level, the manifestation of ASS impact is often the absence of the species or species groups most vulnerable to acidity. The species of river fish that are vulnerable to acidity include, for example

  19. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  20. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health.

    Science.gov (United States)

    Bach Knudsen, Knud Erik

    2015-03-01

    Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate polyphenolic ether lignin. The highest concentration of NSPs and lignin is found in the outer cell layers of the grain, and refined flour will consequently be depleted of a large proportion of insoluble DF components. The flow and composition of carbohydrates to the large intestine are directly related to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown to augment SCFA production, with the strongest relative effect on butyrate. When arabinoxylans were provided as a concentrate, the effect was only on total SCFA production. Increased SCFA production in the large intestine was shown by the concentration in the portal vein, whereas the impact on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting as signaling molecules between the gut and the peripheral tissues. The latter can have implications for insulin sensitivity and glucose homeostasis. PMID:25770259

  1. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    OpenAIRE

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide a...

  2. Impact of Inhibiting Ileal Apical Versus Basolateral Bile acid Transport on Cholesterol Metabolism and Atherosclerosis in Mice

    Science.gov (United States)

    Dawson, Paul A.

    2015-01-01

    Background Bile acid sequestrants have been used for many years to treat hypercholesterolemia by increasing hepatic conversion of cholesterol to bile acids, thereby inducing hepatic LDL receptor expression and clearance of apoB-containing particles. In order to further understand the underlying molecular mechanisms linking gut-liver signaling and cholesterol homeostasis, mouse models defective in ileal apical membrane bile acid transport (Asbt null) and ileal basolateral membrane bile acid transport (Ostα null) were studied under basal and hypercholesterolemic conditions. Key Messages Hepatic conversion of cholesterol to bile acids is the major pathway for cholesterol catabolism and a major mechanism for cholesterol elimination. Blocking ileal apical membrane bile acid transport (Asbt null mice) increases fecal bile acid excretion, hepatic Cyp7a1 expression and the relative proportion of taurocholate in the bile acid pool, but decreases ileal FGF15 expression, bile acid pool size, and hepatic cholesterol content. In contrast, blocking ileal basolateral membrane bile acid transport (Ostα null mice) increases ileal FGF15 expression, reduces hepatic Cyp7a1 expression, and increases the proportion of tauro-β-muricholic acid in the bile acid pool. In the hypercholesterolemic apoE null background, plasma cholesterol levels and measurements of atherosclerosis were reduced in Asbt/apoE null mice but not in Ostα/apoE null mice. Conclusions Blocking intestinal absorption of bile acids at the apical versus basolateral membrane differentially affects bile acid and cholesterol metabolism, including the development of hypercholesterolemia-associated atherosclerosis. The molecular mechanism likely involves altered regulation of ileal FGF15 expression. PMID:26045273

  3. Mitochondrial citrate synthase crystals: novel finding in Sengers syndrome caused by acylglycerol kinase (AGK) mutations.

    Science.gov (United States)

    Siriwardena, Komudi; Mackay, Nevena; Levandovskiy, Valeriy; Blaser, Susan; Raiman, Julian; Kantor, Paul F; Ackerley, Cameron; Robinson, Brian H; Schulze, Andreas; Cameron, Jessie M

    2013-01-01

    We report on two families with Sengers syndrome and mutations in the acylglycerol kinase gene (AGK). In the first family, two brothers presented with vascular strokes, lactic acidosis, cardiomyopathy and cataracts, abnormal muscle cell histopathology and mitochondrial function. One proband had very abnormal mitochondria with citrate synthase crystals visible in electron micrographs, associated with markedly high citrate synthase activity. Exome sequencing was used to identify mutations in the AGK gene in the index patient. Targeted sequencing confirmed the same homozygous mutation (c.3G>A, p.M1I) in the brother. The second family had four affected members, of which we examined two. They also presented with similar clinical symptoms, but no strokes. Postmortem heart and skeletal muscle tissues showed low complex I, III and IV activities in the heart, but normal in the muscle. Skin fibroblasts showed elevated lactate/pyruvate ratios and low complex I+III activity. Targeted sequencing led to identification of a homozygous c.979A>T, p.K327* mutation. AGK is located in the mitochondria and phosphorylates monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid. Disruption of these signaling molecules affects the mitochondria's response to superoxide radicals, resulting in oxidative damage to mitochondrial DNA, lipids and proteins, and stimulation of cellular detoxification pathways. High levels of manganese superoxide dismutase protein were detected in all four affected individuals, consistent with increased free radical damage. Phosphatidic acid is also involved in the synthesis of phospholipids and its loss will result in changes to the lipid composition of the inner mitochondrial membrane. These effects manifest as cataract formation in the eye, respiratory chain dysfunction and cardiac hypertrophy in heart tissue. These two pedigrees confirm that mutation of AGK is responsible for the severe neonatal presentation of Sengers syndrome. The

  4. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid.

    Science.gov (United States)

    Labarthe, François; Khairallah, Maya; Bouchard, Bertrand; Stanley, William C; Des Rosiers, Christine

    2005-03-01

    The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 microM). (13)C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 +/- 118 vs. 825 +/- 44 mU/min, P citric acid cycle flux (16 +/- 1 vs. 44 +/- 4%, P acid contribution to energy metabolism (23.7 +/- 1.3 vs. 15.8 +/- 0.8%, P acid oxidation to energy production by MCFA supplementation.

  5. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  6. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  7. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  8. 门静脉高压形成中内源性硫化氢体系的变化及其对一氧化氮/一氧化氮合酶途径的影响%Changes of hydrogen sulfide and its impact on nitric oxide/ nitric oxide synthase system in portal hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    何春萍; 田德安; 廖家智; 但自力; 程海林; 梁扩寰

    2008-01-01

    Objective To explore the changes of hydrogen sulfide and its impact on nitric oxide/ nitric oxide synthase system in portal hypertension rats.Methods Thirty SD rats were randomly divided into the normal group(n=5),sham-operated group(n=5),PPVL group (n=10) and PPVL+NaHS group (n=10).In PPVL group and PPVL+NaHS group,portal hypertension was established through the operation of partly portal vein ligation (PPVL).Two weeks later,portal vein pressure (PVP) and systemic arterial pressure (MAP) were measured.The immunohistochemical method was used for detection of expression of CSE and NOS in liver,and RT-PCR for that of CSEmRNA and NOSmRNA.Results After 14 days,there were no significant differences in the indexes between the sham-operated group and the normal group.Compared with normal group,PVP was increased significantly in PPVL group (P<0.01 ),but MAP was decreased (P<0.05).Compared with PPVL group,PVP was also increased in PPVL+ NariS group (P<0.05),and MAP was decreased too (P<0.05).Both CSE and NOS3 and the mRNA of them were expressed in the liver of rats.Compared with normal group or sham-operated group,the expression of CSE and the mRNA expression of it were increased in PPVL group (P<0.05).Compared with PPVL group,the expression of CSE was increased too in PPVL+NaHS group (P<0.05).NOS2 did not expressed in liver in normal group and sham-operated group.However,it was found after the operation of PPVL.Compared withPPVL group,the expression of NOS2 was decreased in PPVL+NaHS group.On the other hand,the expression of NOS3 protein and mRNA was of no significant difference among different groups.Conclusion Endogenous H2S is involved in the formation and development of portal hypertension.Exogenous application of H2S can aggravate the portal hypertension for the high level of endogenous H2S can inhibit the generation of NOS.%目的 研究新型气体信号分子硫化氢(hydrogen sulfide,H2S)在大鼠门静脉高压形成中的作用以

  9. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  10. 二甲双胍对人肝癌细胞 HepG2增殖及脂肪酸合酶的影响%Effects of metformin on cell proliferation and fatty acid synthase in human hepatocellular carcinoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    彭晓韧; 刘燕; 邹大进; 李娟

    2015-01-01

    Objective The cancer risk of patients with diabetes mellitus who are treated by metformin declines remarkably in comparison to patients receiving other drug therapies.The article was to investigate the relationship between antineopastic activity and fatty acid synthase (FASN) of metformin in human hepatocellular carcinoma cell(HCC) line HepG2. Methods HepG2 cells were treated with various concentrations of metformin( 0, 1, 5, 10, 15 mmol/L) for 24, 48 and 72 h respectively and cell growth was assessed by CCK-8 assay.Positive control(paclitaxel 10μg/mL) and negative control(metformin 0mmol/L) were set up simultaneously.After being treated with doses of metformin(0, 5, 10,15mmol/L) for 72h, protein expression levels of AMPKα、P-AMPKα、FASN、P-mTOR and P-Akt were measured by western blotting analysis and FASN mRNA expression levels were measured by RT-PCR. Results Being treated with vari-ous doses of metformin(1, 5, 10, 15 mmol/L) for 24, 48 and 72 h, the growth of HepG2 cells were inhibited by metformin in dose-dependent and time-dependent manner( P0.05) .FASN mRNA expression levels decreased significantly in all metformin-treated groups( P<0.05) . Conclusion Met-formin actitiviates AMPK, inhibits mTOR and downregulates FASN, which are implicated in its antineopastic activity on HCC.Although metformin inhibits mTOR activation, it is not involved in Akt upregulation through a negative loop.%目的:二甲双胍治疗的糖尿病患者癌症发生风险较其他药物治疗者显著降低。探讨二甲双胍在人肝癌细胞HepG2中的抗肿瘤活性与脂肪酸合酶的关系。方法选取不同浓度(1、5、10、15 mmol/L)二甲双胍处理HepG2细胞24、48、72 h,用CCK-8法检测其对细胞增殖的影响。同时设阳性对照(紫杉醇10μg/mL),阴性对照(二甲双胍0 mmol/L)。设0、5、10、15 mmol/L二甲双胍处理72 h,用Western blot检测腺苷酸活化蛋白激酶( adenosine monophosphate activated protein

  11. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families

    Energy Technology Data Exchange (ETDEWEB)

    Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi [Nagoya City Univ. Medical School (Japan)] [and others

    1997-03-01

    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AG rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.

  12. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons

    OpenAIRE

    Sandra Horschitz; Friederike Matthäus; Anja Groß; Jan Rosner; Marta Galach; Wolfgang Greffrath; Rolf-Detlef Treede; Jochen Utikal; Patrick Schloss; Andreas Meyer-Lindenberg

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after ter...

  13. The impact of acid deposition and forest harvesting on lakes and their forested catchments in south central Ontario: a critical loads approach

    OpenAIRE

    Watmough, S. A.; Dillon, P. J.

    2002-01-01

    International audience The impact of acid deposition and tree harvesting on three lakes and their representative sub-catchments in the Muskoka-Haliburton region of south-central Ontario was assessed using a critical loads approach. As nitrogen dynamics in forest soils are complex and poorly understood, for simplicity and to allow comparison among lakes and their catchments, CLs (A) for both lakes and forest soils were calculated assuming that nitrate leaching from catchments will not chang...

  14. Holistic approach to the evaluation of the anthropocentric influence on domoic acid production and the corresponding impact on the California Sea Lion (Zalophus californianus) population

    OpenAIRE

    Rieseberg, Ashley

    2012-01-01

    Domoic acid (DA) is a neurotoxin produced by the harmful algae Pseudo-nitzschia that has been directly linked to mass stranding events of the California Sea Lion (CSL). The purpose of this paper is to review the anthropogenic influence on the production of this neurotoxin and examine how human activities are impacting this marine mammal species. A comprehensive and interdisciplinary literature review was conducted to evaluate the future sustainability of the CSL population. It was found that ...