WorldWideScience

Sample records for acid swollen cellulose

  1. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Borsa, J.; Toth, T.

    2002-01-01

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  2. PERMEATION OF POLYELECTROLYTES AND OTHER SOLUTES INTO THE PORE SPACES OF WATER-SWOLLEN CELLULOSE: A REVIEW

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2009-08-01

    Full Text Available The rate and extent of transport of macromolecules and other solutes into cellulosic materials and fibers have important applications in such fields as papermaking, textiles, medicine, and chromatography. This review considers how diffusion and flow affect permeation into wood, paper, and other lignocellulosic materials. Because pore sizes within such materials can range from nanometers to millimeters, a broad perspective will be used, also considering some publications related to other porous materials. Factors that limit the rate or extent of polymer or other solute transport into pores can involve thermodynamics (affecting the driving motivation for permeation, kinetics (if there is insufficient time for the system to come to equilibrium, and physical barriers. Molecular flow is also affected by the attributes of the solute, such as molecular mass and charge, as well as those of the substrate, such as the pore size, interconnectedness, restricted areas, and surface characteristics. Published articles have helped to clarify which of these factors may have a controlling influence on molecular transport in different situations.

  3. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    Science.gov (United States)

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  4. The properties of water in swollen cross-linked polystyrene sulfo acids

    Science.gov (United States)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  5. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline

  6. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  7. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  8. Nucleic acids encoding a cellulose binding domain

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  9. Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus

    Directory of Open Access Journals (Sweden)

    Noda Shuhei

    2012-04-01

    Full Text Available Abstract Background Benzoic acid is one of the most useful aromatic compounds. Despite its versatility and simple structure, benzoic acid production using microbes has not been reported previously. Streptomyces are aerobic, Gram-positive, mycelia-forming soil bacteria, and are known to produce various kinds of antibiotics composed of many aromatic residues. S. maritimus possess a complex amino acid modification pathway and can serve as a new platform microbe to produce aromatic building-block compounds. In this study, we carried out benzoate fermentation using S. maritimus. In order to enhance benzoate productivity using cellulose as the carbon source, we constructed endo-glucanase secreting S. maritimus. Results After 4 days of cultivation using glucose, cellobiose, or starch as a carbon source, the maximal level of benzoate reached 257, 337, and 460 mg/l, respectively. S. maritimus expressed β-glucosidase and high amylase-retaining activity compared to those of S. lividans and S. coelicolor. In addition, for effective benzoate production from cellulosic materials, we constructed endo-glucanase-secreting S. maritimus. This transformant efficiently degraded the phosphoric acid swollen cellulose (PASC and then produced 125 mg/l benzoate. Conclusions Wild-type S. maritimus produce benzoate via a plant-like β-oxidation pathway and can assimilate various carbon sources for benzoate production. In order to encourage cellulose degradation and improve benzoate productivity from cellulose, we constructed endo-glucanase-secreting S. maritimus. Using this transformant, we also demonstrated the direct fermentation of benzoate from cellulose. To achieve further benzoate productivity, the L-phenylalanine availability needs to be improved in future.

  10. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  11. NANOCOMPOSITES OF POLY(LACTIC ACID REINFORCED WITH CELLULOSE NANOFIBRILS

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2010-06-01

    Full Text Available A chemo-mechanical method was used to prepare cellulose nanofibrils dispersed uniformly in an organic solvent. Poly(ethylene glycol (PEG 1000 was added to the matrix as a compatibilizer to improve the interfacial interaction between the hydrophobic poly(lactic acid (PLA and the hydrophilic cellulose nanofibrils. The composites obtained by solvent casting methods from N,N-Dimethylacetamide (DMAc were characterized by tensile testing machine, atomic force microscope (AFM, scanning electron microscope (SEM, and Fourier transform infrared spectroscopy (FT-IR. The tensile test results indicated that, by adding PEG to the PLA and the cellulose nanofibrils matrix, the tensile strength and the elongation rate increased by 56.7% and 60%, respectively, compared with the PLA/cellulose nanofibrils composites. The FT-IR analysis successfully showed that PEG improved the intermolecular interaction, which is based on the existence of inter-molecular hydrogen bonding among PLA, PEG, and cellulose nanofibrils.

  12. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  13. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  14. Cellulose with a High Fractal Dimension Is Easily Hydrolysable under Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Mariana Díaz

    2017-05-01

    Full Text Available The adsorption of three diverse amino acids couples onto the surface of microcrystalline cellulose was studied. Characterisation of modified celluloses included changes in the polarity and in roughness. The amino acids partially break down the hydrogen bonding network of the cellulose structure, leading to more reactive cellulose residues that were easily hydrolysed to glucose in the presence of hydrochloric acid or tungstophosphoric acid catalysts. The conversion of cellulose and selectivity for glucose was highly dependent on the self-assembled amino acids adsorbed onto the cellulose and the catalyst.

  15. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  16. Esterification of microcrystalline cellulose by binary mixture of pyromellitic dianhydride and boric acid

    International Nuclear Information System (INIS)

    Arslanov, Sh.S.; Petropavlovskij, G.A.

    1996-01-01

    The reaction between microcrystalline cellulose and boric acid in the medium of dimethyl-sulfoxide (DMSO) and in solid phase has been studied. By the methods of IR and 1 H NMR spectroscopy it has been shown that the triatment of cellulose with boric acid solution in DMSO, while the latter is removed under vacuum conditions and cellulose is heated up to 170 deg C, gives rise to formation of unstable esters of cellulose and boric acid. Pyromellitate-borates of cellulose are formed in the course of cellulose reaction with a mixture of boric acid and pyromellite dianhydride. 9 refs., 3 figs., 1 tab

  17. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Amikam, D.; Benziman, M.

    1989-01-01

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32 P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [ 14 C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes

  18. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  19. Cellulose sulphuric acid as a biodegradable catalyst for conversion ...

    Indian Academy of Sciences (India)

    This article describes simple and efficient method for the diazotization and azidation of different aromatic amines over cellulose sulphuric acid, sodium nitrite and sodium azide under mild conditions at room temperature. Various aryl amines possessing electron-withdrawing groups or electron-donating groups have been ...

  20. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  1. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    Science.gov (United States)

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrolysis of Cellulose Using Mono-Component Enzymes Shows Synergy during Hydrolysis of Phosphoric Acid Swollen Cellulose (PASC), but Competition on Avicel

    DEFF Research Database (Denmark)

    Andersen, Natalija; Johansen, Katja S.; Michelsen, Michael Locht

    2008-01-01

    ). In contrast to previous studies, where P-glucosidase was either not added or added in excess, we here focus on engineering binary, as well as, ternary cellulase mixtures (including a range of different mol% of Cel3A) for maximal total sugar production. Precise hydrolysis pattern based on the concentration...

  3. Phosphate cellulose with metaphosphoric acid for dye removal

    International Nuclear Information System (INIS)

    Silva, S.C.C.; Silva, F.C.; Lima, L.C.B.; Santos, M.R.M.C.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    The chemical modification of cellulose is a suitable method used for producing value-added products, making them more efficient and selective for certain applications such as adsorption of dye. Thus the aim of this study was to modify the natural cellulose with metaphosphoric acid, characterized it through the techniques of FTIR and "3"1P NMR and applies it in the adsorption of brilliant green dye, evaluating the kinetic models of pseudo first-order and pseudo second-order and the theoretical models of the Langmuir, Freundlich and Temkin isotherms. The characterizations demonstrated the effectiveness of the modification, the maximum adsorption capacity was 150.0 mg g-1, adjusting better to the kinetic model of pseudo-second order and the theoretical model of Temkin, with the adsorbent showing efficient for removal of brilliant green dye. (author)

  4. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    NARCIS (Netherlands)

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  5. The productive cellulase binding capacity of cellulosic substrates.

    Science.gov (United States)

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    Science.gov (United States)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  7. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  8. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  9. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  10. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.

    Science.gov (United States)

    Valle-Delgado, Juan José; Johansson, Leena-Sisko; Österberg, Monika

    2016-02-01

    The development of materials that combine the excellent mechanical strength of cellulose nanofibrils (CNF) with the lubricating properties of hyaluronic acid (HA) is a new, promising approach to cartilage implants not explored so far. A simple, solvent-free method to produce a very lubricating, strong cellulosic material by covalently attaching HA to the surface of CNF films is described in this work. A detailed analysis of the tribological properties of the CNF films with and without HA is also presented. Surface and friction forces at micro/nanoscale between model hard surfaces (glass microspheres) and the CNF thin films were measured using an atomic force microscope and the colloid probe technique. The effect of HA attachment, the pH and the ionic strength of the aqueous medium on the forces was examined. Excellent lubrication was observed for CNF films with HA attached in conditions where the HA layer was highly hydrated. These results pave the way for the development of new nanocellulose-based materials with good lubrication properties that could be used in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.

    Science.gov (United States)

    Camarero Espinosa, Sandra; Kuhnt, Tobias; Foster, E Johan; Weder, Christoph

    2013-04-08

    On account of their intriguing mechanical properties, low cost, and renewable nature, high-aspect-ratio cellulose nanocrystals (CNCs) are an attractive component for many nanomaterials. Due to hydrogen bonding between their surface hydroxyl groups, unmodified CNCs (H-CNCs) aggregate easily and are often difficult to disperse. It is shown here that on account of ionic repulsion between charged surface groups, slightly phosphorylated CNCs (P-CNCs, average dimensions 31 ± 14 × 316 ± 127 nm, surface charge density = 10.8 ± 2.7 mmol/kg cellulose), prepared by controlled hydrolysis of cotton with phosphoric acid, are readily dispersible and form stable dispersions in polar solvents such as water, dimethyl sulfoxide, and dimethylformamide. Thermogravimetric analyses reveal that these P-CNCs exhibit a much higher thermal stability than partially sulfated CNCs (S-CNCs), which are frequently employed, but suffer from limited thermal stability. Nanocomposites of an ethylene oxide-epichlorohydrin copolymer and H-CNCs, S-CNCs, and P-CNCs were prepared, and their mechanical properties were studied by dynamic mechanical thermal analysis. The results show that P-CNCs offer a reinforcing capability that is comparable to that of H-CNCs or S-CNCs.

  12. Nuclear rich alpha cellulosic waste management experiments by acid digestion

    International Nuclear Information System (INIS)

    Arnal; Cousinou; Desille; Maigret.

    1985-03-01

    At Cadarache, where the French plutonium fuel fabrication plant is located, the strategy used for the management of rich alpha waste (superior to accepted level for storage) consist in incinerating the wastes, crushed and washed by cryogenic crushing and soda-nitric solutions. Although all ''technological'' wastes could be processed this way, the cellulosic are sorted and treated separately by the sulfuric acid digestion process. This process has definite advantages, particularly since it is specific to cellulosis, which dissolves easily at low temperature, i-e under the boiling point of H 2 SO 4 . Except for this aspect, of great importance for the gaz treatment operations and the resistance of material to corrosion, the process is identical to the one given in the literature: dehydration of cellulosis by H 2 SO 4 72% and carbon oxydation by HNO 3 13N. The apparatus used hold in a small volume (10 m 3 ); the gloves-box in which the dissolver and the filtration treatments (insoluble Pu sulfate for one part, and reaction gas for the other) are placed is in stainless steel coated with corrosion proof paint; the equipments are made of glass (dissolver) teflon (flanges) PVDF (pipes) hastelloy (pompes). A general balance is given for the recuperated nuclear materials, as well as for the mass and volumes of input and output cellulosic wastes

  13. Acid hydrolysis of sisal cellulose: studies aiming at nano fibers and bio ethanol preparation

    International Nuclear Information System (INIS)

    Paula, Mauricio P. de; Lacerda, Talita M.; Zambon, Marcia D.; Frollini, Elisabete

    2009-01-01

    The hydrolysis of cellulose can result in nanofibers and also is an important stage in the bioethanol production process. In order to evaluate the influence of acid (sulfuric) concentration, temperature, and native cellulose (sisal) pretreatment on cellulose hydrolysis, the acid concentration was varied between 5% and 30% (v/v) in the temperature range from 60 to 100 deg C using native and alkali-treated (mercerized) sisal cellulose. The following techniques were used to evaluate the residual (non-hydrolysed) cellulose characteristics: viscometry, average degree of polymerization (DP), X-ray diffraction, crystallinity index, and Scanning Electron Microscopy. The sugar cane liquor was analyzed in terms of sugar composition, using High Performance Liquid Chromatography (HPLC). The results showed that increasing the concentration of sulfuric acid and temperature afforded residual cellulose with lower molecular weight and, up to specific acid concentrations, higher crystallinity indexes, when compared to the original cellulose values, and increased the glucose (the bioethanol precursor ) production of the liquor, which was favored for mercerized cellulose. (author)

  14. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    Science.gov (United States)

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  15. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  16. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  17. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  18. Characterization of Polylactic Acid/ Microcrystalline Cellulose/ Montmorillonite Hybrid Composites

    International Nuclear Information System (INIS)

    Reza Arjmandi; Azman Hassan; Haafiz, M.K.M.; Zainoha Zakaria; Inuwa, I.M.

    2014-01-01

    The objective of this study is to investigate the effect of montmorillonite (MMT)/ microcrystalline cellulose (MCC) hybrid fillers on mechanical properties and morphological characteristics of polylactic acid (PLA) composites. PLA/ MMT nano composites and PLA/ MMT/ MCC hybrid composites were prepared by solution casting method. Morphology and tensile properties of PLA composites were investigated using Field emission scanning electron microscopy and Instron tensile testing machine. The maximum tensile strength of PLA/ MMT nano composites was obtained with 5 phr contents of MMT, which corresponding to 30.75 MPa. Based on optimized formulation of PLA/ MMT nano composites (5 phr MMT contents), various amounts of MCC (0 to 7 phr) were added into optimum formulation of PLA/ MMT in order to produce PLA/ MMT/ MCC hybrid composites. Fourier transform infrared spectroscopy revealed some level of interaction between PLA and both MMT and MCC in the hybrid composites. However, the percent elongation at break of the hybrid composites was generally higher than PLA/ MMT nano composites. Additionally, Young's modulus of the PLA/ MMT/ MCC hybrid composites increased gradually with increasing of MCC contents and was higher than PLA/ MMT at all compositions. The present results are the first among a series of experiments that have been designed in order to probe the effect of MMT and MCC in the PLA. (author)

  19. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    Science.gov (United States)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  20. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  1. Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis

    Science.gov (United States)

    Setyaningsih, Dwi; Uju; Muna, Neli; Isroi; Budi Suryawan, Nyoman; Azid Nurfauzi, Ami

    2018-03-01

    The palm oil industry produces about 25-26% of palm oil empty fruit bunches. The empty fruit bunch of palm oil contains cellulose up to 36.67%. This is a good opportunity for the synthesis of cellulose nanofiber (CNF). Cellulose nanofiber is a nano-sized cellulose material that has unique physical and mechanical properties. The synthesis was performed using a strong acid method with sulfuric acid. Sulfuric acid removes the amorphous region of cellulose so that the crystalline part can be isolated. CNF yield measurement showed that temperature, time, acid concentration, and interaction between each factor were affecting significantly to CNF yield. The result showed that yield of 14.98 grams, was obtained by hydrolysis at 35°C for 6 hours and 55% acid concentration. The crystallinity measurement showed that the temperature, time, acid concentration, and interaction between each factor during hydrolysis were not affected significantly to percent value of CNF crystallinity. The result showed that 31.1% of crystallinity, was obtained by hydrolysis at 45°C for 3 hours and 55% of acid concentration. The size measurement showed that the temperature, time, acid concentration and interaction between each factor were affected significantly. The result showed 894.25 nm as the best result, obtained by hydrolysis with 35°C and 60% acid concentration for 6 hours. CNF color was white with the best dispersion of hydrolysis at 35°C of 55% for 6 hours.

  2. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  3. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system

    International Nuclear Information System (INIS)

    Bilgin, V.; Guthrie, J.T.

    1990-01-01

    A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)

  4. Acid hydrolysis of the biomass of resistant cellulose of thistle ''Onopordum nervosum boiss''

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz Palma, A.; Paz Saa, M.D.

    1985-01-01

    Hydrolysis of resistant cellulose of ''Onopordum nervosum boiss'' (thistle) to reduce sugar in diluted sulfuric acid in glass ampoules and long residence times have been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data the yield can be predicted and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 deg C, 1.6% acid and 6.1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (author)

  5. Characterisation of solution cast cellulose nanofibre – reinforced poly(lactic acid

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available Cellulose nanofibres, 20 nm in diameter and 300 nm long, were prepared by acid hydrolysis of flax yarns. Composite films containing 2.5 and 5.0 wt% flax cellulose (FC fibres were prepared by solution casting of mixtures of poly(lactic acid (PLA solution and cellulose nanofibre suspension in chloroform. The resulting composite films and solution cast pure PLA film, with thickness of around 160 m, showed good transparency. For composites with 2.5 and 5.0 wt% FC, the tensile strength increased by 25 and 59% and tensile modulus by 42 and 47%, respectively, compared to pure PLA film. The composite film with 2.5 wt% FC combined high strength and ductility with tensile strength of 24.3 MPa and 70% elongation at break. Flax cellulose appeared to facilitate nucleation and subsequent crystallisation of PLA more effectively in the amorphous composites than in the crystalline composites.

  6. Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize

    OpenAIRE

    Halász, Katalin; Csóka, Levente

    2013-01-01

    The aim of this work was to study the characteristics of thermal processed poly(lactic acid) composites. Poly(ethylene glycol) (PEG400), microcrystalline cellulose (MCC), and ultrasound-treated microcrystalline cellulose (USMCC) were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorim...

  7. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  8. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.

    Science.gov (United States)

    Monika; Dhar, Prodyut; Katiyar, Vimal

    2017-11-01

    Cellulose nanocrystals (CNC) are fabricated from filter paper (as cellulosic source) by acid hydrolysis using different acids such as sulphuric (H 2 SO 4 ), phosphoric (H 3 PO 4 ), hydrochloric (HCl) and nitric (HNO 3 ) acid. The resulting acid derived CNC are melt mixed with Polylactic acid (PLA) using extruder at 180°C. Thermogravimetric (TGA) result shows that increase in 10% and 50% weight loss (T 10 , T 50 ) temperature for PLA-CNC film fabricated with HNO 3 , H 3 PO 4 and HCl derived CNC have improved thermal stability in comparison to H 2 SO 4 -CNC. Nonisothermal kinetic studies are carried out with modified-Coats-Redfern (C-R), Ozawa-Flynn-Wall (OFW) and Kissinger method to predict the kinetic and thermodynamic parameters. Subsequently prediction of these parameter leads to the proposal of thermal induced degradation mechanism of nanocomposites using Criado method. The distribution of E a calculated from OFW model are (PLA-H 3 PO 4 -CNC: 125-139 kJmol -1 ), (PLA-HNO 3 -CNC: 126-145 kJmol -1 ), (PLA-H 2 SO 4 -CNC: 102-123 kJmol -1 ) and (PLA-HCl-CNC: 140-182 kJmol -1 ). This difference among E a for the decomposition of PLA-CNC bionanocomposite is probably due to various acids used in this study. The E a calculated by these two methods are found in consonance with that observed from Kissinger method. Further, hyphenated TG-Fourier transform infrared spectroscopy (FTIR) result shows that gaseous products such as CO 2 , CO, lactide, aldehydes and other compounds are given off during the thermal degradation of PLA-CNC nanocomposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids

    International Nuclear Information System (INIS)

    Huang Wenqi; Xing Yanjun; Yu Yunyi; Shang Songmin; Dai Jinjin

    2011-01-01

    Nine polycarboxylic acids were used to improve washing durability of hydrophobic cellulose fabric finished by sol-gel method. By simultaneous forming ester-bridge between cellulose and silica layer by ester bond, polycarboxylic acids could anchor silica coating onto cellulose fabric to strengthen the adhesion of organic-inorganic hybrid coating. The wettability of treated fabrics was characterized by water contact angle, spray test and hydrostatic pressure test. The results showed that all investigated polycarboxylic acids could improve the durability. The polycarboxylic acid with proper distance between terminal carboxylic acid groups and number of carboxylic acid groups showed the highest durability. 1,2,3,4-butanetetracarboxylic acid (BTCA) led to the best durability of hydrophobic cellulose fabric with water contact angle of 137.6 o (recovery percentage of 94.2%) after 30 washing times. The effect of BTCA on durability was characterized by scanning electron microscopy. This study demonstrated that the surface treatment using polycarboxylic acids and mixed organosilanes is a promising alternative for achieving durable hydrophobic fabrics.

  10. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  11. Conversion of industrial (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon

    Energy Technology Data Exchange (ETDEWEB)

    Op de Beeck, B.; Van Lishout, J.; Jacobs, P.A.; Sels, B.F. [Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Geboers, J. [Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim an der Ruhr (Germany); Van de Vyver, S. [Massachusetts Institute of Technology MIT, Massachusetts Avenue 77, Cambridge, MA 02139-4307 (United States); Snelders, J.; Courtin, C.M. [Centre for Food and Microbial Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee (Belgium); Huijgen, W.J.J. [Biomass and Energy Efficiency BEE, Energy research Centre of the Netherlands ECN, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2013-01-11

    The catalytic valorization of cellulose is currently subject of intense research. Isosorbide is among the most interesting products that can be formed from cellulose as it is a potential platform molecule and can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. A promising direct route from cellulose to isosorbide is presented in this work. The strategy relies on a one-pot bifunctional catalytic concept, combining heteropoly acids, viz. H4SiW12O40, and redox catalysts, viz. commercial Ru on carbon, under H2 pressure. Starting from pure microcrystalline cellulose, a rapid conversion was observed, resulting in over 50% isosorbide yield. The robustness of the developed system is evidenced by the conversion of a range of impure cellulose pulps obtained by organosolv fractionation, with isosorbide yields up to 63%. Results were compared with other (ligno)cellulose feedstocks, highlighting the importance of fractionation and purification to increase reactivity and convertibility of the cellulose feedstock.

  12. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available The cellulose binding domain (CBD of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids.

  13. Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals.

    Science.gov (United States)

    Lombardo, Salvatore; Eyley, Samuel; Schütz, Christina; van Gorp, Hans; Rosenfeldt, Sabine; Van den Mooter, Guy; Thielemans, Wim

    2017-06-06

    The interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of substitution. The binding mechanism between the positively charged pyridinum-grafted cellulose nanocrystals and BSA was found to be endothermic and based on charge neutralization. A positive entropy of adsorption associated with an increase of the degree of disorder upon addition of BSA compensated for the unfavorable endothermic enthalpy and enabled formation of pyridinium-g-CNC-BSA complexes. The endothermic enthalpy of adsorption was further found to decrease as a function of increasing degree of substitution. Negatively charged cellulose nanocrystals bearing sulfate and/or carboxylic functionalities were found to not interact significantly with the BSA protein. To investigate in more detail the role of single amino acids in the adsorption of proteins onto cellulose nanocrystals, we also studied the interaction of different types of amino acids with CNCs, i.e., charged (lysine, aspartic acid), aromatic (tryptophan, tyrosine), and polar (serine) amino acids. We found that none of the single amino acids bound with CNCs irrespective of surface charge and that therefore the binding of proteins with CNCs appears to require larger amino acid sequences that induce a greater entropic contribution to stabilize binding. Single amino acids are thus not adsorbed onto cellulose nanocrystals.

  14. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  15. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    International Nuclear Information System (INIS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-01-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L -1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  16. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

    Directory of Open Access Journals (Sweden)

    ASLI YUKSEL

    2016-12-01

    Full Text Available In this paper, hot-pressurized water, operating above boiling point and below critical point of water (374. 15 °C and 22.1 MPa, was used as a reaction medium for the decomposition of cellulose to high-value chemicals, such levulinic acid. Effects of reaction temperature, pressure, time, external oxidant type and concentration on the cellulose degradation and product distribution were evaluated. In order to compare the cellulose decomposition and yields of levulinic acid, experiments were performed with and without addition of oxidizing agents (H2SO4 and H2O2. Analysis of the liqueur was monitored by HPLC and GC-MS at different temperatures (150 - 280 °C, pressures (5-64 bars and reaction times (30 - 120 mins. Levulinic acid, 5-HMF and formic acid were detected as main products. 73% cellulose conversion was achieved with 38% levulinic acid yield when 125 mM of sulfuric acid was added to the reaction medium at 200 °C for 60 min reaction time.

  19. Topological characterization of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.; Khan, Ihsan Ullah; Ahmad, Faiz; Ayoub, Muhammad

    2016-11-01

    This study was conducted to evaluate the morphological and barrier properties of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites. Nanocrystalline cellulose was isolated from waste oil palm empty fruit bunch fiber using Sulphuric acid hydrolysis. Chemical modifications of nanocrystalline cellulose was performed to allow good compatibilization between fiber and the polymer matrices and also to improve dispersion of fillers. Bionanocomposite materials were produced from these nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) using solvent casting and evaporation techniques. The properties of extracted nanocrystalline cellulose were examined using FT-IR spectroscopy, X-ray diffractometer, TEM and AFM. Besides that, the properties of bionanocomposites were examined through FESEM and oxygen permeability properties analysis. Better barrier and morphological properties were obtained for nanocrystalline cellulose reinforced bionanocomposites than for neat polymer blend.

  20. Effect of cellulose nanocrystals (CNC) addition and citric acid as co-plasticizer on physical properties of sago starch biocomposite

    Science.gov (United States)

    Nasution, Halimatuddahliana; Afandy, Yayang; Al-fath, M. Thoriq

    2018-04-01

    Cellulose has potential applications in new high-performance materials with low environmental impact. Rattan biomass is a fiber waste from processing industry of rattan which contains 37,6% cellulose. The high cellulose contents of rattan biomass make it a source of cellulose nanocrystals as a filler in biocomposite. Isolation of alpha cellulose from biomass rattan was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3,5% HNO3 and NaNO2, precipitated with 17,5% NaOH, bleaching process with 10% H2O2. Nanocrystals obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Sago starch biocomposites were prepared using a solution casting method, which includes 1-4 wt % cellulose nanocrystals rattan biomass as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TEM and FTIR characteristic of cellulose nanocrystals show spherical like shape FTIR and chemical composition analysis demonstrated that lignin and hemicellulose structures were successfully removed. Biocomposite characteristic consists of density and water absorption. The results showed the highest density values were 0,266 gram/cm3 obtained at an additional of 3% cellulose nanocrystals rattan biomass and 30% citric acid. The lowest water absorption was 7,893% obtained at an additional of 4% cellulose nanocrystals rattan biomass and 10% citric acid.

  1. Investigation of crafting polymerization of acrylic acid to cellulose materials under the action of accelerated electrons

    International Nuclear Information System (INIS)

    Valiev, A.; Bazhenov, L.G.; Asamov, M.K.; Sagatov, Eh.A.

    1996-01-01

    Crafting polymerization of acrylic acid (AA) to cellulose materials in the presence of copper, zinc and silver salts under the action of accelerated electrons has been investigated with the aim to attach anti microbe properties to these materials. (author). 2 refs., 1 tab

  2. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  3. Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties

    CSIR Research Space (South Africa)

    John, MJ

    2012-04-01

    Full Text Available Bio-based continuous fibers were processed from polylactic acid (PLA) and cellulose nanowhiskers (CNWs) by melt spinning. Melt compounding of master batches of PLA with 10 wt % CNWs and pure PLA was carried out using a twin-screw extruder in which...

  4. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  5. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis

    International Nuclear Information System (INIS)

    Teodoro, Kelcilene B.R.; Teixeira, Eliangela de Morais; Correa, Ana Carolina; Campos, Adriana de; Marconcini, Jose Manoel; Mattoso, Luiz Henrique Capparelli

    2011-01-01

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  6. Plasticized Biodegradable Poly(lactic acid Based Composites Containing Cellulose in Micro- and Nanosize

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2013-01-01

    Full Text Available The aim of this work was to study the characteristics of thermal processed poly(lactic acid composites. Poly(ethylene glycol (PEG400, microcrystalline cellulose (MCC, and ultrasound-treated microcrystalline cellulose (USMCC were used in 1, 3, and 5 weight percents to modify the attributes of PLA matrix. The composite films were produced by twin screw extrusion followed by film extrusion. The manufactured PLA-based films were characterized by tensile testing, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, wide angle X-ray diffraction (WAXD, and degradation test.

  7. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  8. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.

    Science.gov (United States)

    Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-01-01

    The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis.

    Science.gov (United States)

    Shaheen, Th I; Emam, Hossam E

    2018-02-01

    Cellulose nanocrystal (CNC) is a unique material obtained from naturally occurring cellulose fibers. Owing to their mechanical, optical, chemical, and rheological properties, CNC gained significant interest. Herein, we investigate the potential of commercially non-recyclable wood waste, in particular, sawdust as a new resource for CNC. Isolation of CNC from sawdust was conducted as per acid hydrolysis which induced by ultrasonication technique. Thus, sawdust after being alkali delignified prior sodium chlorite bleaching, was subjected to sulfuric acid with concentration of 65% (w/w) at 60 ° C for 60min. After complete reaction, CNC were collected by centrifugation followed by dialyzing against water and finally dried via using lyophilization technique. The CNC yield attained values of 15% from purified sawdust. Acid hydrolysis mechanism exactly referred that, the amorphous regions along with thinner as well as shorter crystallites spreaded throughout the cellulose structure are digested by the acid leaving CNC suspension. The latter was freeze-dried to produce CNC powder. A thorough investigation pertaining to nanostructural characteristics of CNC was performed. These characteristics were monitored using TEM, SEM, AFM, XRD and FTIR spectra for following the changes in functionality. Based on the results obtained, the combination of sonication and chemical treatment was great effective in extraction of CNC with the average dimensions (diameter×length) of 35.2±7.4nm×238.7±81.2nm as confirmed from TEM. Whilst, the XRD study confirmed the crystal structure of CNC is obeyed cellulose type I with crystallinity index ∼90%. Cellulose nanocrystals are nominated as the best candidate within the range studied in the area of reinforcement by virtue of their salient textural features. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.

    Science.gov (United States)

    Prasertmanakit, Satit; Praphairaksit, Nalena; Chiangthong, Worawadee; Muangsin, Nongnuj

    2009-01-01

    Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 microm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 microm and increased the folic acid release rate from 52% to 79%. The addition of 2.5-7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.

  11. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    Science.gov (United States)

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. The Modification of Cellulosic Surface with Fatty Acids via Plasma Mediated Reactions

    Science.gov (United States)

    Nada, Ahmed Ali Ahmed

    Much attention has been paid recently to understand the healing process made by the human body, in order to develop new approaches for promoting healing. The wound healing process includes four main phases, namely, hemostatic, inflammatory, proliferation, and remodeling, which take place successively. The human body can provide all the requirements of the healing process in normal wounds, unless there is a kind of deficiency of the skin function or massive fluid losses of vast wounds. Therefore, wound care of non-healing wounds has recently been the growing concern of many applications. The goal of this work is to explore the development of a new cellulose-based wound dressing composite that contain or release wound healing agents attained via dry textile chemical finishing techniques (thermal curing-plasma treatment). The synthesis of different wound healing agents derived from fatty acids and attached chemically to cellulose or even delivered through cyclodextrine modified cellulose are reported in this work. First, free fatty acids, which are obtained from commercial vegetable oils, were identified as wound healing agents. Many of these free acids are known to bind with and deactivate the proteases associated with inflammation at a wound site. Linoleic acid is extracted from commercial products of safflower seed oil while ricinoleic acid is obtained from castor oil. Conjugated linoleic acid was synthesized. Un-conjugated linoleic acid was used to prepare two derivatives namely linoleic azide and allylic ketone of linoleic acid. Different cellulose derivatives such as cellulose peroxide, iododeoxycellulose and cellulose diazonium salt in different degree of substitutions were synthesized in order to facilitate the free radical reaction with the fatty acid derivatives. New modified cellulosic products were synthesized by reacting the cellulosic and the linoleic acid derivatives via thermal or plasma technique and characterized by FT-IR ATR, the wettability test

  13. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    Science.gov (United States)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  14. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.; Perez de Larraya, Uxua; Tingaut, P.; Zimmermann, T.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby

  15. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bacteriocin and cellulose production by lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Sixteen colonies of lactic acid bacteria (LAB) were selected and screened for their ability to produce bacteriocin by agar well diffusion method using the supernatant of centrifuged test cultures. Four isolates inhibited the growth of Listeria monocytogenes and Escherichia coli. Lactobacillus plantarum (6) and Lactobacillus ...

  17. Mechanical Properties of Poly(lactic acid Sheet Reinforced with Microfibrillated Cellulose from Corn Cobs

    Directory of Open Access Journals (Sweden)

    Deejam Prapatsorn

    2015-01-01

    Full Text Available In this study, cellulose was extracted from corn cobs by successive hot NaOH solution and followed by H2O2 bleaching. XRD pattern show characteristic peak of Cellulose I. Microfibrillated cellulose (MFC was successfully prepared by dissolving the extracted cellulose in NaOH/urea solution, shearing in a homogenizer and finally by freezing and thawing. To improve strength of MFC, MFC was physically crosslinked using PVA by freezing and thawing. The crosslinked MFC/PVA was added to poly(lactic acid (PLA to improve its mechanical properties. The non-crosslinked MFC/PVA was also prepared by only stirring the solution without freezing and thawing. MFC/PVA reinforced PLA films with various ratios of PLA and MFC/PVA at100:0, 99:1, 97:3 and 95:5were prepared through a solution casting method. Tensile strength and elongation at breakof PLA films increased with the addition of physically crosslinked MFC/PVA at 1%wt, whereas, the addition of non-crosslinked MFC/PVA decreased elongation at break. Crosslinking of MFC/PVA can improve tensile strength of PLA.It can render better tensile strength than that of non-crosslinked MFC/PVA. However, when MFC/PVA contents increase, tensile strength of PLA fims reinforced with non-crosslinked and crosslinked MFC/PVA decreased. Morphology of fracture surfaces reveals good dispersion and adhesion between 1% crosslinked MFC/PVA and PLA matrix.

  18. Effects of dietary cellulose levels on the estimation of endogenous amino acid losses and amino acid digestibility for growing pigs

    Directory of Open Access Journals (Sweden)

    Zhengqun Liu

    2016-06-01

    Full Text Available Two experiments were conducted to investigate the effects of dietary cellulose levels on the determination of the ileal endogenous losses (IEL of amino acids (AA, apparent ileal digestibility (AID and standardized ileal digestibility (SID of AA in corn-soybean meal diets for growing pigs. In the first experiment, 28 pigs (BW, 45.1 ± 2.0 kg that were fitted with simple T-cannulas at the distal ileum were fed 4 nitrogen-free diets consisting of 4 dietary cellulose levels (0, 3%, 6% and 9% in a randomized complete block design. In the second experiment, 28 pigs (BW, 45.6 ± 2.0 kg fitted with simple T-cannulas at the distal ileum were fed 4 corn-soybean meal diets consisting of 4 dietary cellulose levels (0, 3%, 6% and 9% in a randomized complete block design. There were 7 replicates per diet with 1 pig as a replicate in each treatment. Both experiments consisted of a 7-d adjustment period and a 2-d ileal digesta collection period on d 8 and 9. Chromic oxide was used as an indigestible marker to calculate IEL and digestibility of AA. The results showed that the IEL of AA for growing pigs was not influenced by dietary cellulose supplementation (P > 0.05. The AID of Thr, Ser, Glu, Cys, Ile, Tyr, Phe, Lys and His decreased with increasing cellulose supplementation levels for pigs fed corn-soybean meal diets (P < 0.05. The SID of Thr, Ser, Cys, Val, Ile, Tyr, Phe, Lys and His decreased with increasing cellulose supplementation levels in corn-soybean meal diets (P < 0.05. In summary, dietary cellulose levels had no effect on the estimation of IEL of AA for growing pigs. The AID and SID of most AA in corn-soybean meal diets decreased with increasing levels of dietary cellulose supplementation.

  19. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    Science.gov (United States)

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  1. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger.

    Science.gov (United States)

    Hou, Weiliang; Bao, Jie

    2018-04-01

    Simultaneous saccharification and fermentation (SSF) is the most efficient operation in biorefining conversion, but aerobic SSF under high solids loading significantly faces the serious oxygen transfer limitation. This study took the first insight into an aerobic SSF by high oxygen demanding filamentous fungi in highly viscous lignocellulose hydrolysate. The results show that oxygen requirement in the aerobic SSF by Aspergillus niger was well satisfied for production of cellulosic citric acid. The record high citric acid titer of 136.3 g/L and the overall conversion yield of 74.9% of cellulose were obtained by the aerobic SSF. The advantage of SSF to the separate hydrolysis and fermentation (SHF) on citric acid fermentation was compared based on the rigorous Aspen Plus modeling. The techno-economic analysis indicates that the minimum citric acid selling price (MCSP) of $0.603 per kilogram by SSF was highly competitive with the commercial citric acid from starch feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation.

    Science.gov (United States)

    Raucci, M G; Alvarez-Perez, M A; Demitri, C; Giugliano, D; De Benedictis, V; Sannino, A; Ambrosio, L

    2015-06-01

    Understanding the relationships between material surface properties and cellular responses is essential to designing optimal material surfaces for implantation and tissue engineering. In this study, cellulose hydrogels were crosslinked using a non-toxic and natural component namely citric acid. The chemical treatment induces COOH functional groups that improve the hydrophilicity, roughness, and materials rheological properties. The physiochemical, morphological, and mechanical analyses were performed to analyze the material surface before and after crosslinking. This approach would help determine if the effect of chemical treatment on cellulose hydrogel improves the hydrophilicity, roughness, and rheological properties of the scaffold. In this study, it was demonstrated that the biological responses of human mesenchymal stem cell with regard to cell adhesion, proliferation, and differentiation were influenced in vitro by changing the surface chemistry and roughness. © 2014 Wiley Periodicals, Inc.

  3. LIQUID CRYSTALLINE BEHAVIOR OF HYDROXYPROPYL CELLULOSE ESTERIFIED WITH 4-ALKOXYBENZOIC ACID.

    Directory of Open Access Journals (Sweden)

    Yehia Fahmy

    2010-07-01

    Full Text Available A series of 4- alkyoxybenzoyloxypropyl cellulose (ABPC-n samples was synthesized via the esterification of hydroxypropyl cellulose (HPC with 4-alkoxybenzoic acid bearing different numbers of carbon atoms. The molecular structure of the ABPC-n was confirmed by Fourier transform infrared (FT-IR spectroscopy and 1H NMR spectroscopy. The liquid crystalline (LC phases and transitions behaviors were investigated using differential scanning calorimetry (DSC, polarized light microscopy (PLM, and refractometry. It was found that the glass transition (Tg and clearing (Tc temperatures decrease with increase of the alkoxy chain length. It was observed that the derivatives with an odd number of carbon atoms are non-mesomorphic. This series of ABPC-n polymers exhibit characteristic features of cholesteric LC phases between their glass transition and isotropization temperatures.

  4. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle

    International Nuclear Information System (INIS)

    Suarez, C.; Paz, M. D.; Diaz, A.

    1983-01-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H 2 SO 4 and 180 degree centigree at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H 2 SO 4 doesn't enhance the yield anyway. (Author) 21 refs

  5. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  6. Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly(L-lactic acid Biocomposite for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mohammed Mizanur Rahman

    2014-01-01

    Full Text Available Crystalline cellulose was extracted from jute by hydrolysis with 40% H2SO4 to get mixture of micro/nanocrystals. Scanning electron microscope (SEM showed the microcrystalline structure of cellulose and XRD indicated the Iβ polymorph of cellulose. Biodegradable composites were prepared using crystalline cellulose (CC of jute as the reinforcement (3–15% and poly(lactic acid (PLA as a matrix by extrusion and hot press method. CC was cellulose derived from mercerized and bleached jute fiber by acid hydrolysis to remove the amorphous regions. FT-IR studies showed hydrogen bonding between the CC and the PLA matrix. The X-ray diffraction (XRD and differential scanning calorimetry (DSC studies showed that the percentage crystallinity of PLA in composites was found to be higher than that of neat PLA as a result of the nucleating ability of the crystalline cellulose. Furthermore, Vicker hardness and yield strength were found to increase with increasing cellulose content in the composite. The SEM images of the fracture surfaces of the composites were indicative of poor adhesion between the CC and the PLA matrix. The composite with 15% CC showed antibacterial effect though pure films but had no antimicrobial effect; on the other hand its cytotoxicity in biological medium was found to be medium which might be suitable for its potential biomedical applications.

  7. Studies on the conversion of cellulose hydrolysate into citric acid by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Manonmani, H.K.; Sreekantiah, K.R.

    1987-06-01

    The production of citric acid by Aspergillus niger (16) was studied using enzymatic hydrolysate of alkali-treated bagasse by solid state fermentation. Saccharification and fermentations were carried out sequentially as well as simultaneously. Conditions for optimum citric acid production using cellulose hydrolysate medium were: sugar concentration: 7% (w/w); NaNO/sub 3/; 400 mg/N/sub 2//l medium; KH/sub 2/PO/sub 4/:/0.1%/l medium; ethanol: 3% (v/w); 1 ml of 1 x 10 squared m fluoroacetate and coconut oil: 3% (v/w). Simultaneous saccharification and fermentation was not found to be suitable for citric acid production. 44% conversion of total reducing sugars to citric acid was obtained in 72 hours fermentation by sequential process with the above mentioned parameters. (Refs. 15).

  8. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    Science.gov (United States)

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of the conditions of preparation on the properties of a cellulose exchanger containing salicylic acid as a functional group

    Energy Technology Data Exchange (ETDEWEB)

    Lieser, K H; Foerster, M; Burba, P [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1977-04-01

    The preparation of a cellulose derivative containing salicylic acid as functional group was varied in order to find optimal conditions with respect to fast exchange as well as high capacity. Two kinds of cellulose (cross-linked and microcrystalline) and different reaction times were used. The properties of the products were investigated by titration curves to determine the capacity and by measuring the non-isotopic exchange Na/sup +//*Fe/sup 3 +/ and the isotopic exchange *Fe/sup 3 +//Fe/sup 3 +/ as a function of time. Microcrystalline cellulose and a reaction time of 15 min gave optimal results.

  10. Overall process considerations for using dilute acid cellulose hydrolysis technology to produce ethanol from biomass

    International Nuclear Information System (INIS)

    Elander, R.; Ibsen, K.; Hayward, T.; Nagle, N.; Torget, R.

    1997-01-01

    Recent advances in reactors, designed for the dilute acid thermochemical treatment of biomass, have resulted in the development of process alternatives in which both cellulose and hemicellulose are hydrolyzed to soluble sugars in high yields. The optimal extent of cellulose hydrolysis will depend on both the performance and economics of the thermochemical treatment operation, and on subsequent unit operations in the bioethanol production process. Examples of subsequent unit operation interactions include the extent to which cellulase enzymes are used to hydrolyze any remaining cellulose, kinetics and conditions of a largely soluble mixed sugar cofermentation, and the extent to which removal of compounds that inhabit fermenting microorganisms is required. In addition, a number of process operation and economic considerations affect the ultimate economic viability of this type of biomass hydrolysis process. These considerations include reactor design issues to accommodate the kinetic parameters of the various hydrolysis and sugar degradation reactions, liquid volume requirements to achieve acceptable sugar yields, sugar concentrations that result from such a process and their impact on subsequent fermentation volumes and ethanol recovery operations, potential co-product opportunities that result from solubilized lignin, and process steam requirements. Several potential whole-process configurations are presented and key process and economic issues for each are discussed. (author)

  11. Changes in birch wood cellulose through the action of sulphuric acid during furfural production. 3. Isolation of cellulose compounds

    Energy Technology Data Exchange (ETDEWEB)

    Roze, I.M.; Vedernikov, N.A.

    1981-01-01

    The effect was studied of temperature (137-167 degrees C) and H/sub 2/SO/sub 4/ concentration (10-90%) in furfural production on the content of cellulose compounds and the degree of (hydrolytic) breakdown of difficultly-hydrolysed polysaccharides in the residual lignocellulose. Increasing temperature reduced cellulose yield and increased polysaccharide breakdown, especially in 10-30% H/sub 2/SO/sub 4/. A higher concentration of the same amount of H/sub 2/SO/sub 4/ reduced polysaccharide breakdown (by reducing the liquid/solid ratio), especially at a higher temperature, thereby enabling more cellulose to be recovered for further processing (e.g. wood hydrolysis). Results suggest that H/sub 2/SO/sub 4/ catalyzes the hydrolysis and dehydration processes differently. (Refs. 6).

  12. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Erin M. Sullivan

    2015-12-01

    Full Text Available The focus of this study is to examine the effect of cellulose nanocrystals (CNC on the properties of polylactic acid (PLA films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region.

  13. Preparation of micro-fibrillated cellulose based on sugar palm ijuk (Arenga pinnata) fibres through partial acid hydrolysis

    Science.gov (United States)

    Saputro, A.; Verawati, I.; Ramahdita, G.; Chalid, M.

    2017-07-01

    The aim of this study was to isolate and characterized micro-fibrillated cellulose (MFC) from sugar palm/ijuk fibre (Arenga pinnata) by partial sulfuric acid hydrolysis. Cellulose fibre was prepared by repeated treatments with 5 wt% sodium hydroxide 2 h at 80°C, followed by bleaching with 1.7 wt% sodium chlorite for 2 h at 80°C in acidic environment under stirring. MFC was prepared by partial hydrolysis with sulfuric acid in various concentrations (30, 40, 50, and 60 % for 45 min at 45 °C) under stirring. Fourier Transform Infrared, Field Emission Scanning Electron Microscope, Thermo Gravimetric Analyzer and X-ray Diffraction characterized cellulose fibre and MFC. FTIR measurements showed that alkaline and bleaching treatments were effective to remove non-cellulosic constituents such as wax, lignin and hemicellulose. FESEM observation revealed conversion into more clear surface and defibrillation of cellulosic fibre after pre-treatments. XRD measurement revealed increase in crystallinity after pre-treatments and acid hydrolysis from 54.4 to 87.8%. Thermal analysis showed that increasing acid concentration reduced thermal stability.

  14. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    Science.gov (United States)

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  15. Real-time in vitro dissolution of 5-aminosalicylic acid from single ethyl cellulose coated extrudates studied by UV imaging

    DEFF Research Database (Denmark)

    Gaunø, Mette Høg; Vilhelmsen, Thomas; Larsen, Crilles Casper

    2013-01-01

    The purpose of this study was to investigate the in vitro release of 5-aminosalicylic acid from single extrudates by UV imaging and to explore the technique as a visualization tool for detecting film coating defects on extrudates coated with a thin ethyl cellulose layer. 5-Aminosalicylic acid ext...

  16. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent.

    Science.gov (United States)

    Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S

    2017-01-01

    Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes.

    Science.gov (United States)

    Vadivel, Vellingiri; Moncalvo, Alessandro; Dordoni, Roberta; Spigno, Giorgia

    2017-06-01

    The present investigation was aimed to evaluate the release of both antioxidants and cellulosic fibre from different agro-food wastes. Cost-effective and easily available agro-food residues (brewers' spent grains, hazelnut shells, orange peels and wheat straw) were selected and submitted to a double-step acid/alkaline fractionation process. The obtained acid and alkaline liquors were analysed for total phenols content and antioxidant capacity. The final fibre residue was analysed for the cellulose, lignin and hemicellulose content. The total phenols content and antioxidant capacity of the acid liquors were higher than the alkaline hydrolysates. Orange peels and wheat straw gave, respectively, the highest (19.70±0.68mg/g dm ) and the lowest (4.70±0.29mg/g dm ) total phenols release. Correlation between antioxidant capacity of the liquors and their origin depended on the analytical assay used to evaluate it. All the acid liquors were also rich in sugar degradation products (mainly furfural). HPLC analysis revealed that the most abundant phenolic compound in the acid liquors was vanillin for brewers' spent grains, hazelnut shells and wheat straw, and p-hydroxybenzoic acid for orange peels. Wheat straw served as the best raw material for cellulose isolation, providing a final residue with a high cellulose content (84%) which corresponded to 45% of the original cellulose. The applied process removed more than 90% of the hemicellulose fraction in all the samples, while delignification degree ranged from 67% (in hazelnut shells), to 93% (in brewers' spent grains). It was not possible to select a unique raw material for the release of highest levels of both total phenols and cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...... or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose...

  19. Change in birchwood cellulose in the presence of sulfuric acid during furfural manufacture. Part III. Isolation of cellulose preparations

    Energy Technology Data Exchange (ETDEWEB)

    Rose, I.; Vedernikov, N.A.

    1981-01-01

    The use of 10-90% H/sub 2/SO/sub 4/ in the manufacture of furfural from birchwood at 147-157 degrees leads to the formation of lignocellulose containing 43-63% cellulose. The content of cellulose in lignocellulose decreases linearly with increasing temperature, particularly in the presence of 10-30% H/sub 2/SO/sub 4/. The degree of degradation of hydrolysis-resistant polysaccharides at 137-167 degrees in the presence of H/sub 2/SO/sub 4/ increases linearly with increasing temperature, but decreases with increasing H/sub 2/SO/sub 4/ concentration. The results confirm the hypothesis (V.A. Vedernikov, 1965) of differential catalysis of consecutive hydrolysis and dehydration reactions in carbohydrates.

  20. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  1. Hyaluronate acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-10-01

    Full Text Available Yan Zhang, Qin Liu, Ning Yang, Xuegang Zhang Department of Gynecology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, People’s Republic of China Abstract: Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm, and the medical sodium hyaluronate (MSH group was treated with 1% MSH (0.5 mL. At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99 and the ORC group (1.40±0.97 were significantly lower than those in the control group (3.00±0.82 (P=0.005. Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82 and the ORC group (1.50±1.27 were significantly lower than those in the control group (3.50±0.53 (P=0.001. In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. Keywords: hyaluronic acid, oxidized regenerated cellulose, adhesion formation, adhesion reformation, rat model 

  2. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    Science.gov (United States)

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry.

    Science.gov (United States)

    Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang

    2017-11-15

    Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.

  4. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Science.gov (United States)

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  5. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Science.gov (United States)

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  6. Influence of fine grinding on the hydrolysis of cellulosic materials - acid vs enzymic

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M A; Effland, M J; Caulfield, D F

    1979-01-01

    The effect of vibratory milling on the enzymic and dilute H/sub 2/SO/sub 4/ hydrolysis of cotton linters, newsprint, Douglas fir, and red oak was investigated by determining the rate and degree of hydrolysis, maximum yield of reducing sugars, and cellulose crystallinity index. Linters were totally hydrolyzed in 10 days after 60 min milling; oak carbohydrates were 93% convertible to sugar in the same period after 240 min milling. Vibratory milling substantially increased the rates of acid hydrolysis of all 4 substrates, nearly 9- and 5-fold for linters and other lignocellulosic materials, respectively. Increases in maximum sugar yields under batch conditions were 60 to 140% higher than those for unmilled materials.

  7. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Yin, Sudong; Tan, Zhongchao

    2012-01-01

    Highlights: ► Hydrothermal liquefaction (HTL) at acidic, neutral and alkaline conditions. ► Bio-oil compositions varied with acidic, neutral and alkaline conditions. ► Reaction mechanisms varied with acidic, neutral and alkaline conditions. ► HTL should be classified to acidic, neutral and alkaline processes. -- Abstract: Hydrothermal liquefaction (HTL) of biomass to bio-oil under alkaline or neutral conditions has been widely reported in literature. However, there has been limited data available in literature on comparing HTL of biomass to bio-oil under acidic, neutral, and alkaline in terms of chemical compositions and yields by using the same reaction conditions and reactor. Using cellulose as a feedstock we conducted the comparative studies for pH = 3, 7 and 14 at temperatures of 275–320 °C with reaction residence times of 0–30 min. Results showed that the chemical compositions of the bio-oils were different for acidic, neutral and alkaline conditions. Under acidic and neutral conditions, the main composition of HTL bio-oil was 5-(Hydroxymethyl)furfural (HMF). Under alkaline conditions, the main compounds became C 2–5 carboxylic acids. For bio-oil yields, it was observed that high temperatures and long residence times had negative effects, regardless of the pH levels. However, the corresponding reaction mechanisms are different. Under acidic conditions, the decrease in the bio-oil yields was mainly caused by polymerization of 5-HMF to solids. Under neutral conditions, the bio-oil yields decreased because 5-HMF was converted to both solid and gaseous products. Under alkaline conditions, the bio-oil decomposed to gases through the formation of short chain acids and aldehydes. Therefore, although they were all referred to as HTL bio-oil in literature, they were formed by different reaction pathways and had different properties due to their different chemical compositions. Given these differences, different strategies are recommended in this study to

  8. Effect of Acid Hydrolysis and Thermal Hydrolysis on Solubility and Properties of Oil Palm Empty Fruit Bunch Fiber Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Sinyee Gan

    2015-11-01

    Full Text Available Cellulose hydrogel was produced from pretreated oil palm empty fruit bunch fiber (EFB that went through acid hydrolysis and thermal hydrolysis. The pretreated EFB was dissolved in LiOH/urea aqueous solution using the rapid dissolution method and was subjected to a crosslinking process with the aid of epichlorohydrin to form hydrogel. The effects of both hydrolyses’ time on average molecular weight (Mŋ, solubility, and properties of EFB hydrogels were evaluated. Both hydrolyses led to lower Mŋ, lower crystallinity index (CrI and hence, resulted in higher cellulose solubility. X-ray diffraction (XRD characterization revealed the CrI and transition of crystalline structure of EFB from cellulose I to II. The effects of hydrolysis time on the transparency, degree of swelling (DS, and morphology of the regenerated cellulose hydrogel were also investigated using an ultraviolet-visible (UV-Vis spectrophotometer and a Field emission scanning electron microscope (FESEM, respectively. These findings provide an efficient method to improve the solubility and properties of regenerated cellulose products.

  9. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin.

    Science.gov (United States)

    Sung, Soo Hyun; Chang, Yoonjee; Han, Jaejoon

    2017-08-01

    Bio-nanocomposite films based on polylactic acid (PLA) matrix reinforced with cellulose nanocrystals (CNCs) were developed using a twin-screw extruder. The CNCs were extracted from coffee silverskin (CS), which is a by-product of the coffee roasting process. They were extracted by alkali treatment followed by sulfuric acid hydrolysis. They were used as reinforcing agents to obtain PLA/CNC nanocomposites by addition at different concentrations (1%, 3%, and 5% CNCs). Morphological, tensile, and barrier properties of the bio-nanocomposites were analyzed. The tensile strength and Young's modulus increased with both 1% and 3% CNCs. The water vapor permeability decreased gradually with increasing addition of CNCs up to 3% and good oxygen barrier properties were found for all nanocomposites. These results suggest that CNCs from CS can improve the physical properties of PLA-based biopolymer film. The developed PLA/CNC bio-nanocomposite films can potentially be used for biopolymer materials with enhanced barrier and mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    Science.gov (United States)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  11. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis.

    Science.gov (United States)

    Kim, Soo-Jin; Dwiatmoko, Adid Adep; Choi, Jae Wook; Suh, Young-Woong; Suh, Dong Jin; Oh, Moonhyun

    2010-11-01

    This study has been focused on developing a cellulose pretreatment process using 1-n-butyl-3-methylimidazolium chloride ([bmim]Cl) for subsequent hydrolysis over Nafion(R) NR50. Thus, several pretreatment variables such as the pretreatment period and temperature, and the [bmim]Cl amount were varied. Additionally, the [bmim]Cl-treated cellulose samples were characterized by X-ray diffraction analysis, and their crystallinity index values including CI(XD), CI(XD-CI) and CI(XD-CII) were then calculated. When correlated with these values, the concentrations of total reducing sugars (TRS) obtained by the pretreatment of native cellulose (NC) and glucose produced by the hydrolysis reaction were found to show a distinct relationship with the [CI(NC)-CI(XD)] and CI(XD-CII) values, respectively. Consequently, the cellulose pretreatment step with [bmim]Cl is to loosen a crystalline cellulose through partial transformation of cellulose I to cellulose II and, furthermore, the TRS release, while the subsequent hydrolysis of [bmim]Cl-treated cellulose over Nafion(R) NR50 is effective to convert cellulose II to glucose. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Cellulose-polyhydroxylated fatty acid ester-based bioplastics with tuning properties: Acylation via a mixed anhydride system.

    Science.gov (United States)

    Heredia-Guerrero, José A; Goldoni, Luca; Benítez, José J; Davis, Alexander; Ceseracciu, Luca; Cingolani, Roberto; Bayer, Ilker S; Heinze, Thomas; Koschella, Andreas; Heredia, Antonio; Athanassiou, Athanassia

    2017-10-01

    The synthesis of microcrystalline cellulose (MCC) and 9,10,16-hydroxyhexadecanoic (aleuritic) acid ester-based bioplastics was investigated through acylation in a mixed anhydride (trifluoroacetic acid (TFA)/trifluoroacetic acid anhydride (TFAA)), chloroform co-solvent system. The effects of chemical interactions and the molar ratio of aleuritic acid to the anhydroglucose unit (AGU) of cellulose were investigated. The degree of substitution (DS) of new polymers were characterized by two-dimensional solution-state NMR and ranged from 0.51 to 2.60. The chemical analysis by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) confirmed the presence of aleuritate groups in the structure induces the formation of new H-bond networks. The tensile analysis and the contact angle measurement confirmed the ductile behavior and the hydrophobicity of the prepared bioplastics. By increasing the aleuritate amounts, the glass transition temperature decreased and the solubility of bioplastic films in most common solvents was improved. Furthermore, this new polymer exhibits similar properties compared to commercial cellulose derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    Science.gov (United States)

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Photoactive layer-by-layer films of cellulose phosphate and titanium dioxide containing phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sajjad [Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, São Carlos, São Paulo 13564-970 (Brazil); Acuña, José Javier Sáez [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre, Sao Paulo, 09210-170 (Brazil); Pasa, André Avelino [Surface and Thin Film Laboratory, Physics Department, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900 (Brazil); Bilmes, Sara A. [Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía – INQUIMAE, Ciudad Universitaria, Pab. 2, Buenos Aires C1428EHA (Argentina); Vela, Maria Elena; Benitez, Guillermo [Laboratorio de Nanoscopías y Fisicoquímica de Superficies, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata – CONICET, diagonal 113 esquina 64. C.C.16.Suc.4, 1900 La Plata (Argentina); Rodrigues-Filho, Ubirajara Pereira, E-mail: uprf@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, PO Box 780, São Carlos, São Paulo 13564-970 (Brazil)

    2013-07-15

    A versatile layer-by-layer (LbL) procedure for the preparation of highly dispersed, adherent and porous multilayer films of TiO{sub 2} nanoparticles (NPs) and phosphotungstic acid (HPW) on a variety of substrates at room temperature was developed based on the use of cellulose phosphate (CP) as an efficient and non-conventional polyelectrolyte. UV/vis absorption spectroscopy confirmed the linear and regular growth of the films with the number of immersion cycles and a strong adsorption ability of CP towards TiO{sub 2} NPs. FTIR spectroscopy showed that HPW binds to the surface of TiO{sub 2} through the oxygen atom at the corner of the Keggin structure. XPS results showed that the interaction between TiO{sub 2} and CP is through Ti–O–P linkage. A model is proposed for the TiO{sub 2}–HPW interaction based on XPS and FTIR results. FEG/SEM study of the surface morphology revealed a porous film structure with a homogenous distribution of the TiO{sub 2} NPs induced by CP. HRTEM studies showed that the resulting composite films consist of crystalline anatase and rutile phases and poly-nano-crystalline HPW with a semi-crystalline TiO{sub 2}–HPW interface. These CP/TiO{sub 2} and CP/TiO{sub 2}/HPW LbL films showed good photoactivity against both saturated and unsaturated species, for instance, stearic acid (SA), crystal violet (CV) and methylene blue (MB) under UV irradiation. The CP/HPW films formed on bacterial cellulose (BC) showed good photochromic response which is enhanced in presence of TiO{sub 2} due to an interfacial electron transfer from TiO{sub 2} to HPW. This simple and environmentally safe method can be used to form coatings on a variety of surfaces with photoactive TiO{sub 2} and TiO{sub 2}/HPW films.

  15. The Influence of Clay on the Rate of Decay of Amino Acid Metabolites Synthesized in Soils during Decomposition of Cellulose

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1975-01-01

    caused by the treatments in the different soils was, however, not related to the amount of silt + clay, and a high content of this material did not protect organic material against the effect of the treatments. is concluded that the silt + clay fraction ensures stabilization of amino acid metabolites...... produced during the period of intense biological activity that follows the addition of decomposable, energy rich material to the soil. The amount of amino acid metabolites stabilized increased with increasing concentration of silt + clay, but the rate of decay of the amino acid material during later stages......14C-labelled cellulose was added to seven different soils containing silt + clay (particles

  16. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe; Sun, Miao; Liu, Xin; Han, Yu

    2014-01-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40

  17. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis

    Science.gov (United States)

    Liheng Chen; Qianqian Wang; Kolby Hirth; Carlos Baez; Umesh P. Agarwal; J. Y. Zhu

    2015-01-01

    Cellulose nanocrystals (CNC) have recently received much attention in the global scientific community for their unique mechanical and optical properties. Here, we conducted the first detailed exploration of the basic properties of CNC, such as morphology, crystallinity, degree of sulfation and yield, as a function of production condition variables. The rapid cellulose...

  18. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    Science.gov (United States)

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients

  19. Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler

    Directory of Open Access Journals (Sweden)

    Daniela Sánchez Aldana

    2014-09-01

    Full Text Available Polylactic acid (PLA and montmorillonite (CB as filler were studied as coatings for cellulose based packages. Amorphous (AM and semi crystalline (SC PLA were used at different concentrations according to a 2 × 6 × 3 full factorial experimental design. CB loading was three concentrations and coating was performed by casting. Contact angle (CA, water vapor (WVP and grease permeabilities were measured for each resultant package and were compared to commercial materials (Glassine Paper, Grease Proof Papers 1 and 2 produced commercially. Significant differences were found and the main factors were the type and concentration of PLA. The best values were: for grease penetration, +1800 s; WVP from 161.36 to 237.8 g·µm·kPa−1·m−2·d−1 and CA from 69° to 73° for PLA–AM 0.5% and CB variable. These parameters are comparable to commercial packages used in the food industry. DSC revealed three different thermal events for PLA–SC and just Tg for PLA–AM. Crystallinity was also verified, obtaining a ΔHcrys of 3.7 J·g−1 for PLA–SC and 14 J·g−1 for PLA–SC–BC, evidencing clay interaction as a crystal nucleating agent. Differences found were explained on terms of the properties measured, where structural and chemical arrays of the coatings play a fundamental role for the barrier properties.

  20. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Lu Ping; Hsieh, You-Lo

    2009-01-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  1. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    Science.gov (United States)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  2. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments

    Science.gov (United States)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2017-12-01

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  3. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments.

    Science.gov (United States)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2018-02-13

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  4. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Science.gov (United States)

    Zhang, Yan; Liu, Qin; Yang, Ning; Zhang, Xuegang

    2016-01-01

    Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC) could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each) and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm), and the medical sodium hyaluronate (MSH) group was treated with 1% MSH (0.5 mL). At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99) and the ORC group (1.40±0.97) were significantly lower than those in the control group (3.00±0.82) (P=0.005). Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82) and the ORC group (1.50±1.27) were significantly lower than those in the control group (3.50±0.53) (P=0.001). In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. PMID:27822014

  5. Sodium Carboxymethyl Cellulose Using Acrylamide and Acrylic Acid and Investigation of Drug Delivery Properties

    Directory of Open Access Journals (Sweden)

    Mahdi Geramipour

    2016-07-01

    Full Text Available Hydrogels are three-dimensional polymer networks that can absorb and retain a huge amount of aqueous fluids even under certain pressure, but do not dissolve in water. They are responsive to environmental stimulants such as pH and ionic strength of the solution. In this study, a series of novel sodium carboxymethyl cellulose-based hydrogel nanocomposites were synthesized using acrylamide comonomer in the presence of iron magnetic as crosslinker and acrylic acid ammonium persulfate (APS comonomer as initiator. All reaction variables affecting the water absorbency of the hydrogel nanocomposite including the concentration of crosslinking agent and initiator, and comonomers ratio were optimized in order to achieve the maximum absorption capacity. The experimental data showed that the hydrogel nanocomposite exhibited improved swelling capacity compared to the nanoparticel-free hydrogel. In addition, optimized hydrogel nanocomposite showed a good water uptake ability and the equilibrium swelling capacity was achieved within the initial 10 min. In examining the quality of the synthesized hydrogel nanocomposite, the amount of absorption in saline solutions of different concentrations was measured. Furthermore, the swelling behavior of hydrogel nanocomposite in solutions with different pH values was evaluated. The chemical structure of the hydrogel nanocomposites was characterized by means of transmission electron microscopy (TEM, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM, thermogravimetry analysis (TGA, derivative thermogravimetry (DTG and Fourier transform infrared spectroscopy (FTIR. In order to study the drug delivery and drug release behavior, the release of sodium diclofenac as a model drug from synthesized hydrogel nanocomposite was examined in two acidic and basic buffer environments. The results indicated that this hydrogel nanocomposite may be an appropriate alternative for drug release processes in human body.

  6. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    Science.gov (United States)

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  8. Investigation of ATR-FTIR spectroscopy as an alternative to the Water Leach Free Acidity test for cellulose acetate-based film

    DEFF Research Database (Denmark)

    Johansen, Karin Bonde; Shashoua, Yvonne

    2005-01-01

    Cellulose acetate film loses acetate groups on ageing which results in the formation of damaging acetic acid. Water-Leach Free Acidity Test (WLFAT) is the definitive technique to quantify acidity, but requires 1g film and 26 hours. ATR-FTIR spectroscopy is a non-destructive, rapid technique which...

  9. Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals

    OpenAIRE

    Lombardo, Salvatore; Eyley, Sam; Schütz, Christina; Van Gorp, Hans; Rosenfeldt, Sabine; Van den Mooter, Guy; Thielemans, Wim

    2017-01-01

    The interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of sub...

  10. Fermentation of cellulose and fatty acids with enrichments from sewage sludge

    International Nuclear Information System (INIS)

    Winter, J.U.; Cooney, C.L.

    1980-01-01

    A mixed culture enriched from sewage sludge and anaerobic digestor effluent was able to degrade cellulose and acetate rapidly and quantitatively to methane and carbon dioxide. The maximum specific rate of gas production was 87ml/gm cell-h, corresponding to a rate of cellulose utilization of 0.1g/g cells-h. Acetate, an intermediate in cellulose degradation, was fermented much more rapidly than butyrate or propionate; its maximum utilization rate was first order with a rate constant of 0.34h -1 . Addition of 2- 14 C-acetate to a digestor fed cellulose showed that 2% of the methyl groups were oxidized to carbon dioxide. When 1- 14 C-acetate was added to a similar digestor, 52% of the carboxyl groups were reduced to methane, suggesting that not all the carbon dioxide during simultaneous cellulose and acetate utilization is treated equally. The pulse addition of large amounts of acetate, propionate and butyrate to a cellulose fed digestor was also examined. (orig.)

  11. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  12. Chemical Functionalization and Characterization of Cellulose Extracted from Wheat Straw Using Acid Hydrolysis Methodologies

    Directory of Open Access Journals (Sweden)

    Chemar J. Huntley

    2015-01-01

    Full Text Available The nonuniform distribution of cellulose into many composite materials is attributed to the hydrogen bonding observed by the three hydroxyl groups located on each glucose monomer. As an alternative, chemical functionalization is performed to disrupt the strong hydrogen bonding behavior without significant altering of the chemical structure or lowering of the thermal stability. In this report, we use wheat straw as the biomass source for the extraction of cellulose and, subsequently, chemical modification via the Albright-Goldman and Jones oxidation reactions. X-ray diffraction analyses reveal that upon oxidation a slight change in the cellulose polymorphic structure (CI to CII can be observed when compared to its unmodified counterpart. Scanning electron microscopy analyses show that the oxidized cellulose structure exhibits fiber-like crystals with lengths and diameters on the micrometer scale. Thermal analyses (differential scanning calorimetry and thermogravimetric analysis show an increase in the thermal stability for the modified cellulose at extremely high temperatures (>300°C.

  13. Status of cocoa swollen shoot virus disease in Nigeria

    African Journals Online (AJOL)

    SERVER

    African Journal of Biotechnology Vol. 6 (17), pp. 2054-2061, 5 September 2007. Available online at ... Plant Pathology Division, Cocoa Research Institute of Nigeria, P.M.B. 5244, Ibadan, Oyo State, Nigeria. Accepted 9 August, 2007 ... economic importance of the disease in Nigeria. Key words: Cocoa, cocoa swollen shoot ...

  14. Cocoa swollen shoot virus in Ghana: A review of diagnostic ...

    African Journals Online (AJOL)

    A quick and more reliable diagnostic method has for a long time been identified as one input that will greatly enhance the control of the cocoa swollen shoot disease in Ghana. Many diagnostic procedures have been developed for detecting the virus that causes the disease; yet, the detection of latent infections is still ...

  15. Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste

    Directory of Open Access Journals (Sweden)

    Nur Arfa Yanti

    2017-12-01

    Full Text Available Bacterial cellulose is a biopolymer produced by fermentation process with the help of bacteria. It has numerous applications in industrial sector with its characteristic as a biodegradable and nontoxic compound in nature. The potential application of BC is limited by its production costs, because BC is produced from expensive culture media. The use of cheap carbon and nutrient sources such as sago liquid waste is an interesting strategy to overcome this limitation. The objective of this study was to obtain the AAB strain that capable to produce bacterial cellulose from sago liquid waste. Isolation of AAB strains was conducted using CARR media and the screening of BC production was performed on Hestrin-Schramm (HS media with glucose as a carbon source. The strains of AAB then were evaluated for their cellulose-producing capability using sago liquid waste as a substrate. Thirteen strains of AAB producing BC were isolated from pineapple waste (pineapple core and peel and seven of them were capable to produce BC using sago liquid waste substrate. One of the AAB strains produced a relatively high BC, i.e. isolate LKN6. The result of morphological and biochemical test was proven that the bacteria was Acetobacter xylinum. The result of this study showed that A. xylinum LKN6 can produce a high yield of BC, therefore this strain is potentially useful for its utilization as a starter in bacterial cellulose production. 

  16. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  17. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Selig, Michael J; Viamajala, Sridhar; Decker, Stephen R; Tucker, Melvin P; Himmel, Michael E; Vinzant, Todd B

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  18. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    International Nuclear Information System (INIS)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat

    2010-01-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  19. Radiation Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels and Nanoscale Grafting of Poly(Acrylic Acid) from Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Isik, Semiha Duygu; Barsbay, Murat [Hacettepe University, Department of Chemistry, 06800 Ankara (Turkey)

    2010-07-01

    Ionizing radiation has long been known to be a very useful tool for the preparation of nanogels. Although preparation is straightforward, the control of the sizes of nanogels has been a challenging issue. This report shows the results of our work on using radiation for the synthesis of PVP nanogels in the range of 40-200nm by making use of the principles of solution thermodynamics of aqueous polymer solutions. Nanoscale grafting of responsive polymers however has been of scientific and industrial importance due to fine control of the molecular weight and molecular weight distribution of grafted polymers. The second part of this report deals with the grafting of poly(acrylic acid) onto the surface of cellulose, thus imparting pH response to the substrate. The use of radiation as a constant source of radical generation and Reversible-Addition-Fragmentation-Chain transfer agents for the control of free radical polymerization provided a full control over the molecular weight and distribution of poly(acrylic acid) grafts on cellulose. (author)

  20. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst

    Directory of Open Access Journals (Sweden)

    Md. Ziaul Karim

    2014-10-01

    Full Text Available Hydrolyzing the amorphous region while keeping the crystalline region unaltered is the key technology for producing nanocellulose. This study investigated if the dissolution properties of the amorphous region of microcrystalline cellulose can be enhanced in the presence of Fe3+ salt in acidic medium. The process parameters, including temperature, time and the concentration of metal chloride catalyst (FeCl3, were optimized by using the response surface methodology (RSM. The experimental observation demonstrated that temperature and time play vital roles in hydrolyzing the amorphous sections of cellulose. This would yield hydrocellulose with higher crystallinity. The factors that were varied for the production of hydrocellulose were the temperature (x1, time (x2 and FeCl3 catalyst concentration (x3. Responses were measured in terms of percentage of crystallinity (y1 and the yield (y2 of the prepared hydrocellulose. Relevant mathematical models were developed. Analysis of variance (ANOVA was carried out to obtain the most significant factors influencing the responses of the percentage of crystallinity and yield. Under optimum conditions, the percentage of crystallinity and yield were 83.46% and 86.98% respectively, at 90.95 °C, 6 h, with a catalyst concentration of 1 M. The physiochemical characteristics of the prepared hydrocellulose were determined in terms of XRD, SEM, TGA and FTIR analyses. The addition of FeCl3 salt in acid hydrolyzing medium is a novel technique for substantially increasing crystallinity with a significant morphological change.

  1. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    Science.gov (United States)

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  2. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  3. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  4. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    Science.gov (United States)

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  6. Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride

    International Nuclear Information System (INIS)

    Hu, Lei; Wu, Zhen; Xu, Jiaxing; Zhou, Shouyong; Tang, Guodong

    2016-01-01

    A green and efficient strategy for the hydrolysis of cellulose was developed by using a magnetic lignin-derived solid acid catalyst (MLC-SO 3 H) in the presence of ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). The results indicated that reaction temperature, reaction time, catalyst loading and water content have a big influence on the yield of total reducing sugars (TRS). By optimizing these reaction parameters, 69.3% TRS yield was observed at 140 .deg. C for 150 min with the addition of 40 wt% MLC-SO 3 H and 1 wt% water. More importantly, MLC-SO 3 H could be easily separated from the reaction mixture with an external magnet and could be repeatedly used five times without an obvious loss of catalytic activity, demonstrating that it possessed excellent recyclability. Furthermore, a plausible mechanism involving three consecutive processes of dissolution, adsorption and catalysis for the hydrolysis of cellulose in [BMIM]Cl over a catalyst of MLC-SO 3 H was also proposed.

  7. INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

    OpenAIRE

    Edita Jasiukaitytė-Grojzdek,; Matjaž Kunaver,; Ida Poljanšek

    2012-01-01

    Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. ...

  8. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films

    Science.gov (United States)

    Criado, P.; Fraschini, C.; Salmieri, S.; Becher, D.; Safrany, A.; Lacroix, M.

    2016-01-01

    Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm-1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg-1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg-1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.

  9. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Science.gov (United States)

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  10. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  11. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    Science.gov (United States)

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid

  12. Reducing Water Vapor Permeability of Poly(lactic acid Film and Bottle through Layer-by-Layer Deposition of Green-Processed Cellulose Nanocrystals and Chitosan

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2015-01-01

    Full Text Available Layer-by-layer electrostatic self-assembly technique was applied to improve the barrier properties of poly(lactic acid (PLA films and bottles. The LbL process was carried out by the alternate adsorption of chitosan (CH (polycation and cellulose nanocrystals (CNC produced via ultrasonic treatment. Four bilayers (on each side of chitosan and cellulose nanocrystals caused 29 and 26% improvement in barrier properties in case of films and bottles, respectively. According to the results the LbL process with CH and CNC offered a transparent “green” barrier coating on PLA substrates.

  13. γ radiolysis of cellulose acetate

    International Nuclear Information System (INIS)

    Ali, S.M.; Clay, P.G.

    1979-01-01

    The major degradative process in γ-irradiated cellulose acetate is chain scission. For the dry powder the G/sub s/ value (number of scissions per 100 eV of energy absorbed) was found to be 7.1. The water-swollen material was found to degrade at the higher rate of G/sub s/ = 9.45. Additions of ethanol and methanol to the water brought about reductions in G/sub s/, whereas dissolved nitrous oxide produced an increase in G/sub s/. The useful life of cellulose acetate reverse osmosis membranes exposed to γ radiation was estimated by observations of the water permeation rate during irradiation. Membrane breakdown occurred at 15 Mrad in pure water, but the dose to breakdown was extended to 83 Mrad in the presence of 4% methanol. 3 figures, 1 table

  14. "Insensitive" to touch: fabric-supported lubricant-swollen polymeric films for omniphobic personal protective gear.

    Science.gov (United States)

    Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad

    2015-02-25

    The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.

  15. Tribology of swollen starch granule suspensions from maize and potato.

    Science.gov (United States)

    Zhang, Bin; Selway, Nichola; Shelat, Kinnari J; Dhital, Sushil; Stokes, Jason R; Gidley, Michael J

    2017-01-02

    The tribological properties of suspensions of cooked swollen starch granules are characterised for systems based on maize starch and potato starch. These systems are known as granule 'ghosts' due to the release (and removal) of polymer from their structure during cooking. Maize starch ghosts are less swollen than potato starch ghosts, resulting in a higher packing concentration and greater mechanical stability. In a soft-tribological contact, maize ghost suspensions reduce friction compared to the solvent (water), generate bell-shaped tribological profiles characteristic of particle entrainment and show a marked concentration dependence, whereas potato ghost suspensions exhibit lubrication behaviour similar to water. Microscopy analysis of the samples following tribological testing suggests that this is due to the rapid break-up of potato ghosts under the shear and rolling conditions within the tribological contact. A reduction in the small deformation moduli (associated with a weak gel structure) is also observed when the potato ghost suspensions are subjected to steady shear using parallel plate rheometry; both microscopy and particle size analysis show that this is accompanied by the partial shear-induced breakage of ghost particles. This interplay between particle microstructure and the resultant rheological and lubrication dynamics of starch ghost suspensions contributes to an enhanced mechanistic understanding of textural and other functional properties of cooked starches in food and other applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of cellulose nanocrystal (CNC) from rattan biomass as filler and citric acid as co-plasticizer on tensile properties of sago starch biocomposite

    Science.gov (United States)

    Nasution, Halimatuddahliana; Harahap, Hamidah; Afandy, Yayang; Fath, M. Thoriq Al

    2017-11-01

    Biocomposite containing cellulose nanocrystals (CNC) from rattan biomass as fillers and citric acid as co-plasticizer. Rattan biomass is a fiber waste from processing industry of rattan which contains 37.6% cellulose. Isolation of alpha cellulose from rattan biomass was prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. The preparation of CNC includes acid hydrolysis using 45% H2SO4 and followed by mechanical processes of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was prepared using a solution casting method, which includes 1-4 wt % CNC as fillers, 10-40 wt% citric acid as co-plasticizer and 30 wt% glycerol as plasticizer. The results of TGA, SEM and XRD characteristic of CNC show that CNC has low residue mass, rod like and network like shape with crystallinity index 84.46%. Biocomposite characteristic consists of SEM, tensile strength and elongation at break. The resultshows that biocomposites by addition of CNC and citric acid have a smooth surface and homogeneous distribution of fillers. The tensile strength of biocomposites was increased by addition CNC and citric acid. The addition of CNC decreases the elongation at break but by addition of citric acid, the elongation at break was increased.

  17. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    Science.gov (United States)

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  18. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2014-03-04

    A bioassay based on DNA hybridization on cellulose paper is a promising format for gene fragment detection that may be suited for in-field and rapid diagnostic applications. We demonstrate for the first time that luminescence resonance energy transfer (LRET) associated with upconverting phosphors (UCPs) can be used to develop a paper-based DNA hybridization assay with high sensitivity, selectivity and fast response. UCPs with strong green emission were synthesized and subsequently functionalized with streptavidin (UCP-strep). UCP-strep particles were immobilized on cellulose paper, and then biotinylated single-stranded oligonucleotide probes were conjugated onto the UCPs via streptavidin-biotin linkage. The UCPs served as donors that were LRET-paired with Cy3-labeled target DNA. Selective DNA hybridization enabled the proximity required for LRET-sensitized emission from Cy3, which was used as the detection signal. Hybridization was complete within 2 min, and the limit of detection of the method was 34 fmol, which is a significant improvement in comparison to an analogous fluorescence resonance energy transfer (FRET) assay based on quantum dots. The assay exhibited excellent resistance to nonspecific adsorption of noncomplementary short/long DNA and protein. The selectivity of the assay was further evaluated by one base pair mismatched (1BPM) DNA detection, where a maximum signal ratio of 3.1:1 was achieved between fully complementary and 1BPM samples. This work represents a preliminary but significant step for the development of paper-based UCP-LRET nucleic acid hybridization assays, which offer potential for lowering the limit of detection of luminescent hybridization assays due to the negligible background signal associated with optical excitation by near-infrared (NIR) light.

  19. Utilisation of sugarcane trash and other cellulosic wastes for production of oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mane, J D; Modak, H M; Ramaiah, N A; Jadhav, S J

    1988-01-01

    The nitric acid oxidation process was developed for the production of oxalic acid from sugarcane trash, groundnut shells, corn cobs and rice husks. Good yields of oxalic acid from the above raw materials were obtained under optimum conditions, with sugarcane trash as the preferable raw material. The absorption of waste nitrogen oxide gases in aqueous NaOH to get a valuable by-product, sodium nitrite, was also successful.

  20. Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of pretreatment by radiation and acids—sulfuric, hydrochloric and acetic—on the enzymatic hydrolysis of chaff was studied. The combination of radiation and acids accelerates subsequent crushing and enzymatic hydrolysis. The percentage of fine powder below 115 mesh, after the crushing and the glucose yield on subsequent enzymatic hydrolysis, increased with increasing acid concentration, treatment time and irradiation dose. Radiation and hydrochloric acid pretreatment was the most effective in giving a high glucose conversion yield (about 90%). Irradiation dose, acid concentration, treatment temperature and treatment time were 20 Mrad, 0·5%, 70°C, and 5 h, respectively

  1. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  2. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  3. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage

    International Nuclear Information System (INIS)

    Cao, Lei; Tang, Yaojie; Fang, Guiyin

    2015-01-01

    Shape-stabilized fatty acid eutectics/carboxy methyl cellulose-1 composites as phase change materials (PCMs) were synthesized by absorbing liquid eutectics into the carboxy methyl cellulose-1 fibers. The chemical structure, crystalloid phase and morphology were determined by the Fourier transformation infrared spectroscope, X-ray diffractometer and scanning electronic microscope. The thermal properties and thermal stability were measured by the differential scanning calorimeter, thermogravimetric analyzer and the thermal cycling test, respectively. The results indicate that the eutectics are well adsorbed in the porous structure of the carboxy methyl cellulose-1. According to the DSC (differential scanning calorimeter) results, the composites melt at 32.2 °C with latent heat of 114.6 kJ/kg and solidify at 29.2 °C with latent heat of 106.8 kJ/kg. The thermal cycling test proves that the composites have good thermal reliability. It is envisioned that the prepared shape-stabilized PCMs have considerable potential for developing their roles in thermal energy storage. - Highlights: • The fatty acid eutectic/carboxy methyl cellulose-1 composites as PCMs were prepared. • Chemical structure and microstructure of composites were determined by FT-IR and SEM. • Thermal properties and stabilities were investigated by DSC and TGA. • The thermal cycling test confirmed that the composite has good thermal reliability

  4. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.

    2013-07-23

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  5. Silane Modification of Cellulose Acetate Dense Films as Materials for Acid Gas Removal

    KAUST Repository

    Achoundong, Carine S. K.; Bhuwania, Nitesh; Burgess, Steven K.; Karvan, Oguz; Johnson, Justin R.; Koros, William J.

    2013-01-01

    The modification of cellulose acetate (CA) films via grafting of vinyltrimethoxysilane (VTMS) to -OH groups, with subsequent condensation of hydrolyzed methoxy groups on the silane to form a polymer network is presented. The technique is referred to as GCV-modification. The modified material maintains similar H2S/CH4 and CO2/CH 4 selectivities compared to the unmodified material; however the pure CO2 and H2S permeabilities are 139 and 165 barrers, respectively, which are more than an order of magnitude higher than the neat polymer. The membranes were tested at feed pressures of up to 700 psia in a ternary 20 vol. %H2S/20 vol. % CO2/60 vol. % CH 4 mixture. Even under aggressive feed conditions, GCV-modified CA showed comparable selectivities and significantly higher permeabilities. Furthermore, GCV-modified membrane had a lower Tg, lower crystallinity, and higher flexibility than neat CA. The higher flexibility is due to the vinyl substituent provided by VTMS, thereby reducing brittleness, which could be helpful in an asymmetric membrane structure. © 2013 American Chemical Society.

  6. Peak broadening in paper chromatography and related techniques VI. The efficiency of various kinds of chromatography paper and thin-layer cellulose powder for the separation of amino acids

    NARCIS (Netherlands)

    Ligny, C.L. de; Kok, E.C.M.

    1968-01-01

    The efficiency of several chromatography papers and thin-layer cellulose powders for the separation of amino acids is investigated, using the minimum elution time for a given resolution as the criterion.

  7. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  8. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly(lactic acid based films

    Directory of Open Access Journals (Sweden)

    S. Montes

    2018-06-01

    Full Text Available In the present work, cellulose nanocrystals (CNC and graphene nanoplatelets (GR were combined in two different ratios and incorporated into polylactic acid (PLA by melt blending technique, at a total loading level of 1 wt%. The obtained PLA-CNC/GR nanocomposites were further processed by hot pressing for manufacturing films. For comparison purposes, PLA-CNC, PLA-GR and PLA-T (PLA blended with the organic surfactant Triton X-100 compositions were also prepared following the same procedure. The produced materials were characterized by several techniques, including Field-Emission Scanning Electron Microscopy (FE-SEM. The mechanical properties assessment showed an increase of 8 and 11% in the Young’s modulus and tensile strength respectively for PLA- CNC/GR (ratio 50/50 film compared to PLA-T. The thermal properties were also positively influenced by the incorporation of both nanofillers. Similarly, the gas barrier properties were improved by 23% in Oxygen Transmission Rate (OTR for films containing simultaneously CNC and GR. Finally, the antifungal properties were evaluated against Aspergillus Niger finding a superior antifungal activity in the CNC/GR hybrid films. The incorporation of CNC and GR in PLA showed a favourable impact in the overall properties of the obtained materials with only 1 wt% of nanofiller content. These results suggest that CNC/GR hybrid nanocomposites have a considerable potential in agricultural films or in food packaging trays applications.

  10. Saccharification of cellulose by acetolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Yamanaka, S; Takinami, K

    1978-01-01

    For saccharification of cellulose, an acetolysis method using assimilable acid with a microorganism was applied. Based on this method, a new method which gave totally assimilable products was established. The rigid crystalline structure of cellulose was disrupted by acetolysis with 2-2.5 times as much acetic anhydride as cellulose on a weight basis and 1 N sulfuric acid as a catalyst. Then for cleavage of O-acetyl ester and glycosidic bonds, the resulting amorphous acetolysate of cellulose could easily be hydrolyzed by heating in 1 N sulfuric acid at 120/sup 0/C for 1-1.5 h without over-disruption of glucose. Ninety-eight % of the cellulose used was recovered in the form of hydrolysate having about 30% saccharide concentration. The hydrolysate obtained was composed of 74% glucose, 13% cellobiose and 11% mono-O-acetyl glucose on a weight basis.

  11. Unexpected Genome Variability at Multiple Loci Suggests Cacao Swollen Shoot Virus Comprises Multiple, Divergent Molecular Variants.

    Science.gov (United States)

    Cacao swollen shoot virus (CSSV) [Badnavirus, Caulimoviridae] causes swollen shoot disease of Theobroma cacao L. in West Africa. Since ~2000, various diagnostic tests have failed to detect CSSV in ~50-70% of symptomatic cacao plants, suggesting the possible emergence of new, previously uncharacteriz...

  12. Catalytic conversion of cellulose to fuels and chemicals using boronic acids

    Science.gov (United States)

    Raines, Ronald; Caes, Benjamin; Palte, Michael

    2015-10-20

    Methods and catalyst compositions for formation of furans from carbohydrates. A carbohydrate substrate is heating in the presence of a 2-substituted phenylboronic acid (or salt or hydrate thereof) and optionally a magnesium or calcium halide salt. The reaction is carried out in a polar aprotic solvent other than an ionic liquid, an ionic liquid or a mixture thereof. Additional of a selected amount of water to the reaction can enhance the yield of furans.

  13. [The 455th case: swollen leg, jaundice and mental disturbance].

    Science.gov (United States)

    Dong, R; Weng, L; Guo, T; Zhu, T N; Zhao, J L; Wu, Q J; Zeng, X F

    2017-04-01

    A 17-year-old young man with a history of swollen leg and intermittent jaundice was presented to Peking Union Medical College Hospital with acute fever and mental disturbance. He developed deep venous thrombosis, acute myocardial infarction and plantar skin necrosis during the past four years, and was presented with an acute episode of fever, thrombocytopenia, acute kidney injury, acute myocardial infarction, mental disturbance, and obstructive jaundice. Laboratory tests showed schistocytes on peripheral blood smear.High titer of antiphospholipid antibodies was detected.Strikingly, the activity of a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS13)was significantly decreased without the production of inhibitors. Images indicated stenosis of the common bile duct, common hepatic duct, and cystic duct, which caused dilation of bile ducts and the gall bladder. Corticosteroids and anticoagulation therapy were effective at first, but the disease relapsedonce the corticosteroids tapered down. Plasma exchange was administrated for 17 times, which was effective temporarily during this episode. Methylprednisolone pulse therapy, intravenous immunoglobulin, rituximab, anticoagulation therapy, and bile drainage, were all tried but still could not control the disease. The patient's family agreed to withdraw treatment after he developed septic shock.

  14. A bio-based ‘green’ process for catalytic adipic acid production from lignocellulosic biomass using cellulose and hemicellulose derived γ-valerolactone

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2016-01-01

    Highlights: • A bio-based ‘green’ process for catalytic conversion of corn stover to adipic acid (ADA) is studied. • New separations for effective recovery of biomass derivatives are developed. • Separations are integrated with cellulose/hemicellulose-to-ADA conversions. • Proposed process can compete economically with the current petro-based process. - Abstract: A bio-based ‘green’ process is presented for the catalytic conversion of corn stover to adipic acid (ADA) based on experimental studies. ADA is used for biobased nylon 6.6 manufacturing from lignocellulosics as carbon and energy source. In this process, the cellulose and hemicellulose fractions are catalytically converted to γ-valerolactone (GVL), using cellulose and hemicellulose-derived GVL as a solvent, and subsequently upgrading to ADA. Experimental studies showed maximal carbon yields (biomass-to-GVL: 41% and GVL-to-ADA: 46%) at low concentrations (below 16 wt% solids) using large volumes of GVL solvents while requiring efficient interstage separations and product recovery. This work presents an integrated process, including catalytic conversion and separation subsystems for GVL and ADA production and recovery, and designs a heat exchanger network to satisfy the total energy requirements of the integrated process via combustion of biomass residues (lignin and humins). Finally, an economic analysis shows that 2000 metric tonnes (Mt) per day of corn stover feedstock processing results in a minimum selling price of $633 per Mt if using the best possible parameters.

  15. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P. Azubuike

    2012-09-01

    Full Text Available α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for the pharmaceutical industry, desirable physical (flow properties were investigated. α–Cellulose (GCN was extracted from groundnut shell (an agricultural waste product using a non-dissolving method based on inorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2N hydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN. The physical, spectroscopic and thermal properties of the derived α-cellulose and microcrystalline cellulose powders were compared with Avicel® PH 101, a commercial brand of microcrystalline cellulose (MCCA, using standard methods. X-ray diffraction and infrared spectroscopy analysis showed that the α-cellulose had lower crystallinity. This suggested that treatment with 2N hydrochloric acid led to an increase in the crystallinity index. Thermogravimetric analysis showed quite similar thermal behavior for all cellulose samples, although the α-cellulose had a somewhat lower stability. A comparison of the physical properties between the microcrystalline celluloses and the α-cellulose suggests that microcrystalline cellulose (MCGN and MCCA might have better flow properties. In almost all cases, MCGN and MCCA had similar characteristics. Since groundnut shells are agricultural waste products, its utilization as a source of microcrystalline cellulose might be a good low-cost alternative to the more expensive commercial brand.

  16. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Hongyi; Han, Jian; Baig, Shams Ali; Xu, Xinhua

    2011-01-01

    Highlights: ► CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. ► Particle stability, ζ-potential and IEP of non- and stabilized Pd/Fe were compared. ► Dechlorination of 2,4-D by different Pd/Fe systems was investigated. ► The reaction mechanism has been discussed and presented in the article. ► Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L −1 ) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11.5 to 2.5. The optimal CMC/Fe mass ratio for the dechlorination of 2,4-D was determined to be 5/1, and the removal of 2,4-D was

  17. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongyi, E-mail: zhouhy@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Han, Jian [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Baig, Shams Ali; Xu, Xinhua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. Black-Right-Pointing-Pointer Particle stability, {zeta}-potential and IEP of non- and stabilized Pd/Fe were compared. Black-Right-Pointing-Pointer Dechlorination of 2,4-D by different Pd/Fe systems was investigated. Black-Right-Pointing-Pointer The reaction mechanism has been discussed and presented in the article. Black-Right-Pointing-Pointer Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L{sup -1}) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11

  18. Control of the Biofilms Formed by Curli- and Cellulose-Expressing Shiga Toxin-Producing Escherichia coli Using Treatments with Organic Acids and Commercial Sanitizers.

    Science.gov (United States)

    Park, Yoen Ju; Chen, Jinru

    2015-05-01

    Biofilms are a mixture of bacteria and extracellular products secreted by bacterial cells and are of great concern to the food industry because they offer physical, mechanical, and biological protection to bacterial cells. This study was conducted to quantify biofilms formed by different Shiga toxin-producing Escherichia coli (STEC) strains on polystyrene and stainless steel surfaces and to determine the effectiveness of sanitizing treatments in control of these biofilms. STEC producing various amounts of cellulose (n = 6) or curli (n = 6) were allowed to develop biofilms on polystyrene and stainless steel surfaces at 28°C for 7 days. The biofilms were treated with 2% acetic or lactic acid and manufacturer-recommended concentrations of acidic or alkaline sanitizers, and residual biofilms were quantified. Treatments with the acidic and alkaline sanitizers were more effective than those with the organic acids for removing the biofilms. Compared with their counterparts, cells expressing a greater amount of cellulose or curli formed more biofilm mass and had greater residual mass after sanitizing treatments on polystyrene than on stainless steel. Research suggests that the organic acids and sanitizers used in the present study differed in their ability to control biofilms. Bacterial surface components and cell contact surfaces can influence both biofilm formation and the efficacy of sanitizing treatments. These results provide additional information on control of biofilms formed by STEC.

  19. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach.

    Science.gov (United States)

    Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M

    2017-01-20

    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle; Efecto de la irradiacion gamma en la hidrolisis acida de cardo exento de pentosas

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C.; Paz, M. D.; Diaz, A.

    1983-07-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H{sub 2}SO{sub 4} and 180 degree centigree at increasing doses). At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H{sub 2}SO{sub 4} doesn't enhance the yield anyway. (Author) 21 refs.

  1. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle; Efecto de la irradiacion gamma en la hidrolisis acida de cardo exento de pentosas

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, C; Paz, M D; Diaz, A

    1983-07-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H{sub 2}SO{sub 4} and 180 degree centigree at increasing doses). At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H{sub 2}SO{sub 4} doesn't enhance the yield anyway. (Author) 21 refs.

  2. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  3. Improvement of thermal and mechanical properties of composite based on polylactic acid and microfibrillated cellulose through chemical modification

    Science.gov (United States)

    Suryanegara, L.; Nugraha, R. A.; Achmadi, S. S.

    2017-07-01

    Polylactic acid (PLA) is the most representative sustainable and bio-based polymer environmentally friendly that has a great potential to replace petroleum-based plastics. However, brittleness, low heat resistance, and slow crystallization limit the wide application of PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to increase its compatibility with PLA in the composite formation. In this experiment, MFC was modified with partial acetylation (degree of substitution: 1) and further grafted with lactide monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of acetylation and grafting were verified by infrared spectra. Composites were prepared by mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted composites were evaluated for their mechanical and thermal properties. Thermal characterization carried out using differential scanning calorimetry measurements showed that the presence of modified MFC increased the temperature of glass transition and accelerated the crystallization of PLA. Mechanical properties measurement showed that the presence of modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified MFC could extend the application of PLA in industry.

  4. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    Science.gov (United States)

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  6. Advances in the stabilisation of swollen polymer by radiation

    International Nuclear Information System (INIS)

    Hidi, P.; Napper, D.H.; Sangster, D.F.

    1998-01-01

    Anionic surfactants form polymer micelle complexes (PMCs) along the chains of hydrophobic/hydrophilic polymers in an aqueous latex. The charges on these PMCs repel each other allowing access by the solution and causing the particles to swell to up to sixty times their volume in the poly(vinyl acetate) (PVAc) / sodium dodecyl sulphate (SDS) system. Swelling starts at 4.5 mM SDS which is well below the critical micelle concentration (8.3 mM). The particle size was measured by Dynamic Light Scattering (DLS) and verified by weighing the sediment after ultracentrifuging. We attributed the limitation of swelling to the presence of entanglements which were not loosened during swelling. The fully swollen material contained 1.8% PVAc, 1.6% SDS and 96.6% water. If the SDS concentration was lowered by dialysis or by dilution, the SDS of the PMCs dispersed and the particles reverted to slightly less than their original size, ie the swelling was reversible. The somewhat smaller size was accounted for by the leaching into the solution of low molecular weight polymer as individual chains incorporating PMCs along their length and thus similar to a polyelectrolyte. With sodium tetradecyl sulphate the threshold is 1 mM and the particles swell up to 200 fold. Prolonged attack by free radicals either by irradiation or by chemical sources would be expected to give a more or less continuous array of single charges along the chain and this might be more effective in loosening entanglements. Alternatively or additionally, the radicals might cause main chain scission. Both would lead to faster dissolution. The results obtained have some ramifications for polymerisation at surfactant concentrations above the critical micelle concentration

  7. Characterization of an engineered cellulose based membrane by thiol dendrimer for heavy metals removal

    OpenAIRE

    Algarra, Manuel; Vázquez, María Isabel; Alonso, Beatriz S.; Casado, Carmen Mª.; Casado, Juan; Benavente, Juana

    2014-01-01

    Diaminobutane based poly(propyleneimine) dendrimer functionalized with sixteen thiol groups, DAB-3-(SH)16, was successfully embeded in a swollen cellulosic support in order to achieve an easily handle engineered membrane. The membrane was characterised by physicochemical, electrical and transport measurements, and the effect of the dendrimer was established by comparing these results with those obtained for the original cellulosic support. Results show that dendrimer inclusion improves the me...

  8. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  9. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz

    2017-01-01

    Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...

  10. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  11. Morphology and physical-chemical properties of celluloses obtained by different methods

    Science.gov (United States)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  12. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lim Sze Lim

    2017-11-01

    Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

  13. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  14. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  15. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  16. From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging.

    Science.gov (United States)

    Yu, Hou-Yong; Zhang, Heng; Song, Mei-Li; Zhou, Ying; Yao, Juming; Ni, Qing-Qing

    2017-12-20

    The traditional approach toward improving the crystallization rate as well as the mechanical and barrier properties of poly(lactic acid) (PLA) is the incorporation of nanocelluloses (NCs). Unfortunately, little study has been focused on the influence of the differences in NC morphology and dimensions on the PLA property enhancement. Here, by HCOOH/HCl hydrolysis of lyocell fibers, microcrystalline cellulose (MCC), and ginger fibers, we unveil the preparation of cellulose nanospheres (CNS), rod-like cellulose nanocrystals (CNC), and cellulose nanofibers (CNF) with different aspect ratios, respectively. All the NC surfaces were chemically modified by Fischer esterification with hydrophobic formate groups to improve the NC dispersion in the PLA matrix. This study systematically compared CNS, CNC, and CNF as reinforcing agents to induce different kinds of heterogeneous nucleation and reinforce the effects on the properties of PLA. The incorporation of three NCs can greatly improve the PLA crystallization ability, thermal stability, and mechanical strength of nanocomposites. At the same NC loading level, the PLA/CNS showed the highest crystallinity (19.8 ± 0.4%) with a smaller spherulite size (33 ± 1.5 μm), indicating that CNS, with its high specific surface area, can induce a stronger heterogeneous nucleation effect on the PLA crystallization than CNC or CNF. Instead, compared to PLA, the PLA/CNF nanocomposites gave the largest Young's modulus increase of 350 %, due to the larger aspect ratio/rigidity of CNF and their interlocking or percolation network caused by filler-matrix interfacial bonds. Furthermore, taking these factors of hydrogen bonding interaction, increased crystallinity, and interfacial tortuosity into account, the PLA/CNC nanocomposite films showed the best barrier property against water vapor and lowest migration levels in two liquid food simulates (well below 60 mg kg -1 for required overall migration in packaging) than CNS- and CNF-based films

  17. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    Science.gov (United States)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  18. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    Science.gov (United States)

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    Science.gov (United States)

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  20. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  2. Influence of the composition of hydroxypropyl cellulose/maleic acid-alt-styrene copolymer blends on their properties as matrix for drug release

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Poly(carboxylic acid-polysaccharide compositions have been found suitable for obtaining drug formulations with controlled release, most formulations being therapeutically efficacious, stable, and non-irritant. The influence of the characteristics of the aqueous solutions from which the polymer matrix is prepared (i.e. the total concentration of polymer in solutions and the mixing ratio between the partners, hydroxypropyl cellulose, HPC and maleic acid-alternating-styrene copolymer, MAc-alt-S on the kinetics of some drugs release in acidic environment (pH = 2 has been followed by ‘in vitro’ dissolution tests. It has been established that the kinetics of procaine hydrochloride release from HPC/MAc-alt-S matrix depends on its composition; the diffusion exponent, n is close to 0.5 for matrices where one of the components is in large excess and n~0.02 for middle composition range. The lower value of diffusion exponent for middle composition range could be caused by the so called ‘burst effect’, therefore the kinetic evaluation is difficult.

  3. Effects of time, temperature, and pressure in the vicinity of the glass transition of a swollen polymer

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Upadhyaya, L.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2014-01-01

    In-situ spectroscopic ellipsometry is used for the dynamic study of thermally perturbed thin polystyrene films, swollen with n-octane or n-decane. The thermal evolution of the swollen films reveals pronounced changes both in equilibrium and kinetic properties. Upon vitrification, a kinetically

  4. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  5. Enzymatic Cellulose Palmitate Synthesis Using Immobilized Lipase

    Directory of Open Access Journals (Sweden)

    Anna Roosdiana

    2017-06-01

    Full Text Available Bacterial cellulose can be modified by esterification using palmitic acid and Mucor miehei  lipase  as catalyst. The purpose of this research was to determine the optimum conditions of esterification reaction of cellulose and palmitic acid . The esterification reaction was carried out at the time variation  of  6, 12, 18, 24 and 30 hours and the mass ratio of cellulose: palmitic acid (1: 11: 2, 1: 3, 1: 4, 1: 5,1:6 at 50 °C. The   cellulose palmitate  was examined  its  physical and chemical properties by using FTIR spectrophotometer, XRD, bubble point test and saponification  apparatus. The results showed that the optimum reaction time of esterification reaction of cellulose and palmitic acid occurred within 24 hours and the mass ratio of cellulose: palmitic acid was 1: 3 resulting in DS of  0.376 with  swelling index of 187 %, crystallinity index of 61.95%,  and Φ porous of 2.40 μm. Identification of functional groups using FTIR spectrophotometer showed that C=O ester group  was observed at 1737.74 cm-1 and strengthened  by  the appearance of C-O ester peak at 1280 cm-1. The conclusion of this study is reaction time and reactant ratio influence significantly the DS of cellulose ester.

  6. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  7. Cellulose Perversions

    Directory of Open Access Journals (Sweden)

    Maria H. Godinho

    2013-03-01

    Full Text Available Cellulose micro/nano-fibers can be produced by electrospinning from liquid crystalline solutions. Scanning electron microscopy (SEM, as well as atomic force microscopy (AFM and polarizing optical microscopy (POM measurements showed that cellulose-based electrospun fibers can curl and twist, due to the presence of an off-core line defect disclination, which was present when the fibers were prepared. This permits the mimicking of the shapes found in many systems in the living world, e.g., the tendrils of climbing plants, three to four orders of magnitude larger. In this work, we address the mechanism that is behind the spirals’ and helices’ appearance by recording the trajectories of the fibers toward diverse electrospinning targets. The intrinsic curvature of the system occurs via asymmetric contraction of an internal disclination line, which generates different shrinkages of the material along the fiber. The completely different instabilities observed for isotropic and anisotropic electrospun solutions at the exit of the needle seem to corroborate the hypothesis that the intrinsic curvature of the material is acquired during liquid crystalline sample processing inside the needle. The existence of perversions, which joins left and right helices, is also investigated by using suspended, as well as flat, targets. Possible routes of application inspired from the living world are addressed.

  8. Using linoleic acid embedded cellulose acetate membranes to in situ monitor polycyclic aromatic hydrocarbons in lakes and predict their bioavailability to submerged macrophytes.

    Science.gov (United States)

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun

    2015-05-19

    To date no passive sampler has been used to predict bioavailability of contaminants to macrophytes. Here a novel passive sampler, linoleic acid embedded cellulose acetate membrane (LAECAM), was developed and used to in situ measure the freely dissolved concentrations of ten polycyclic aromatic hydrocarbons in the sediment porewaters and the water columns of two lakes in both winter and summer and predict their bioavailability to the shoots of resident submerged macrophytes (Potamogeton malainus, Myriophyllum spicata, Najas minor All., and Vallisneria natans (Lour.) Hara). PAH sampling by LAECAMs could reach equilibrium within 21 days. The influence of temperature on LAECAM-water partition coefficients was 0.0008-0.0116 log units/°C. The method of LAECAM was comparable with the active sampling methods of liquid-liquid extraction combined with fDOC adjustment, centrifugation/solid-phase extraction (SPE), and filtration/SPE but had several advantages. After lipid normalization, concentrations of the PAHs in LAECAMs were not significantly different from those in the macrophytes. In contrast, concentrations of the PAHs in the triolein containing passive sampler (TECAM) deployed simultaneously with LAECAM were much higher. The results suggest that linoleic acid is more suitable than triolein as the model lipid for passive samplers to predict bioavailability of PAHs to submerged macrophytes.

  9. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf.

    Science.gov (United States)

    Ko, Sung Won; Soriano, Juan Paolo E; Lee, Ji Yeon; Unnithan, Afeesh Rajan; Park, Chan Hee; Kim, Cheol Sang

    2018-04-15

    Through exhaustive extraction via successive alkali and bleaching treatments cellulose was isolated from lettuce. The isolated cellulose was hydrolyzed using 64wt% H 2 SO 4 at 55°C under constant stirring for 1h to obtain cellulose nanocrystals (CNCs). Characterizations such as SEM, TEM, FTIR, TGA and XRD were done in order to determine differences in the physico-chemical characteristics of cellulose after each treatment step. The isolated CNCs have mean dimensions of 237±26, 33±12 and 32±7nm in length, thickness and height, respectively. These nanocrystals were incorporated to the formulations that were used to fabricate different chitosan-g-d,l-lactic acid (CgLA) scaffolds. Amide linkage formation between chitosan and lactic acid and further removal of water was facilitated by oven-drying under vacuum at 80°C. Results show that an increase in the concentration of CNCs added, increase in porosity, degradability, drug release property and cell viability were observed from the fabricated composite scaffolds. These results can provide information on how nanofillers such as CNCs can alter the properties of tissue scaffolds through the chemical properties and interactions they provide. Moreover, these characteristics can give new properties that are necessary for certain tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Abdomen - swollen

    Science.gov (United States)

    ... of a serious medical problem) Gas in the intestines from eating foods that are high in fiber (such as fruits and vegetables) Irritable bowel syndrome Lactose intolerance Ovarian cyst Partial bowel blockage Pregnancy ...

  11. Painful swollen leg – think beyond deep vein thrombosis or Baker's cyst

    Directory of Open Access Journals (Sweden)

    Babu Vinayagam

    2008-01-01

    Full Text Available Abstract Background The diagnosis of deep vein thrombosis of leg is very common in clinical practice. Not infrequently a range of pathologies are diagnosed after excluding a thrombosis, often after a period of anticoagulation. Case presentation This is a report of three patients who presented with a painful swollen leg and were initially treated as a deep vein thrombosis or a baker's cyst, but later diagnosed as a pleomorphic sarcoma, a malignant giant cell tumor of the muscle and a myxoid liposarcoma. A brief review of such similar reports and the relevant literature is presented. Conclusion A painful swollen leg is a common clinical scenario and though rare, tumors must be thought of without any delay, in a duplex negative, low risk deep vein thrombosis situation.

  12. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  13. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Films Based on Poly(lactic acid Biopolymer: Effect of Clay and Cellulosic Nanoparticles on their Physical, Mechanical and Structural Properties

    Directory of Open Access Journals (Sweden)

    Saeed Dadashi

    2012-12-01

    Full Text Available Physical, mechanical and structural properties of poly(lactic acid (PLA-basedfilms containing different amounts of nanoclay and cellulose prepared bysolvent casting method were examined. Physical properties including thickness,transparency and color did not change significantly with addition of nanoparticles to the polymer matrix. X-Ray diffraction (XRD patterns showed that pure PLA has a semi-crystalline structure and addition of nanoclay into this polymer would produce more regular structure which results in improved crystallization. It also showed that the peak is shifted to lower degrees, with greater interlayer distance of nanoclay giving an intercalated structure. Because of the nature and particle size of the MCC, it did not interact sufficiently with the polymer. Tensile strength, elastic modulus andelongation-at-break of neat PLA were 27.44 MPa, 1.84 GPa and 24.53% which with the addition of 7% of nanoclay, was changed to 40.34, 2.62 and 10.36°C, respectively. As the results of XRD, MCC were indications of no significant effect on mechanical properties, AFM images were used to evaluate the surface morphology and roughness of PLA films. Neat PLA had smoother surfaces and a lower roughness parameter (Sa. This study indicates that PLA has acceptable properties which could be used forpackaging and other applications.

  15. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.

    Science.gov (United States)

    Huan, Siqi; Liu, Guoxiang; Cheng, Wanli; Han, Guangping; Bai, Long

    2018-03-12

    Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.

  16. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration.

    Science.gov (United States)

    Mao, Daoyong; Li, Qing; Bai, Ningning; Dong, Hongzhou; Li, Daikun

    2018-01-15

    A major challenge in bone tissue engineering is the development of biomimetic scaffolds which should simultaneously meet mechanical strength and pore structure requirements. Herein, we combined technologies of high concentration solvent casting, particulate leaching, and room temperature compression molding to prepare a novel poly(lactic acid)/ethyl cellulose/hydroxyapatite (PLA/EC/HA) scaffold. The functional, structural and mechanical properties of the obtained porous scaffolds were characterized. The results indicated that the PLA/EC/HA scaffolds at the 20wt% HA loading level showed optimal mechanical properties and desired porous structure. Its porosity, contact angle, compressive yield strength and weight loss after 56days were 84.28±7.04%, 45.13±2.40°, 1.57±0.09MPa and 4.77±0.32%, respectively, which could satisfy the physiological demands to guide bone regeneration. Thus, the developed scaffolds have potential to be used as a bone substitute material for bone tissue engineering application. Copyright © 2017. Published by Elsevier Ltd.

  17. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu(2+) and Cd(2.).

    Science.gov (United States)

    Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin

    2016-09-20

    A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    Science.gov (United States)

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    Science.gov (United States)

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp

    Directory of Open Access Journals (Sweden)

    Anand Kumar Veeramachineni

    2016-06-01

    Full Text Available Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA, Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, Differential Scanning Calorimetry (DSC and Field Emission Scanning Electronic Microscopy (FESEM. The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient.

  1. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    Science.gov (United States)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  2. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  3. Radiation pretreatment of cellulose for energy production

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Dela Mines, A.S.; Banzon, R.B.; Simbul-Nuguid, Z.F.

    1983-01-01

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulose material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism. (author)

  4. Development of composites of polycaprolactone with cellulose

    International Nuclear Information System (INIS)

    Aguiar, V.O.; Marques, M.F.V.

    2015-01-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  5. Studies on the properties of poly(ethylene oxide) R-150 water-swollen hydrogel formed by irradiation

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin; Qiang Yizhong

    2000-01-01

    The physical and chemical properties of PEO R-150 water-swollen hydrogel films formed by electron beam irradiation are studied and compared with PEO R-150 hydrogel films. The experimental results show that the irradiation dose and mass fraction of the polymer do not produce a significant effect on the gel fraction, of the PEO R-150 water-swollen hydrogel films (P>0.05). The degrees of swelling of the PEO R-150 water-swollen hydrogel films decrease as the irradiation dose increasing (P 0.05). The results indicate that the saturant crosslinking density, the lowest degree of swelling of the PEO R-150 water-swollen hydrogel films produce and unfavorable effect on their machinery strength

  6. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept

    OpenAIRE

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Background Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin ...

  7. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    Science.gov (United States)

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cellulose utilization: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J A

    1975-01-01

    To summarize, the conversion of cellulose to ethanol via hydrolysis to glucose followed by fermentation appears to be highly efficient in terms of energy conservation, yield, and quality of product, especially when reasonably high quality cellulosic waste is available.

  9. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    Science.gov (United States)

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase.

    Science.gov (United States)

    Gilmartin, M A; Hart, J P

    1994-05-01

    Amperometry in stirred solution has been used for the systematic evaluation of modified screen-printed carbon electrodes (SPCEs) with a view to developing a reagentless biosensor for uric acid. The developed system consists of a base cobalt phthalocyanine (CoPC) electrode tailored to the electrocatalytic oxidation of H2O2 by means of a cellulose acetate (CA)-uricase bilayer. Uricase was immobilized by drop-coating the enzyme onto the CA membrane covering the CoPC-SPCE. The device exploits the near-universal H2O2-generating propensity of oxidases, the permselectivity of the CA film towards H2O2 and the electrocatalytic oxidation of this product at the CoPC-SPCE. The electrochemical oxidation of the resulting Co+ species was used as the analytical signal, facilitating the application of a greatly reduced operating potential when compared with that required for direct oxidation of H2O2 at unmodified electrodes. The time required to achieve 95% of the steady-state current (t95i(ss)) was 44 s [relative standard deviation = 7.5% (n = 10)]. Amperometric calibrations were linear over the range from 13 x 10(-6) to 1 x 10(-3) mol dm-3, with the former representing the limit of detection. The CA membrane extended the linear range of the biosensor by over two orders of magnitude, when apparent Michaelis-Menten constants (Km') of immobilized and free enzymes are compared. This suggests that the process is diffusion-controlled and not governed by the kinetics of the enzyme. The precision of electrode fabrication was determined by cyclic voltammetry to be 4.9% (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-L-lactic acid with chondrocyte-like cells

    International Nuclear Information System (INIS)

    Cecen, Berivan; Kozaci, Leyla Didem; Yuksel, Mithat; Ustun, Ozcan; Ergur, Bekir Ugur; Havitcioglu, Hasan

    2016-01-01

    The current study reports the biocompatibility and biomechanical characteristics of loofah-based scaffolds combined with hydroxyapatite (HA), cellulose, poly-L-lactic acid (PLLA) with chondrocytes-like cells. Scanning electron microscope (SEM) micrographs of the scaffolds showed that the addition of PLLA usually resulted in an increase in cell's attachment on scaffolds. Mechanical and elemental analyzes were assessed using tensile test and Energy Dispersive X-ray spectrometry (EDS), respectively. In summary, we showed that the loofah + PLLA + HA scaffolds perform significantly better than other loofah–based scaffolds employed in terms of increasing a diversity of mechanical properties including tensile strength and Young's modulus. Based on the analysis of the differential scanning calorimetry (DSC) thermograms and EDS spectrums that give an idea about the calcium phosphate (CaP) ratios, the improvement in the mechanical properties could principally be recognized to the strong interaction formed between loofah, PLLA and HA. The viability of chondrocytes on loofah–based scaffolds was analyzed by XTT tests. However, none of the scaffolds have proved to be toxic in metabolic activity. The histological evaluation obtained by hematoxylin and eosin (H&E), Masson trichrome, toluidine blue and immunohistochemistry methods showed that cells in all scaffolds produced extracellular matrix that defined proteoglycan and type I-II collagens. The results of this study suggest that the loofah-based scaffold with desirable properties can be considered as an ideal candidate for cartilage tissue engineering applications. - Highlights: • In this study we designed a new scaffold and characterized it using biochemical and biomechanical assays. • Our manuscript with the novelty of the scaffold design will add new perspective in the literature about loofah based scaffolds. • The objective of the study is to investigate the natural and novel loofah based scaffolds with

  12. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-L-lactic acid with chondrocyte-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Cecen, Berivan, E-mail: berivan.erik@deu.edu.tr [Dokuz Eylul University, The Institute of Health Science, Department of Biomechanics, 35340 Izmir (Turkey); Kozaci, Leyla Didem [Yildirim Beyazit University, Medical Faculty, Department of Medical Biochemistry, 06800 Ankara (Turkey); Yildirim Beyazit University, Musculoskeletal System Studies Research Center, 06800 Ankara (Turkey); Yuksel, Mithat [Ege University, Engineering Faculty, Department of Chemical Engineering, 35100 Izmir (Turkey); Ustun, Ozcan; Ergur, Bekir Ugur [Dokuz Eylul University, Department of Histology & Embryology, 35340 Izmir (Turkey); Havitcioglu, Hasan [Dokuz Eylul University, The Institute of Health Science, Department of Biomechanics, 35340 Izmir (Turkey); Dokuz Eylul University, Medicine Faculty, Department of Orthopaedics and Traumatology, 35340 Izmir (Turkey)

    2016-12-01

    The current study reports the biocompatibility and biomechanical characteristics of loofah-based scaffolds combined with hydroxyapatite (HA), cellulose, poly-L-lactic acid (PLLA) with chondrocytes-like cells. Scanning electron microscope (SEM) micrographs of the scaffolds showed that the addition of PLLA usually resulted in an increase in cell's attachment on scaffolds. Mechanical and elemental analyzes were assessed using tensile test and Energy Dispersive X-ray spectrometry (EDS), respectively. In summary, we showed that the loofah + PLLA + HA scaffolds perform significantly better than other loofah–based scaffolds employed in terms of increasing a diversity of mechanical properties including tensile strength and Young's modulus. Based on the analysis of the differential scanning calorimetry (DSC) thermograms and EDS spectrums that give an idea about the calcium phosphate (CaP) ratios, the improvement in the mechanical properties could principally be recognized to the strong interaction formed between loofah, PLLA and HA. The viability of chondrocytes on loofah–based scaffolds was analyzed by XTT tests. However, none of the scaffolds have proved to be toxic in metabolic activity. The histological evaluation obtained by hematoxylin and eosin (H&E), Masson trichrome, toluidine blue and immunohistochemistry methods showed that cells in all scaffolds produced extracellular matrix that defined proteoglycan and type I-II collagens. The results of this study suggest that the loofah-based scaffold with desirable properties can be considered as an ideal candidate for cartilage tissue engineering applications. - Highlights: • In this study we designed a new scaffold and characterized it using biochemical and biomechanical assays. • Our manuscript with the novelty of the scaffold design will add new perspective in the literature about loofah based scaffolds. • The objective of the study is to investigate the natural and novel loofah based scaffolds with

  13. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  14. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Namsaraev, B.B.; Kuznetsova, E.A.; Termkhitarova, N.G.

    1987-01-01

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co 60 ) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  15. Polylactic Acid Improves the Rheological Properties, and Promotes the Degradation of Sodium Carboxymethyl Cellulose-Modified Alkali-Activated Cement

    Directory of Open Access Journals (Sweden)

    Huijing Tan

    2016-10-01

    Full Text Available In consideration of the insolubility in water, sensitivity to heat and wide application in the oil and gas industry as a degradable additive, this paper introduces polylactic acid (PLA to a self-degradable temporary sealing material (SDTSM to investigate its effect on the SDTSM performance and evaluate its potential to improve the rheological properties and further promote the self-degradation of the material. The thermal degradation of PLA, the rheological properties, compressive strength, hydrated products and water absorption of SDTSMs with different PLA dosages were tested. The analysis showed that the addition of 2% PLA increased the fluidity by 13.18% and reduced the plastic viscosity by 38.04%, when compared to those of the SDTSM without PLA. PLA increased the water absorption of 200 °C-heated SDTSM and had small effect on the types but decreased the hydrate products of 85 °C-cured SDTSM, and created plenty of pores in 200 °C-heated SDTSM. PLA enhanced the self-degradation level of SDTSM by generating a large amount of pores in cement. These pores worked in two ways: one was such a large amount of pores led to a looser microstructure; the other was these pores made the water impregnate the cement more easily, and then made the dissolution of substances in the 200 °C-heated SDTSM progress faster to generate heat and to destruct the microstructure.

  16. Visualising substrate-fingermark interactions: Solid-state NMR spectroscopy of amino acid reagent development on cellulose substrates.

    Science.gov (United States)

    Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris

    2015-05-01

    Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings.

    Science.gov (United States)

    Heinämäki, Jyrki; Halenius, Anna; Paavo, Maaja; Alakurtti, Sami; Pitkänen, Pauliina; Pirttimaa, Minni; Paaver, Urve; Kirsimäe, Kalle; Kogermann, Karin; Yliruusi, Jouko

    2015-07-15

    We showed that the addition of suberin fatty acids (SFAs) even at small concentrations significantly improves the water vapor barrier properties of hydroxypropyl methylcellulose (HPMC) films. SFAs were isolated from the outer birch bark using extractive hydrolysis. The effects of SFAs on the film formation of aqueous HPMC were investigated with free films plasticized with polyethylene glycol (PEG 400). Special attention was paid on the physical solid-state, moisture barrier and mechanical stress-strain properties of films intended for tablet film coatings. Topography and surface morphology, glass transition temperature (Tg), tensile strength, Young's modulus, and water vapor permeation (WVP) of films were studied. The addition of SFAs lowered the Tg of films suggesting partial enhancement in film plasticization. The WVP of films decreased with increasing SFAs concentration up to 15% (calculated as a % w/w from a polymer weight). The WVP value for a non-suberized reference film and suberized film plasticized with PEG 400 was 2.13×10(-6) and 0.69[×10(-6) g/(mm(2)×h)×mm/Pa], respectively. The addition of SFAs impaired the mechanical stress-strain properties of HPMC films by reducing the deformation capacity of film. In conclusion, the film properties and performance of aqueous HPMC can be modified by including SFAs in the films. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  19. Effect of fillers on parameters of dry and swollen polymer matrix networks

    Directory of Open Access Journals (Sweden)

    Stojčeva-Radovanović Blaga

    2002-01-01

    Full Text Available The effect of nano- and micro- particle size of SiO2 on dry and swollen parameter network of the polymer matrix blends of acrylontrile-butadiene (NBR and chlorosulphonated polyethylene (CSM such as: volume and mass degree of swelling Rv and Rw; volume fraction of NBR-CSM polymer matrix in swollen gel V2 elasticity modulus G; interaction parameter between NBR-CSM polymer matrix and solvent λ and crossiinking density ν, was tested. The influence of nano-and micro- particle size of SiO2 on physical and mechanical properties, as well as effectiveness volume ratio of filiers in NBR-CSM polymer matrix at 300% elongation was tested using Einstein-Quth-Gold equation. The Kraus equation for swelling test of NBR-CSM polymer matrix containing nano- and micro- particle size of SiO2. Test results have shown that a greater interaction of nano-particie size of SiO2 with NBR-CSM polymer matrix, and possible chemical bonding, than the one of micro-silica was a consequence of a greater contact area. This results in better physical and mechanical properties.

  20. Characterization of cellulose nanowhiskers

    International Nuclear Information System (INIS)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia

    2015-01-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  1. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  2. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  3. Ionic cluster size distributions of swollen nafion/sulfated beta-cyclodextrin membranes characterized by nuclear magnetic resonance cryoporometry.

    Science.gov (United States)

    Jeon, Jae-Deok; Kwak, Seung-Yeop

    2007-08-16

    Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.

  4. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    International Nuclear Information System (INIS)

    Arif, S.; Kautek, W.

    2013-01-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  5. Efficacy of flurbiprofen 8.75 mg lozenge in patients with a swollen and inflamed sore throat.

    Science.gov (United States)

    Aspley, Sue; Shephard, Adrian; Schachtel, Emily; Sanner, Kathleen; Savino, Laurie; Schachtel, Bernard

    2016-09-01

    Sore throat is often over-treated with antibiotics, therefore there is a need for non-antibiotic treatments that provide effective relief. From the patient's point of view, symptoms of pharyngeal inflammation such as a "swollen" and "inflamed" throat are often considered the most bothersome; so, a non-steroidal anti-inflammatory drug could be an appropriate treatment. We investigated the efficacy and safety of flurbiprofen 8.75 mg lozenge in adults with a swollen and inflamed throat. We enrolled adults with moderate-to-severe sore throat and evidence of tonsillo-pharyngitis into a randomized, double-blind study. Patients received flurbiprofen 8.75 mg or placebo lozenges every 3-6 hours as needed (up to five lozenges in 24 hours) and rated their symptoms (sore throat pain, difficulty swallowing and the sensation of a swollen throat) on standard linear scales regularly over 24 hours. The efficacy of flurbiprofen lozenge was determined in patients reporting a swollen and inflamed throat at baseline, as well as those with relatively severe symptoms. ClinicalTrials.gov NCT01049334. The main outcome measures were the time-weighted summed differences in patient-reported sore throat pain, difficulty swallowing and swollen throat over 24 hours. Out of 204 patients, 124 (60.8%) described their throats as swollen and inflamed at baseline. Flurbiprofen lozenges provided greater relief than placebo over 24 hours: 79.8%, 99.6% and 69.3% (for sore throat pain, difficulty swallowing and swollen throat, respectively, all P ≤ 0.01). These outcomes were more substantial in patients with relatively severe symptoms. No serious or unexpected adverse events occurred. Flurbiprofen 8.75 mg lozenge appears to provide effective, well-tolerated relief of sore throat, difficulty swallowing and swollen throat in adults with a swollen and inflamed throat, as well as those with relatively severe symptoms. A limitation of these findings is that, while predetermined, these are

  6. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  7. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  8. Focus on CSIR research in pollution waste: Cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. cut grass, is a sustainable source of energy when cellulose is utilised in the anaerobic degradation to produce...

  9. A dataset for preparing pristine graphene-palladium nanocomposites using swollen liquid crystal templates

    Science.gov (United States)

    Vats, Tripti; Siril, Prem Felix

    2017-12-01

    Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this dataset we include all the parameters and details of different techniques used for the characterization of G, SLCs and synthesized G-Pd nanocomposites. The synthesized G-palladium nanocomposites (Pd-G) exhibited improved catalytic activity compared with Pd-RGO and Pd nanoparticles, in the hydrogenation of nitrophenols and C-C coupling reactions.

  10. Structure analyses of swollen rubber-carbon black systems by contrast variation SANS

    International Nuclear Information System (INIS)

    Takenaka, Mikihito; Nishitsuji, Shotaro; Fujii, Sumiaki; Amino, Naoya; Ishikawa, Yasuhiro; Yamaguchi, Daisuke; Koizumi, Satoshi

    2010-01-01

    The polymer layers adsorbed on carbon black (CB) aggregates in rubber/CB systems have been investigated with contrast variation small-angle neutron scattering (SANS) method. Specimens were swollen by toluene/deuterated toluene solvents having various scattering length densities and their scattering intensities were measured with SANS. The contrast variation SANS for the specimens yielded partial scattering functions: the scattering function for polymer-polymer correlation S pp (q), the scattering function for CB- CB correlation S cc (q), and the scattering function for polymer- CB correlation S pc (q). The analyses of the partial scattering functions explored the existence of dense polymer layers around CB aggregates. Several characteristic parameters are estimated from the analyses, such as the size of aggregates, the thickness of layers, and the volume fractions of polymer of layers and matrix. (author)

  11. Synthesis and characterization of amorphous cellulose from triacetate of cellulose

    International Nuclear Information System (INIS)

    Vega-Baudrit, Jose; Sibaja, Maria; Nikolaeva, Svetlana; Rivera A, Andrea

    2014-01-01

    It was carried-out a study for the synthesis and characterization of amorphous cellulose starting from cellulose triacetate. X-rays diffraction was used in order to obtain the cellulose crystallinity degree, also infrared spectroscopy FTIR was used. (author)

  12. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  13. Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose.

    Science.gov (United States)

    Hamid, Sharifah Bee Abd; Zain, Siti Khadijah; Das, Rasel; Centi, Gabriele

    2016-03-15

    The utilization of sonication in combination with tungstophosphoric acid (PWA) catalyst reduces dramatically the time of operations from 30h to 10min by using an optimum sonication power of 225W. The basic cellulosic structure is maintained, allowing preparing high-quality nanocellulose. The size of the nanocellulose obtained was in the range from 15 to 35nm in diameter and several hundred nanometers in length, with a high crystallinity of about 88%. The nanocellulose shows a surface charge of -38.2mV which allows to obtaina stable colloidal suspension. The surface tension of the stable, swollen aqueous nanocellulose was close to that of water. These characteristics, together with the fast procedure allowed from the synergic combination of PWA and sonication, evidence the high potential of the proposed method for the industrial production of nanocellulose having the properties required in many applications. Copyright © 2015. Published by Elsevier Ltd.

  14. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  15. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction.

    Science.gov (United States)

    Wang, Wenhang; Zhang, Xiuling; Li, Cong; Du, Guanhua; Zhang, Hongjie; Ni, Yonghao

    2018-06-01

    Collagen-based films including casings with a promising application in meat industry are still needed to improve its inferior performance. In the present study, the reinforcement of carboxylated cellulose nanofibers (CNF) for collagen film, based on inter-/intra- molecular electrostatic interaction between cationic acid-swollen collagen fiber and anionic carboxylated CNF, was investigated. Adding CNF decreased the zeta-potential but increased particle size of collagen fiber suspension, with little effect on pH. Furthermore, CNF addition led to a higher tensile strength but a lower elongation, and the water vapor and oxygen barrier properties were improved remarkably. Because the CNF content was 50 g kg -1 or lower, the films had a homogeneous interwoven network, and CNF homogeneously embedded into collagen fiber matrix according to the scanning electron microscopy and atomic force microscopy analysis. Additionally, CNF addition increased film thickness and opacity, as well as swelling rate. The incorporation of CNF endows collagen fiber films good mechanical and barrier properties over a proper concentration range (≤ 50 g kg -1 collagen fiber), which is closely associated with electrostatic reaction of collagen fiber and CNF and, subsequently, the form of the homogenous, compatible spatial network, indicating a potential applications of CNF in collagenous protein films, such as edible casings. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Cellulose Triacetate Synthesis from Cellulosic Wastes by Heterogeneous Reactions

    Directory of Open Access Journals (Sweden)

    Sherif Shawki Z. Hindi

    2015-06-01

    Full Text Available Cellulosic fibers from cotton fibers (CF, recycled writing papers (RWP, recycled newspapers (RN, and macerated woody fibers of Leucaena leucocephala (MWFL were acetylated by heterogeneous reactions with glacial acetic acid, concentrated H2SO4, and acetic anhydride. The resultant cellulose triacetate (CTA was characterized for yield and solubility as well as by using 1H-NMR spectroscopy and SEM. The acetylated product (AP yields for CF, RWP, RN, and MWFL were 112, 94, 84, and 73%, respectively. After isolation of pure CTA from the AP, the CTA yields were 87, 80, 68, and 54%. The solubility test for the CTA’s showed a clear solubility in chloroform, as well as mixture of chloroform and methanol (9:1v/v and vice versa for acetone. The degree of substitution (DS values for the CTA’s produced were nearly identical and confirmed the presence of CTA. In addition, the pore diameter of the CTA skeleton ranged from 0.072 to 0.239 µm for RWP and RN, and within the dimension scale of the CTA pinholes confirm the synthesis of CTA. Accordingly, pouring of the AP liquor at 25 °C in distilled water at the end of the acetylation and filtration did not hydrolyze the CTA to cellulose diacetate.

  17. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  18. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme.

    Science.gov (United States)

    Pellegrini, Vanessa O A; Serpa, Viviane Isabel; Godoy, Andre S; Camilo, Cesar M; Bernardes, Amanda; Rezende, Camila A; Junior, Nei Pereira; Franco Cairo, João Paulo L; Squina, Fabio M; Polikarpov, Igor

    2015-11-01

    Trichoderma filamentous fungi have been investigated due to their ability to secrete cellulases which find various biotechnological applications such as biomass hydrolysis and cellulosic ethanol production. Previous studies demonstrated that Trichoderma harzianum IOC-3844 has a high degree of cellulolytic activity and potential for biomass hydrolysis. However, enzymatic, biochemical, and structural studies of cellulases from T. harzianum are scarce. This work reports biochemical characterization of the recombinant endoglucanase I from T. harzianum, ThCel7B, and its catalytic core domain. The constructs display optimum activity at 55 °C and a surprisingly acidic pH optimum of 3.0. The full-length enzyme is able to hydrolyze a variety of substrates, with high specific activity: 75 U/mg for β-glucan, 46 U/mg toward xyloglucan, 39 U/mg for lichenan, 26 U/mg for carboxymethyl cellulose, 18 U/mg for 4-nitrophenyl β-D-cellobioside, 16 U/mg for rye arabinoxylan, and 12 U/mg toward xylan. The enzyme also hydrolyzed filter paper, phosphoric acid swollen cellulose, Sigmacell 20, Avicel PH-101, and cellulose, albeit with lower efficiency. The ThCel7B catalytic domain displays similar substrate diversity. Fluorescence-based thermal shift assays showed that thermal stability is highest at pH 5.0. We determined kinetic parameters and analyzed a pattern of oligosaccharide substrates hydrolysis, revealing cellobiose as a final product of C6 degradation. Finally, we visualized effects of ThCel7B on oat spelt using scanning electron microscopy, demonstrating the morphological changes of the substrate during the hydrolysis. The acidic behavior of ThCel7B and its considerable thermostability hold a promise of its industrial applications and other biotechnological uses under extremely acidic conditions.

  19. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  1. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Science.gov (United States)

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cellulose: To depolymerize… or not to?

    Science.gov (United States)

    Coseri, Sergiu

    Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH 2 OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary

  4. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  5. Structural Identification of Lentinus edodes Cellulose Derivative that ...

    African Journals Online (AJOL)

    edodes cellulose in water surroundings that can efficiently inhibit aflatoxin production by Aspergillus flavus. .... blowing instrument, dissolved in methanol, and ... with NaBH4, neutralized with 50 % acetic acid, ... saccharides and peptides.

  6. Can tissue dielectric constant measurement aid in differentiating lymphoedema from lipoedema in women with swollen legs?

    DEFF Research Database (Denmark)

    Birkballe, Susanne; Jensen, Maj-Britt Raaby; Noerregaard, S

    2014-01-01

    BACKGROUND: Distinguishing lymphoedema from lipoedema in women with swollen legs can be difficult. Local tissue water content can be quantified using tissue dielectric constant (TDC) measurements. OBJECTIVES: To examine whether TDC measurements can differentiate untreated lower extremity...... controls. All subjects were measured at three predefined sites (foot, ankle and lower leg). All groups except U-LP were measured by three blinded investigators. Using a handheld device, a 300-MHz electromagnetic wave is transmitted into the skin via a 2.5-mm depth probe. TDC calculated from the reflected...... wave is directly proportional to tissue water content ranging from 1 (vacuum) to 78.5 (pure water). RESULTS: Mean ± SD TDC values for U-LP were 48.8 ± 5.2. TDC values of T-LP, LipP and controls were 34.0 ± 6.6, 29.5 ± 6.2 and 32.3 ± 5.7, respectively. U-LP had significantly higher TDC values in all...

  7. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

    Science.gov (United States)

    Vats, T.; Dutt, S.; Kumar, R.; Siril, P. F.

    2016-09-01

    Amazing conductivity, perfect honeycomb sp2 arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity.

  8. Extraction of cerium (III) by polymer gels swollen with bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Takashima, Yoichi; Matsumoto, Shiro; Yamanaka, Hiromitsu.

    1995-01-01

    The extraction of Ce (III) from aqueous solutions containing Al (NO 3 ) 3 was examined by using styrene-divinylbenzene copolymer (SDB) gels swollen with dihexyl-N, N-diethylcarbamoylmethylphosphonate (CMP), octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and an equimolar mixture of CMP and CMPO. The extraction constants (K ex ) for the gels with CMP and CMPO were evaluated. The distribution ratio of Ce (III) for the gel with an equimolar mixture of CMP and CMPO was described as K d = (K ex CMP [CMP] 3 + K ex CMPO [CMPO] 3 ) [NO 3 - ] 3 by using these extraction constants. The extraction rate was found to be controlled by diffusion of Ce-complex [Ce(NO 3 ) 3 (CMPO) 3 or Ce(NO 3 ) 3 (CMP) 3 ] through the gel. The diffusion coefficient (D s ) was inversely proportional to the viscosity of extractant (η) and represented by an expression similar to the Stokes-Einstein equation, D s η/T = constant. A decrease in the viscosity of extractant was effective for increasing the extraction rate. (author)

  9. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  10. Characterisation of Microbial Cellulose Modified by Graft Copolymerization Technique

    International Nuclear Information System (INIS)

    Tita Puspitasari; Cynthia Linaya Radiman

    2008-01-01

    Chemical and phisycal modifications of polymer can be carried out by radiation induced graft copolymerization. This research was carried out to study the morphology and crystallinity of microbial cellulose copolymer grafted by acrylic acid (MC-g-AAC). The SEM microstructural analysis proved that the acrylic acid could diffuse into the microbial celullose and resulted a dense structure. Crystallinity measurement showded that the crystalinity of microbial cellulose increase from 50 % to 53 % after modification. (author)

  11. Extraction of cellulose microcrystalline from galam wood for biopolymer

    Science.gov (United States)

    Ismail, Ika; Sa'adiyah, Devy; Rahajeng, Putri; Suprayitno, Abdi; Andiana, Rocky

    2018-04-01

    Consumption of plastic raw materials tends to increase, but until now the meet of the consumption of plastic raw are still low, even some are still imported. Nowadays, Indonesia's plastic needs are supported by petrochemicals where raw materials are still dependent abroad and petropolymer raw materials are derived from petroleum which will soon be depleted due to rising petroleum needs. Therefore, various studies have been conducted to develop natural fiber-based polymers that are biodegradable and abundant in nature. It is because the natural polymer production process is very efficient and very environmentally friendly. There have been many studies of biopolymers especially natural fiber-based polymers from plants, due to plants containing cellulose, hemicellulose and lignin. However, cellulose is the only one who has crystalline structures. Cellulose has a high crystality compared to amorphous lignin and hemicellulose. In this study, extracted cellulose as biopolymer and amplifier on composite. The cellulose is extracted from galam wood from East Kalimantan. Cellulose extraction will be obtained in nano / micro form through chemical and mechanical treatment processes. The chemical treatment of cellulose extraction is alkalinization process using NaOH solution, bleaching using NaClO2 and acid hydrolysis using sulfuric acid. After chemical treatment, ultrasonic mechanical treatment is made to make cellulose fibers into micro or nano size. Besides, cellulose results will be characterized. Characterization was performed to analyze molecules of cellulose compounds extracted from plants using Fourier Transformation Infra Red (FTIR) testing. XRD testing to analyze cellulose crystallinity. Scanning Electron Microscope (SEM) test to analyze morphology and fiber size.

  12. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    Science.gov (United States)

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  13. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  14. Development of green nanocomposites reinforced by cellulose nanofibers extracted from paper sludge

    Science.gov (United States)

    Takagi, Hitoshi; Nakagaito, Antonio N.; Kusaka, Kazuya; Muneta, Yuya

    2015-03-01

    Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.

  15. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  16. Method of saccharifying cellulose

    Science.gov (United States)

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  17. Body mass index and the rheumatoid arthritis swollen joint count: an observational study

    Science.gov (United States)

    Caplan, Liron; Davis, Lisa A.; Bright, Christina M.; Kerr, Gail S.; Lazaro, Deana M.; Khan, Nasim A.; Richards, J. Steuart; Johnson, Dannette S.; Cannon, Grant W.; Reimold, Andreas M.; Mikuls, Ted R.

    2012-01-01

    Objective Obesity is a prevalent condition and a serious health concern. The relationship between obesity and RA disease activity and severity has not been adequately examined, and there are concerns that periarticular adipose tissue may reduce the utility of the joint examination. Methods We used a cross-sectional study to compare the performance of swollen joint count (SJC) in subjects with rheumatoid arthritis (RA) across body mass index (BMI) strata. Specifically, regression techniques tested for associations of SJC and seven RA disease activity/severity measures (including high sensitivity c-reactive protein, radiographic changes, and multi-dimensional health assessment questionnaire scores) within BMI quartiles. We also evaluated the association of BMI with radiographic evidence of RA in multivariate analyses and the association of BMI with SJC. Clinical and laboratory data from 980 Veterans Affairs Rheumatoid Arthritis (VARA) registry participants were analyzed using linear and logistic regression. Results Associations were evident between SJC and six of the seven examined RA disease activity/severity measures. SJC predicts RA disease activity/severity at least as well in more obese subjects as in subjects with lower BMIs, and there was a trend towards better performance in higher BMI individuals. Subjects with higher BMIs were marginally less likely to be characterized by radiographic changes (O.R. 0.98, p=0.051). We found no association between BMI and SJC. Conclusions BMI does not obscure the relationship of SJC and objective disease activity measures. There is a borderline association of higher BMI and likelihood of radiographic changes characteristic of RA after controlling for clinical characteristics. PMID:22623288

  18. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  19. Sol-gel analysis and study of the swollen kinetic in Obtained hydrogels by means of techniques of gamma Irradiation

    International Nuclear Information System (INIS)

    Concepcion Villanueva, Daniel; Rapado Paneque, Manuel

    2001-01-01

    Hydrogels are hydrofilic polimers that swells increasing their volume in presence of water, without be dissolved and maintaining their form until reach physics-chemical equilibrium. The employment of nuclear techniques for their obtaining is a novel method and brings about many advantages. We evaluated the crosslinking process using a software and we determined the parameters that characterize the system. The dose and pH influence during the swollen was also checked using gravimetry method

  20. Joint involvement in patients affected by systemic lupus erythematosus: application of the swollen to tender joint count ratio

    Directory of Open Access Journals (Sweden)

    E. Cipriano

    2015-09-01

    Full Text Available Joint involvement is a common manifestation in systemic lupus erythematosus (SLE. According to the SLE disease activity index 2000 (SLEDAI-2K, joint involvement is present in case of ≥2 joints with pain and signs of inflammation. However this definition could fail to catch all the various features of joint involvement. Alternatively the Swollen to Tender joint Ratio (STR could be used. This new index, which was originally proposed for rheumatoid arthritis (RA patients, is based on the count of 28 swollen and tender joints. Our study is, therefore, aimed to assess joint involvement in a SLE cohort using the STR. SLE patients with joint symptoms (≥1 tender joint were enrolled over a period of one month. Disease activity was assessed by SLEDAI-2K. We performed the swollen and tender joint count (0-28 and calculated the STR. Depending on the STR, SLE patients were grouped into three categories of disease activity: low (STR1.0. We also calculated the disease activity score based on a 28-joint count and the erythrocyte sedimentation rate (DAS28-ESR. We enrolled 100 SLE patients [F/M 95/5, mean±standard deviation (SD age 46.3±10.6 years, mean±SD disease duration 147.1±103.8 months]. The median of tender and swollen joints was 4 (IQR 7 and 1 (IQR 2.5, respectively. The median STR value was 0.03 (IQR 0.6. According to the STR, disease activity was low in 70 patients, moderate in 23 and high in 7. A significant correlation was identified between STR values and DAS28 (r=0.33, p=0.001. The present study suggests a correlation between STR and DAS28, allowing an easier and faster assessment of joint involvement with the former index.

  1. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.

    Science.gov (United States)

    Abu-Danso, Emmanuel; Srivastava, Varsha; Sillanpää, Mika; Bhatnagar, Amit

    2017-09-01

    In this work, cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) were synthesized from absorbent cotton. Two pretreatments viz. dewaxing and bleaching with mild alkali were applied to the precursor (cotton). Acid hydrolysis was conducted with H 2 SO 4 and dissolution of cotton was achieved with a mixture of NaOH-thiourea-urea-H 2 O at -3°C. Synthesized cellulose samples were characterized using FTIR, XRD, SEM, BET, and zeta potential. It seems that synthesis conditions contributed to negative surface charge on cellulose samples and CNCs had the higher negative surface charge compared to CNFs. Furthermore, BET surface area, pore volume and pore diameter of CNCs were found to be higher as compared to CNFs. The dewaxed cellulose nanofibers (CNF D) had a slightly higher BET surface area (0.47m 2 /g) and bigger pore diameter (59.87Å) from attenuated contraction compared to waxed cellulose nanofibers (CNFW) (0.38m 2 /g and 44.89Å). The XRD of CNCs revealed a semi-crystalline structure and the dissolution agents influenced the crystallinity of CNFs. SEM images showed the porous nature of CNFs, the flaky nature and the nano-sized width of CNCs. Synthesized CNF D showed a better potential as an adsorbent with an average lead removal efficiency of 91.49% from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release.

    Science.gov (United States)

    Hamed, Rania; Al Baraghthi, Tamadur; Sunoqrot, Suhair

    2016-11-21

    Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.

  3. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-05-01

    Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents. In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics. Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes. Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes

  4. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Robertson, G.P.; Spindler, M.W.; Harrison, W.N.; Somers, P.J.

    1993-07-01

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  5. Cellulose nanocrystals from acacia bark-Influence of solvent extraction.

    Science.gov (United States)

    Taflick, Ticiane; Schwendler, Luana A; Rosa, Simone M L; Bica, Clara I D; Nachtigall, Sônia M B

    2017-08-01

    The isolation of cellulose nanocrystals from different lignocellulosic materials has shown increased interest in academic and technological research. These materials have excellent mechanical properties and can be used as nanofillers for polymer composites as well as transparent films for various applications. In this work, cellulose isolation was performed following an environmental friendly procedure without chlorine. Cellulose nanocrystals were isolated from the exhausted acacia bark (after the industrial process of extracting tannin) with the objective of evaluating the effect of the solvent extraction steps on the characteristics of cellulose and cellulose nanocrystals. It was also assessed the effect of acid hydrolysis time on the thermal stability, morphology and size of the nanocrystals, through TGA, TEM and light scattering analyses. It was concluded that the extraction step with solvents was important in the isolation of cellulose, but irrelevant in the isolation of cellulose nanocrystals. Light scattering experiments indicated that 30min of hydrolysis was long enough for the isolation of cellulose nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    USER

    2016-06-15

    Jun 15, 2016 ... The extraction method of algae cellulose was a modification of ... triplicate. Characterization of cellulose. Analysis of ... The current analysis of the cellulose extracted .... Cellulose nanomaterials review: structure, properties and.

  7. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  8. Peak broadening in paper chromatography and related techniques : III. Peak broadening in thin-layer chromatography on cellulose powder

    NARCIS (Netherlands)

    Ligny, C.L. de; Remijnse, A.G.

    1968-01-01

    The mechanism of peak broadening in thin-layer chromatography on cellulose powder was investigated by comparing the peak widths obtained in chromatography with those caused only by diffusion in the cellulose powder, for a set of amino acids of widely differing RF values and six kinds of cellulose

  9. Obtaining of Peracetic Cellulose from Oat Straw for Paper Manufacturing

    Directory of Open Access Journals (Sweden)

    Tetyana V. Zelenchuk

    2017-10-01

    Full Text Available Background. Development of technology for obtaining peracetic pulp from oat straw and its use in the production of one of the paper mass types. Objective. Determination of peracetic cooking technological parameters’ optimal values for oat straw peracetic cellulose quality indicators. Methods. The oat straw cooking was carried out with peracetic acid at 95 ± 1 °C from 90 to 180 min for hydromodulus 8:1 and 7:1, using a sodium tungstate catalyst. To determine the oat straw peracetic cellulose mechanical indexes, laboratory samples of paper weighing 70 g/m2 were made. Results. Technological parameters’ optimum values (temperature, cooking duration, hydromodulus, hydrogen peroxide and acetic acid concentration for the oat straw delignification process were established. It is shown that the sodium tungstate catalyst addition to the cooking solution at a rate of up to 1 % of the plant raw material weight helps to reduce the lignin content in cellulose to 15 %. A diagram of the cellulose yield dependence on its residual lignin content for various methods of non-wood plant material species delignification is constructed. The high efficiency of the peracetic method for obtaining cellulose from non-wood plant raw materials, in particular from oat straw, has been confirmed. It is determined that the obtained peracetic cellulose from oat straw has high mechanical indexes. Conclusions. Oat straw peracetic cellulose can be used for the production of paper and cardboard mass types, in particular wrapping paper.

  10. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  11. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    International Nuclear Information System (INIS)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  12. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C., E-mail: ecmuniz@uem.b [Universidade Estadual de Maringa (DG/UEM), PR (Brazil). Dept. de Quimica. Grupo de Materiais Polimericos e Compositos

    2009-07-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  13. Preparation and Characterization of Microcrystalline Cellulose (MCC from Kenaf and Cotton Stem

    Directory of Open Access Journals (Sweden)

    Farshad Mirehki

    2013-11-01

    Full Text Available Cellulose, microcrystalline cellulose (MCC and nanofiber cellulose are the ones of materials which are being used recently as biodegradable filler and reinforcing agent for making composites. In this research, microcrystalline cellulose were prepared from kenaf and cotton bast by hydrochloric acid hydrolysis. The effects of hydrolysis condition on amount of crystallinity and crystal size of MCC were investigated by infrared spectroscopy (FT-IR, X-ray diffraction (XRD and scanning electron microscopy (SEM. Results have shown that in both samples increasing the acid ratio increased the crystallinity; however, the size of crystals did not change. SEM results have shown that after hydrolysis the size of sample particles was micro.

  14. Design, characterization and in vitro evaluation of a novel thiolated polymer: preactivated carboxymethyl cellulose.

    Science.gov (United States)

    Laffleur, Flavia; Bacher, Lukas; Netsomboon, Kesinee

    2016-01-01

    To design a novel preactived carboxymethyl cellulose derivative. First, carboxymethyl cellulose (CMC) was chemically modified by amide bond formation between primary amino group of cysteine (CYS) and carboxylic moiety of CMC mediated by carbodiimide. Second, obtained CMCCYS was preactivated with 2,2'-dithiodinicotinic acid. Designed CMC-S-S-MNA was characterized by FT-IR. Furthermore, cytotoxicity was conducted on Caco-2 cell line. Swelling behavior, erosion and release of novel CMC-S-S-MNA were performed compared with thiolated and unmodified cellulose, respectively. CMC-S-S-MNA showed no harmful effect on cells. CMC-S-S-MNA exhibited 2.13-fold higher stability in comparison to unmodified cellulose. Furthermore, preactivated carboxymethyl cellulose-cysteine revealed 1.9-fold controlled released compared with respective unmodified carboxymethyl cellulose. Novel preactivated carboxymethyl cellulose represents a versatile excipient for drug delivery.

  15. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  16. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

    Science.gov (United States)

    Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) re...

  18. Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Jensen, Bo

    2011-01-01

    peroxide, iron, and oxalic acid. The former two are involved in the Fenton reaction in which they react to form hydroxyl radicals, which cause an accelerated depolymerization in cotton cellulose. We found the same reaction to be caused by both iron Fe3+ and Fe2+. A 10 mM oxalic acid solution showed...... significant depolymerization effect on cotton cellulose. An oxalic acid/sodium oxalate buffered pH gradient had an inhibitory effect on the reduction of cellulose polymers at increased pH values. The organic iron chelator, EDTA, was found to promote depolymerization of cellulose in combination with Fenton......’s reagents, but inhibited the effect of oxalic acid in the absence of iron and hydrogen peroxide. Manganese was tested to see if metals other than iron could generate a significant impact on the degree of polymerization (DP) in cotton cellulose. Depolymerizing properties comparable to iron were seen...

  19. Extraction and characterisation of cellulose nanocrystals from pineapple peel

    Directory of Open Access Journals (Sweden)

    Ana Raquel Madureira

    2018-04-01

    Full Text Available The potential of pineapple peel as a source of cellulose nanocrystals was evaluated. Peels skin from fresh-cut fruit was used as raw material. These residues were purified to remove pigments, lipids and hemicellulose, and a bleaching process for delignification was carried out for 4-6 h. All resulting products were characterised for their lignin, hemicellulose, cellulose and ash contents using standard techniques. Dry matter at the end was low (ca. 50% compared with the raw material (ca. 90%. The process applied resulted in ca. 20% (m/m of purified cellulose (ca. 80% purity, with ineligible levels of lignin and hemicellulose present, especially when using 6h of bleaching. The purified cellulose was subject to acid hydrolysis for nanocrystal extraction with two testing times, 30 and 60 minutes. These cellulose nanocrystals had small sizes (< 1000 nm, with high variability and negative zeta potential values. The time of extraction did not affect the nanocrystals’ chemical and physical properties. The use of 6 h of bleaching treatment during purification was shown to be more effective than 4 h. Pineapple peel was demonstrated to be a good source of cellulose for the production of cellulose nanocrystals.

  20. Combining catalytical and biological processes to transform cellulose into high value-added products

    Science.gov (United States)

    Gavilà, Lorenc; Güell, Edgar J.; Maru, Biniam T.; Medina, Francesc; Constantí, Magda

    2017-04-01

    Cellulose, the most abundant polymer of biomass, has an enormous potential as a source of chemicals and energy. However, its nature does not facilitate its exploitation in industry. As an entry point, here, two different strategies to hydrolyse cellulose are proposed. A solid and a liquid acid catalysts are tested. As a solid acid catalyst, zirconia and different zirconia-doped materials are proved, meanwhile liquid acid catalyst is carried out by sulfuric acid. Sulfuric acid proved to hydrolyse 78% of cellulose, while zirconia doped with sulfur converted 22% of cellulose. Both hydrolysates were used for fermentation with different microbial strains depending on the desired product: Citrobacter freundii H3 and Lactobacillus delbrueckii, for H2 or lactic acid production respectively. A measure of 2 mol H2/mol of glucose was obtained from the hydrolysate using zirconia with Citrobacter freundii; and Lactobacillus delbrueckii transformed all glucose into optically pure D-lactic acid.

  1. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  2. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma.

    Science.gov (United States)

    Hanif, Zahid; Ahmed, Farrukh R; Shin, Seung Won; Kim, Young-Kee; Um, Soong Ho

    2014-07-01

    A controlled preparation of cellulose nanocrystals of different sizes and shapes has been carried out by acid hydrolysis of microcrystalline cellulose. The size- and concentration-dependent toxicity effects of the resulting cellulose nanocrystals were evaluated against two different cell lines, NIH3T3 murine embryo fibroblasts and HCT116 colon adenocarcinoma. It could serve as a therapeutic platform for cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Science.gov (United States)

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  4. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes

    2011-01-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13 C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  5. Glucose production for cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Karube, I

    1977-04-16

    Glucose was produced from cellulose by passing a cellulose solution through a column of an immobilized cellulase which was prepared by coating an inorganic carrier such as macadam or stainless steel beads with collagen containing the cellulase. Thus, 4 mL of 5% cellulase T-AP (60,000 units/g) solution was dissolved in 100 g of 0.9% collagen solution and the solution mixed with 60 g of macadam (diam. = 0.5 to 1.5 mm) and stirred for 10 min. The treated beads were dried in air at 10/sup 0/ to yield an immobilized enzyme retaining 64% of its activity. Through a column (0.8 x 20 cm) packed with 3 g of the immobilized enzyme, 100 mL of 0.33% Avicel SF solution was circulated at 26.4 mL/min at 30/sup 0/ for 60 h. The Avicel SF conversion to glucose was 23%.

  6. A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

    Science.gov (United States)

    Shane X. Peng; Huibin Chang; Satish Kumar; Robert J. Moon; Jeffrey P. Youngblood

    2016-01-01

    Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 101-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fouriertransform infrared...

  7. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  8. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  9. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  10. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis; Kaper, Thijs; Kelemen, Bradley R.; Liu, Amy D.

    2017-07-04

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  11. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Science.gov (United States)

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  12. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  13. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Science.gov (United States)

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  14. Contribution of residual proteins to the thermomechanical performance of cellulosic nanofibrils isolated from green macroalgae

    Science.gov (United States)

    Jiaqi Guo; Khan Mohammad Ahsan Uddin; Karl Mihhels; Wenwen Fang; Päivi Laaksonen; J. Y. Zhu; Orlando J. Rojas

    2017-01-01

    Cellulosic nanofibrils (CNFs) were isolated from one of the most widespread freshwater macroalgae, Aegagropila linnaei. The algae were first carboxylated with a recyclable dicarboxylic acid, which facilitated deconstruction into CNFs via microfluidization while preserving the protein component. For comparison, cellulosic fibrils were also isolated by chemical treatment...

  15. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  16. Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film

    International Nuclear Information System (INIS)

    Nho, Young Chang.; Kwon, Oh Hyun

    2003-01-01

    To improve surface blood compatibility on cellulose film for hemodialysis, acrylic acid, 2-hydroxyethyl methacrylate and three kinds of polyethylene glycol methacrylates were grafted onto the cellulose film surface by radiation grafting technique. Heparin was introduced onto the grafted cellulose film surfaces. The grafting and heparinization were confirmed by Fourier transform infrared spectroscopy in the attenuated total reflectance mode and electron spectroscopy for chemical analysis. The blood compatibility of the modified cellulose film was examined by the determination of platelet adhesion and thrombus formation

  17. Preparation of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo assisted by mechanical treatment

    Science.gov (United States)

    Silviana, S.; Hadiyanto, H.

    2017-06-01

    The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.

  18. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    Science.gov (United States)

    Maryam, Maryam; Dedy, Rahmad; Yunizurwan, Yunizurwan

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics.

  19. Processing of micro-nano bacterial cellulose with hydrolysis method as a reinforcing bioplastic

    International Nuclear Information System (INIS)

    Maryam, Maryam; Yunizurwan, Yunizurwan; Dedy, Rahmad

    2017-01-01

    Nanotechnology is the ability to create and manipulate atoms and molecules on the smallest of scales. Their size allows them to exhibit novel and significantly improved physical, chemical, biological properties, phenomena, and processes because of their size. The purpose of this research is obtaining micro-nano bacterial cellulose as reinforcing bioplastics. Bacterial cellulose (BC) was made from coconut water for two weeks. BC was dried and grinded. Bacterial cellulose was given purification process with NaOH 5% for 6 hours. Making the micro-nano bacterial cellulose with hydrolysis method. Hydrolysis process with hydrochloric acid (HCl) at the conditions 3,5M, 55°C, 6 hours. Drying process used spray dryer. The hydrolysis process was obtained bacterial cellulose with ±7 μm. The addition 2% micro-nano bacterial cellulose as reinforcing in bioplastics composite can improve the physical characteristics. (paper)

  20. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  1. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  2. ISOLATION AND CHARACTERIZATION OF NANOFIBRILLATED CELLULOSE FROM OAT HULLS

    Directory of Open Access Journals (Sweden)

    Giovanni B. Paschoal

    2015-05-01

    Full Text Available The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls. The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.

  3. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  4. Cellulose synthase complex organization and cellulose microfibril structure.

    Science.gov (United States)

    Turner, Simon; Kumar, Manoj

    2018-02-13

    Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666-674 (doi:10.1016/j.tplants.2012.06.003); Kumar & Turner 2015 Phytochemistry 112 , 91-99 (doi:10.1016/j.phytochem.2014.07.009); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9-16 (doi:10.1016/j.pbi.2016.07.007)). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).

  5. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    Science.gov (United States)

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  8. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  9. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  10. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition.

    Science.gov (United States)

    Li, Bing-xue; Zhang, Ning; Peng, Qing; Yin, Tie; Guan, Fei-fei; Wang, Gui-li; Li, Ying

    2009-08-01

    A black yeast strain "NG" was isolated from strawberry fruit and identified as Aureobasidium pullulans. Strain NG displayed yeast-like cell (YL), swollen cell (SC), septate swollen cell (SSC), meristematic structure (MS), and chlamydospore (CH) morphologies. pH was the key factor regulating cell morphogenesis of strain NG. Differentiation of YL controlled by extracellular pH had no relationship with nutrition level. YL was maintained at pH >6.0, but was transformed into SC at pH approximately 4.5. SC, a stable cell type of A. pullulans, could bud, septate, or transform into MS or CH, in response to nutrition level and low pH. SC produced swollen cell blastospores (SCB) at pH 2.1 with abundant nutrition, and could transform into MS at lower pH (1.5). SC was induced to form CH by low level nutrition and pH melanin) were produced by SC of strain NG. Pullulan content of the polysaccharides was very high (98.37%). Fourier-transform infrared spectroscopy confirmed that chemical structures of the polysaccharides and standard pullulan were identical. Swollen cells produced 2.08 mg/ml non-pigmented polysaccharides at 96 h in YPD medium. Controlling pH of fermentation is an effective and convenient method to harvest SC for melanin-free pullulan production.

  11. Extraction of cellulose nanofibers from Pinus oocarpa residues

    Energy Technology Data Exchange (ETDEWEB)

    Manrich, Anny; Martins, Maria Alice, E-mail: anny@daad-alumni.de [EMBRAPA Instrumentacao, Sao Carlos, SP (Brazil); Moraes, Jheyce Cristina; Pasquoloto, Camila [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Pinus oocarpa, which wood is moderately hard and tough, is planted in Brazil for reforestation and employed for timber production used in constructions. The wood residues, such as shavings, bark and sawdust represent 30% to 50% of the total volume of wood production, of which the sawdust is 10%{sup 1}. Cellulose nanofibers is nanomaterials having a diameter between 5 nm and 20 nm and a length of up to hundreds of nm. To obtain nanofibers from cellulose sources, such as sisal and sugarcane bagasse, is used chemical processes, in which the lignocellulosic material initially undergoes pre-treatments to promote partial separation of the cellulose, such as mercerisation and bleaching thus disposing lignin and hemicellulose components. Sequentially, by controlled acid hydrolysis, amorphous regions of the cellulose are removed, and crystalline cellulose is isolated in the form of cellulose nanofibers. In this work, nanofibers from sawdust of Pinnus oocarpa, containing 44.8 wt% of cellulose 20.6 wt% hemicellulose and 30.0 wt% insoluble lignin were isolated by mercerisation (NaOH 5%, 80°C, 120 min), followed by bleaching (NaOH + acetic acid + NaClO{sub 2}, 80 deg C, 240min) and acid hydrolysis (60 wt% sulfuric acid, 45 °C, 40min). Nanofibers obtained were characterized by DRX and SEM-FEG. Results showed that, for used conditions, fiber acid hydrolysis was not complete, therefore a biphasic suspension was formed. Crystallinity index achieved was not much higher than that from pinus fiber itself, increasing from 62% to 65% and signs of cellulose type II were observed. SEM images showed elongated fibers, which have diameter of 15 ± 5 nm and length of hundreds of nm, what means that they have a large L/D aspect ratio. Nanofiber extraction yield was very low (1.3 wt% of initial residue). All steps of the process are being reviewed aiming at better results. 1) Morais, S. A. L.; Nascimento E. A. e D. C. Melo, 2005, R. Árvore, 29, 3, 461-470. (author)

  12. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  13. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  14. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  15. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  16. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  17. Use of compost bacteria to degrade cellulose from grass cuttings in ...

    African Journals Online (AJOL)

    2007-09-06

    Sep 6, 2007 ... bacteria isolated from compost, thereby producing volatile fatty acids (VFA) and other ... 100% increase in the use of water by the mining and industrial .... other intermediates of cellulose degradation, such as hydrogen.

  18. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath

  19. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose i and ii cotton nanocrystalline preparations

    Science.gov (United States)

    Lysozyme was attached through an amide linkage between some of the protein’s aspartate and glutamate residues to amino-glycine-cellulose (AGC), which was prepared by esterification of glycine to preparations of cotton nanocrystals (CNC). The nanocrystalline preparations were produced through acid h...

  20. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  1. Evaluation of microcrystalline cellulose modifed from alpha ...

    African Journals Online (AJOL)

    Alpha cellulose was obtained from Costus afer and part of it was modified to microcrystalline cellulose (CAMCC). The physicochemical properties of the microcrystalline cellulose were determined and compared with those of commercial microcrystalline cellulose (Avicel 101). The swelling capacity, hydration capacity, loss ...

  2. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  3. Formation of carboxymethyl cellulose hydrogel containing silver nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Kuang, Jia; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using AgNO{sub 3} aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into 1.0 x 10{sup -2} M AgNO{sub 3} solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

  4. Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes.

    Science.gov (United States)

    Robles, Eduardo; Fernández-Rodríguez, Javier; Barbosa, Ananda M; Gordobil, Oihana; Carreño, Neftali L V; Labidi, Jalel

    2018-03-01

    Tequila elaboration leaves two main byproducts that are undervalued (bagasse and leaves). Organosolv pulping and Total Chlorine Free bleaching were integrated to obtain cellulose fibers from agricultural waste which consisted of blue agave bagasse and leaf fibers; together they represent a green process which valorizes biomass waste. The obtained celluloses were characterized by FT-IR, colorimetry, and SEM and their extraction yields were evaluated. These celluloses were used to produce cellulose nanocrystals and cellulose nanofibers. First, an acid hydrolysis was performed in a sonication bath to induce cavitation during the reaction to produce cellulose nanocrystals. Then a high-pressure homogenization was selected to produce cellulose nanofibers. These nanocelluloses were characterized by powder XRD, Nanosizer, zeta potential, NMR, and electronic microscopy. Results showed that cellulose from organosolv pulps bleached with TCF bleaching is suitable for nanocellulose production. Moreover, the use of a new step to separate cellulose nanocrystals resulted in yields almost doubling traditional yields, while the rest of the properties remained within the expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Removal of boron(III) by N-methylglucamine-type cellulose derivatives with higher adsorption rate

    International Nuclear Information System (INIS)

    Inukai, Yoshinari; Tanaka, Yoshiharu; Matsuda, Toshio; Mihara, Nobutake; Yamada, Kouji; Nambu, Nobuyoshi; Itoh, Osamu; Doi, Takao; Kaida, Yasuhiko; Yasuda, Seiji

    2004-01-01

    To obtain adsorbents for boron(III) derived from a natural polymer, two forms (powder and fiber) of N-methylglucamine-type cellulose derivatives were newly synthesized. After the graft polymerization of two forms of cellulose with vinyl monomer having epoxy groups, the N-methylglucamine-type cellulose derivatives were obtained by the reaction of the grafted cellulose with N-methylglucamine. The adsorption capacities of the cellulose derivatives for boron(III) were the same levels as that of a commercially available N-methylglucamine-type polystyrene resin. However, the cellulose derivatives adsorbed boron(III) more quickly than the polystyrene resin. The adsorption and desorption of boron(III) with a column method using the cellulose fiber were achieved at a higher flow rate than that using the polystyrene resin. In addition, the boron(III), adsorbed on the cellulose fiber column, was quantitatively recovered with dilute hydrochloric acid in 20- and 200-fold increased concentrations. Consequently, it was found that the cellulose derivatives were superior to the polystyrene resin as adsorbents for boron(III) for treatment of a large quantity of wastewater

  6. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    International Nuclear Information System (INIS)

    Glaus, M.A.; Van Loon, L.R.

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60 o and 90 o C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 o C and 90 o C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline hydrolysis at the

  7. Cellulose Degradation at Alkaline Conditions: Long-Term Experiments at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Van Loon, L.R

    2004-04-01

    The degradation of pure cellulose (Aldrich cellulose) and cotton cellulose at the conditions of an artificial cement pore water (pH 13.3) has been measured at 60{sup o} and 90{sup o}C for reaction times between 1 and 2 years. The purpose of the experiments is to establish a reliable relationship between the reaction rate constant for the alkaline hydrolysis of cellulose (mid-chain scission), which is a slow reaction, and temperature. The reaction products formed in solution are analysed for the presence of the two diastereomers of isosaccharinic acid using high performance anion exchange chromatography combined with pulsed amperometric detection (HPAEC-PAD), other low-molecular weight aliphatic carboxylic acids using high performance ion exclusion chromatography (HPIEC) and for total organic carbon. The remaining cellulose solids are analysed for dry weight and degree of polymerisation. The degree of cellulose degradation as a function of reaction time is calculated based on total organic carbon and on the dry weight of the cellulose remaining. The degradation of cellulose observed as a function of time can be divided in three reaction phases observed in the experiments: (i) an initial fast reaction phase taking a couple of days, (ii) a slow further reaction taking - 100 days and (iii) a complete stopping of cellulose degradation levelling-off at -60 % of cellulose degraded. The experimental findings are unexpected in several respects: (i) The degree of cellulose degradation as a function of reaction time is almost identical for the experiments carried out at 60 {sup o}C and 90 {sup o}C, and (ii) the degree of cellulose degradation as a function of reaction time is almost identical for both pure cellulose and cotton cellulose. It can be concluded that the reaction behaviour of the materials tested cannot be explained within the classical frame of a combination of the fast endwise clipping of monomeric glucose units (peeling-off process) and the slow alkaline

  8. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  9. Tailored beads made of dissolved cellulose - Investigation of their drug release properties

    DEFF Research Database (Denmark)

    Yildir, Emrah; Kolakovic, Ruzica; Genina, Natalja

    2013-01-01

    In the frame of this work, we have investigated drug entrapping and release abilities of new type of porous cellulose beads (CBs) as a spherical matrix system for drug delivery. For that purpose, CBs prepared with three different methods were used as drug carriers and three compounds, anhydrous...... theophylline (Thp), riboflavin 5′-phosphate sodium (RSP) and lidocaine hydrochloride monohydrate (LiHCl) were used as model drug substances. The loading procedure was carried out by immersing swollen empty beads into the solutions of different concentrations of model drugs. The morphology of empty and loaded...... beads was examined using a field emission scanning electron microscopy (FE-SEM). Near-infrared (NIR) imaging was performed to identify the drug distributions on and within the loaded CBs. The drug amount incorporated into CBs was examined spectrophotometrically and in vitro drug release studies were...

  10. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. Physical Examination Tools Used to Identify Swollen and Tender Lower Limb Joints in Juvenile Idiopathic Arthritis: A Scoping Review.

    Science.gov (United States)

    Fellas, Antoni; Singh-Grewal, Davinder; Santos, Derek; Coda, Andrea

    2018-01-01

    Juvenile idiopathic arthritis (JIA) is the most common form of rheumatic disease in childhood and adolescents, affecting between 16 and 150 per 100,000 young persons below the age of 16. The lower limb is commonly affected in JIA, with joint swelling and tenderness often observed as a result of active synovitis. The objective of this scoping review is to identify the existence of physical examination (PE) tools to identify and record swollen and tender lower limb joints in children with JIA. Two reviewers individually screened the eligibility of titles and abstracts retrieved from the following online databases: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL. Studies that proposed and validated a comprehensive lower limb PE tool were included in this scoping review. After removal of duplicates, 1232 citations were retrieved, in which twelve were identified as potentially eligible. No studies met the set criteria for inclusion. Further research is needed in developing and validating specific PE tools for clinicians such as podiatrists and other allied health professionals involved in the management of pathological lower limb joints in children diagnosed with JIA. These lower limb PE tools may be useful in conjunction with existing disease activity scores to optimise screening of the lower extremity and monitoring the efficacy of targeted interventions.

  13. Use of gamma rays to induce mutants resistant to cocoa swollen shoot disease in Theobroma cacao L

    International Nuclear Information System (INIS)

    Adu Ampomah, Y.; Owusu, G.K.; Sackey, S.; Padi, B.; Abdul Karimu, A.

    1996-01-01

    Vegetative buds of three cocoa varieties, ‘Amelonado’ (P30), ‘Trinitario’ (K5) and ‘Upper Amazon’ (T85/799) were irradiated with 15, 20 and 25 Gy of γ-rays, respectively, and budded on to rootstocks to generate MV1 shoots. The terminal buds of the shoots were removed to induce the formation of MV2 shoots, from which MV3 shoots were similarly derived. The MV3 plants were screened for resistance to the Cocoa Swollen Shoot Virus (CSSV) by patch-graft inoculation of the root-stocks. Only a few plants from each of the three cocoa varieties were found to be symptomless after indexing. These plants were multiplied by budding to the MV4 and MV5 stages and screened at each stage for CSSV resistance by inoculation using virus-carrying mealybugs. At the MV5 stage, some plants still remained symptomless and this was confirmed with enzyme-linked immunosorbent assay (ELISA). The study reveals that γ-rays can be used to induce genetic variability for resistance to CSSV in cocoa, as well as for other traits such as chlorophyll deficiency. (author)

  14. Structure analyses of swollen rubber-filler systems by using contrast variation Small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Takenaka, Mikihito; Nishitsuji, Shotaro; Yamaguchi, Daisuke; Koizumi, Satoshi

    2009-01-01

    Full text: The polymer layers absorbed on silica particles in rubber-silica systems have investigated with contrast variation small-angle neutron scattering (SANS) method. The scattering intensities of specimens swollen by the solvents having various scattering length densities were measured. The contrast variation SANS for the specimens yielded partial scattering functions: the scattering function for polymer-polymer correlation SPP(q), the scattering function for silica- silica correlation SSS(q), and the scattering function for polymer- silica correlation SPS(q). The analyses of SSS(q) explored the hierarchical structures formed by silica particles. The analyses of SPS(q) and SSS(q) clarified the existence of dense polymer layers around silica aggregates. Several characteristic parameters are estimated from the analyses, such as the size of aggregates, the thickness of layers, the volume fractions of polymer of layers and matrix, and the correlation length of the matrix network. The contrast variation SANS is found to be a powerful tool of the analyses of the structures of the rubber-filler systems. (author)

  15. Cellulose microfibril structure: inspirations from plant diversity

    Science.gov (United States)

    Roberts, A. W.

    2018-03-01

    Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase catalytic subunits that associate to form cellulose synthesis complexes. Variation in the organization of these complexes underlies the variation in cellulose microfibril structure among diverse organisms. However, little is known about how the catalytic subunits interact to form complexes with different morphologies. We are using an evolutionary approach to investigate the roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis complexes.

  16. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials

    Directory of Open Access Journals (Sweden)

    Hongxiang Xie

    2018-01-01

    Full Text Available The recent strategies in preparation of cellulose nanocrystals (CNCs and cellulose nanofibrils (CNFs were described. CNCs and CNFs are two types of nanocelluloses (NCs, and they possess various superior properties, such as large specific surface area, high tensile strength and stiffness, low density, and low thermal expansion coefficient. Due to various applications in biomedical engineering, food, sensor, packaging, and so on, there are many studies conducted on CNCs and CNFs. In this review, various methods of preparation of CNCs and CNFs are summarized, including mechanical, chemical, and biological methods. The methods of pretreatment of cellulose are described in view of the benefits to fibrillation.

  17. WOOD CELLULOSE ACETATE MEMBRANE 179

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... 1988), cosmetics and food additives or pharmaceutical applications (Wellisch .... displaced by sample. Determination of percent α-, β- and γ–cellulose ..... addition, the smaller pore diameter would lead to a greater exclusion of ...

  18. Development of the metrology and imaging of cellulose nanocrystals

    International Nuclear Information System (INIS)

    Postek, Michael T; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J; Sabo, Ronald; Wegner, Theodore H; Beecher, James

    2011-01-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs

  19. Development of the metrology and imaging of cellulose nanocrystals

    Science.gov (United States)

    Postek, Michael T.; Vladár, András; Dagata, John; Farkas, Natalia; Ming, Bin; Wagner, Ryan; Raman, Arvind; Moon, Robert J.; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2011-02-01

    The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.

  20. Save energy: using cellulosic wastes for fuel and food

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Y.P.

    The development of technology to convert biomass into liquid fuels for transportation uses could reduce dependence on oil imports and make India's economy more stable. The enthusiasm for alcohol fuels, however, competes with food growing. Efforts to find unconventional sources of protein to deal with the malnutrition that accompanies overpopulation also focus on cellulosic wastes and micro-organisms that break down cellulose. India's scientists are looking at microbial proteins from cellulose wastes as a cattle and protein feed. Although micro-organisms are rich and balanced in amino acids, there are some health problems in human consumption of microbial food which need to be resolved before they can provide both economic fuel and food for developing countries.

  1. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-01-01

    (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome

  2. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  3. UV-curable polyurethane coatings derived from cellulose

    International Nuclear Information System (INIS)

    Patel, M. M.; Patel, K. I.; Patel, H. B.; Parmar, J. S.

    2009-01-01

    At the present time coating industry is devoting much research in the direction of low volatile organic compounds to make eco-friendly coating material. In this study, such materials are developed from cellulose derived from bagasse, a sugar industry waste. Cellulose is converted to cellulose glyco glycoside by acid hydrolysis of cellulose under heterogeneous condition. Cellulose glyco glycoside is treated with polyethylene glycol having different molecular weights to give glyco glycosides which in turn are reacted with various diisocyanates to obtain polyurethane having free NCO groups. These materials are then reacted with hydroxyethylmethacrylate to give polyurethane acrylates. The acrylates are characterized for specific gravity, viscosity, colour and molecular weight as well as by fourier transform infrared spectroscopy. The UV-curable coating composition was prepared by blending PU-acrylate, reactive diluents and photoinitiator. Coating compositions were cured under UV-light and characterized for adhesion, flexibility, impact resistance, solvent resistance and for dynamic mechanical analysis as well as by thermal gravimetric analysis for thermal stability. The cured films give thickness of 23-24 microns and cure time required is less than 1.5-2.0 min. There is no liberation of any volatiles during curing and films have good adhesion to mild steel substrate. The cured coatings give excellent dynamic, mechanical and chemical properties. The scratch resistance was found to be satisfactory. The application was made in unpigmented form but it is found that various pigments can be used to give coloured UV-curable coatings.

  4. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  5. Development of composites of polycaprolactone with cellulose; Desenvolvimento de compositos de policaprolactona com celulose

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, V.O.; Marques, M.F.V., E-mail: nviny@ima.ufrj.br, E-mail: fmarques@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    In the present work, alkaline followed by an acid treatment were performed in plant sources of curaua and jute fibers to remove the amorphous portion and to aid fibrillation. Using the technique of X-ray diffraction it was observed that the chemical treatments led to a better organization of cellulose microfibrils and, consequently, the increase in their crystallinity index. Using the thermogravimetric analysis it was noted a slight decrease in thermal stability of the chemically treated cellulose fibers, however it did not impairs its use as filler in the polymer matrix. Through the SEM micrographs it was observed that the chemical treatment reduced the dimensions of the fibers in natura. Polycaprolactone composite was prepared in a twin-screw extruder at different amounts for several cellulose sources (those obtained from vegetable fibers, curaua and jute, commercial cellulose and amorphous cellulose) at and maintaining the process time and temperature constant. (author)

  6. Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method.

    Science.gov (United States)

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman

    2017-01-20

    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent...... determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose I beta followed by integration of the crystalline...... and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  8. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials

    OpenAIRE

    Ireana Yusra A. Fatah; H. P. S. Abdul Khalil; Md. Sohrab Hossain; Astimar A. Aziz; Yalda Davoudpour; Rudi Dungani; Amir Bhat

    2014-01-01

    The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC). The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB) using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose ...

  9. Swollen Lymph Nodes

    Science.gov (United States)

    ... may indicate an infection, such as HIV or mononucleosis, or an immune disorder, such as lupus or ... Strep throat Measles Ear infections Infected (abscessed) tooth Mononucleosis Skin or wound infections, such as cellulitis Human ...

  10. Study on gamma-irradiation degradation of chitosan swollen in H2O2 solution and its antimicrobial activity for E. coli

    International Nuclear Information System (INIS)

    Dang Xuan Du; Bui Phuoc Phuc; Tran Thi Thuy; Le Anh Quoc; Dang Van Phu; Nguyen Quoc Hien

    2014-01-01

    Degradation of chitosan in swollen state with hydrogen peroxide solution (5% w/v) by γ-irradiation was investigated. Molecular weight (M w ) of irradiated chitosan was determined by gel permeation chromatography (GPC). Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectra were analyzed to study the structure changes of degraded chitosan. The results showed that the chitosan of low M w (30-45 kDa) was efficiently prepared by γ-irradiation of chitosan swollen in hydrogen peroxide solution at low dose less than 20 kGy. The main structure as well as the degree of deacetylation of the degraded chitosan was almost no significant change. Furthermore, the radiation degradation yield (G s ) was remarkably enhanced by the presence of H 2 O 2 . The obtained low M w chitosan revealed high antimicrobial activity for E. coli that can be used for food preservation and other purposes as well. (author)

  11. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    Science.gov (United States)

    Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.

    2017-05-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.

  12. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    Science.gov (United States)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  13. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  14. Relationships between sulphate reduction and COD/VFA utilisation using grass cellulose as carbon and energy sources

    CSIR Research Space (South Africa)

    Mulopo, J

    2010-07-01

    Full Text Available /fermentation products of grass cellulose, volatile fatty acids (VFA), function as the electron donors and SO2/4 as the electron acceptor. The aim of the study presented here was to elucidate the interactions between the cellulose degradation rate, the chemical oxygen...

  15. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition

    Science.gov (United States)

    We report a novel production process for cellobionic acid from cellulose using an engineered fungal strain with the exogenous addition of laccase and a redox mediator. A previously engineered strain of Neurospora crassa (F5'ace-1'cre-1'ndvB) was shown to produce cellobionate directly from cellulose ...

  16. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad [Food Science Program, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Ahmad, Ishak [Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia)

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  17. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    International Nuclear Information System (INIS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-01-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H 2 SO 4 , 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application

  18. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  19. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    Science.gov (United States)

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  1. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    International Nuclear Information System (INIS)

    El-Sakhawy, M.M.; Hassan, M.L.

    2005-01-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested

  2. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  3. Physical and mechanical properties of microcrystalline cellulose prepared from local agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sakhawy, M M; Hassan, M L [Cellulose and Paper Dept., National Research Center, Dokki, Cairo (Egypt)

    2005-07-01

    Microcrystalline cellulose (MCC) was prepared from local agricultural residues, namely, bagasse, rice straw, and cotton stalks bleached pulps. Hydrolysis of bleached pulps was carried out using hydrochloric or sulfuric acid to study the effect of the acid used on the properties of produced microcrystalline cellulose such as degree of polymerization (DP), crystallinity index (CrI), crystallite size, bulk density, particle size, and thermal stability. The mechanical properties of tablets made from microcrystalline cellulose of the different agricultural residues were tested and compared to commercial grade MCC. The use of rice straw pulp in different proportions as a source of silica to prepare silicified microcrystalline cellulose (SMCC) was carried out. The effect of the percent of silica on the mechanical properties of tablets before and after wet granulation was tested.

  4. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara; Li, Z.; Behzad, Ali Reza; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2015-01-01

    and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions

  5. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  6. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  7. Characterization of Cellulose Synthesis in Plant Cells

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  8. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  9. Raman spectroscopy in the analysis of cellulose nanomaterials

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    Cellulose nanomaterials (CNs) are new types of materials derived from celluloses and offer unique challenges and opportunities for Raman spectroscopic investigations. CNs can be classified into the categories of cellulose nanocrystals (CNCs, also known as cellulose whisker) and cellulose nanofibrils (CNFs, also known as nanofibrillated cellulose or NFCs) which when...

  10. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  11. Degradation of cellulose in the presence of ash; Nedbrytningsmoenster foer cellulosa i naervaro av aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Tech. (Sweden)

    2003-04-01

    This project evaluates the risks and possibilities that come up in mixtures of ash and cellulose. The focus is on alkaline degradation of cellulose and the impact on metal leaching. The literature survey shows that a combination of ash and cellulose affects both the mobility of metals and the degradation of cellulose in many ways. A combination of ash and cellulose could have positive effects on the degradation of cellulose since ash makes the pH rise in the material. Normally the pH decreases in a waste deposit with time, which results in a reduced biological degradation of the cellulose since the methanogenic organisms are sensitive for low pH values. However, even if the pH increases when cellulose is mixed with ash the methanogenic organisms could be inhibit by toxic metals. The highest degradation rate for cellulose is at natural pH values because of an effective biological degradation. If alkaline conditions appear when cellulose is mixed with ash or in contact with the leaching water the cellulose is going to be degraded by a slower process: non-biological degradation (peeling-off reactions). The main degradation product from peeling-off reactions of cellulose is isosaccharinic acid (ISA). ISA forms complex with metals, which results in increased mobilization and leaching of metals. From biological degradation the degradation products are mainly CO{sub 2} and H{sub 2}O under aerobic conditions and CO{sub 2} and CH{sub 4} under anaerobic conditions. In combinations of ash and cellulose is it possible that the formed carbon dioxide cause carbonation and fixation of metals in the ash. As mentioned, ash could result in an increment of the pH value in cellulose materials, but if the starting point is pure ash a mixture with cellulose could make the pH value decrease, in extreme cases down to 4-5, because of biological degradation. Therefore it is possible that the metal mobilization in ash will increase if the ash is mixed with cellulose. Increased leaching of

  12. Properties of microcrystalline cellulose obtained from coconut ...

    African Journals Online (AJOL)

    The study revealed that the cellulose material compares favourably with Avicel PH 101 as well as official requirement specified in the British Pharmacopoeia 1993 for microcrystalline cellulose. Keywords: Coconut fruit fibre, microcrystalline cellulose, powder properties. Journal of Pharmacy and Bioresources Vol. 3 (1) 2006: ...

  13. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  14. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  15. Regioselective Synthesis of Cellulose Ester Homopolymers

    Science.gov (United States)

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  16. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl cellulose may be safely used in food, except standardized foods that do not provide for such use, in...

  17. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  18. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  19. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  20. Microfibrillated cellulose from bamboo pulp and its properties

    International Nuclear Information System (INIS)

    Zhang, Junhua; Song, Hainong; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Liu, Shijie

    2012-01-01

    Microfibrillated cellulose (MFC) was obtained by disintegrating bleached kraft bamboo (Phyllostachys pubescens) pulp with a procedure of chemical pretreatment and high-pressure homogenization. The influences of sodium hydroxide dosage and homogenization times were evaluated by water retention value (WRV) of MFC. The properties, such as the surface morphology, rheological property and carboxyl acid content of MFC were also characterized using scanning electron microscope (SEM), rheometer and headspace gas chromatography (HS-GC) separately.

  1. Advancing cellulose-based nanotechnology

    Science.gov (United States)

    Theodore H. Wegner; Philip E. Jones

    2006-01-01

    Nanotechnology has applications across most economic sectors and allows the development of new enabling science with broad commercial potential. Cellulose and lignocellulose have great potential as nanomaterials because they are abundant, renewable, have a nanofibrillar structure, can be made multifunctional, and self-assemble into well-defined architectures. To...

  2. Polyvinyl alcohol–cellulose composite

    Indian Academy of Sciences (India)

    We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of ...

  3. Irradiation effects in wood and cellulose

    International Nuclear Information System (INIS)

    McLaren, K.G.

    1976-01-01

    For cellulosic materials the predominant effect of high energy radiation is depolymerisation and degradation by chain scission, although there is some evidence that crosslinking or cellulose stabilisation can occur under certain conditions. When the cellulose is in the form of a natural product such as wood, where it is intimately associated with other polysaccharides, lignins, resins and gums, the effects of radiation can be significantly modified. Examination of cellulose produced by chemical pulping treatment of wood which had been previously given small doses of radiation, showed significant differences in the extent of cellulose depolymerisation with different wood species. The relevance of this work to the paper pulp industry will also be discussed. (author)

  4. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  5. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  6. Production of Biofuels from Selected Cellulosic Waste materials

    Directory of Open Access Journals (Sweden)

    Jathwa Abdul Kareem Ibrahim

    2017-08-01

    Full Text Available In this study four types of cellulose-rich municipal solid wastes (residuals of orange, banana peel, corn residues, and saw dust were used as raw materials. These cellulosic substrates usually have a lot of lignin content which prevents the process of saccharification by microorganisms. Thus pretreatment methods of enzymatic, acid or base with enzymatic treatment and dilute acid followed by autoclaving were necessary to dignify these wastes and to obtain higher reducing sugar yields and hence higher ethanol production. Dilute HCl acid of 1% followed by autoclaving at 121℃ for 30 min proved to give good result where significant amounts of reducing sugars were obtained at the end of the saccharification process. Orange peel proved to give the highest glucose concentration of an average of 6000 mg/l on day 4 of the saccharification process. Fermentation was carried out for the hydrolyzed samples using Saccharomyces cerevisiae yeast. The amount of ethanol produced after fermentation was found to be the highest for orange peel having a value of 1300 mg/l after 96h of incubation. As science is proceeding, engineered microorganisms could help to produce sustainable fuels from cellulose-rich municipal solid wastes in the future.

  7. Structure and engineering of celluloses.

    Science.gov (United States)

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  9. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  10. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    Atalla, R.H.

    1984-01-01

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13 C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13 C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13 C-NMR investigations

  11. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    International Nuclear Information System (INIS)

    Banchorndhevakul, Siriwattana

    2002-01-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study

  12. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    Science.gov (United States)

    Banchorndhevakul, Siriwattana

    2002-08-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.

  13. Separations on a cellulose exchanger with salicylic acid as functional group. [Fe/sup 3//sup+//Cu/sup 2//sup+/, Cu/sup 2//sup+//Ni/sup 2//sup+//, and Cu/sup 2//sup+//Cu complex separations

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P; Lieser, K H [Technische Hochschule Darmstadt (F.R. Germany). Fachbereich Anorganische Chemie und Kernchemie

    1976-07-01

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe/sup 3 +//Cu/sup 2 +/ and Cu/sup 2 +//Ni/sup 2 +/ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu/sup 2 +//(Cu(mnt)/sub 2/)/sup 2 -/ (mnt = maleonitril-1,2-dithiolate) and Cu/sup 2 +//dibenzo(b.i.)(5.9.14.18)tetraazacyclotetradecene-copper (Cu(chel)). The complex (Cu(mnt)/sub 2/)/sup 2 -/ can be labelled with Cu-64 on a separation column, whereas (Cu-(chel)) is substition inert.

  14. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  15. Ultrasonic pretreatment of woodchips for the conversion of cellulose to glucose for bioethanol production

    International Nuclear Information System (INIS)

    Tutun Nugraha; Rettyana Ayuputri; Mohammad Ihsan

    2010-01-01

    In this study, lignocellulosic biomass i.e. the woodchips of Albacia tree (Paraserianthes falcataria) were given different pretreatment methods, i.e. chemical (acid) and physical (ultrasonic). The pretreatment was given in order to convert the cellulose to glucose for the production of bioethanol. 1 % H_2SO_4 was applied for the acid pretreatment. Ultrasound pretreatment was carried out at varied time (10, 20 and 30 minutes) at 600 W, 20 khz before or after the acid pretreatment. Enzymatic attack of the pretreated sample was also applied to enhance the saccharification process of cellulose. The objective of the research was to determine the most effective ultrasonic duration and the best combination of method for enzymatic hydrolysis of the woodchips. The data showed that the highest yield of glucose was achieved at 20 minutes ultrasonic time. It was also found that substantial amount of hydrolysis of cellulose to glucose occur during the ultrasonic stage even without the presence of acid or cellulose enzyme. It is likely that the highly energetic ultrasonic process alone could assist in enhancing rate of hydrolysis of lignocellulosic cellulose into glucose. (author)

  16. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Characterization of cellulose acetate obtained from sugarcane bagasse by 1H-NMR

    International Nuclear Information System (INIS)

    Cerqueira, Daniel A.; Rodrigues Filho, Guimes; Carvalho, Rui A.; Valente, Artur J.M.

    2009-01-01

    Cellulose from sugarcane bagasse was used for synthesizing cellulose acetate with different degrees of substitution, which were characterized by 1 H-NMR through the relationship between the peak areas of the hydrogen atoms present at the acetate groups (-(C=O)OCH 3 ) and the peaks of the hydrogen bonded to the carbon atoms of the glycosidic rings. Suppression was carried out in order to remove the peak of residual water in the materials and the peak related to impurities in cellulose triacetate. Degree of substitution values obtained through the resonance deconvolution were compared to those obtained by chemical determination through an acid-base titration. The determined degrees of substitution of the cellulose samples were 2.94 and 2.60. (author)

  18. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Shurong; LIU Qian; LUO Zhongyang; WEN Lihua; CEN Kefa

    2007-01-01

    Based on the investigation of the polysaccharide structure of cellulose by using Fourier transform spectrum analysis,the pyrolysis behaviour of cellulose was studied at a heating rate of 20 K/min by thermogravimetric (TG) analysis coupled with Fourier transform infrared (FTIR) spectroscopy.Experimental results show that the decomposition of cellulose mainly occurs at the temperature range of 550-670 K.The weight loss becomes quite slow when the temperature increases further up to 680 K and the amount of residue reaches a mass percent of 14.7%.The FTIR analysis shows that free water is released first during cellulose pyrolysis,followed by depolymerization and dehydration.Glucosidic bond and carbon-carbon bond break into a series of hydrocarbons,alcohols,aldehydes,acids,etc.Subsequently these large-molecule compounds decompose further into gases,such as methane and carbon monoxide.

  19. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  20. Polymer supported sulphanilic acid: A highly efficient and recyclable ...

    Indian Academy of Sciences (India)

    The resulting chloromethylated styrene- divinylbenzene copolymer beads were designated as. P2 and analysed for chlorine content by Stepnow method.37. 2.3 Procedure for polymer supported sulphanilic acid (P3). P2 (5 gm) were dispersed in methanol (15 ml) and allowed to swell for 2 h. To the swollen bead, aque-.

  1. Physical properties of sago starch biocomposite filled with Nanocrystalline Cellulose (NCC) from rattan biomass: the effect of filler loading and co-plasticizer addition

    Science.gov (United States)

    Nasution, H.; Harahap, H.; Fath, M. T. Al; Afandy, Y.

    2018-02-01

    Rattan biomass is an abundant bioresources from processing industry of rattan which contains 37.6% cellulose. The high cellulose contents of rattan biomass make it a source of nanocrystalline cellulose as a filler in biocomposites. Isolation of alpha cellulose from rattan biomass was being prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. Nanocrystal obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical steps of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was being prepared by using a solution casting method, which includes 1-4 wt% nanocrystalline cellulose from rattan biomass as fillers, 10-40 wt% acetic acid as co-plasticizer and 30 wt% glycerol as plasticizer. The biocomposite characteristic consists of density, water absorption, and water vapors transmission rate. The results showed the highest density values was 0.266 gram/cm3 obtained at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 30 wt% acetic acid. The lowest water absorption was 9.37% at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 10 wt% acetic acid. It was observed by the addition of nanocrystalline cellulose might also decrease the rate of water vapor transmission that compared to the non-filler biocomposite.

  2. Effect of the chemical treatments on the characteristics of natural cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Sosiati, H., E-mail: hsosiati@ugm.ac.id [Nanomaterials Research Group, Integrated Research and Testing Laboratory (LPPT), Gadjah Mada University, Yogyakarta 55281 (Indonesia); Muhaimin, M.; Abdilah, P.; Wijayanti, D. A. [Department of Physics, Faculty of Mathematics and Natural of Sciences, Gadjah Mada University, Yogyakarta 55281 (Indonesia); Harsojo; Triyana, K. [Nanomaterials Research Group, Integrated Research and Testing Laboratory (LPPT), Gadjah Mada University, Yogyakarta 55281, Indonesia and Department of Physics, Faculty of Mathematics and Natural of Sciences, Gadjah Mada University, Yogyakarta 55281 (Indonesia)

    2014-09-25

    In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H{sub 2}O{sub 2} and H{sub 2}SO{sub 4} were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on the fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (∼5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100–200 nm diameter) and particles 100–200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths.

  3. Effect of the chemical treatments on the characteristics of natural cellulose

    International Nuclear Information System (INIS)

    Sosiati, H.; Muhaimin, M.; Abdilah, P.; Wijayanti, D. A.; Harsojo; Triyana, K.

    2014-01-01

    In order to characterize the morphology and size distribution of the cellulose fibers, natural cellulose from kenaf bast fibers was extracted using two chemical treatments; (1) alkali-bleaching-ultrasonic treatment and (2) alkali-bleaching-hydrolysis. Solutions of NaOH, H 2 O 2 and H 2 SO 4 were used for alkalization, bleaching and hydrolysis, respectively. The hydrolyzed fibers were centrifuged at a rotation speed of 10000 rpm for 10 min to separate the nanofibers from the microfibers. The separation was repeated in 7 steps by controlling pH of the solution in each step until neutrality was reached. Fourier transform infrared (FTIR) spectroscopy was performed on the fibers at the final step of each treatment: i.e. either ultrasonic treated- or hydrolyzed microfibers. Their FTIR spectra were compared with FTIR spectrum of a reference commercial α-cellulose. Changes in morphology and size distribution of the treated fibers were examined by scanning electron microscopy (SEM). FTIR spectra of ultrasonic treated- and hydrolyzed microfibers nearly coincided with the FTIR spectrum of commercial α-cellulose, suggesting successful extraction of cellulose. Ultrasonic treatment for 6 h resulted in a specific morphology in which cellulose nanofibers (≥100 nm) were distributed across the entire surface of cellulose microfibers (∼5 μm). Constant magnetic stirring combined with acid hydrolysis resulted in an inhomogeneous size distribution of both cellulose rods (500 nm-3 μm length, 100–200 nm diameter) and particles 100–200 nm in size. Changes in morphology of the cellulose fibers depended upon the stirring time; longer stirring time resulted in shorter fiber lengths

  4. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  5. Glycerine Treated Nanofibrillated Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Esra Erbas Kiziltas

    2016-01-01

    Full Text Available Glycerine treated nanofibrillated cellulose (GNFC was prepared by mixing aqueous nanofibrillated cellulose (NFC suspensions with glycerine. Styrene maleic anhydride (SMA copolymer composites with different loadings of GNFC were prepared by melt compounding followed by injection molding. The incorporation of GNFC increased tensile and flexural modulus of elasticity of the composites. Thermogravimetric analysis showed that as GNFC loading increased, the thermal stability of the composites decreased marginally. The incorporation of GNFC into the SMA copolymer matrix resulted in higher elastic modulus (G′ and shear viscosities than the neat SMA copolymer, especially at low frequencies. The orientation of rigid GNFC particles in the composites induced a strong shear thinning behavior with an increase in GNFC loading. The decrease in the slope of elastic modulus with increasing GNFC loading suggested that the microstructural changes of the polymer matrix can be attributed to the incorporation of GNFC. Scanning electron microscopy (SEM images of fracture surfaces show areas of GNFC agglomerates in the SMA matrix.

  6. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  7. A novel method for preparing microfibrillated cellulose from bamboo fibers

    International Nuclear Information System (INIS)

    Nguyen, Huu Dat; Nguyen, Ngoc Bich; Dang, Thanh Duy; Thuy Mai, Thi Thanh; Phung Le, My Loan; Tran, Van Man; Dang, Tan Tai

    2013-01-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A and J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase. (paper)

  8. Process Intensification for Cellulosic Biorefineries.

    Science.gov (United States)

    Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb

    2017-06-22

    Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Utilization of agricultural cellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valkanas, G N; Economidis, D G; Koukios, E G; Valkanas, C G

    1977-05-05

    Wastes, example, straw, are prehydrolyzed to convert pentosanes, starches, and hemicelluloses to monosaccharides; the remaining pulp is 50% cellulose. Thus, dry wheat straw 0.8 kg was treated with 10 L of 0.3% aqueous HCl at 5-5.5 atm and 145/sup 0/ and a space velocity of 0.55 L/min, washed with dry steam, followed by water at 120 to 130/sup 0/, and more dry steam, and compressed at 25 kg/cm/sup 2/ to yield a product containing 45 to 50 wt % water. The sugar solution obtained (1394 L) contained 1.34 wt % reducing sugars, a straw hydrolysis of 23 wt %, and comprised xylose 74.3, mannose 5.2, arabinose 11.8, glucose 5.9, galactose 2.9%, and furfural 0.16 g/L. The cellulose residue had a dry weight of 0.545 kg. a yield of 68.2 wt % and contained cellulose 53.1, hemicelluloses 12.6%, lignin 22.1, ash and extractables 12.2%. The degree of polymerization was 805 glucose units.

  10. Process optimization for obtaining nano cellulose from curaua fiber

    International Nuclear Information System (INIS)

    Lunz, Juliana do N.; Cordeiro, Suellem B.; Mota, Jose Carlos F.; Marques, Maria de Fatima V.

    2011-01-01

    This study focuses on the methodology for optimization to obtain nanocellulose from vegetal fibers. An experimental planning was carried out for the treatment of curaua fibers and parameters were estimated, having the concentration of H 2 SO 4 , hydrolysis time, reaction temperature and time of sonication applied as independent variables for further statistical analysis. According to the estimated parameters, the statistically significant effects were determined for the process of obtaining nanocellulose. According to the results obtained from the thermogravimetric analysis (TGA) it was observed that certain conditions led to cellulose with degradation temperatures near or even above that of untreated cellulose fibers. The crystallinity index (IC) obtained after fiber treatment (X-ray diffraction) were higher than that of the pure fiber. Treatments with high acid concentrations led to higher IC. (author)

  11. Biochemistry of cellulose degradation and cellulose utilization for feeds and for protein

    Energy Technology Data Exchange (ETDEWEB)

    Sadara, J C; Lachke, A H; Shewale, J G

    1979-01-01

    A review discussing production of single-cell protein, fuel, and glucose from cellulose decomposition; surface or solid fermentations of single-cell protein; production of cellulases; and the biochemistry of cellulose degradation was presented.

  12. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  13. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor

    2018-01-01

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration

  14. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane

    International Nuclear Information System (INIS)

    Santos, Frirllei Cardozo dos

    2016-01-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H_2SO_4 was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by AFM and SEM

  15. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  16. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  17. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  18. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  19. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

    Directory of Open Access Journals (Sweden)

    Dawit Beyene

    2017-10-01

    Full Text Available Cellulose nanocrystals (CNCs can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt % was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production.

  20. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations.

    Science.gov (United States)

    Mujtaba, Muhammad; Kaya, Murat; Akyuz, Lalehan; Erdonmez, Demet; Akyuz, Bahar; Sargin, Idris

    2017-09-01

    Current study was designed to use the newly obtained cellulose from waste flower spikes of Thypa latifolia plant for plasmid DNA adsorption. Cellulose was isolated according to a previously described method including acid and base treatment, and cellulose content was recorded as 17%. T. latifolia cellulose was physicochemically characterized via FT-IR, TGA and SEM techniques. Detailed mechanism of plasmid DNA adsorption by newly isolated cellulose was described using chemical quantum calculations. To check the effect of Cu ++ immobilization on the affinity of cellulose for plasmid DNA, copper ions were immobilized onto T. latifolia cellulose. pUC18 plasmid DNA was used for adsorption studies. Membranes prepared with only T. latifolia cellulose and Cu ++ immobilized T. latifolia cellulose revealed different adsorption ratios as 43.9 and 86.9% respectively. This newly isolated cellulose from waste flower spikes of T. latifolia can be utilized as a suitable carrier for plasmid DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

    Science.gov (United States)

    Yang, Bin; Wyman, Charles E

    2004-04-05

    Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.

  2. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  3. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  4. Enzymatic hydrolysis of cellulosic materials by Sclerotium rolfsii culture filtrate for sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, J G; Sadana, J C

    1979-06-01

    The hydrolysis of purified celluloses (cotton, Avicel, Cellulose-123, Solka Floc SW40) and cellulosic wastes (rice straw, sugarcane bagasse, wood powders, paper factory effluents) by Sclerotium rolfsii CPC 142 culture filtrate was studied. Factors which effect saccharification such as pH, temperature, enzyme concentration, substrate concentration, produce inhibition, adsorption, and inactivation of enzyme and particle size were studied. Virtually no inhibition (less than 3%) of cellulose hydrolysis by the culture filtrate was observed by cellobiose and glucose up to 100 mg/mL. Filter paper degrading enzyme(s) (but neither carboxymethylcellulase nor beta-glucosidase) was adsorbed on cellulose. The n value in the S. rolfsii system was calculated to be 0.32 for Avicel P.H. 101 and 0.53 for alkali-treated (AT) rice straw indicating penetration of cellulase into AT rice straw. In batch experiments at 10% substrate level, solutions containing 6 to 7%, 3.8 to 4.7%, 4.0 to 5.1%, and 4.2 to 4.9% reducing sugars were produced in 24 to 48 from AT rice straw. AT bagasse, alkali - peracetic acid treated mesta wood and paper factory sedimented sludge effluent, respectively. The main constituent in the hydrolysate from cellulose was glucose with little or no cellobiose, probably due to the high cellobiase content in the culture filtrate.

  5. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    International Nuclear Information System (INIS)

    Shahid U N, Mohamed; Deshpande, Abhijit P; Rao, C Lakshmana

    2015-01-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation. (paper)

  6. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.

    Science.gov (United States)

    Fortunati, E; Peltzer, M; Armentano, I; Torre, L; Jiménez, A; Kenny, J M

    2012-10-01

    The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese

    International Nuclear Information System (INIS)

    Lu, Qi-lin; Tang, Li-rong; Wang, Siqun; Huang, Biao; Chen, Yan-dan; Chen, Xue-rong

    2014-01-01

    The aim of this study was to explore the utilization of Pennisetum sinese as cellulose source for the preparation of cellulose nanocrystals (CNC). The cellulose was extracted from P. sinese by chemical treatment and bleaching, and obtained cellulose nanocrystals by acid hydrolysis. Transmission electron microscopy (TEM) showed that CNC were rod-like with the diameter of 20–30 nm and the length of 200–300 nm. Fourier transform infrared (FTIR) showed that chemical treatment removed most of the lignin and hemicellulose from P. sinese, and CNC had similar structure to that of native cellulose. The crystallinity indexes calculated from X-ray diffraction (XRD) for P. sinese and CNC were 40.6% and 77.3%, respectively. The zeta-potential analysis showed that CNC had higher stability than P. sinese had. The thermal stability was investigated by thermogravimetric analysis (TGA), and the result showed that P. sinese had higher thermal stability than that of prepared CNC. - Highlights: • Pennisetum sinese Roxb is good raw material for preparing cellulose nanocrystals (CNC). • Crystallinity of prepared CNC is higher than that of P. sinese Roxb. • Thermal stability of prepared CNC is lower than that of P. sinese Roxb

  8. Preparation and Characterization of Cellulose and Nanocellulose from Agro-industrial Waste - Cassava Peel

    Science.gov (United States)

    Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M.

    2017-02-01

    Cassava peel is an agro-industrial waste which is available in huge quantities in Lampung Province of Indonesia. This work was conducted to evaluate the potential of cassava peel as a source of cellulose and nanocellulose. Cellulose was extracted from cassava peel by using different chemical treatment, and the nanocellulose was prepared by hydrolysis with the use of sulfuric acid. The best methods of cellulose extraction from cassava peels are using alkali treatment followed by a bleaching process. The cellulose yield from this methods was 17.8% of dry base cassava peel, while the yield from nitric and sulfuric methods were about 10.78% and 10.32% of dry base cassava peel respectively. The hydrolysis was performed at the temperature of 50 °C for 2 hours. The intermediate reaction product obtained after each stage of the treatments was characterized. Fourier transform infrared spectroscopy showed the removal of non-cellulosic constituent. X-ray Diffraction (XRD) analysis revealed that the crystallinity of cellulose increased after hydrolysis. Morphological investigation was performed using Scanning Electron Microscopy (SEM). The size of particle was confirmed by Particle Size Analyzer (PSA) and Transmission Electron Microscopy (TEM).

  9. Bioconversion of cellulose into electrical energy in microbial fuel cells

    Science.gov (United States)

    Rismani-Yazdi, Hamid

    .5, 53 and 47 mWm-2, respectively. The anode potential varied under the different circuit loads employed. Higher coulombic efficiencies were achieved in MFCs with lower external resistance. The effect of different external resistances on the bacterial diversity and metabolism in cellulose-fed MFCs was investigated as the fourth objective. DGGE analysis of partial 16S rRNA genes showed clear differences between the planktonic and the anode-attached populations at various external resistances. Cellulose degradation was complete (anaerobic degradation of cellulose was accompanied by production of acetic, propionic, butyric, isobutyric, valeric, isovaleric, and lactic acids, with acetic acid being predominant. The profile of metabolites was different among the MFCs. The concentrations of SCFA were higher in MFCs with larger external resistance. High levels of SCFA indicated that fermentative metabolism dominated over anaerobic respiration, resulting in relatively low coulombic efficiencies. The accumulation of SCFA at higher circuit resistances corresponded to lower power outputs. Methanogenesis shifts the flow of electrons available from the substrate away from electricity generation in MFCs. The fifth objective of this research was to assess the influence of methane formation on the performance of cellulose-fed MFCs under long-term operation. A maximum volumetric power density of 3.5 W m-3 was achieved in R20O MFCs, which was three times greater than that obtained with R100O MFCs (1.03 W m-3). The diversity of methanogens in cellulose-fed MFCs was also characterized. It was shown that the suppression of methanogenesis was accompanied by a decrease in the diversity of methanogens and changes in the concentration of SCFA, as revealed by DGGE analysis of PCR-amplified 16S rRNA genes and HPLC analysis, respectively. Analysis of partial 16S rRNA gene Sequences indicated that the most predominant methanogens were related to the family Methanobacteriaceae . The results

  10. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    Science.gov (United States)

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  11. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  12. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers.

  13. [Digestive utilization of purified cellulose in the rainbow trout (Salmo gairdneri) and the common carp (Cyprinus carpio)].

    Science.gov (United States)

    Bergot, F

    1981-01-01

    A semi-purified diet containing 22 p. 100 of a wood cellulose extract without lignin but still containing 22 p. 100 of hemicelluloses was distributed for one month to rainbow trout and common carp reared at 17 and 20 degrees C, respectively. The digestibility of the main dietary constituents was determined by an indirect method using chrome oxide as an inert tracer. The feces were recovered by a continuous automatic collector which rapidly removed them from the water, minimizing alteration by leaching. The cellulose content was estimated by the Weende (crude fiber) and the Van Soest (neutral detergent fiber and acid detergent fiber) methods. The digestibility coefficients obtained for trout as well as for carp indicate that cellulose and hemicelluloses were not digested. In both species, volatile fatty acid concentration in the different segments of the digestive tract was low (less than 10 mM/l). These results lead us to suggest that trout and carp cannot degrade purified cellulose.

  14. Water absorption and maintenance of nanofiber cellulose ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-17

    May 17, 2012 ... Physiochemical properties of bacterial cellulose producing by Gluconacetobacter rhaeticus TL-2C was ... shape of the mold (Czaja et al., 2006). ... impurity, and then it was freeze-dried and ground to a fine ... Figure 1. Microstructure and chemical structure of bacterial cellulose producing G. rhaeticus TL-2C.

  15. Characterization of cellulose nanofibrillation by micro grinding

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  16. Cellulose Triacetate Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  17. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  18. Isolation and characterization of microcrystalline cellulose obtained ...

    African Journals Online (AJOL)

    In this study, microcrystalline cellulose, coded MCC-PNF, was obtained from palm nut (Elaeis guineensis) fibres. MCC-PNF was examined for its physicochemical and powder properties. The powder properties of MCC-PNF were compared to those of the best commercial microcrystalline cellulose grade, Avicel PH 101.

  19. Some Physical Characteristics of Microcrystalline Cellulose ...

    African Journals Online (AJOL)

    Purpose: The microcrystalline cellulose is an important ingredient in pharmaceutical, food, cosmetic and other industries. This study aimed at evaluating the physical characteristics of microcrystalline cellulose (CP-MCC), obtained from the raw cotton of Cochlospermum planchonii. Methods: CP-MCC was obtained from the ...

  20. Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis.

    Science.gov (United States)

    Aung, Ye Htut; Liman, Martin; Neumann, Ulrich; Rautenschlein, Silke

    2008-02-01

    Swollen head syndrome (SHS) associated with avian metapneumovirus (aMPV) subtype A or subtype B in broilers and broiler breeders has been reported worldwide. Data about pathogenesis of aMPV subtypes A and B in broilers are scarce. It has been difficult to reproduce swollen sinuses in chickens with aMPV under experimental conditions. In the field, SHS in broilers is suspected to be induced by combined infections with different respiratory pathogens. The objectives of the present study were to compare the pathogenesis of subtypes A and B aMPV in commercial broilers and to investigate the reproducibility of clinical disease. In two repeat experiments, commercial broilers free of aMPV maternal antibodies were inoculated with aMPV subtypes A and B of turkey origin. The clinical signs such as depression, coughing, nasal exudates, and frothy eyes appeared at 4 days post inoculation, followed by swelling of periorbital sinuses at 5 days post inoculation. Higher numbers of broilers showed clinical signs in subtype-B-inoculated compared with subtype-A-inoculated groups. Seroconversion to aMPV was detectable from 10 to 11 days post inoculation. The appearance of serum aMPV enzyme-linked immunosorbent assay antibodies and the clearance of the aMPV genome coincided. Subtype B aMPV showed a broader tissue distribution and longer persistence than subtype A. Histopathological changes were observed in the respiratory tract tissues of aMPV-inoculated broilers, and also in paraocular glands, such as the Harderian and lachrymal glands. Overall, our study shows that representative strains of both aMPV turkey isolates induced lesions in the respiratory tract, accompanied by swelling of infraorbital sinuses, indicating the role of aMPV as a primary pathogen for broilers.

  1. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    Energy Technology Data Exchange (ETDEWEB)

    Thambiraj, S.; Ravi Shankaran, D., E-mail: dravishankaran@hotmail.com

    2017-08-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  2. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    International Nuclear Information System (INIS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-01-01

    Graphical abstract: Schematic representation of the preparation of cellulose nanocrystals from industrial waste cotton. - Highlights: • Cellulose microcrystals (CMCs) were synthesized from industrial waste cotton by controlled acid and basic hydrolysis. • Cellulose nanocrystals (CNCs) were synthesized from CMCs by controlled acid hydrolysis. • The synthesis process is simple and the CNCs possess liquid crystalline character, biocompatibility and sustainability. • The morphology of the CNCs were studied by AFM and TEM analysis. The average width is 10 ± 1 nm and length is 180 ± 60 nm. - Abstract: We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well

  3. Biofunctional Paper via Covalent Modification of Cellulose

    Science.gov (United States)

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  4. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    Science.gov (United States)

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.

  5. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  6. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  7. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  8. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  9. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  10. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  11. Sorption of uranium by cellulose derivatives

    International Nuclear Information System (INIS)

    Muroi, M.; Imai, S.; Hamaguchi, A.

    1985-01-01

    The sorption behaviour of uranium was investigated by batch and column methods using four cellulose derivatives, two having an amino group and two having an amino group plus a dithiocarboxylate group. All four derivatives showed maximum uranium sorption from pure water in the neutral region or from artificial sea water in the acidic region. In the batch method, quantitative removal of 100 μg of uranium from 50 ml of water at pH 5.0 was achieved by equilibration with 50 mg of any of the four sorbents. The percentage removal under these conditions decreased gradually with increasing concentration of uranium above 100 μg per 50 ml. A similar high percentage removal of uranium was achieved using artificial sea water. In the column method, quantitative removal of 5 μg of uranium from 1l of water at pH 6.7 was achieved with 200 mg of either of the two sorbents. Similar quantitative removal of uranium was achieved from 1l of artificial sea water at pH 5.4 with 500 mg of either of the two sorbents. (author)

  12. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  13. Ensiling as biological pretreatment of grass (Festulolium Hykor): The effect of composition, dry matter, and inocula on cellulose convertibility

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2013-01-01

    Grass biomass is a prospective type of lignocellulosic biomass for bioenergy and fuel production, but the low dry matter in grass at harvest calls for new pretreatment strategies for cellulosic conversion. In this study, ensiling was tested as a biological pretreatment method of the high yielding...... grass variety Festulolium Hykor. The biomass was harvested in four cuts over a growing season. Three important factors of ensiling: biomass composition, dry matter (DM) at ensiling, and inoculation of lactic acid bacteria, were assessed in relation to subsequent enzymatic cellulose hydrolysis....... The organic acid profile after ensiling was dependant on the composition of the grass and the DM, rather than on the inocula. High levels of organic acids, notably lactic acid, produced during ensiling improved enzymatic cellulose convertibility in the grass biomass. Ensiling of less mature grass gave higher...

  14. Effects of inulin, carrot and cellulose fibres on the properties of raw ...

    African Journals Online (AJOL)

    The effects of inulin, carrot, and cellulose fibres (3%, 6%, and 9%) on raw and fried chicken meatballs were studied. Meatball pH, thiobarbituric acid reactive substances (TBARS), and colour values were determined for raw samples in refrigerated storage on the 1st, 5th and 10th days. The effects of fibres and their various ...

  15. Effect of Zn/ZSM-5 and FePO4 Catalysts on Cellulose Pyrolysis

    Directory of Open Access Journals (Sweden)

    Haian Xia

    2015-01-01

    Full Text Available A series of Zn/ZSM-5 catalysts with different Zn contents and FePO4 were used to pyrolyze cellulose to produce value added chemicals. The nature of these catalysts was characterized by ammonia-temperature programmed desorption (NH3-TPD, IR spectroscopy of pyridine adsorption, and X-ray diffraction (XRD techniques. Noncatalytic and catalytic pyrolytic behaviors of cellulose were studied by thermogravimetric (TG technique. The pyrolytic liquid products, that is, the biooils, were analyzed by gas chromatography-mass spectrometry (GC-MS. The major components of the biooils are anhydrosugars such as levoglucosan (LGA, 1,6-anhydro-β-D-glucofuranose (AGF, levoglucosenone (LGO, 1,6-anhydro-3,4-dideoxy-β-D-pyranosen-2-one, and 1,4:3,6-dianhydro-α-D-glucopyranose (DGP, as well as furan derivatives, alcohols, and so forth. Zn/ZSM-5 samples with Brønsted and Lewis acid sites and the FePO4 catalyst with Lewis acid sites were found to have a significant effect on the pyrolytic behaviors of cellulose and product distribution. These results show that Brønsted and Lewis acid sites modified remarkably components of the biooil, which could promote the production of furan compounds and LGO. On the basis of the findings, a model was proposed to describe the pyrolysis pathways of cellulose catalyzed by the solid acid catalysts.

  16. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Science.gov (United States)

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  17. Revealing organization of cellulose in wood cell walls by Raman imaging

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph

    2007-01-01

    Anisotropy of cellulose organization in mature black spruce wood cell wall was investigated by Raman imaging using a 1 [mu]m lateral-resolution capable confocal Raman microscope. In these studies, wood cross sections (CS) and radial longitudinal sections (LS) that were partially delignified by acid chlorite treatment were used. In the case of CS where latewood cells...

  18. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancement of Cellulose Degradation by Cattle Saliva

    Science.gov (United States)

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  20. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Model films of cellulose. I. Method development and initial results

    NARCIS (Netherlands)

    Gunnars, S.; Wågberg, L.; Cohen Stuart, M.A.

    2002-01-01

    This report presents a new method for the preparation of thin cellulose films. NMMO (N- methylmorpholine- N-oxide) was used to dissolve cellulose and addition of DMSO (dimethyl sulfoxide) was used to control viscosity of the cellulose solution. A thin layer of the cellulose solution is spin- coated

  2. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Science.gov (United States)

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  3. Prevalence and trends of cellulosics in pharmaceutical dosage forms.

    Science.gov (United States)

    Mastropietro, David J; Omidian, Hossein

    2013-02-01

    Many studies have shown that cellulose derivatives (cellulosics) can provide various benefits when used in virtually all types of dosage forms. Nevertheless, the popularity of their use in approved drug products is rather unknown. This research reports the current prevalence and trends of use for 15 common cellulosics in prescription drug products. The cellulosics were powdered and microcrystalline cellulose (MCC), ethyl cellulose, hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hypromellose (HPMC), HPMC phthalate, HPMC acetate succinate, cellulose acetate (CA), CA phthalate, sodium (Na) and calcium (Ca) carboxymethylcellulose (CMC), croscarmellose sodium (XCMCNa), methyl cellulose, and low substituted HPC. The number of brand drug products utilizing each cellulosics was determined using the online drug index Rxlist. A total of 607 brand products were identified having one or more of the cellulosics as an active or inactive ingredient. An array of various dosage forms was identified and revealed HPMC and MCC to be the most utilized cellulosics in all products followed by XCMCNa and HPC. Many products contained two or more cellulosics in the formulation (42% containing two, 23% containing three, and 4% containing 4-5). The largest combination occurrence was HPMC with MCC. The use of certain cellulosics within different dosage form types was found to contain specific trends. All injectables utilized only CMCNa, and the same with all ophthalmic solutions utilizing HPMC, and otic suspensions utilizing HEC. Popularity and trends regarding cellulosics use may occur based on many factors including functionality, safety, availability, stability, and ease of manufacturing.

  4. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  5. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants

    Science.gov (United States)

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440–3450, 2015 PMID:26073446

  6. Separation of nitrogen-krypton by the freeze-dried cellulose acetate membrane

    International Nuclear Information System (INIS)

    Tanioka, Akihiko; Ishikawa, Kinzo; Kakuta, Akio; Ozaki, Osamu; Oono, Masanori.

    1977-01-01

    The utility of freeze-dried cellulose acetate membranes, which consist of a thin skin layer supported upon a more porous matrix substructure, was examined for separation of nitrogen-radioactive krypton 85. The high permeable and separative membranes were prepared by fixed freezed-drying of swollen membrane after evaporation of acetone for 4-6 minutes. The permeation rate of nitrogen was 10 -1 -10 -3 (cc/cm 2 .sec.atm). Knudsen flow was predominant, since the permeation rate was inversely proportional to square root of molecular weight of gases. The influence of viscous flow was also observed by slight dependence on the pressure. The mean pore size was calculated by the equation of gas permeation in porous media. There exist fine pores of 30-40A radii in the skin layer. The separation factor (dilution of Kr) was about 0.7 and the separation efficiency was 60%. The collision between different gas molecules (Present-de Bethunes' effect) and the influence of viscous flow depreciates the efficiency. The separation efficiency which was determined by the experiment coincided with the one predicted according to the Present-de Bethunes' equation, supposing that the pore size in skin layer was 10-25A. (auth.)

  7. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants.

    Science.gov (United States)

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-10-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, Lee R.; Liang, Xiaoyu; Biddy, Mary J.; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark S.; Wang, Michael; Wyman, Charles E.

    2017-06-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  9. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  10. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis; Pinho, Maria Noberta de; Silva, Maria Lucia Caetano Pinto da

    2010-01-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  11. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  12. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    Energy Technology Data Exchange (ETDEWEB)

    Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my; Bhat, A. H., E-mail: aamir.bhat@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia); Faiz, A., E-mail: faizahmad@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar, Perak (Malaysia)

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  13. Enzymic hydrolysis of cellulosic wastes to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Spano, L A; Medeiros, J; Mandels, M

    1976-01-01

    An enzymic process for the conversion of cellulose to glucose is based on the use of a specific enzyme derived from mutant strains of the fungus trichoderma viride which is capable of reacting with the crystalline fraction of the cellulose molecule. The production and mode of action of the cellulase complex produced during the growth of trichoderma viride is discussed as well as the application of such enzymes for the conversion of cellulosic wastes to crude glucose syrup for use in production of chemical feedstocks, single-cell proteins, fuels, solvents, etc.

  14. Degradation of cellulosic substances by Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Stutzenberger, F J

    1979-05-01

    Research is reported on the cellulolytic activity of Thermomonospora curvata, a thermophilic cellulolytic actinomycete prevalent in municipal solid waste compost. Various cellulosic wastes were evaluated for their potential for the induction of cellulase synthesis by Th. curvata and the extent of cellulose degradation under optimal culture conditions. All the substrates tested showed significant degradation of their cellulose content with the exception of sawdust and barley straw. In contrast to Trichoderma viride, cotton fibers were the best substrates for both C/sub 1/ and C/sub x/ cellulase production. Further research is recommended. (JSR)

  15. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  16. Tissue distribution and deposition pattern of a cellulosic parenchyma-specific protein from cassava roots

    Directory of Open Access Journals (Sweden)

    Petrônio A.S. Souza

    1998-06-01

    Full Text Available A protein with a molecular mass of 22kDa was purified from the cellulosic parenchyma of cassava roots. The amino acid composition of the protein was determined and antibodies generated against the purified protein were used to show that the concentration of the protein remains unchanged during root "tuber" formation. By using a tissue printing technique, as well as western blot, it was shown that the cellulosic parenchyma was the only root tissue in which the protein was deposited.

  17. A promising cellulose-based polyzwitterion with pH-sensitive charges

    Directory of Open Access Journals (Sweden)

    Thomas Elschner

    2014-07-01

    Full Text Available A novel polyzwitterion possessing weak ionic groups could be efficiently synthesized from cellulose phenyl carbonate. Polyanion, polycation, and polyzwitterion are accessible by orthogonal removal of protecting groups. The molecular structure was proofed by FTIR- and NMR spectroscopy. Characteristic properties of the cellulose derivatives, e.g., acid dissociation constants, isoelectric point and complexation, were investigated by potentiometric titration (pH, nephelometry, rheology and dynamic light-scattering. The formation of pH-responsive interpolyelectrolyte complexes applying polydiallyldimethylammonium chloride was preliminary studied.

  18. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth.

  19. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  20. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.