WorldWideScience

Sample records for acid storage tank

  1. Basic and acidic leaching of Melton Valley Storage Tank sludge at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.

    1995-01-01

    Basic and acidic leaching tests were conducted with samples of sludge taken from an underground storage tank at the US Department of Energy Melton Valley Storage Tank facility at Oak Ridge National Laboratory. The tests evaluated separation technologies for use in sludge processing to concentrate the radionuclides and reduce the volumes of storage tank waste for final disposal. Study results of sludge characterization, caustic leaching of sludge samples at ambient temperature and at 95 degrees C, and acid leaching of sludge samples at ambient temperature are reported in detail

  2. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  3. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  4. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  5. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    International Nuclear Information System (INIS)

    Evans, S.K.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System

  6. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order; TOPICAL

    International Nuclear Information System (INIS)

    Evans, S.K.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system

  7. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  8. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  9. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  10. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  11. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  12. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  13. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  14. 30 CFR 56.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied...

  15. 30 CFR 57.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... leaks caused by tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed...

  16. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  17. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  18. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  19. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  20. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  1. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  2. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  3. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  4. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  5. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193...

  6. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  7. Computer modeling of ORNL storage tank sludge mobilization and mixing

    International Nuclear Information System (INIS)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  8. 40 CFR 52.1931 - Petroleum storage tank controls.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  9. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  10. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  11. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  12. Integrity assessment of a storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Osorio Correa; Santos, Jose Henrique Gomes dos; Carvalho, Alexis Fernandes [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In the last internal inspection of a 5000 bbl freshwater storage tank located in a shipping terminal, widespread pitting corrosion was detected on the shell courses. In some of these pits, its depth was such that the remaining thickness was bellow the minimum thickness required according to the design code. Nevertheless, this approach is overly conservative since it does not consider the pits size, depth and spacing. Thanks to advances in stress analysis, new tools are available for the evaluation of damaged equipment widely employed in the oil industry such as pressure vessels, piping and storage tanks. In the present work, the authors present the integrity assessment performed on this tank using the Fitness for Service approach using the methods and procedures contained in the document API RP 579 (Fitness-for-service). (author)

  13. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  14. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  15. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  16. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  17. Safety considerations on LPG storage tanks

    International Nuclear Information System (INIS)

    Paff, R.

    1993-01-01

    The safety of liquefied petroleum gas (LPG) storage tanks, in refineries, petrochemicals plants, or distribution storage, is an important concern. Some serious accidents in recent years, have highlighted the need for a good safety policy for such equipment. Accidents in LPG storage are mainly due to losses of containment of the LPG. Formation of a cloud can lead to a ''Unconfined Vapor Cloud Explosion'' (UVCE). Liquid leakage can lead to pool fires in the retention area. In some circumstances the heat input of the tank, combined with the loss of mechanical resistance of the steel under high temperature, can lead to a BLEVE ''Boiling Liquid Expanding Vapor Explosion''. It is obvious that such equipment needs a proper design, maintenance and operating policy. The details to be considered are set out. (4 figures). (Author)

  18. Mobilization and mixing of settled solids in horizontal storage tanks

    International Nuclear Information System (INIS)

    Cummins, R.L.

    1995-01-01

    Studies were conducted using submerged jets for the mobilization and mixing of settled solids to form a suspension that can easily be removed from storage tanks. These studies focus on the specific problems relating to horizontal, cylindrical storage tanks. Of primary consideration are the storage tanks located at the Oak Ridge National Laboratory which are used for the collection of remote-handled, radioactive liquid wastes. These wastes are in two phases. A layer of undissolved, settled solids varying from 2 to 4 feet in depth under a layer of supernate. Using a surrogate of the tank contents and an approximate 2/3 dimensional scale tank, tests were performed to determine the optimum design and location of suction and discharge nozzles as well as the minimum discharge velocity required to achieve complete mobilization of the solids in the tank

  19. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  20. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  1. Design criteria tank farm storage and staging facility

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Safety issues based on poor housekeeping and material deterioration due to weather damage has resulted from inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This document provides the design criteria for the design of the storage and staging buildings near 272AW and 272WA buildings

  2. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  3. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  4. Single bi-temperature thermal storage tank for application in solar thermal plant

    Science.gov (United States)

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  5. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  6. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  7. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  8. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  9. Method of storing the fuel storage pot in a fuel storage tank for away-from-reactor-storage

    International Nuclear Information System (INIS)

    Ishiguro, Jun-ichi.

    1980-01-01

    Purpose: To prevent the contact of sodium in the away-from-reactor-storage fuel storage tank with sodium in a fuel storage pool having radioactivity ana always retain clean state therein. Method: Sodium is filled in a container body of the away-from-reactor-storage fuel storage tank, and a conduit, a cycling pump, and cooling means are disposed to form a sodium coolant cycling loop. The fuel storage pool is so stored in the container body that the heat of the pool is projected from the liquid surface of the sodium in the container. Therefore, the sodium in the container is isolated from the sodium in the pool containing strong radioactivity to prevent contact of the former sodium from the latter sodium. (Sekiya, K.)

  10. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  11. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  12. Analysis of large concrete storage tank under seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Le, Jingyuan; Cui, Hongcheng; He, Qiang; Ju, Jinsan [China Agricultural University, Beijing (China); You, Xiaochuan [Tsinghua University, Beijing (China)

    2015-01-15

    This study adopted the finite element software ABAQUS to trace the dynamic response history of large reinforced concrete storage tank during different seismic excitations. The dynamic characteristics and failure modes of the tank's structure were investigated by considering the rebar's effect. Calculation results show that the large concrete storage tank remains in safe working conditions under a seismic acceleration of 55 cm/s{sup 2}. The joint of the concrete wall and dome begins to crack when seismic acceleration reaches 250 cm/s{sup 2}. As the earthquake continues, cracks spread until the top of the wall completely fails and stops working. The maximum displacement of the concrete tank and seismic acceleration are in proportion. Peak displacement and stress of the tank always appear behind the maximum acceleration.

  13. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  14. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  15. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  16. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff

    2008-01-01

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  17. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  18. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  19. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  20. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    International Nuclear Information System (INIS)

    Karl Froschauer; Holger Witing; Bernhard Christ

    2006-01-01

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  1. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  2. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  3. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  4. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm, 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO 3 - , CO 3 2- , OH - , and O 2- . The organic carbon content was 3.0 ± 1.0%. The pH was 13

  5. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  6. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.

    Science.gov (United States)

    Han, M Y; Mun, J S

    2007-01-01

    Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.

  7. A robotic end effector for inspection of storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Gittleman, M. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  8. A robotic end effector for inspection of storage tanks

    International Nuclear Information System (INIS)

    Hughes, G.; Gittleman, M.

    1995-01-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work

  9. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Gue, J.P.; Mercier, J.P.

    1990-12-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay

  10. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  11. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3

  12. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO 3 - ,CO 3 2- , OH - , and O 2- organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the 137 Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the 137 Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the 137 Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing 137 Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the 137 Cs was removed in 16 h with 3.0 M HNO 3 . Only 22% of the 137 Cs was removed in 117 h usi 6.0 M HNO 3 . Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO 3 for a total mixing time of 558 h removed 84% of the 137 Cs. The use of caustic leaching prior to HNO 3 leaching, and the use of HF with HNO 3 in acidic leaching, increased the rate of 137 Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO 3 leaching of the W-25 sludge

  13. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  14. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  15. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    Science.gov (United States)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  16. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm, {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup {minus}}, CO{sub 3}{sup 2{minus}}, OH{sup {minus}}, and O{sub 2{minus}}. The organic carbon content was 3.0 {+-} 1.0%. The pH was 13.

  17. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  18. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  19. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  20. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  1. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    Science.gov (United States)

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  2. Thermal stratification in storage tanks of integrated collector storage solar water heaters

    International Nuclear Information System (INIS)

    Oshchepkov, M.Y.; Frid, S.E.

    2015-01-01

    To determine the influence of the shape of the tank, the installation angle, and the magnitude of the absorbed heat flux on thermal stratification in integrated collector-storage solar water heaters, numerical simulation of thermal convection in tanks of different shapes and same volume was carried out. Idealized two-dimensional models were studied; auto model stratification profiles were obtained at the constant heat flux. The shape of the tank, the pattern of the heat flux dynamics, the adiabatic mixing on the circulation rate and the degree of stratification were shown to have significant influence. (authors)

  3. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  4. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  5. Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-07-01

    The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity

  6. Maintaining of the demineralized water quality in storage tanks

    International Nuclear Information System (INIS)

    Hochmueller, K.; Wandelt, E.

    1981-03-01

    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter [fr

  7. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  8. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  9. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  10. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  11. Elephant's foot phenomenon in liquid storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Q.

    1983-01-01

    This paper presents a method for analyzing the seismic response of a flat bottomed cylindrical liquid storage tank to vertical earthquake excitation. Here, vertical earthquake acceleration is considered to correspond to an increase in the density of a stored liquid. Taking into account the vertical and horizontal earthquake loads, hydrostatic pressure, and considering restrictive moment and shear forces at shell-bottom welded joint, the author has calculated circumferential and longitudinal stresses. These are combined to more accurately approximate the stresses at the base shell course. The calculated result closely conforms to the actual damage, termed ''elephant's foot,'' observed in the fuel storage tanks damaged in the Tangshan earthquake. This result shows that the ''elephant's foot'' phenomenon is not caused by buckling of the tank shell due to longitudinal compressive stresses resulting from horizontal earthquake acceleration, but rather by the combined stresses in the base shell course of the storage tank exceeding the yield strength of the shell course material. The effect due to vertical earthquake load is more than the effect from the horizontal load. Finally, some earthquake resistant methods to prevent the ''elephant's foot'' phenomenon are suggested by the author.

  12. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  13. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin

    2006-01-01

    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  14. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  15. Underground storage tank soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  16. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  17. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.G.; Badden, J.J.

    1995-01-01

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  18. DESIGN OF LIQUID-STORAGE TANK: RESULTS OF SOFTWARE MODELING VS CALCULATIONS ACCORDING TO EUROCODE

    Directory of Open Access Journals (Sweden)

    Matko Gulin

    2017-01-01

    Full Text Available The objective of this article is to show the design process of a liquid-storage tank shell according to Eurocode and compare the results obtained using the norms with those from a finite element method (FEM analysis. The calculations were performed for an aboveground vertical steel water-storage tank with a variable thickness wall and stiffening ring on top. First, the types of liquid storage tanks are briefly explained. Second, the given tank is described. Third, an analysis of the tank wall according to the Eurocode was carried out. The FEM analysis was performed using the Scia Engineer ver. 17 software. Finally, all the results are presented in tables and compared.

  19. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  20. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    International Nuclear Information System (INIS)

    Reddy, G.R.; Datar, V.M.; Parulekar, Y.M.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF 6 gas medium. During maintenance of the accelerator, the SF 6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF 6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  1. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m 3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m 3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  2. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1990-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MWday.t -1 . A distillation apparatus was designed to operate with small volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 0 C, the total fraction of volatilized ruthenium reaches 12%, in the presence of H 2 0, HN0 3 , N0 x and 0 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  3. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1991-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MW day·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: ruthenium is only volatilized in the final phase of evaporation, just before desiccation; for a final temperature limited to 160 degree C, the total fraction of volatilized ruthenium reaches 12%; in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  4. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  5. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  6. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  7. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  8. Computer modeling of forced mixing in waste storage tanks

    International Nuclear Information System (INIS)

    Eyler, L.L.; Michener, T.E.

    1992-01-01

    In this paper, numerical simulation results of fluid dynamic and physical process in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity an flow settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  9. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  10. Regulatory approaches to hydrocarbon contamination from underground storage tanks

    International Nuclear Information System (INIS)

    Daugherty, S.J.

    1991-01-01

    Action or lack of action by the appropriate regulatory agency is often the most important factor in determining remedial action or closure requirements for hydrocarbon contaminated sites. This paper reports that the diversity of regulatory criteria is well known statewide and well documented nationally. In California, the diversity of approaches is due to: that very lack of a clear understanding of the true impact of hydrocarbon contamination: lack of state or federal standards for soil cleanup, and state water quality objectives that are not always achievable; vagueness in the underground storage tank law; and the number and diversity of agencies enforcing the underground storage tank regulations

  11. Design, fabrication and operating experience of Monju ex-vessel fuel storage tank

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Yamagishi, Yoshiaki; Kuroha, Mitsuo; Inoue, Tatsuya

    1995-01-01

    In FBRs there are two methods of storing and cooling the spent fuel - the in-vessel storage and the ex-vessel storage. Because of the sodium leaks through the tank at the beginning of pre-operation, the utilization of the ex-vessel fuel storage tank (EVST) of some FBR plant has been changed from the ex-vessel fuel storage to the interim fuel transfer tank. This led to reactor designers focusing on the material, structure and fabrication of the carbon steel sodium storage tanks worldwide. The Monju EVST was at the final stage of the design, when the leaks occurred. The lesson learned from that experience and the domestic fabrication technology are reflected to the design and fabrication of the Monju EVST. This paper describes the design, fabrication and R and D results for the tank, and operating experience in functional test. The items to be examined are as follows: (1) Overall structure of the tank and design philosophy on the function, (2) Structure of the cover shielding plug and its design philosophy, (3) Structures of the rotating rack and its bearings, and their design philosophy, (4) Cooling method and its design philosophy, (5) Structure and fabrication of the cooling coil support inside EVST with comparison of leaked case, (6) R and D effort for items above. The fabrication of the Monju EVST started in August 1986 and it was shipped to the site in March 1990. Installation was completed in November 1990, and sodium fill after pre-heating started in 1991. The operation has been continued since September 1992. In 1996 when the first spent fuel is stored, its total functions will be examined. (author)

  12. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  13. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  14. 200 Area plateau inactive miscellaneous underground storage tanks locations

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  15. Underground storage tanks: State regulations and compliance strategies

    International Nuclear Information System (INIS)

    Robinson, J.E.

    1988-01-01

    In an effort to resolve underground storage tank (UST) management problems, several states and localities have moved ahead of EPA in the promulgation of UST regulations. Developed independently, these regulations represent different strategies for ensuring compliance: from an extensive set of permitting requirements that allow for the implementation of site-specific control measures to a uniform set of technical and operational requirements that vary according to installation date. For the tank owner, complying with these regulations can be a time-consuming and frustrating endeavor. However, during the course of several environmental audits of similar facilities in different states, useful strategies were observed or developed that enabled facilities to respond more effectively to requirements: these included computerization of files, designation of tank custodians, installation of low-maintenance equipment, and increased use of above-ground tanks. Of special additional interest was the wide variation in costs for similar tank services quoted by both private and government sources. These strategies are coupled with general observations on the efficacy of the various regulatory approaches to provide a field view that may be useful to tank owners and others involved in underground tank management and evaluation

  16. Computer modeling of forced mixing in waste storage tanks

    International Nuclear Information System (INIS)

    Eyler, L.L.; Michener, T.E.

    1992-04-01

    Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  17. Thermal Stratification in Small Solar Domestic Storage Tanks caused by Draw-offs

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2005-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... behaviour is not taken into account sufficiently. Two typical Danish domestic water storage tanks, each with a volume of about 150 l, were investigated. In both tanks the inlet pipes are placed at the bottom and hot water is drawn from the upper part of tank. Above the inlet pipes, differently shaped plates...... are placed in order to reduce the mixing of the incoming cold water with the warmer storage water. To measure the thermal stratification thermocouples were placed in a vertical glass tube inside the tank. Measurements were carried out with different draw-off volumes, flow rates, and initial temperatures...

  18. Analysis on engineering application of CNP1000 in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Wang Bin; Wang Yong; Qiu Jian; Weng Minghui

    2005-01-01

    Based on the basic design of CNP1000 (three loops), which is self-reliance designed by China National Nuclear Cooperation, and investigation results from abroad advanced nuclear power plant design of In-containment Refueling Water Storage tank, this paper describe the system flowsheet, functional requirements, structural design and piping arrangement about In-containment Refueling Water Storage Tank. The design takes the lower structural space as the IRWST. Four areas are configured to meet the diverse functional requirements, including depressurization area, water collection area, safety injection and/or containment spray suction area, TSP storage area / reactor cavity flooding holdup tank. Also the paper depict the corresponding analysis and demonstration, such as In-containment Refueling Water Storage Tank pressure transient on depressurization area of IRWST, suction and internal flow stream of IRWST, configuration of strains, the addition method and amount of chemical addition, design and engineering applicant of Reactor Cavity Flooding System. All the analysis results show the basic design of IRWST meeting with the Utility Requirement Document's requirements on performance of safety function, setting of overfill passage, overpressure protection, related interference, etc., and show the reliability of Engineering Safety Features being improved for CNP1000 (three loops). Meanwhile, it is demonstrated that the design of In-containment Refueling Water Storage Tank can apply on the future nuclear power plant project in China. (authors)

  19. Environmental Protection: Improved Inspections and Enforcement Would Ensure Safer Underground Storage Tanks

    National Research Council Canada - National Science Library

    Stephenson, John

    2001-01-01

    ...) Underground Storage Tank (UST) program. 1 The program is relevant to today's hearing because studies have shown that tanks that leak hazardous substances, such as methyl tertiary butyl ether (MTBE...

  20. Status of containment integrity studies for continued in-tank storage of Hanford defense high-level waste

    International Nuclear Information System (INIS)

    Baca, R.G.; Beitel, G.A.; Mercier, P.F.; Moore, E.L.; Vollert, F.R.

    1978-09-01

    Information is provided on the technical studies that have been implemented for evaluating the containment integrity of the single-shell waste storage tanks. The major areas of study are an analysis of storage tank integrity, a failure mode analysis, and storage tank improvements. Evaluations of tank structural integrity include theoretical studies on static and dynamic load responses, laboratory studies on concrete durability, and experimental studies on the potential for exothermic reactions of salt cake. The structural analyses completed to date show that the tanks are in good condition and have a safety margin against overload. Environmental conditions that could cause a loss of durability are limited to the waste chemicals stored (which do not have access to the concrete). Concern that a salt cake exothermic reaction may initiate a loss of containment is not justifiable based on extensive testing completed. A failure mode analysis of a tank liner failure, a sidewall failure, and a dome collapse shows that no radiologic hazard to man results. Storage tank improvement studies completed show that support of a tank dome is achievable. Secondary containment provided by chemical grouts and bentonite clay slurry walls does not appear promising. It is now estimated that the single-shell tanks will be serviceable for the storage of salt cake waste for decades under currently established operating temperature and load limits

  1. Modeling of storage tank settlement based on the United States standards

    Directory of Open Access Journals (Sweden)

    Gruchenkova Alesya

    2018-01-01

    Full Text Available Up to 60% of storage tanks in operation have uneven settlement of the outer bottom contour, which often leads to accidents. Russian and foreign regulatory documents have different requirements for strain limits of metal structures. There is an increasing need for harmonizing regulatory documents. The aim of this study is to theoretically justify and to assess the possibility of applying the U.S. standards for specifying the allowable settlement of storage tanks used in Russia. The allowable uneven settlement was calculated for a vertical steel tank (VST-20000 according to API-653, a standard of the American Petroleum Institute. The calculated allowable settlement levels were compared with those established by Russian standards. Based on the finite element method, the uneven settlement development process of a storage tank was modeled. Stress-strain state parameters of tank structures were obtained at the critical levels established in API-653. Relationships of maximum equivalent stresses in VST metal structures to the vertical settlement component for settlement zones of 6 to 72 m in length were determined. When the uneven settlement zone is 6 m in length, the limit state is found to be caused by 30-mm vertical settlement, while stresses in the wall exceed 330 MPa. When the uneven settlement zone is 36 m in length, stresses reach the yield point only at 100-mm vertical settlement.

  2. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  3. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    Science.gov (United States)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  4. Anti-seismic analysis for air storage tank used in the nuclear power plant

    International Nuclear Information System (INIS)

    Hua Jun; Ren Xin; Feng Ping

    2011-01-01

    This text calculates and analyses the structure of the air storage tank used for the SBO diesel generator set of Taishan nuclear power plant through finite element method, and simply introduces the mechanical modeling, loading condition and seismic response spectrum analyzing method for the structure, then get the natural frequency, vibration mode and response under seismic load of the structure through calculation. Evaluate the stress under the combined load such as gravity, internal stress, earthquake of the structure according to RCCM. The result shows that the structure intensity of the air storage tank meets the requirements of the specification. The calculating result gives the accordance for the seismic design of the air storage tank. (authors)

  5. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  6. Accident scenarios triggered by lightning strike on atmospheric storage tanks

    International Nuclear Information System (INIS)

    Necci, Amos; Argenti, Francesca; Landucci, Gabriele; Cozzani, Valerio

    2014-01-01

    Severe Natech accidents may be triggered by lightning strike affecting storage tanks containing relevant inventories of hazardous materials. The present study focused on the identification of event sequences and accident scenarios following lightning impact on atmospheric tanks. Reference event trees, validated using past accident analysis, are provided to describe the specific accident chains identified, accounting for reference protection and mitigation safety barriers usually adopted in current industrial practice. An overall methodology was outlined to allow the calculation of the expected frequencies of final scenarios following lightning impact on atmospheric storage tanks, taking into account the expected performance of available safety barriers. The methodology was applied to a case study in order to better understand the data that may be obtained and their importance in the framework of quantitative risk assessment (QRA) and of the risk management of industrial facilities with respect to external hazards due to natural events. - Highlights: • Event sequences following lightning impact on atmospheric tanks were identified. • Reference event trees including standard safety barriers were obtained. • Safety barriers applied in industrial practice were assessed to quantify event trees. • Frequencies of final scenarios following lightning impact on tanks were calculated. • Natech scenarios caused by lightning have an important influence on risk profiles

  7. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  8. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  9. An Underground Storage Tank Integrated Demonstration report

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K.; Lini, D.C.; Goldberg, C.

    1993-04-01

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  10. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  11. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  12. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  13. Performance of liquid storage tanks during the 1989 Loma Prieta earthquake

    International Nuclear Information System (INIS)

    Haroun, M.A.; Mourad, S.A.; Izzeddine, W.

    1991-01-01

    Utilities and industrial facilities in the strong shaking area of the 1989 Loma Prieta earthquake include a large inventory of tanks of all types. The earthquake induced a few incidents of damage to tanks of old and modern design, and even to a retrofitted tank. This paper documents the performance of tank structures during this seismic event through a detailed description of the damage sustained by ground-based petroleum and water storage tanks and by elevated water tanks. It appears that site amplification of the long period ground motion components was a cause of large amplitude sloshing and the associated damage to tanks built on Bay Mud. It is also apparent that design procedures for ground-based unanchored tanks require a substantial updating to reflect the recent technical advances and the lessons learned for such a type of tanks

  14. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  15. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Dehghan, A.A.; Barzegar, A.

    2011-01-01

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  16. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  17. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    Science.gov (United States)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  18. Experimental study and modelization of a propane storage tank depressurization

    International Nuclear Information System (INIS)

    Veneau, Tania

    1995-01-01

    The risks associated with the fast depressurization of propane storage tanks reveals the importance of the 'source term' determination. This term is directly linked, among others, to the characteristics of the jet developed downstream of the breach. The first aim of this work was to provide an original data bank concerning drop velocity and diameter distributions in a propane jet. For this purpose, a phase Doppler anemometer bas been implemented on an experimental set-up. Propane blowdowns have been performed with different breach sizes and several initial pressures in the storage tank. Drop diameter and velocity distributions have been investigated at different locations in the jet zone. These measurements exhibited the fragmentation and vaporisation trends in the jet. The second aim of this work concerned the 'source term'. lt required to study the coupling between the fluid behaviour inside the tank and the flow through the breach. This model took into account the phase exchange when flashing occurred in the tank. The flow at the breach was described with an homogeneous relaxation model. This coupled modelization has been successfully and exhaustively validated. lt originality lies on the application to propane flows. (author) [fr

  19. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  20. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  1. A computational study on the performance of a solar air-conditioning system with a partitioned storage tank

    International Nuclear Information System (INIS)

    Li, Z.F.; Sumathy, K.

    2003-01-01

    This paper reports the performance of a modified solar powered air-conditioning system, which is integrated with a partitioned storage tank. In addition, the effect of two main parameters that influence the system performance is presented and discussed. The study shows that by partitioning the storage tank, the solar cooling effect can be realized much earlier and could attain a total solar cooling COP of 12% higher compared to the conventional whole-tank mode. Simulation results also indicate that there exists an optimum ratio of storage tank volume over collector area

  2. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  3. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  4. Dynamic analysis of liquid storage tank including hydrodynamic interaction by boundary element method

    International Nuclear Information System (INIS)

    Hwang, I.T.; Ting, K.

    1987-01-01

    Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)

  5. Cryogenic storage tank with built-in pump

    International Nuclear Information System (INIS)

    Zwick, E.B.

    1984-01-01

    A cryogenic storage tank with a built-in pump for pumping cryogen directly from the primary storage container consistent with low boil-off losses of cryogen has an outer vessel, an inner vessel and an evacuated insulation space therebetween. A pump mounting tube assembly extends into the interior of the inner vessel and includes an inner pump mounting tube and an outer pump mounting tube joined at their lower rims to define an insulating jacket between the two tubes. The inner pump mounting tube is affixed at its upper end to the outer vessel while the outer pump mounting tube is affixed at its upper end to the inner vessel. The inner pump mounting tube defines a relatively long heat path into the cryogenic container and is itself insulated from the liquid cryogen by a pocket of trapped gas formed within the inner pump mounting tube by heated cryogen. A pump may be introduced through the inner pump mounting tube and is also insulated against contact with liquid cryogen by the trapped gas such that only the lowermost end of the pump is immersed in cryogen thereby minimizing heat leakage into the tank

  6. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  7. A lumped-parameter model for cryo-adsorber hydrogen storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, V.; Raghunathan, K. [India Science Lab, General Motors R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical and Environmental Sciences Lab, General Motors R and D, 30500 Mound Road, Warren, MI 48090 (United States)

    2009-07-15

    One of the primary requirements for commercialization of hydrogen fuel-cell vehicles is the on-board storage of hydrogen in sufficient quantities. On-board storage of hydrogen by adsorption on nano-porous adsorbents at around liquid nitrogen temperatures and moderate pressures is considered viable and competitive with other storage technologies: liquid hydrogen, compressed gas, and metallic or complex hydrides. The four cryo-adsorber fuel tank processes occur over different time scales: refueling over a few minutes, discharge over a few hours, dormancy over a few days, and venting over a few weeks. The slower processes i.e. discharge, dormancy and venting are expected to have negligible temperature gradients within the bed, and hence are amenable to a lumped-parameter analysis. Here we report a quasi-static lumped-parameter model for the cryo-adsorber fuel tank, and discuss the results for these slower processes. We also describe an alternative solution method for dormancy and venting based on the thermodynamic state description. (author)

  8. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  9. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  10. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  11. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Energy Technology Data Exchange (ETDEWEB)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  12. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    International Nuclear Information System (INIS)

    Vail, T.S.

    1997-01-01

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective

  13. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    International Nuclear Information System (INIS)

    Almanza, P.R.

    1995-01-01

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  14. Interim storage of sodium in ferritic steel tanks at ambient temperature

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1994-01-01

    Sodium tanks originally fabricated for elevated temperature service in the Clinch River Breeder Reactor Plant (CRBRP) will be used to store sodium removed from the Fast Flux Test Facility (FFTF) in the Sodium Storage Facility (SSF) at ambient temperature. This report presents an engineering review to confirm that protection against brittle fracture of the ferritic steel tanks is adequate for the intended service

  15. Rheology of Savannah River site tank 42 and tank 51 HLW radioactive sludges

    International Nuclear Information System (INIS)

    Ha, B.C.; Bibler, N.E.

    1996-01-01

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. The high activity radioactive wastes stored as caustic slurries at SRS result from the neutralization of acid waste generated from production of nuclear defense materials. During storage, the wastes separate into a supernate layer and a sludge layer. In the Defense Waste Processing Facility (DWPF) at SRS, the radionuclides from the sludge and supernate will be immobilized into borosilicate glass for long term storage and eventual disposal. Before transferring the waste from a storage tank to the DWPF, a portion of the aluminum in the waste sludge will be dissolved and the sludge will be extensively washed to remove sodium. Tank 51 and Tank 42 radioactive sludges represent the first batch of HLW sludge to be processed in the DWPF. This paper presents results of rheology measurements of Tank 51 and Tank 42 at various solids concentrations. The rheologies of Tank 51 and Tank 42 radioactive slurries were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco RV-12 with an M150 measuring drive unit and TI sensor system. Rheological properties of the Tank 51 and Tank 42 radioactive sludges were measured as a function of weight percent solids. The weight percent solids of Tank 42 sludge was 27, as received. Tank 51 sludge had already been washed. The weight percent solids were adjusted by dilution with water or by concentration through drying. At 12, 15, and 18 weight percent solids, the yield stresses of Tank 51 sludge were 5, 11, and 14 dynes/cm2, respectively. The apparent viscosities were 6, 10, and 12 centipoises at 300 sec-1 shear rate, respectively

  16. Structural Performance Optimization and Verification of an Improved Thin-Walled Storage Tank for a Pico-Satellite

    Directory of Open Access Journals (Sweden)

    Lai Teng

    2017-11-01

    Full Text Available This paper presents an improved mesh storage tank structure obtained using 3D metal printing. The storage tank structure is optimized using a multi-objective uniform design method. Each parameter influencing the storage tank is considered as the optimization factor, and the compression stress ( σ , volume utilization ratio ( v , and weight ( m , are considered as the optimization objectives. Regression equations were established between the optimization factors and targets, the orders of the six factors affecting three target values are analyzed, and the relative deviations between the regression equation and calculation results for σ , v , and m were 9.72%, 4.15%, and 2.94%, respectively. The optimization results showed that the regression equations can predict the structure performance of the improved storage tank, and the values of the influence factors obtained through the optimization are effective. In addition, the compression stress was improved by 24.98%, the volume utilization ratio was increased by 26.86%, and the weight was reduced by 26.83%. The optimized storage tank was developed through 3D metal printing, and the compressive stress was improved by 58.71%, the volume utilization ratio was increased by 24.52%, and the weight was reduced by 11.67%.

  17. Model based, sensor-directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  18. Thermal analysis elements of liquefied gas storage tanks

    Science.gov (United States)

    Yanvarev, I. A.; Krupnikov, A. V.

    2017-08-01

    Tasks of solving energy and resource efficient usage problems, both for oil producing companies and for companies extracting and transporting natural gas, are associated with liquefied petroleum gas technology development. Improving the operation efficiency of liquefied products storages provides for conducting structural, functional, and appropriate thermal analysis of tank parks in the general case as complex dynamic thermal systems.

  19. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  20. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  1. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  2. Underside corrosion of above ground storage tanks (ASTs) | Rim ...

    African Journals Online (AJOL)

    ... above statutory safe limits. The results showed that the physico-chemical characteristics of the water sample have diagnostic and predictive values to implicate and promote underside corrosion of the studied above ground storage tank. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 161-163.

  3. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  4. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  5. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  6. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    Science.gov (United States)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  7. Structural analysis of ORNL underground gunite waste storage tanks

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1995-01-01

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  8. Second law characterization of stratified thermal storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, N [Departamento de Energia Nuclear-UFPE (Brazil)

    2000-07-01

    It is well known that fluid stratification in thermal storage tanks improves the overall performance of solar thermal systems, when compared with systems operating with uniform fluid temperature. From the point of view of the first law of thermodynamics, no difference exists between storage tanks with the same mass and average temperature, even if they have different stratified thermal structures. Nevertheless, the useful thermal energy that can be obtained from them might differ significantly. In this work, we derive an expression able to characterize the stratified configuration of thermal fluid. Using results obtained by thermodynamics of irreversible processes, the procedure adopted consists in calculating the maximum work available from the tank's thermal layer is able to develop. We arrive, then, at a dimensionless expression, the stratification parameter (SP), which depends on the mass fraction and absolute temperature of each thermal layer as well as the thermal fluid average temperature. Numerical examples for different types of tank stratification are given and it is verified that the expression obtained is sensitive to small differences in the reservoir thermal configuration. For example a thermal storage with temperatures equal to 74 Celsius degrees, 64 Celsius degrees and 54 Celsius degrees, with its mass equally distributed along the tank yields, for the parameter SP, a figure equal to 0.000294. On the other hand a storage tank with the same average temperature but with different layer's temperatures 76 Celsius degrees, 64 and 52 Celsius degrees, also with uniform mass distribution, yields for SP a value equal to quantitative evaluation of the stratification structure of thermal reservoirs. [Spanish] Es bien conocido que la estratificacion fluida en tanques de almacenamiento termico mejora el rendimiento total de los sistemas termicos solares en comparacion con sistemas que operan con temperatura uniforme del fluido. Desde el punto de vista

  9. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  10. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  11. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  12. Seismic response of unanchored and partially anchored liquid-storage tanks. Final report

    International Nuclear Information System (INIS)

    Malhotra, P.K.; Veletsos, A.S.

    1995-12-01

    Ground-mounted vertical storage tanks are important components of nuclear plant safety systems. A systematic study is made of the principal effects of base uplifting on the seismic response of laterally excited, unanchored and partially anchored cylindrical liquid-storage tanks. The study consists of two parts: the first deals with the static uplifting resistance of the flexible base plate, and the second deals with the dynamic response of the uplifting system. An insight into the behavior of the uplifting base plate is first gained with the help of a prismatic beam solution. In Section 2, the solution is implemented exactly, whereas in Section 3 it is implemented approximately by use of the Ritz energy procedure. Solutions are next presented for axisymmetrically and asymmetrically uplifted base plate of tanks, in Section 4. For the axisymmetric case the solution is implemented exactly, as well as approximately by modeling the plate by a series of semiinfinite prismatic beams. The accuracy of the latter approach is confirmed by comparing its predictions with those of the former. In Section 5, a highly efficient and rational method is presented for the dynamic response analysis of uplifting tanks. Both unanchored tanks and partially anchored tanks, for which the number of anchor bolts at the base is insufficient to ensure full fixity, are considered. It is shown that base uplifting may reduce significantly the hydrodynamic pressures, but these reductions may be associated with increased axial compressive stresses in the tank wall and large plastic rotations at the plate-shell junction. For partially anchored tanks, energy loss due to bolt yielding is found to be small

  13. Experimental Study of a Thermosyphon Solar Water Heater Coupled to a Fibre-Reinforced Plastic (FRP) Storage Tank

    International Nuclear Information System (INIS)

    Nwosu, P. N.; Oparaku, O. U.; Okonkwo, W. I.; Unachukwu, G. O.; Agbiogwu, D.

    2011-01-01

    The thermal performance of the thermosyphon solar water heater was analyzed to show its applicability in a tropical climate using data of cloudy, sunny and hazy days. The average daily efficiency of the parallel-connected module, ranged between 35 and 40%. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank was undertaken. The inlet andoutlet positions were determined using the recommendation of Simon and Wenxian [1]: the optional position for the inlet/outlet was around the very top/bottom of the tank. The obtained results showed that the coupled FRP tank substantially retained and delivered the stored hot water during off-sunshine hours with minimal losses, and stratification occurred in the tank as a result. In view of the thermal performance, FRP materials can be efficiently employed in the design of solar hot water storage tanks. (authors)

  14. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  15. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    International Nuclear Information System (INIS)

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    ). For purposes of waste storage, this is a negligible amount of metal loss. Localized corrosion such as cracking, pitting, preferential weld attack, or weld heat affected zone attack is not expected to be a materials problem in the tank

  16. Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks

    International Nuclear Information System (INIS)

    González, Ignacio; Pérez-Segarra, Carlos David; Lehmkuhl, Oriol; Torras, Santiago; Oliva, Assensi

    2016-01-01

    Highlights: • A numerical model of packed-bed thermocline thermal storage for CSP is presented. • Up-to-date commercial configurations are tested both thermally and structurally. • Promising thermal performance is obtained with a temperature difference of 100 °C. • Reliable factors of safety against material yielding and ratcheting can be obtained. • Cyclic relaxation-traction elastic wall stresses arise with plant normal operation. - Abstract: A packed-bed thermocline tank represents a proved cheaper thermal energy storage for concentrated solar power plants compared with the commonly-built two-tank system. However, its implementation has been stopped mainly due to the vessel’s thermal ratcheting concern, which would compromise its structural integrity. In order to have a better understanding of the commercial viability of thermocline approach, regarding energetic effectiveness and structural reliability, a new numerical simulation platform has been developed. The model dynamically solves and couples all the significant components of the subsystem, being able to evaluate its thermal and mechanical response over plant normal operation. The filler material is considered as a cohesionless bulk solid with thermal expansion. For the stresses on the tank wall the general thermoelastic theory is used. First, the numerical model is validated with the Solar One thermocline case, and then a parametric analysis is carried out by settling this storage technology in two real plants with a temperature rise of 100 °C and 275 °C. The numerical results show a better storage performance together with the lowest temperature difference, but both options achieve suitable structural factors of safety with a proper design.

  17. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  18. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  19. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  20. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  1. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  2. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    Thomas, T.R.

    2002-01-01

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP)

  3. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  4. Using virtual objects to aid underground storage tank teleoperation

    International Nuclear Information System (INIS)

    Anderson, R.J.; Davies, B.

    1994-01-01

    In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave's tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware

  5. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks 1 Table 1 to Subpart BBBBBB of Part 63 Protection of... Criteria, Emission Limits, and Management Practices for Storage Tanks If you own or operate Then you must 1...

  6. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  7. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  8. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    Science.gov (United States)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  9. Preliminary study of acoustic emission (ae) noise signal identification for crude oil storage tank

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Shukri Mohd

    2008-08-01

    This preliminary work was carried out to simulate the Acoustic Emission (AE) signal contributed by pitting corrosion, and noise signal from environment during crude oil storage tanks monitoring. The purpose of this study is to prove that acoustic emission (AE) could be used to detect the formation of pitting corrosion in the crude oil storage tank and differentiated it from other sources of noise signal. In this study, the pitting corrosion was simulated by inducing low voltage and low amperage current onto the crude oil storage tank material (ASTM 516 G 70). Water drop, air blow and surface rubbing were applied onto the specimen surface. To simulate the noise signal produce by rain fall, wind blow and other sources of noise during AE crude oil storage tanks monitoring. AE sensor was attached onto the other surface of specimen to acquire all of these AE signals which then has send to AE DiSP 24 data acquisition system for signal conditioning. AE win software has been used to analyse this entire signal. It is found that, simulated pitting corrosion could be detected by AE system and differentiated from other sources of noise by using amplitude analysis. From the amplitude analysis is shown that 20-30 dB is the range amplitude for the blow test, 50-60 dB for surface rubbing test and over than 60 dB for water drop test. (Author)

  10. Oak Ridge National Laboratory Melton Valley Storage Tanks Waste filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Oak Ridge National Laboratory wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning.The Gunite Tanks at the Oak Ridge National Laboratory contain heels which are a mixture of sludge, wash water, and bentonite clay. The tanks are to be cleaned out with a variety of flushing techniques and the dilute mixture transferred to another storage tank. One proposal is to transfer this mixture into existing Melton Valley Storage Tanks (MVST), which already contain a large amount of sludge and supernate. The mixed aqueous phase will then be transferred to new MVST, which are prohibited from containing insoluble solids. To separate the solid from the liquid and thereby prevent solids transfer into the new MVST, a technique is needed that can cleanly separate the sludge and bentonite clay from the supernate. One proposed method for solid liquid separation is cross-flow filtration. Cross-flow filtration has been used at the Savannah River and West Valley sites for treatment of tank waste, and is being tested for applicability at other sites. The performance of cross-flow filters with sludge has been tested, but the impact of sludge combined with bentonite clay has not. The objective of this test was to evaluate the feasibility of using cross-flow filters to perform the solid liquid separation required for the mixture of Gunite and MVST tank wastes

  11. Regulatory analysis of the Underground Storage Tank-Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Smith, E.H.

    1992-01-01

    The Underground Storage Tank-Integrated Demonstration (UST-ID) Program has been developed to identify, demonstrate, test, and evaluate technologies that will provide alternatives to the current underground storage tank remediation program. The UST-ID Program is a national program that consists of five participating US Department of Energy (DOE) sites where technologies can be developed an ultimately demonstrated. Once these technologies are demonstrated, the UST-ID Program will transfer the developed technology system to industry (governmental or industrial) for application or back to Research and Development for further evaluation and modification, as necessary. In order to ensure that the UST-ID Program proceeds without interruption, it will be necessary to identify regulatory requirements along with associated permitting and notification requirements early in the technology development process. This document serves as a baseline for identifying certain federal and state regulatory requirements that may impact the UST-ID Program and the demonstration of any identified technologies

  12. Cathodic Protection for Above Ground Storage Tank Bottom Using Data Acquisition

    Directory of Open Access Journals (Sweden)

    Naseer Abbood Issa Al Haboubi

    2015-07-01

    Full Text Available Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system. In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set point (protection criterion 850 mV. National Instruments Data Acquisition (NI-DAQ and PC controllers for tank corrosion control system provides quick response to achieve steady state condition for any kind of disturbances.

  13. Feasibility of applying cathodic protection to double-wall waste storage tanks

    International Nuclear Information System (INIS)

    Moore, E.L.

    1977-01-01

    A study was conducted to determine the feasibility of applying impressed current cathodic protection to double-wall storage tanks containing terminal waste solutions. Norton Corrosion Limited concluded that such a system could be designed for installation on the tanks. Under their direction, Battelle Northwest Laboratories conducted a laboratory study to develop necessary data for design of the system. A separate study conducted by Battelle Columbus Laboratories indicated that, while terminal waste solutions by themselves do not promote stress corrosion cracking, cathodic protection may promote this type of corrosion under certain conditions. As a result of these findings, the recommendation was made not to install cathodic protection on the double-wall tanks containing terminal waste solutions

  14. Static tilt tests of a full-sized cylindrical liquid storage tank model

    International Nuclear Information System (INIS)

    Sakai, F.

    1988-01-01

    This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate

  15. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands.

    Science.gov (United States)

    Porteiro, Jacobo; Míguez, José Luis; Crespo, Bárbara; de Lara, José; Pousada, José María

    2016-03-21

    Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials) in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  16. Radiation exposure rate and liquid level measurement inside a high level liquid waste (HLLW) storage tank

    International Nuclear Information System (INIS)

    Sur, B.; Yue, S.; Thekkevarriam, A.

    2007-01-01

    An instrument based on an inexpensive, small silicon diode has been developed and used to measure, for the first time, the gamma radiation exposure rate profile inside a 6.4 mm diameter reentrant thermo-well tube, immersed in the highly radioactive liquid solution in an HLLW storage tank. The measurement agrees with previous calculations of exposure rate, and provides confirmation for safe and effective radiation work plans and material selection for investigations and remediation of the storage tank facility. The measured radiation exposure rate profile is also used to confirm that the position of tank internal structures have not changed because of aging and corrosion, and to obtain, within a few mm, the level of liquid inside the tank. (author)

  17. Safety of atmospheric storage tanks during accidental explosions

    OpenAIRE

    Noret , E.; Prod'Homme , Gaëtan; Yalamas , Thierry; Reimeringer , Mathieu; Hanus , Jean-Luc; Duong , Duy-Hung

    2012-01-01

    International audience; The occurrence of a chain reaction from blast on atmospheric storage tanks in oil and chemical facilities is hard to predict. The current French practice for SEVESO facilities ignores projectiles and assumes a critical peak overpressure value observed from accident data. This method could lead to conservative or dangerous assessments. This study presents various simple mechanical models to facilitate quick effective assessment of risk analysis, the results of which are...

  18. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  19. Simplified design and evaluation of liquid storage tanks relative to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B.

    1994-06-01

    A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

  20. Inspection and repair of storage tank bottoms and foundations using airbag lifting

    International Nuclear Information System (INIS)

    Wildin, I.P.; Adams, N.J.

    1992-01-01

    This paper reports that within the past five years the environmental impact on the operation of petro-chemical product storage tanks, constructed to standards such as API 650, has taken on critical implications for refineries and distribution centers. Pollution of the supporting foundation and possible widespread effects on ground water has resulted in moves to require the installation of double integrity bottoms. That is not to say, necessarily, a tank with two steel bottoms, but alternative means of reducing the failure probability to an acceptable public or statutory level. Clearly increased inspection of the tank bottom has merit and visual examination of the bottom from inside the tank can be supplemented by ultrasonic methods, acoustic leak detection and magnetic flux scanning. Tank lifting now offers a very cost effective method for underfloor inspection, combined with the opportunity to undertake repairs to the bottom and underside painting, together with improvements and repairs to the Bitsand surface of the tank pad. if necessary, an impervious membrane can also be installed with a leak detection trough formed around the tank edge

  1. Standard practice for examination of liquid-Filled atmospheric and Low-pressure metal storage tanks using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of new and in-service aboveground storage tanks of the type used for storage of liquids. 1.2 This practice will detect acoustic emission in areas of sensor coverage that are stressed during the course of the examination. For flat-bottom tanks these areas will generally include the sidewalls (and roof if pressure is applied above the liquid level). The examination may not detect flaws on the bottom of flat-bottom tanks unless sensors are located on the bottom. 1.3 This practice may require that the tank experience a load that is greater than that encountered in normal use. The normal contents of the tank can usually be used for applying this load. 1.4 This practice is not valid for tanks that will be operated at a pressure greater than the examination pressure. 1.5 It is not necessary to drain or clean the tank before performing this examination. 1.6 This practice applies to tanks made of carbon steel, stainless steel, aluminum and oth...

  2. Cleanout of waste storage tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Weeren, H.O.; Lasher, L.C.; McDaniel, E.W.

    1984-01-01

    In 1943, six storage tanks were built at the Clinton Laboratories [later to become Oak Ridge National Laboratory (ORNL)] to contain wastes generated by wartime research and development operations. During the following years, these tanks became an integral part of the ORNL waste system and accumulated approx. 1.5 x 10 6 L (400,000 gal) of sludge containing radioactive wastes. Recently, over a period of approx. 18 months, these tanks were sluiced, the radioactive sludge resuspended, and the resuspended slurry pumped to the ORNL Hydrofracture Facility for underground disposal. In this paper, a summary of the development work is given, and the process design and constraints are described. The operating difficulties encountered and overcome included grinder blade erosion, malfunctioning instruments, pump suction plugging, and slurry settling. About 90% of the settled sludge (containing approx. 715,000 Ci) was removed from the system

  3. 18 CFR 1304.405 - Fuel storage tanks and handling facilities.

    Science.gov (United States)

    2010-04-01

    ... used to contain a regulated substance (such as a petroleum product) and has 10 percent or more of its... or remedy pollution or violations of law, including removal of the UST system, with costs charged to... flammable and combustible liquids storage tanks at marine service stations. (d) Fuel handling on private...

  4. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H 2 O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  5. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  6. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document

  7. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Directory of Open Access Journals (Sweden)

    Jacobo Porteiro

    2016-03-01

    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  8. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  9. Cathodic protection simulation of above ground storage tank bottom: Experimental and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Marcelo [Inspection Department, Rio de Janeiro Refinery - REDUC, Petrobras, Rio de Janeiro (Brazil); Brasil, Simone L.D.C. [Chemistry School, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro (Brazil); Baptista, Walmar [Corrosion Department, Research Centre - CENPES, Petrobras (Brazil); Miranda, Luiz de [Materials and Metallurgical Engineering Program, COPPE, UFRJ, Rio de Janeiro (Brazil); Brito, Rosane F. [Corrosion Department, Research Centre, CENPES, Petrobras, Rio de Janeiro (Brazil)

    2004-07-01

    The deterioration history of Above ground Storage Tanks (AST) of Petrobras' refineries - shows that the great incidence of corrosion in the AST bottom is at the external side. This is a problem in the disposability of storage crude oil and other final products. At this refinery, all AST's are built over a concrete base with a lot of pile to support the structure and distribute the charge homogeneously. Because of this it is very difficult to use cathodic protection as an anti-corrosive method for each one of these tanks. This work presents an alternative cathodic protection system to protect the external side of the tank bottom using a new metallic bottom, placed at different distance from the original one. The space between the two bottoms was filled with one of two kinds of soils, sand or clay, more conductive than the concrete. Using a prototype tank it was studied the potential distributions over the new tank bottom for different system parameters, as soil resistivity, number and position of anodes localized in the old bottom. These experimental results were compared to numerical simulations, carried out using a software based on the Boundary Element Method. The computer simulation validates this protection method, confirming to be a very useful tool to define the optimized cathodic protection system configuration. (authors)

  10. Annular Air Leaks in a liquid hydrogen storage tank

    Science.gov (United States)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  11. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  12. The dissolution of metal decontamination sludges stored in tanks and their management

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R.A.; Phillips, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  13. The dissolution of metal decontamination sludges stored in tanks and their management

    International Nuclear Information System (INIS)

    Prokopowicz, R.A.; Phillips, B.

    2011-01-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  14. CFD simulations on the dynamics of liquid sloshing and its control in a storage tank for spent fuel applications

    International Nuclear Information System (INIS)

    Sanapala, V.S.; Velusamy, K.; Patnaik, B.S.V.

    2016-01-01

    Highlights: • Dynamics of sloshing in partially filled spent fuel storage tanks is numerically simulated. • Two type of baffle plates were examined towards the control of slosh suppression. • An optimum baffles configuration was obtained, after carrying out systematic investigations. • This vertical baffle design was effective, when tested for a seismic excitation (El centro). - Abstract: Spent nuclear liquid waste is often kept in partially filled storage tanks. When such storage tanks are subjected to wind and/or earthquake induced excitations, this could lead to detrimental conditions. Therefore, storage tank designers should ensure safe design margins and develop methodologies to overcome a wide range of possible scenarios. In the present study, systematic numerical simulations are carried out to investigate the sloshing dynamics of liquid in a storage tank, subjected to seismic excitation. As a precursor, the influence of resonant harmonic excitation on the free surface displacement, pressure distribution, slosh forces etc. is studied. To suppress the free surface fluctuations and the associated slosh force, two types of baffles viz., ring and vertical baffle are examined. Based on the response to an imposed harmonic excitation, the vertical baffle plate in the middle of the tank, was found to be effective and its dimensions are systematically optimized. This baffle geometry was tested for a well known seismic excitation (El Centro) and it was observed to effectively suppress free surface fluctuations and the slosh forces.

  15. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  16. The use of solar energy for heating an asphalt storage tank.

    Science.gov (United States)

    1984-01-01

    10,000 gal. asphalt storage tank was equipped with a solar heating system and instrumented to determine its effectiveness over a 12.5-month period. An evaluation of the data indicated that the solar system conserved 25,126 kWh of electrical power dur...

  17. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  18. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  19. Earthquake and welded structures 5: Earthquake damages and anti-earthquake measures of oil storage tanks; 5 kikenbutsu chozo tank no jishin higai to taishin taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, K. [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-09-05

    The result of field investigation carried out on the state of damages of 236 hazardous material storage tanks out of 687 caused by the Hyogoken Nambu Earthquake in 1995 is introduced together with the cases of damage and the description of the countermeasures. The events of inclination and settlement of tank bodies were confirmed in 44% among those investigated in particular with tanks having a capacity of less than 1000kl and as for the basement and ground settlement, the fact that sand spouted as a result of their fluidization was witnessed as much as 81% among those investigated and the area surrounding tanks was roughly agreed with the area where ground crack appeared. A great number of other damages such as cracking of preventive seals against rain water, breakdown of oil defense banks and so forth were also confirmed. In the latter half of the report, aseismatic standards of old and new regulations as well as on the new criterion concerning the outdoor storage tank body, its basement and ground are tabulated and 4 items of anti-earthquake measures such as the final structural check up with regard to an earthquake exceeding the designed permissible stress, consolidation of tank body structure on the basis of the revised seismic coefficient method, assurance of the steadfast basement, prevention of the elevated platform from falling down and strengthening of water-proof seals and oil defense banks are enumerated in accordance with the report of investigation and examination on the resistibility of hazardous material storage equipment against the earthquake. 3 refs., 5 figs., 3 tabs.

  20. Streamlined approach for environmental restoration work plan for Corrective Action Unit 126: Closure of aboveground storage tanks, Nevada Test Site, Nevada. Revision 1

    International Nuclear Information System (INIS)

    1998-07-01

    This plan addresses the closure of several aboveground storage tanks in Area 25 of the Nevada Test Site. The unit is currently identified as Corrective Action Unit 126 in the Federal Facility Agreement and Consent Order and is listed as having six Corrective Action Sites. This plan addresses the Streamlined Approach for Environmental Restoration closure for five of the six sites. Four of the CASs are located at the Engine Test Stand complex and one is located in the Central Support Area. The sites consist of aboveground tanks, two of which were used to store diesel fuel and one stored Nalcool (an antifreeze mixture). The remaining tanks were used as part of a water demineralization process and stored either sulfuric acid or sodium hydroxide, and one was used as a charcoal adsorption furnace. Closure will be completed by removal of the associated piping, tank supports and tanks using a front end loader, backhoe, and/or crane. When possible, the tanks will be salvaged as scrap metal. The piping that is not removed will be sealed using a cement grout

  1. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1995-01-01

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m 3 (230 gal) and 95 m 3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m 3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  2. Method of disposing of earth contaminated by leaking underground storage tanks

    International Nuclear Information System (INIS)

    Ruehl, P.A.

    1993-01-01

    A process is described for disposing of earth contaminated with petroleum products from a leaking underground storage tank wherein the earth contains a significant amount of material comprised primarily of a mixture of one part Al 2 O 3 and two to three parts SiO 2 , the process comprising: digging up a leaking underground storage tank and the surrounding contaminated earth; separating the excavated earth into a Al 2 O 3 +SiO 2 material and a non-Al 2 O 3 + SiO 2 material; mixing the Al 2 O 3 + SiO 2 material and other cement precursor raw materials together to form a mixture, and grinding the mixture to form a feed mix; introducing the feed mix into a rotary cement kiln causing any remaining petroleum product contained therein to be volatilized and burned within the kiln as cement clinker is being produced; and grinding the cement clinker together to form cement which is free of petroleum product

  3. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  4. Nonliner analysis techniques for use in the assessment of high-level waste storage tank structures

    International Nuclear Information System (INIS)

    Moore, C.J.; Julyk, L.J.; Fox, G.L.; Dyrness, A.D.

    1991-09-01

    Reinforced concrete in combination with a steel liner has had a wide application to structures containing hazardous material. The buried double-shell waste storage tanks at the US Department of Energy's Hanford Site use this construction method. The generation and potential ignition of combustible gases within the primary tank is postulated to develop beyond-design-basis internal pressure and possible impact loading. The scope of this paper includes the illustration of analysis techniques for the assessment of these beyond-design-basis loadings. The analysis techniques include the coupling of the gas dynamics with the structural response, the treatment of reinforced concrete in regimes of inelastic behavior, and the treatment of geometric nonlinearities. The techniques and software tools presented provide a powerful nonlinear analysis capability for storage tanks. 10 refs., 13 figs., 1 tab

  5. Seismic performance of spherical liquid storage tanks: a case study

    Science.gov (United States)

    Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo

    2018-02-01

    Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.

  6. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  7. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    International Nuclear Information System (INIS)

    1994-07-01

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site

  8. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  9. Demand-Based Optimal Design of Storage Tank with Inerter System

    Directory of Open Access Journals (Sweden)

    Shiming Zhang

    2017-01-01

    Full Text Available A parameter optimal design method for a tank with an inerter system is proposed in this study based on the requirements of tank vibration control to improve the effectiveness and efficiency of vibration control. Moreover, a response indicator and a cost control indicator are selected based on the control targets for liquid storage tanks for simultaneously minimizing the dynamic response and controlling costs. These indicators are reformulated through a random vibration analysis under virtual excitation. The problem is then transformed from a multiobjective optimization problem to a single-objective nonlinear problem using the ε-constraint method, which is consistent with the demand-based method. White noise excitation can be used to design the tank with the inerter system under seismic excitation to simplify the calculation. Subsequently, a MATLAB-based calculation program is compiled, and several optimization cases are examined under different excitation conditions. The effectiveness of the demand-based method is proven through a time history analysis. The results show that specific vibration control requirements can be met at the lowest cost with a simultaneous reduction in base shears and overturning base moments.

  10. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  11. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  12. Tools for Inspecting and Sampling Waste in Underground Radioactive Storage Tanks with Small Access Riser Openings

    International Nuclear Information System (INIS)

    Nance, T.A.

    1998-01-01

    Underground storage tanks with 2 inches to 3 inches diameter access ports at the Department of Energy's Savannah River Site have been used to store radioactive solvents and sludge. In order to close these tanks, the contents of the tanks need to first be quantified in terms of volume and chemical and radioactive characteristics. To provide information on the volume of waste contained within the tanks, a small remote inspection system was needed. This inspection system was designed to provide lighting and provide pan and tilt capabilities in an inexpensive package with zoom abilities and color video. This system also needed to be utilized inside of a plastic tent built over the access port to contain any contamination exiting from the port. This system had to be build to travel into the small port opening, through the riser pipe, into the tank evacuated space, and out of the riser pipe and access port with no possibility of being caught and blocking the access riser. Long thin plates were found in many access riser pipes that blocked the inspection system from penetrating into the tank interiors. Retrieval tools to clear the plates from the tanks using developed sampling devices while providing safe containment for the samples. This paper will discuss the inspection systems, tools for clearing access pipes, and solvent sampling tools developed to evaluate the tank contents of the underground solvent storage tanks

  13. Oak Ridge National Laboratory Melton Valley Storage Tanks Waste Filtration Process Evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.

    1998-01-01

    Cross-flow filtration is being evaluated as a pretreatment in the proposed treatment processes for aqueous high-level radioactive wastes at Oak Ridge National Laboratory (ORNL) to separate insoluble solids from aqueous waste from the Melton Valley Storage Tanks (MVST)

  14. Indian Country Leaking Underground Storage Tanks, Region 9, 2016

    Science.gov (United States)

    This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and locational information, status of LUST case, operating status of facility, inspection dates, and links to No Further Action letters for closed LUST cases. This database contains 1230 features, with 289 features having a LUST status of open, closed with no residual contamination, or closed with residual contamination.

  15. An overview of the DOE high-level waste storage tank structural integrity assessment guidelines

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    The basic elements of a structural integrity program for high-level waste storage tanks include identifying significant aging degradation mechanisms, developing programs to monitor and control these degradation processes, and developing management options and procedures to minimize impact on the environment should tank leakage develop. A Waste Tank Structural Integrity Panel (TSIP) was established by Brookhaven National Laboratory at the request of the DOE Office of Environmental Restoration and Waste Management to review these elements and prepare a set of guidelines that could be used by DOE and its contractors to manage the structural integrity of these tanks. These guidelines emphasize the identification of significant degradation mechanisms for both the steel and concrete components of the tanks, the recommended monitoring and inspection programs, and the indicated management options

  16. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  17. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  18. Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach.

    Science.gov (United States)

    Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris

    2017-12-15

    Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluid manifold design for a solar energy storage tank

    Science.gov (United States)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  20. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    International Nuclear Information System (INIS)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-01-01

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt % or 2 wt %) were used at 55 deg C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results

  1. RCRA corrective action for underground storage tanks -- Subtitle C for Subtitle I

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of this report is to provide guidance to DOE and DOE contractor personnel responsible for planning and implementation of corrective measures addressing cleanup of releases of hazardous materials or regulated substances from underground storage tanks regulated under RCRA Subtitle C or Subtitle I

  2. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-01-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  3. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  4. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  5. Disinfection of septic tank and cesspool wastewater with peracetic acid.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Savolainen, Ritva

    2003-08-01

    Wastewaters of private household septic tanks and cesspools have been treated with peracetic acid (1-2 g L(-1)). Adding 1 g L(-1) peracetic acid to wastewaters was easy and has been found to be effective in destroying enteric indicator microorganisms. The careful mixing of peracetic acid and wastewater was found to be important. Winter periods with frozen soil, ice and snow did not constitute extra problems. The bad smell of these wastewaters almost totally disappeared during the treatment. When wastewaters treated with peracetic acid were emptied into animal slurry tanks, hygienization still continued in the mixture of animal slurry and the wastewaters. These wastewaters could thus be released into agricultural soil without risk of microbiological pollution to groundwaters.

  6. Exploratory tests of washing radioactive sludge samples from the Melton Valley and evaporator facility storage tanks at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.; Botts, J.L.; Keller, J.M.

    1991-09-01

    Exploratory tests were initiated to wash radioactive sludge samples from the waste storage tanks at the Oak Ridge National Laboratory (ORNL). The purpose was to provide preliminary information about (1) the anions in the sludge phase that are soluble in water or dilute acid (e.g., the anions in the interstitial liquid) and (2) the solubilities of sludge constituents in water under process conditions. The experiments were terminated before completion due to changing priorities by the Department of Energy (DOE). This memorandum was prepared primarily for documentation purposes and presents the incomplete data. 3 refs., 13 tabs

  7. Leaking Underground Storage Tank Points, Region 9 Indian Country, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  8. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    Science.gov (United States)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  9. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  10. Remediation and recycling of oil-contaminated soil beneath a large above-ground storage tank

    International Nuclear Information System (INIS)

    Wallace, G.

    1994-01-01

    While retrofitting a large 30-year-old, above-ground petroleum storage tank, Southern California Edison Company (SCE) discovered that soil beneath the fixed-roof, single-bottom tank was contaminated with 40,000 gallons of number-sign 6 fuel oil. The steel tank was left in place during the excavation and remediation of the contaminated soil to retain the operating permit. The resulting 2,000 tons of contaminated aggregate was recycled to make asphalt concrete for paving the tank basin and the remaining 5,600 tons of oily soil was thermally treated on site for use as engineered fill at another location. This successful operation provided an economical cleanup solution for a common leakage problem of single-lined tanks and eliminated the long-term liability of Class 1 landfill disposal. As a pro-active environmental effort, this paper shares SCE's site assessment procedure, reveals the engineering method developed to stabilize the tank, discusses the soil treatment technologies used, describes the problems encountered and lessons learned during the cleanup, discloses the costs of the operation, and offers guidelines and recommendations for similar tank remediation. This paper does not describe the work or costs for removing or replacing the tank bottom

  11. Underground storage tanks soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  12. Long-reach manipulation for waste storage tank remediation

    International Nuclear Information System (INIS)

    Jansen, J.F.; Burks, B.L.; Babcock, S.M.; Kress, R.L.; Hamel, W.R.

    1991-01-01

    Remediation of large underground storage tanks containing hazardous waste provides an application for state-of-the-art technology in flexible link manipulator design and control and a need for additional research and development. Application requirements are described, and preliminary analyses associated with this problem are summarized. Inherent physical limitations of flexible manipulators are discussed. Potential kinematic configurations, drive-train elements, and control issues for both free-space motion and damping of forced vibration are addressed. Also included are future directions for research and development in mechanical components and control strategies. 21 refs., 4 figs., 4 tabs

  13. In-service inspection of ET-RR-1 reactor vessels and spent fuel storage tank

    International Nuclear Information System (INIS)

    Khattab, M.; Shafy, M.; Konoplev, K.; Samodurve, YU.; Orlov, S.; Didenko, V.; Jackorev, O.

    1993-01-01

    Technical survey included in-service inspection are needed in order to investigate the structural integrity and to insure safe operation of the ET-R R-1 reactor after thirty years aging. An intensive work for the inspection of the inspection of the central tank, shield tank, horizontal channels, primary coolant circuit and spent fuel storage tank have been carried out. The inspection procedures were visual method using video camera and magnification optical as well as thickness measurements using ultrasonic gauge meter and replica for determining defect depth. Water chemical analysis of the primary cooling circuit and spent fuel storage were helpful in results explanation. The results showed that the reactor vessels have good surface conditions. The observed pitting did not affect the structural integrity. The majority of the defects were pits having maximum surface area of about 50 mm. Their depth does not exceed 2 mm. The pits depth rate penetration is of the order of 0.5% per year. Thickness measurements showed insignificant variation. Water status and its chemical properties are very important in controlling corrosion rate. 18 figs., 14 tabs

  14. Speciation of organic carbon in Hanford waste storage tanks: Part 1

    International Nuclear Information System (INIS)

    Carlson, C.D.

    1997-02-01

    This report is the first in a series to report on speciation of organic carbon in Hanford waste storage tanks. The comparison of the existing total organic carbon with oxalate and limited analyses of other organic species (acetate, formate, and normal paraffin hydrocarbons [NPH]) are reported. All of the data have been previously reported by the Grout and Characterization programs; the information includes all of the publicly available data through October 1996. Oxalate data were reported for 33 tanks, TOC data were reported for 82 tanks, and both oxalate and TOC data were available for 27 tanks. Of these 27 tanks, seven were found to have greater than 80% of the TOC identified as oxalate: 241-BY-104, 241-BY-105, 241-BY-106, 241-BY-110, 241-S-109, and 241-SX-108. Eighty percent accountability has been tentatively established as a minimum goal of the Organic Safety Program for speciation of TOC. Accountability of TOC through speciation will allow more accurate estimate of the potential energy content of the wastes as currently stored. Of the remaining 19 tanks, seven had between 40 and 80% of the TOC identified as oxalate, and eleven had less than 35% of the TOC identified. Of these, only five tanks had segment results that were greater than 1% TOC, and none was above 2%. Since the cur-rent safety criterion outlined in the Safety Analysis is 4.5% TOC, it may be determined that the further analyses of these tank wastes are not necessary. If additional analyses are deemed necessary, minimal work may be required, possibly limited to ion chromatography (IC), ion pair chromatography and capillary zone electrophoresis (CZE). Additional speciation work is planned for this fiscal year in both the Organic Tanks Safety and Characterization programs. The Characterization program reports acetate and formate data in addition to the oxalate data for all the tank cores it processes

  15. Performance improvement by discharge from different levels in solar storage tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Thür, Alexander

    2005-01-01

    The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem. The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw......-off levels from the solar tanks instead of one draw-off level at a fixed position. The best position of the second draw-off level is in the middle or just above the middle of the tank. For the investigated small SDHW system with a realistic draw off hot water temperature of 40°C and 45°C and an auxiliary...... volume temperature of 50.5°C the increase of the thermal performance by the second draw-off level is about 6%. For the investigated solar combisystem the extra thermal performance by using one extra draw-off level, either for the domestic hot water heat exchanger or for the heating system, is about 3...

  16. Long-term energy storage tanks for dwellings and solar house architecture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The design and installation of hot water storage tanks as accumulators of solar energy is presented. Solar house architecture which maximizes roof, solar collector energy absorption potential is then considered. Proposals for residential areas which include solar houses are made.

  17. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  18. Detection of simulated pitting corrosion and noises in crude oil storage tank by acoustic emission

    International Nuclear Information System (INIS)

    Shukri Mohd; Latif, N.A.; Azhar Mohd Sinin; Mohamad Daud; Abd Nasir Ibrahim

    2008-01-01

    The damage mechanisms associated with crude oil storage tanks can be complex and varied and include pitting corrosion due to presence of species such as sulphate reducing bacteria. Acoustic Emission (AE) could be used to characterise the pitting corrosion signal in crude oil storage tanks but it is extremely difficult to simulate the pitting corrosion in the laboratory using crude oil as electrolyte because crude oil is considered as non corrosive medium. In this study, induced current have been introduced onto a surface ASTM 516 steel as an electrical source to simulate the electrical noise produced during pitting corrosion process and AE sensor have been used to detect this current. It is found that AE system could detect AE signal release during current induction this current and is expected that if the exact simulation of the current magnitude produced during pitting corrosion process is made available, AE characterisation of pitting corrosion in such tank could be made possible. (Author)

  19. Fire hazards analysis for W-413, West Area Tank Farm Storage and Staging Facility

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.; Lott, D.T.

    1994-01-01

    In accordance with DOE Order 5480.7A, a Fire Hazards Analysis must be performed for all new facilities. The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objectives of the Order are met. The Order acknowledges a graded approach commensurate with the hazards involved. Tank Farms Operations must sore/stage material and equipment such as pipes, fittings, conduit, instrumentation and others related items until work packages are ready to work. Consumable materials, such as nut, bolts and welding rod, are also requires to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This facility is classified as a safety class 4 building

  20. Experimental analysis of a paraffin-based cold storage tank

    OpenAIRE

    Barbara Torregrosa-Jaime; López-Navarro, Alejandro; Corberán, José M.; Esteban-Matías, J. C.; Klinkner, L.; Payá-Herrero, Jorge

    2013-01-01

    [EN] The aim of this study is to characterize a paraffin-based cold storage tank. Novel experimental results are presented for this system which combines a significant amount of paraffin (1450 kg) immersed around 18 spiral-shaped coils disposed in counter-current flow. The paraffin has a phase-change temperature in the range 4 8 °C as measured by a 3-layer calorimeter. Different tests have been carried out with a constant mass flow rate and supply temperature. Around 31% of the paraffin has h...

  1. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L.; Zollars, R.L.

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids

  2. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. (Pacific Northwest Lab., Richland, WA (United States)); Zollars, R.L. (Washington State Univ., Pullman, WA (United States))

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  3. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  4. In situ stabilization of mixed radioactive waste storage tanks and contaminated soil areas

    International Nuclear Information System (INIS)

    Matthern, G.E.; Meservey, R.H.

    1997-01-01

    Within the Department of Energy (DOE) Complex, there are a number of small (<50,000 gallons) underground Storage tanks containing mixed waste materials. The radioactive content of wastes eliminates the feasibility for hazardous waste treatment in accordance with previously prescribed Resource Conservation and Recovery Act (RCRA) technologies. As a result, DOE is funding in situ stabilization technology development for these tanks, Some of this development work has been done at the Idaho National Engineering and Environmental Laboratory (INEEL) and the initial efforts there were concentrated on the stabilization of the contents of the Test Area North (TAN) V-9 Tank. This is a 400 gallon underground tank filled with about 320 gallons of liquids and silty sediments. Sampling data indicates that approximately 50 wt% of the tank contents is aqueous-phase liquids. The vertically oriented cylindrical tank has a conical bottom and a chordal baffle that separates the tank inlet from its outlet. Access to the tank is through a six inch diameter access pipe on top of the tank. Because of the high volume, and the high concentration of aqueous-phase materials, Tank V-9 stabilization efforts have focussed on applying in situ agitation with dry feed addition to stabilize its contents. Materials selected for dry feed addition to this tank include a mixture of Aquaset IIH, and Type I/II Portland cement. This paper describes the results of proof-of-concept tests performed on full scale mockups of the Tank V-9. This proof-of-concept test were used to set operating parameters for in situ mixing, as well as evaluate how variations in Aquaset IIH/Portland cement ratio and sediment to liquid volume affected mixing of the tank

  5. Hydrogen Peroxide Storage in Small Sealed Tanks

    International Nuclear Information System (INIS)

    Whitehead, J.

    1999-01-01

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results

  6. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  7. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 x 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical 1/2-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi

  8. Energy efficiency in tank storage; Energieverbruik tankopslag kan efficienter

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, T.

    2008-07-01

    Tank storage facilities have ample opportunities for further energy conservation. Branch organization Votob set a target of 30% energy efficiency between 2005 and 2020 in a Long Term Agreement (MJA3) with the Dutch government. The past few years have been used to monitor energy use closely. [mk]. [Dutch] Bij de tankopslagbedrijven ligt nog ruimte om energie te besparen. Brancheorganisatie Votob heeft in een meerjarenafspraak (MJA3) met de Nederlandse overheid de doelstelling bepaald op 30% energie efficientie tussen 2005 en 2020. De afgelopen jaren zijn al benut om het energieverbruik goed te kunnen monitoren.

  9. Large-volume heat storage tank made of GFK; Grosswaermespeichertank aus GFK

    Energy Technology Data Exchange (ETDEWEB)

    Buehl, J.; Schultheis, P. [Technische Univ. Ilmenau (Germany). Fachgebiet Technische Thermodynamik

    1998-12-31

    The Technical University of Ilmenau, the company Verbundwerkstoff- und Kunststoffanwendungstechnik Schoenbrunn, the Institute for Aerospace and Light-weight construction of Dresden University with its approved testing facilities for plastics and the Institute for Construction Engineering in Berlin and several other institutions co-operated since 1996 in developing a concept for a series of long-term heat storage tanks up to 6,000 cubic metres storage volume made of plastic (GFK components) with a combined thermal insulation. A model tank (sandwich body with proportional thermal insulation layer and selected mixed laminates) with a volume of 1.5 cubic metres was built and installed in November 1996. The tank has been continuously operated at various test levels. The experiment proves the longevity of the materials used. (orig.) [Deutsch] In Zusammenarbeit der TU Ilmenau mit der Fa. Verbundwerkstoff - und Kunststoffanwendungstechnik Schoenbrunn und dem Institut fuer Luftfahrttechnik und Leichtbau Dresden, seiner akkredierten Pruefstelle fuer Kunststoffe, in Abstimmung mit dem Institut fuer Bautechnik Berlin und weiteren Einrichtungen und Partnern wird seit 1996 an einem Konzept fuer eine Typenreihe Langzeitwaermespeicher bis vorerst 6.000 m{sup 3} Speichervolumen aus Kunststoff (GFK-Komponenten) und kombinierter integrierter thermischer Isolation gearbeitet. Im Vorfeld dieser Entwicklung wurde auf der Basis vorausgewaehlter Materialien und Kompositionen ein Musterspeicher (ein Sandwich - Modellkoerper mit proportionaler Waermedaemmschicht sowie ausgewaehlten Mischlaminaten) mit einem Speichervolumen von 1,5 m{sup 3} realisiert. Dieser Musterspeicher wurde im November 1996 installiert und wird seither kontinuierlich in den entsprechenden Erprobungsstufen betrieben. Der Nachweis der Langlebigkeit der eingesetzten Materialien wurde experimentell erbracht. (orig.)

  10. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  11. Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yu Kyung; Lee, Seok Goo; Dan, Seungkyu; Lee, Jong Min [Seoul National University, Seoul (Korea, Republic of); Ko, Min Su [Samsung Heavy Industries, Geoje (Korea, Republic of)

    2014-10-15

    Storage tanks of Carbon dioxide (CO{sub 2}) carriers utilized for the purpose of carbon capture and storage (CCS) into subsea strata have to undergo a pre-cooling session before beginning to load cryogenic liquid cargos in order to prevent physical and thermal deterioration of tanks which may result from cryogenic CO{sub 2} contacting tank walls directly. In this study we propose dynamic model to calculate the tank inflow of CO{sub 2} gas injected for precooling process and its dynamic simulation results under proportional-integral control algorithm. We selected two cases in which each of them had one controlled variable (CV) as either the tank pressure or the tank temperature and discussed the results of that decision-making on the pre-cooling process. As a result we demonstrated that the controlling instability arising from nonlinearity and singularity of the mathematical model could be avoided by choosing tank pressure as CV instead of tank temperature.

  12. Vibro Replacement, Dynamic Compaction, and Vibro Compaction case histories for petroleum storage tank facilities

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, N; Scott, J. [Geopac West Ltd., Richmond, BC (Canada)

    2010-07-01

    This paper discussed approaches to tank farm ground improvement via 3 Canadian ground improvement case histories in order to set forth the advantages of ground improvement for foundation support at petroleum storage tank facilities. Each case study featured a particular set of site conditions, performance criteria, and ground improvement techniques selected to attain the desired foundation performance. The first case study involved a Vibro Replacement stone column to meet strict seismicity requirements, the second employed Dynamic Compaction to mitigate deep variable fill within a former gravel pit, and the last encompassed Vibro Compaction applied to a site with a sand fill soil profile. The site conditions, the design requirements, the ground improvement solution, the execution, and the quality control techniques and results were presented for each case history. Soil reinforcement and ground improvement to treat loose and soft soils below heavy storage tanks can be an economical solution to foundation design challenges. However, it is important to select proper methods and tailor the densification programs to the specific subsoil conditions and design requirements. In each application, the selected ground improvement technique exceeded the specified in-situ testing requirements. 3 refs., 9 figs.

  13. Indian Country Leaking Underground Storage Tank (LUST) Points, Region 9, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  14. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  15. Criticality Safety Problems Related to Storage of Highly Active Liquid Waste

    International Nuclear Information System (INIS)

    Amin, E.

    1999-01-01

    The geometries of liquid waste storage tanks are not generally safe against criticality. Normally, this does not cause problems as fissile materials exist in nitric acid solution only as depleted uranium or in insignificant concentration of the originally reprocessed inventory of plutonium. However, if sedimentation of solid particles would occur, the deposited material would cause criticality safety problems. Particularly, non-horizontal installation of the storage tanks would increase the Eigen value. The effect of the storage tank inclination and the presence of transplutonium elements on the criticality safety are investigated using the NCNSRC code packages. The results are compared well with a similar German published results

  16. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  17. Device for sealing and shielding a nuclear fuel storage tank

    International Nuclear Information System (INIS)

    Masaki, Gengo.

    1975-01-01

    Object: To provide a shield device for opening and closing a great opening in a relay-storage-tank within a hot cell for temporarily storing a nuclear fuel, in which the device is simplified in construction and which can perform the opening and closing operation in simple, positive and quick manner. Structure: A biological shield is positioned upwardly of an opening of a nuclear fuel storage tank to render an actuator inoperative. A sealing plate, which is pivotally supported by a plurality of support rod devices from the biological shield for parallel movement with respect to the biological shield, comes in contact with a resilient seal disposed along the entire peripheral edge of the opening to form an air-tight seal therebetween. In order to release the opening, the actuator is first actuated and the end of the sealing plate is horizontally pressed by a piston rod thereof. Then, the sealing plate is moved along the line depicted by the end of the support rod in the support rod devices and as a consequence, the plate is moved away from the resilient seal in the peripheral edge of the opening. When a driving device is actuated to travel the plate along the aforesaid line while maintaining the condition as described, the biological device moves along the guide. (Kamimura, M.)

  18. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome

  19. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  20. Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.

    Science.gov (United States)

    Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine

    2013-02-01

    Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc

  2. Numerical model for the thermal behavior of thermocline storage tanks

    Science.gov (United States)

    Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.

    2018-03-01

    Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.

  3. Analytical and experimental comparisons of modal properties of a flood water storage tank

    International Nuclear Information System (INIS)

    Thinnes, G.L.; Dooley, W.T.; Gorman, V.W.

    1986-01-01

    Comparisons of measured frequencies, mode shapes, and damping from experimental modal testing and analytical predictions have been performed on a vertically standing 90,000 liter flood water storage tank. The purpose of the study was to compare the accuracy of analytical calculations with experimentally obtained data. The need for this comparison arises because safety assessments of the integrity of such vessels are normally based upon analyses which have not usually been validated by experiments. The tank was excited using random input from an electromagnetic shaker. Data reduction was performed using frequency response functions. Analyses, including modal analysis calculations, were performed on the tank for three water level conditions using finite element methods. Results of the analyses are presented, comparisons to test data are shown, and conclusions and recommendations are made as a result of these studies. 5 refs., 8 figs., 2 tabs

  4. The underground storage tank is the key; Der Speicher ist der Schluessel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jens-Peter

    2013-08-06

    Plus energy houses also succeed withoutpassive house insulation. Because the combination of solar collectors, ventilation and heat pump achieves excellent energy efficiency, if one preserves the solar heat in an underground storage tank. [German] Plusenergiehaeuser gelingen auch ohne Passivhausdaemmung. Denn die Kombination von Sonnenkollektoren, Lueftung und Waermepumpe erreicht eine ausgezeichnete energetische Effizienz, sofern man die Solarwaerme in einem Erdspeicher konserviert.

  5. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank

    International Nuclear Information System (INIS)

    Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando C.

    2015-01-01

    Highlights: • Cold storage characteristics in latent and sensible heat storage mediums were studied. • Thermo-physical characterization of the phase change material was carried out. • A non-Newtonian shear thickening behavior of the phase change material was observed. • An energy storage enhancement (53%) was observed in the latent heat storage medium. - Abstract: In the present paper, the performance of a microencapsulated phase change material (in 45% w/w concentration) for low temperature thermal energy storage, suitable for air conditioning applications is studied. The results are compared to a sensible heat storage unit using water. Thermo-physical properties such as the specific heat, enthalpy variation, thermal conductivity and density are also experimentally determined. The non-Newtonian shear-thickening behavior of the phase change material slurry is quantified. Thermal energy performance is experimentally determined for a 100 l horizontal tank. The heat transfer between the heat transfer fluid and the phase change material was provided by a tube-bundle heat exchanger inside the tank. The results show that the amount of energy stored using the phase change material is 53% higher than for water after 10 h of charging, for the same storage tank volume. It was found that the heat transfer coefficient between the phase change material and the tube wall increases during the phase change temperature range, however it remains smaller than the values obtained for water

  6. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  7. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  8. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  9. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  10. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  11. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-01-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites

  12. Experimentation of a Solar Water Heater with Integrated Storage Tank

    International Nuclear Information System (INIS)

    Elhmidi, I; Frikha, N; Chaouchi, B; Gabsi, S

    2009-01-01

    An integrated collector storage (ICS) solar water heater was constructed in 2004 and studied its optical and thermal performance. It was revealed that it has some thermal shortcomings of thermal performances. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was to delimit the causes of these deficiencies and trying to diagnose them. A rigorous experimentation of the solar water heater has been done over its daily energetic output as well as the evolution of the nocturnal thermal losses. In fact, three successive days, including nights, of operation have permitted to obtain diagrams describing the variations of mean temperature in the tank and the thermal loss coefficient during night of our installation. The experimental results, compared with those obtained by simulation, showed a perfecting of thermal performances of system which approach from those of other models introduced on the international market

  13. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  14. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  15. High efficient heat pump system using storage tanks to increase COP by means of the ISEC concept - Part 1: Model validation

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    The purpose of the ISEC concept is to provide a high-efficient heat pump system for hot water production.The ISEC concept uses two storage tanks for the water, one discharged and one charged. Hot water for theindustrial process is tapped from the charged tank, while the other tank is charging....... This result in a lower condensingtemperature than if the water was heated in one step. Two test setups were built, one to test the performanceof the heat pump gradually heating the water and one to investigate the stratification in the storage tanks.Furthermore, a dynamic model of the system was implemented....... Charging is done bycirculating the water in the tank through the condenser of a heat pump several times and thereby graduallyheating the water. The charging is done with a higher mass flow rate than the discharging to reach severalcirculations of the water during the time frame of one discharging...

  16. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  17. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  18. Review of Tank Lay-Up Status at US Department of Energy Radioactive Waste Tank Sites

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    During fiscal year (FY) 2001 as part of a Tanks Focus Area strategic initiative, tank lay-up options were developed and evaluated for the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project. As follow-on task, a list of key waste tank contacts throughout the US Department of Energy complex was developed. Visits were then made to the primary DOE sites with radioactive waste storage tanks to discuss the concept and applicability of tank lay-up. This report documents the results of individual discussions with tank closure staff at the four DOE Sites concerning tank closure status and plans as well as lay-up options and activities

  19. Thermal analysis of the position of the freezing front around an LNG in-ground storage tank with a heat barrier

    Science.gov (United States)

    Watanabe, O.; Tanaka, M.

    A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.

  20. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  1. Performance of electric forklift with low-temperature polymer exchange membrane fuel cell power module and metal hydride hydrogen storage extension tank

    Science.gov (United States)

    Lototskyy, Mykhaylo V.; Tolj, Ivan; Parsons, Adrian; Smith, Fahmida; Sita, Cordellia; Linkov, Vladimir

    2016-06-01

    We present test results of a commercial 3-tonne electric forklift (STILL) equipped with a commercial fuel cell power module (Plug Power) and a MH hydrogen storage tank (HySA Systems and TF Design). The tests included: (i) performance evaluation of "hybrid" hydrogen storage system during refuelling at low (fuel cell power module (alone) - power module with integrated MH tank; and (iii) performance tests of the forklift during its operation under working conditions. It was found that (a) the forklift with power module and MH tank can achieve 83% of maximum hydrogen storage capacity during 6 min refuelling (for full capacity 12-15 min); (b) heavy-duty operation of the forklift is characterised by 25% increase in energy consumption, and during system operation more uniform power distribution occurs when operating in the fuel cell powering mode with MH, in comparison to the battery powering mode; (c) use of the fully refuelled fuel cell power module with the MH extension tank allows for uninterrupted operation for 3 h 6 min and 7 h 15 min, for heavy- and light-duty operation, respectively.

  2. Indian Country Leaking Underground Storage Tanks (LUST) Map Service, Region 9, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. The service is composed of three layers; one for each unique LUST...

  3. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance

  5. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    International Nuclear Information System (INIS)

    Kerr, G.D.; Coleman, R.L.; Kocher, D.C.; Wynn, C.C.

    1996-01-01

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated

  6. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  7. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  8. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  9. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  10. High water level installation of monitoring wells for underground storage tanks

    International Nuclear Information System (INIS)

    Treadway, C.

    1990-01-01

    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons

  11. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  12. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  13. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    Science.gov (United States)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  14. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    International Nuclear Information System (INIS)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms

  16. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  17. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  18. Resource Conservation and Recovery Act Closure Plan for the Y-12 9409-5 Tank Storage Facility

    International Nuclear Information System (INIS)

    1995-02-01

    This document presents information on the closure of the Y-12 9409-5 Tank Storage Facility. Topics discussed include: facility description; closure history; closure performance standard; partial closure; maximum waste inventory; closure activities; schedule; and postclosure care

  19. The development of precisely analytical method for the concentrated boric acid solution in the NPP systems

    Energy Technology Data Exchange (ETDEWEB)

    Sung, G. B.; Jung, K. H.; Kang, D. W. [KEPRI, Taejon (Korea, Republic of); Park, C. S. [KEPCO, Taejon (Korea, Republic of)

    1999-05-01

    Boric acid is used for reactivity control in nuclear reactors, which frequently results in leftover boric acid. This extra boric acid is stored in boric acid storage tank after the concentration process by boric acid evaporator. Apart from this excess, highly concentrated boric acid is stored in safety-related boric acid storage tank. Accordingly, proper maintenance of these boric acid is one of the greatest safety concerns. The solubility of boric acid decreases with decreasing temperature resulting in its precipitation. Consequently, the temperature of boric acid storage tanks is maintained at high temperature. The following analysis should be also performed at the similar temperature to prevent the formation of boric acid precipitation, which is difficult to achieve affecting the accuracy of analytical results. This paper presents a new sampling and measuring technique that makes up for the difficulties mentioned above and shows several advantages including improved reliability and short analysis time. This method is based on gravimetry and dilution method and is expected to be widely used in field application.

  20. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  1. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  2. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    International Nuclear Information System (INIS)

    Butterworth, St.W.; Shaw, M.R.

    2009-01-01

    Significant progress continued at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) with the completion of the closure process to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks had historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Four of the large storage tanks remain in use for waste storage while the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. During 2008 over seven miles of underground process piping along with associated tank valve boxes and secondary containment systems was stabilized with grout. Lessons learned were compiled and implemented during the closure process and will be utilized on the remaining four 1,135.6-kL (300,000-gal) underground stainless steel storage tanks. Significant progress has been made to clean and close emptied tanks at the INTEC TFF. Between 2002 and 2005, seven of the eleven 1,135.6-kL (300,000-gal) tanks and all four 113.5-kL (30,000-gal) tanks were cleaned and prepared

  3. Use of storage tank holdup measurements to reduce inventory differences in an ion exchange process

    International Nuclear Information System (INIS)

    Bonner, C.A.; Marshall, R.

    1986-01-01

    Inventory differences (ID) in an ion exchange process area have plagued the Los Alamos National Laboratory for years. The problem has always been attributed to plutonium precipitation in banks of horizontally oriented storage tanks; however, efforts to maintain the precipitates at low enough or even stable levels failed. Factoring tank holdup measurements into the end-of-month inventory balance would probably solve the ID problem; however, the authors were advised that gamma-based holdup measurements would yield very poor quality holdup estimates because of difficulties in determining transmission corrections and tank ''cross talk.'' When the ID problem became particularly troublesome in the spring of 1985, the authors evaluated two different gamma-based measurement techniques for estimating tank holdup. Not only did holdup estimates made by the two techniques agree, but plutonium recovered during intensive tank cleanout confirmed that the holdup measurements were of sufficient accuracy to be used for material balance adjustments. The measurement method chosen for routine use is somewhat unique since it is calibrated using tank cleanout data and requires no transmission corrections. The holdup measurements are made on a monthly basis and have dramatically reduced end-of-month inventory differences. This paper will present both a description of the measurement methodology and the inventory difference improvements

  4. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  5. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  6. The safe removal of frozen air from the annulus of an LH2 storage tank

    Science.gov (United States)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-12-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modelling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  7. Stochastic modelling of the thermal characteristics of a hot-water storage tank on the basis of Markov chains; Zur stochastischen Modellierung des thermischen Verhaltens eines Warmwasserspeichers mittels Markov`scher Ketten

    Energy Technology Data Exchange (ETDEWEB)

    Werner, U.J. [Bauhaus-Universitaet Weimar (Germany). Fakultaet Bauingenieurwesen

    1998-09-01

    In an earlier contribution, a stochastic model was presented for a hot water storage tank supplied by a solar collector. The model was characterized in that the storage tank was assumed to be an ideal stratified storage tank, and its volume was subdivided into discrete identical storage compartments, so-called states, on the basis of the energy withdrawn from the tank. This simple model is now extended by assuming a stochastic variable for energy withdrawal and by taking account of energy loss at the surface of the hot water storage tank and inside it. [Deutsch] In einem frueheren Beitrag war fuer einen thermischen Speicher, der von einem Sonnenkollektor gespeist wird, ein stochastisches mathematisches Modell derart aufgestellt worden, dass ein als idealer Schichtenspeicher konzipierter Warmwasserspeicher bezueglich seines Volumens in diskrete, an der Energieentnahme orientierte, gleiche Speichereinheiten, sogenannte Zustaende, unterteilt wurde. Das einfache Modell wird nunmehr erweitert, indem die Entnahme als eine stochastische Groesse angenommen wird und die Energieverluste am und im Warmwasserspeicher Beruecksichtigung finden. (orig.)

  8. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  9. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  10. Removal of the liquid waste storage tank LV-2 in JRTF. Part 2. Removal works

    International Nuclear Information System (INIS)

    Kanayama, Fumihiko; Hagiya, Kazuaki; Sunaoshi, Mizuho; Muraguchi, Yoshinori; Satomi, Shinichi; Nemoto, Kouichi; Terunuma, Akihiro; Shiraishi, Kunio; Ito, Shinichi

    2011-06-01

    Dismantling activities of components in JAERI's Reprocessing Test Facility (JRTF) started from 1996 as a part of decommissioning of this facility. Removing out of a large liquid waste storage tank LV-2 as a whole tank from the annex building B without cutting in pieces to confirm safety and efficiency of this method started from 2006. After preparatory works, ceiling of LV-2 room was opened, and LV-2 was transferred. Useful data such as manpower, radiation control and waste amount through these works were collected, and work efficiency was analyzed by using of these data. (author)

  11. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  12. Considerations of fluid-structure interaction effects in the design of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Stuart, R.J.; Shipley, L.E.; Ghose, A.; Hiremath, M.S.

    1994-01-01

    For the seismic evaluation and design of the large number of underground high-level waste storage tanks (HLWST) at DOE sites, an important consideration is the adequate estimation of the fluid-structure interaction effects on the design forces. The DOE Tanks Seismic Experts Panel (TSEP) has developed seismic design and evaluation guidelines which include simplified methods for estimating hydrodynamic effects on tanks. For the practical analysis and design of HLWSTs, however, more sophisticated methods are often needed. The research presented in this paper demonstrates the effectiveness and reliability of finite element method based techniques, developed and utilized by ARES, to evaluate the fluid-structure interaction effects on underground HLWSTs. Analysis results for simple cylindrical tank configurations are first compared with previously published data, to benchmark the techniques. Next, for an actual HLWST configuration, correlations are established between these techniques and the TSEP guidelines, for the design parameters affected by fluid-structure interaction. Finally, practical design situations which may require a level of analysis sophistication that goes beyond the simplified TSEP guidelines are presented. This level of sophistication is frequently required when attempting to validate or upgrade the design qualifications of existing tanks

  13. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  14. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunfeng, E-mail: zhaowindy@126.com [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China); School of Civil Engineering, Hefei University of Technology, Anhui Province 230009 (China); Chen, Jianyun; Xu, Qiang [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-12-15

    Graphical abstract: - Highlights: • Water sloshing and oscillation of water tank under earthquake are simulated by FEM. • The influences of various water levels on seismic response are investigated. • ALE algorithm is applied to study the fluid–structure interaction effects. • The effects of different water levels in reducing seismic response are compared. • The optimal water level of water tank under seismic loading is obtained. - Abstract: The gravity water storage tank of AP1000 is designed to cool down the temperature of containment vessel by spray water when accident releases mass energy. However, the influence of fluid–structure interaction between water and water tank of AP1000 on dynamic behavior of shield building is still a hot research question. The main objective of the current study is to investigate how the fluid–structure interaction affects the dynamic behavior of water tank and whether the water sloshing and oscillation can reduce the seismic response of the shield building subjected to earthquake. For this purpose, a fluid–structure interaction algorithm of finite element technique is employed for the seismic analysis of water storage tank of AP1000. In the finite element model, 8 cases height of water, such as 10.8, 9.8, 8.8, 7.8, 6.8, 5.8, 4.8, and 3.8 m, are established and compared with the empty water tank in order to demonstrate the positive effect in mitigating the seismic response. An Arbitrary Lagrangian Eulerian (ALE) algorithm is used to simulate the fluid–structure interaction, fluid sloshing and oscillation of water tank under the El-Centro earthquake. The correlation between seismic response and parameters of water tank in terms of height of air (h{sub 1}), height of water (h{sub 2}), height ratio of water to tank (h{sub 2}/H{sub w}) and mass ratio of water to total structure (m{sub w}/m{sub t}) is also analyzed. The numerical results clearly show that the optimal h{sub 2}, h{sub 2}/H{sub w} and m{sub w}/m{sub t

  15. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)

    2013-07-01

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  16. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  17. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  18. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  19. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  20. Hot sanitary water production with CO_2 heat pumps: Effect of control strategy on system performance and stratification inside the storage tank

    International Nuclear Information System (INIS)

    Tammaro, M.; Mauro, A.W.; Montagud, C.; Corberán, J.M.; Mastrullo, R.

    2016-01-01

    In this work three different control strategies for the production of sanitary hot water by means of an electric heat pump working with CO_2 are investigated. The heat pump is a prototype, here modelled in the vapour-compression software package IMST-ART. By simulating this model, the performance of the heat pump is correlated to the boundary conditions and is scaled to different sizes, namely 1, 1.5, and 2 times larger than the reference system. After having chosen an application for which the load profile of sanitary hot water during the year is known, these heat pumps are simulated in a TRNSYS16 model where the production of sanitary hot water and the consumption are buffered by the presence of a tank. Key parameter in guaranteeing comfort and good performance of the system is the stratification inside the storage tank. The size of the tank necessary to keep a certain level of comfort at the user is then determined through a parametric analysis for each size of the heat pump. The energetic performance is also evaluated for each system in terms of seasonal performance factor. Then, the results obtained are compared with a different system where the heat pump is equipped with an inverter and the circulation pump follows a different control logic. The size of the tank and the seasonal performance factor are therefore determined in this case too. Moreover, a “night&day” control logic is compared to these first two options to have a baseline of comparison in terms of volume of storage needed to guarantee a same level of comfort and performance. To provide information also on the running costs, a parametric analysis was run varying the type of control, the heat pump and the tank sizes for different load profiles. The results show that the size of the heat pump has a significant effect on the comfort of the user, which usually leads to oversizing of the storage tank when the load profile is unknown. With regard to this, the results obtained for the alternative

  1. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  2. ECOLO-HOUSE in the heavy snow-fall region. Ground-water and wasted-wood become resources by utilizing storage-tank; Yukiguni ECOLO-HOUSE. Chikunetsuso wo riyoshita chikasui oyobi mokushitsu gomi no shigenka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Fukumuro, S [Yamagata University, Yamagata (Japan)

    1997-11-25

    This paper reports living comfort in summer by operating a groundwater utilization system using a hot water storage tank and a floor air conditioning system. The groundwater utilization system is a system for room cooling by using groundwater and for supplying water for living use. The system operates as follows: groundwater is passed through a coil-type heat exchanger having pipes each 100 m long laid in parallel for a total length of 200 m, the heat exchanger being installed in a hot water storage tank; the water is used to cool water in the storage tank in summer; and the water is warmed up in the storage tank in winter, further heated by an oil boiler to be used as hot water for cooking and bathing. In the floor air conditioning system, cold water in the water storage tank (warm water in winter) is pumped up by a circulation pump, and passed through the floor air conditioning circuit having a pipe with a total length of 400 m at a flow rate of 14 liters per minute. The system is of a closed circuit in which the water is re-heated by a wood burning boiler in winter and returned to the hot water storage tank. The amount of supplied cold heat from groundwater to the hot water tank obtained on a daily average is 90W. About 20% of the monthly cumulative cold heat amount dissipated from the floor circuit is the monthly cumulative cold heat amount supplied from the groundwater circuit to the hot water storage tank. 1 ref., 10 figs., 1 tab.

  3. Fault tree analysis of loss of cooling to a HALW storage tank

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1992-01-01

    Results of a scenario identification, a fault tree construction and an analysis for a loss of cooling accident in a High Activity Liquid Waste (HALW) tank of a typical model of reprocessing facility, is rendered together with considerations of the system reliability improvement by changing the model design. Model plant data, basic failure frequency data and a fault tree analysis named FTL have been introduced from NUKEM GmbH, Germany. They are throughly reviewed and reevaluated at JAERI, and improved to apply to Japanese facilities. A general systematic method for constructing fault trees is used to avoid missing scenarios, thus all of the 10 conceivable accident scenarios for 'HALW storage tank without cooling, HALW boiling' are identified, and a total failure frequency are calculated to be in the 90 % confidence interval of (1.1 ∼ 5.8) x 10 -6 /yr for the German model plant. (author)

  4. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  5. Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases

    International Nuclear Information System (INIS)

    Sherwood, D.J.

    1994-03-01

    Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks

  6. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  7. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  8. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations

  9. Selection of refractory materials for acid tanks at the CSN continuous pickling line

    International Nuclear Information System (INIS)

    Silva, Sidiney Nascimento; Marques, Oscar Rosa; Bueno, Mauricio Chaves; Longo, Elson; Silva Pinheiro, Adriano da

    1997-01-01

    Aiming at the revamping of the CSN continuous pickling line 4 acid tanks, a Post Mortem study of the refractory lining was carried out. The collected samples were characterized through techniques such as chemical analysis, mercury porosimetry, X-ray diffraction and scanning electronic microscopy. Trying to reproduce the operational conditions closely, laboratorial simulations were carried out. Such simulations lead to the addition of some alterations on the test method proposed by ABNT. Primarily, the sulfuric acid was substituted by hydrochloric acid (30%), containing iron in solution (130g/l). As result, it was concluded that acid resistant refractories containing a smaller alumina and /or corundum and mullite concentrations, presenting a smaller open porosity and average pore diameter, have a better performance face to corrosion due to hydrochloric acid solution. In addition, abrasion wear resistance tests, according to the ASTM-G65-85 standard were carried out in order to select different materials to the acid tanks cells. (author)

  10. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    International Nuclear Information System (INIS)

    Thaxton, D; Timothy Baughman, T

    2008-01-01

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR

  11. Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage

    International Nuclear Information System (INIS)

    Dufour, Thomas; Hoang, Hong Minh; Oignet, Jérémy; Osswald, Véronique; Clain, Pascal; Fournaison, Laurence; Delahaye, Anthony

    2017-01-01

    Highlights: •CO 2 hydrate storage was studied in a stirred tank reactor under pressure. •CO 2 hydrates can store three times more energy than water during the same time. •Increasing CO 2 hydrate pressure decreases charge time for the same stored energy. •CO 2 hydrate storage allow average power exchange to be maintained along the process. -- Abstract: Phase change material (PCM) slurries are considered as high-performance fluids for secondary refrigeration and cold thermal energy storage (CTES) systems thanks to their high energy density. Nevertheless, the efficiency of such system is limited by storage dynamic. In fact, PCM charging or discharging rate is governed by system design (storage tank, heat exchanger), heat transfer fluid temperature and flow rate (cold or hot source), and PCM temperature. However, with classical PCM (ice, paraffin…), phase change temperature depends only on material/fluid nature and composition. In the case of gas hydrates, phase change temperature is also controlled by pressure. In the current work, the influence of pressure on cold storage with gas hydrates was studied experimentally using a stirred tank reactor equipped with a cooling jacket. A tank reactor model was also developed to assess the efficiency of this storage process. The results showed that pressure can be used to adjust phase change temperature of CO 2 hydrates, and consequently charging/discharging time. For the same operating conditions and during the same charging time, the amount of stored energy using CO 2 hydrates can be three times higher than that using water. By increasing the initial pressure from 2.45 to 3.2 MPa (at 282.15 K), it is also possible to decrease the charging time by a factor of 3. Finally, it appears that the capacity of pressure to increase CO 2 -hydrate phase-change temperature can also improve system efficiency by decreasing thermal losses.

  12. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections

  13. HDR flood-water storage-tank modal vibration tests

    International Nuclear Information System (INIS)

    Gorman, V.W.; Thinnes, G.L.

    1983-01-01

    Modal vibration tests were conducted by EG and G Idaho on two vessels located at West Germany's Heissdampfreaktor (HDR) facility which is 25 kilometers east of Frankfurt. The tests were performed during May and June 1982 for the US Nuclear Regulatory Commission (NRC) as part of their cooperative effort with Kernforschungszentrum Karlsruhe (KfK) of West Germany. The primary purpose for performing this task was to determine modal properties (frequencies, mode shapes and associated damping ratios) in order to eventually provide guidelines for standards development by the NRC in modeling similar vessels. One of the vessels tested was a flood water storage tank (FWST) for empty, half full and full water conditions. The FWST was excited randomly with an electromagnetic shaker and by impulsive hammer blows. Excitation or input forces together with measured vessel responses were processed by a digital modal analyzer and stored on magnetic disks for subsequent evaluation

  14. Combined long reach and dexterous manipulation for waste storage tank applications

    International Nuclear Information System (INIS)

    Burks, B.L.; Armstrong, G.A.; Butler, P.L.; Boissiere, P.

    1991-01-01

    One of the highest priority environmental restoration tasks within the Department of Energy (DOE) is the remediation of single-shell waste storage tanks (WSTs), especially those suspected of, or documented as, leakers. Most currently proposed approaches for remediation of large underground WSTs require application of remotely operated long-reach (greater than 10 m), high-lift capacity (greater than 200 kg) manipulator systems. Because of the complexity of in-tank hardware, waste forms, remediation tasks, and variety of end-effector tools, these manipulator systems must also be capable of performing a diverse set of dexterous manipulations. This presentation will describe the integration of a Spar RMS 2500 manipulator system, a Schilling Titan-7F manipulator, and control systems developed at ORNL and SNL to provide a combined long reach and dexterous manipulation system. The purpose of integrating these two manipulator systems was to study and demonstrate their combined performance, evaluate design requirements for a deployed system, and provide a testbed for control and end-effector technologies that might be applicable to remediation of WSTs. 5 refs

  15. A combined method for analysis of the acoustic emission signals from aboveground storage tank bottom

    Energy Technology Data Exchange (ETDEWEB)

    Yewei Kang; Mingchun Ling; Min Xiong; Yi Sun; Dongjie Tan [PetroChina Pipeline R and D Center, Langfang (China)

    2009-07-01

    In the late 1980s acoustic emission (AE) technology was first used to assess the corrosion of aboveground storage tank (AST) bottoms. From then on, it attracts great attention because it can do in-service inspection. Recognizing and eliminating noise is still the main challenge due to the small size of the signals in the presence of potential process noise when the AE signals are processed. In this paper a method combining pattern recognition with traditional AE parametric analysis is introduced to assess the corrosion of AST bottom. First, the AE signals are clustered in different clusters by a clustering method based on the distances of AE signal features. The reasonable cluster is selected for next analysis step. Second, a statistical method is used to evaluate the activities of AE on which the final evaluation report is based. Practical inspection is done on a large oil storage tank in the Chongqing distribution station of Lanzhou- Chengdu-Chongqing product oil pipeline of PetroChina Pipeline Company. The analytical result indicates that the combined method is reliable and feasible. (author)

  16. Thermal Mode of Tanks for Storage Fuel of Thermal Power Plants and Boiler with the Influence of Engineering Facilities in the Area of their Placement

    Science.gov (United States)

    Polovnikov, V. Yu.; Makhsutbek, F. T.; Ozhikenova, Zh. F.

    2016-02-01

    This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with the influence of engineering construction. We have established that the presence of engineering structures in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  17. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  18. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  19. Numerical Modeling of the Effect of Thawing of Soil in the Area of Placing Tanks for Storage Fuel of Thermal Power Plants and Boiler

    Directory of Open Access Journals (Sweden)

    Polovnikov V.Yu.

    2016-01-01

    Full Text Available This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with considering the influence of thawing of the soil. We have established that the thawing of the soil in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  20. Analysis of ICPP tank farm infiltration

    International Nuclear Information System (INIS)

    Richards, B.T.

    1993-10-01

    This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults

  1. Study on dynamic buckling behavior of a cylindrical liquid storage tanks under seismic excitation. 1st report, effects of liquid pressure on elephant foot bulge

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Morita, Hideyuki; Sugiyama, Akihisa; Kawamoto, Yoji; Sirai, Eiji; Ogo, Hideyasu

    2004-01-01

    When a thin walled cylindrical liquid storage tank is exposed to a very large seismic base excitation, buckling phenomena may be caused such as bending buckling where diamond buckling pattern or elephant foot bulge pattern will be found at the bottom portion, and shear buckling at the middle portion of the tank. In this study, dynamic buckling tests were performed using scale models of thin cylindrical liquid storage tanks for the nuclear power plants. The input seismic acceleration was increased until the elephant foot bulge occurred and the vibrational behavior before and after buckling was investigated. And the effects of static and dynamic liquid pressure on the bending buckling patterns and the buckling critical force was investigated by fundamental tests using small tank models. (author)

  2. Interim criteria for Organic Watch List tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Babad, S.; Turner, D.A.

    1993-09-01

    This document establishes interim criteria for identifying single-shell radioactive waste storage tanks at the Hanford Site that contain organic chemicals mixed with nitrate/nitrite salts in potentially hazardous concentrations. These tanks are designated as ''organic Watch List tanks.'' Watch List tanks are radioactive waste storage tanks that have the potential for release of high-level waste as a result of uncontrolled increases in temperature or pressure. Organic Watch List tanks are those Watch List tanks that contain relatively high concentrations of organic chemicals. Because of the potential for release of high-level waste resulting from uncontrolled increases in temperature or pressure, the organic Watch List tanks (collectively) constitute a Hanford Site radioactive waste storage tank ''safety issue.''

  3. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    Science.gov (United States)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.

  4. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  5. Studies on sludge from storage tank of waxy crude oil. Part I: structure and composition of distillate fractions

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, S.A.; Zarapkar, S.S.; Joshi, G.C. [D.G. Ruparel College, Bombay (India). Dept. of Chemistry

    1995-08-01

    Tank bottom sludge from storage tanks of Bombay High crude oil deposited during ten years have been studied. The yield of the sludge is approximately 0.1% wt. of the crude oil through-put. The residue boiling above 500{degree}C amounts to over 50%. The distillate fractions collected at 50{degree}C intervals have been analyzed extensively and compared to fractions from whole crude of same boiling range. The sludge distillate are distinctly more paraffinic in nature. 15 refs., 7 tabs.

  6. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  7. ICPP tank farm closure study. Volume 1

    International Nuclear Information System (INIS)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study

  8. ICPP tank farm closure study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  9. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  10. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  11. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction

  12. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  13. Conception of a 3D Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks

    Directory of Open Access Journals (Sweden)

    Vincenzo La Salandra

    2017-10-01

    Full Text Available Fluid-filled tanks in tank farms of industrial plants can experience severe damage and trigger cascading effects in neighboring tanks due to large vibrations induced by strong earthquakes. In order to reduce these tank vibrations, we have explored an innovative type of foundation based on metamaterial concepts. Metamaterials are generally regarded as manmade structures that exhibit unusual responses not readily observed in natural materials. If properly designed, they are able to stop or attenuate wave propagation. Recent studies have shown that if locally resonant structures are periodically placed in a matrix material, the resulting metamaterial forms a phononic lattice that creates a stop band able to forbid elastic wave propagation within a selected band gap frequency range. Conventional phononic lattice structures need huge unit cells for low-frequency vibration shielding, while locally resonant metamaterials can rely on lattice constants much smaller than the longitudinal wavelengths of propagating waves. Along this line, we have investigated 3D structured foundations with effective attenuation zones conceived as vibration isolation systems for storage tanks. In particular, the three-component periodic foundation cell has been developed using two common construction materials, namely concrete and rubber. Relevant frequency band gaps, computed using the Floquet–Bloch theorem, have been found to be wide and in the low-frequency region. Based on the designed unit cell, a finite foundation has been conceived, checked under static loads and numerically tested on its wave attenuation properties. Then, by means of a parametric study we found a favorable correlation between the shear stiffness of foundation walls and wave attenuation. On this basis, to show the potential improvements of this foundation, we investigated an optimized design by means of analytical models and numerical analyses. In addition, we investigated the influence of cracks

  14. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  15. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  16. Preliminary Study on the Effect of Wastewater Storage in Septic Tank on E. coli Concentration in Summer

    Directory of Open Access Journals (Sweden)

    James K. Bradshaw

    2013-07-01

    Full Text Available On-site wastewater treatment systems (OWTS work by first storing the wastewater in a septic tank before releasing it to soils for treatment that is generally effective and sustainable. However, it is not clear how the abundance of E. coli changes during its passage through the tank. In this study, which was conducted under the UGA young Scholar Program in summer of 2010, we examined the change in wastewater quality parameters during the passage of the wastewater through the tank and after its release into soil. We collected wastewater samples at the inlet and outlet of an experimental septic tank in addition to obtaining water samples from lysimeters below trenches where the drainpipes were buried. We report that E. coli concentration was higher by 100-fold in the septic tank effluent than influent wastewater samples, indicating the growth of E. coli inside the tank under typical Georgian summer weather. This is contrary to the assumption that E. coli cells do not grow outside their host and suggests that the microbial load of the wastewater is potentially enhanced during its storage in the tank. Electrical conductivity, pH and nitrogen were similar between the influent and effluent wastewater samples. E. coli and total coliform concentrations were mainly below detection in lysimeter samples, indicating the effectiveness of the soil in treating the wastewater.

  17. Impacts of external convection on release rates in metal hydride storage tanks. Paper no. IGEC-1-080

    International Nuclear Information System (INIS)

    MacDonald, B.; Rowe, A.; Tomlinson, J.; Ho, J.

    2005-01-01

    Reversible metal hydrides can be used to store hydrogen at relatively low pressures, with very high volumetric density. The rate hydrogen can be drawn from a given tank is strongly influenced by the rate heat can be transferred to the reaction zone. Because of this, enhancing and controlling heat transfer is a key area of research in the development of metal hydride storage tanks. In this work, the impacts of external convection resistance on hydrogen release rates are examined. A one-dimensional resistive analysis determines the thermal resistances in the system based on one case where no external heat transfer enhancements are used, and a second case where external fins are used. A two-dimensional, transient model, developed in FEMLAB, is used to determine the impact of the external fins on the mass flow rate of hydrogen in more detail. For the particular metal hydride alloy (LaNi 4.8 Sn 0.2 ) and tank geometry studied, it was found that the fins have a large impact on the hydrogen flow rate during the initial stages of desorption. The flow rate with no fins is only 20% of the flow rate with fins for a full tank, 57% when the tank is 33% full, and 74% when the tank is 5% full. As the reaction proceeds, the resistance of the metal hydride alloy within the tank increases and becomes dominant. Therefore, the impact of the fins becomes less significant as the tank empties. (author)

  18. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  19. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  20. Mixed waste removal from a hazardous waste storage tank

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  1. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  2. Case study of successful weld repair of a storage tank

    International Nuclear Information System (INIS)

    Sinha, S; Ambrose, S.

    2012-01-01

    Weld repairs or modifications may be required for existing welded structures or components as a result of service damage or failure, or as a result of wear, corrosion or changed service condition. A case study of a repair to a large oil storage tank which failed in Australia by brittle fracture during modification is described to demonstrate the application of basic principles and good practice needed to produce successful repairs/modifications. Prevention of brittle fracture in welded steel structures requires consideration of the toughness at minimum temperature of the weld, the HAZ and the base material itself, applied and residual stress and 'equivalent crack' size. This case shows the importance of residual stress, repair planning and the care needed with old steels.

  3. Safety analysis report for the North Tank Farm, Tank W-11, and the Gunite and Associated Tanks -- Treatability Study, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1997-02-01

    The North Tank Farm (NTF) tanks consist of eight underground storage tanks which have been removed from service because of age and changes in liquid waste system needs and requirements. Tank W-11, which was constructed in 1943, has been removed from service, and contains several hundred gallons of liquid low-level waste (LLLW). The Gunite and Associated Tanks (GAAT) Treatability Study involves the demonstration of sludge removal techniques and equipment for use in other waste storage tanks throughout the Department of Energy (DOE) complex. The hazards associated with the NTF, Tank W-11, and the Treatability Study are identified in hazard identification table in Appendixes A, B, and C. The hazards identified for the NTF, Tank W-11, and the Treatability Study were analyzed in the preliminary hazards analyses (PHA) included as Appendices D and E. The PHA identifies potential accident scenarios and qualitatively estimates the consequences. Because of the limited quantities of materials present in the tanks and the types of energy sources that may result in release of the materials, none of the accidents identified are anticipated to result in significant adverse health effects to on-site or off-site personnel

  4. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  5. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  6. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  7. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  8. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  9. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  10. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety

  11. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    Science.gov (United States)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  12. Application of a temperature selective storage tank solar system. Part 4. Fundamental experiment under a solar simulator; Ondo sentaku chikunetsuso no solar system eno tekiyo. 4. Solar simulator ni yoru kiso jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Endo, N; Baba, H; Okamoto, A [Kitami Institute of Technology, Hokkaido (Japan); Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1996-10-27

    The storage tank is classified into a mixed type and stratified type. The stratified type is judged to be more advantageous from a viewpoint of the effective energy utilization. An experiment was made using a solar simulator to put the system, consisting of a vacuum double-glass tube collector and temperature selective storage tank, to practical use. The ejection position of the storage tank at the top is superior to that at the bottom, in the 60{degree}C layer of three layers (60, 40, and 20{degree}C). The ejection position hardly varies with the shape (straight or elbow) of an ejection port. When the temperature stratified layer is formed in two layers (40 {times} 2, 20{degree}C) to three layers (60, 40, and 20{degree}C), heat can be stably stored as the flow rate is higher. The stratified storage tank is inferior to the mixed storage tank in heat collection efficiency, but the specific exergy increases. By increasing the number of heat storage layers, the result of this experiment can also be applied to the linear temperature gradient layer obtained in the practical use. As a result of the above experiment, the basic data for an automated system design during practical application was obtained. 3 refs., 15 figs.

  13. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  14. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  15. Investigation of cooling coil corrosion in storage tanks for radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1978-01-01

    The high frequency of cooling coil leaks observed in high-heat waste storage tanks soon after sludge removal operations is attributed to pitting, according to laboratory corrosion studies. Experiments show that the most likely series of events leading to coil leakage is (1) excessive dilution of basic nitrite in the supernate, (2) initiation of attack in crevices due to oxygen depletion cells, and (3) acceleration of the attack by sulfate dissolved from the sludge. When sludge was slurried with water, the interstitial liquid was diluted. Nitrite, the anodic inhibitor that prevented attack on coils and tanks in normal operation when its concentration was 0.5 to 3.0M, could accelerate attack when diluted to 10 -4 to 10 -3 M. Attack was presumably initiated at oxygen depletion cells. The presence of sulfate, leached from the sludge, produced a conductive solution that could produce high current densities at the corroding steel surface. The proposed series of events leading to coil leakage agrees with the observations previously made on one leaking coil removed from Tank 2F after sludge removal in 1967. Examination revealed pitting that had originated on the outside of the coils. This pitting was attributed to oxygen depletion cells in coil crevices. To prevent recurrence of pitting attack on cooling coils during future sludge removal operations, the sludge should be slurried (1) with waste diluted less than one hundredfold with water, or (2) with a 500-ppm nitrite-H 2 O solution at pH 12. Either method should preclude pitting damage to the coils

  16. Sloshing analysis of viscous liquid storage tanks

    International Nuclear Information System (INIS)

    Uras, R.Z.

    1995-01-01

    The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive

  17. Experimental evaluation on natural convection heat transfer of microencapsulated phase change materials slurry in a rectangular heat storage tank

    International Nuclear Information System (INIS)

    Zhang Yanlai; Rao Zhonghao; Wang Shuangfeng; Zhang Zhao; Li Xiuping

    2012-01-01

    Highlights: ► It gives heat transfer characteristics in a rectangular heat storage tank as the basic unit for reservoir of thermal storage. ► Onset of natural convection gets easier for the MPCMS with a higher mass concentration. ► It enhances the heat transfer ability of natural convection for the MPCMS. ► Obtained the relationship between Ra and Nu of the MPCMS. - Abstract: The main purpose of this experiment is to evaluate natural convection heat transfer characteristics of microencapsulated PCM (phase change material) slurry (MPCMS) during phase change process in a rectangular heat storage tank heated from the bottom and cooled at the top. The microencapsulated PCM is several material compositions of n-paraffin waxes (mainly nonadecane) as the core materials, outside a layer of a melamine resin wrapped. In the present study, its slurry is used mixing with water. And the specific heat capacity with latent heat shows a peak value at the temperature of about T = 31 °C. We investigate the influences of the phase change process of the MPCMS on natural convection heat transfer. The experimental results indicate that phase change process of the MPCMS promote natural convection heat transfer. The local maximum heat transfer enhancement occurs at approximately T H = 34 °C corresponding to the heated plate temperature. With high mass concentration C m , the onset of natural convection gets easier for the MPCMS. The temperature gradient is larger near top plate and bottom plate of a rectangular heat storage tank. Heat transfer coefficient increases with the phase change of the PCM. And it summarizes that the phase change process of the PCM promote the occurrence of natural convection.

  18. Savannah River Plant waste tank inspection manual

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-01-01

    This manual is to aid in making visual and photographic inspections and steel thickness measurements of Building 241-F and -H underground waste storage tanks. It describes the inspection program, the storage tanks, the equipment and techniques used and the results of their application, and the inspection recordkeeping methods

  19. Corrosion resistance of tank material for flock storage in the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sano, Yuichi; Anbai, Hiromu; Takeuchi, Masayuki; Ogino, Hideki; Koizumi, Kenji

    2014-01-01

    The installation of the storage tank made of SS400 is under planning in the Fukushima Daiichi nuclear power plant for the flock which was generated in the coagulation process for radioactive contaminated water. The flock contains the seawater and has a possibility to make a crevice and local corrosion on the surface of the tank. Air agitation will be applied in the storage tank to prevent the accumulation of the flock and hydrogen generated by radiolysis, which will increase the diffusion of oxygen and the corrosion of SS400. In addition, the effect of radiation from the flock on the corrosion should be considered. In this study, we investigated the corrosion behavior of SS400 in the flock under the aeration-agitation condition with γ-ray irradiation. Based on the flock storage condition announced by Tokyo Electric Power Company (TEPCO), immersion tests were performed with SS400 coupons under several conditions and corrosion rates were estimated by the weight loss of the coupons. After the immersion tests, the surfaces of the coupons were observed by microscopy for evaluating the local corrosion. To evaluate corrosion mechanism in detail, electrochemical tests were also carried out. In all of these tests, the non-radioactive flock as a surrogate and artificial seawater were used. Corrosion rates of SS400 increased significantly with aeration flow rates in the seawater with/without the flock, but this tendency was weaker in the seawater with the flock, especially under the condition where coupons were buried in the flock. The electrochemical tests indicated the suppression of the cathodic reaction, i.e. dissolved oxygen reduction, in the seawater with the flock. The effect of γ-ray irradiation on the corrosion rates was not remarkable under the assumed dose rate. Microscopic analysis of the immersed coupons showed no severe corrosion including local corrosion occurred. The corrosion rate could be decreased effectively by suppressing the dissolved oxygen reduction

  20. Tank inspection, repair, alternation, and reconstruction, January 1992

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper incorporates APIs Aboveground Storage Tank Inspector Certication Program (ASTICP) as an integral part of API Standard 653. This program certies qualified aboveground storage tank inspectors for oil tanks. The ASTICP was developed in accordance with APIs Environmental Excellence Program and promotes the operation of facilities and materials handling in a manner that protects the environment, and the safety and health of employees and the public

  1. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  2. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  3. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Thompson; Adam Slifko

    1997-02-12

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini{trademark}. Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini{trademark} represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini{trademark} is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini{trademark} utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini{trademark} system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini{trademark} system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks.

  4. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    International Nuclear Information System (INIS)

    Bruce Thompson; Adam Slifko

    1997-01-01

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini(trademark). Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini(trademark) represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini(trademark) is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini(trademark) utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini(trademark) system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini(trademark) system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks

  5. Advanced remediation, technology development in the underground storage tank

    International Nuclear Information System (INIS)

    Gates, T.E.; Gilchrist, R.L.

    1992-01-01

    Production of nuclear materials has been a major mission of the U. S. Department of Energy (DOE) over the last 50 years. These activities have contributed to a substantial accumulation of hazardous, radioactive, and mixed wastes. In 1989, the DOE established the Office of Environmental Restoration and Waste Management. This office coordinates and manages the DOE's remediation, waste minimization, and environmental compliance activities. It also has responsibility for waste generated by current operations. Within this office is the Office of Technology Development, which is responsible for providing technology improvements. This paper reports on integrated demonstrations which have been established to efficiently bring the best technologies to bear on the common needs of multiple DOE sites. One such need is resolution of the actions required for final closure and waste disposal of liquid (including sludge and salt cake) radioactive and chemical wastes that have been transferred to underground storage tanks

  6. An alarm instrument for monitoring leakage of oil storage tanks and the location of their leak position using radioisotope tracers

    International Nuclear Information System (INIS)

    Lu Qingqian; Sun Xiaolei; Hu Xusheng

    1990-01-01

    Usually it is difficult to find out gasoline leakage at the bottom of a storage tank from the very beginning. In order to solve this problem, a leak-monitoring technique and an instrument based on the detection of nuclear radiation have been successfully developed. The instrument possesses high sensitivity, short reaction time, excellent stability and rellability. When very small leaks at the bottom of a tank appear, the instrument will show a leak signal and give an alarm. In the meantime, however, the tank can be still used until the preparations for repairing are completed. Then its leak position can be accurately located by using radioisotope tracers

  7. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  8. 111-B Metal Examination Facility Concrete Tanks Characterization Plan

    International Nuclear Information System (INIS)

    Encke, D.B.

    1997-08-01

    The 111-B Metal Examination Facility was a single-story, wood frame 'L'-shaped building built on a concrete floor slab. The facility served as a fuel failure inspection facility. Irradiated fuel pieces were stored and examined in two below grade concrete storage tanks filled with water. The tanks have been filled with grout to stabilize the contamination they contained, and overall dimensions are 5 ft 9 in. (1.5 m 22.8 cm ) wide, 9 ft 1 in. (2.7 m 2.54 cm ) deep, and 10 ft 8 in. (3.0 m 20.32 cm) long, and are estimated to weigh 39 tons. The tanks were used to store and examine failed fuel rods, using water as a radiation shield. The tanks were lined with stainless steel; however, drawings show the liner has been removed from at least one tank (south tank) and was partially filled with grout. The south tank was used to contain the Sample Storage Facility, a multi-level metal storage rack for failed nuclear fuel rods (shown in drawings H-1-2889 and -2890). Both tanks were completely grouted sometime before decontamination and demolition (D ampersand D) of the above ground facility in 1984. The 111-B Metal Examination Facility contained two concrete tanks located below floor level for storage and examination of failed fuel. The tanks were filled with concrete as part of decommissioning the facility prior to 1983 (see Appendix A for description of previous work). Funding for removal and disposal of the tanks ran out before they could be properly disposed

  9. Heat removal characteristics of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  10. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  11. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    International Nuclear Information System (INIS)

    Wang, S.L.

    1994-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  12. A risk management approach to double-shell tank waste volume versus storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  13. A risk management approach to double-shell tank waste volume versus storage capacity

    International Nuclear Information System (INIS)

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences

  14. Neutralized current acid waste consolidation management plan

    International Nuclear Information System (INIS)

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W.; Brothers, A.J.

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired

  15. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  16. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    International Nuclear Information System (INIS)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection

  17. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  18. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    Science.gov (United States)

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  19. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  20. European model code of safe practice for the prevention of ground and surface water pollution by oil from storage tanks and during the transport of oil

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The code outlines general requirements for pollution prevention and provides guidelines for corrosion protection of mild steel tanks, pipe and fitting assemblies, and for storage tank installations. The transportation and delivery of petroleum fuels are discussed, and operating procedures are suggested.

  1. Systematic procedures for sizing photovoltaic pumping system, using water tank storage

    International Nuclear Information System (INIS)

    Hamidat, A.; Benyoucef, B.

    2009-01-01

    In this work, the performances of the photovoltaic pumping destined to supply drinking water in remote and scattered small villages have been studied. The methodology adopted proposes various procedures based on the water consumption profiles, total head, tank capacity and photovoltaic array peak power. A method of the load losses probability (LLP) has been used to optimize sizing of the photovoltaic pumping systems with a similarity between the storage energy in batteries and water in tanks. The results were carried out using measured meteorological data for four localities in Algeria: Algiers and Oran in the north, Bechar and Tamanrasset in the south. The results show that the performance of the photovoltaic pumping system depends deeply on the pumping total head and the peak power of the photovoltaic array. Also, for the southern localities, the LLP method shows that the size of the photovoltaic array varies versus LLP on a small scale. On the other hand, for the northern localities, the sizing of the photovoltaic array is situated on a large scale power. Because of the current high crud-oil price, the photovoltaic pumping still to be the best adopted energy resource to supply drinking water in remote and scattered villages

  2. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  3. Sampling study in milk storage tanks by INAA

    International Nuclear Information System (INIS)

    Santos, L.G.C.; Nadai Fernandes de, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2008-01-01

    This study investigated the representativeness of samples for assessing chemical elements in milk bulk tanks. Milk samples were collected from a closed tank in a dairy plant and from an open top tank in a dairy farm. Samples were analyzed for chemical elements by instrumental neutron activation analysis (INAA). For both experiments, Br, Ca, Cs, K, Na, Rb and Zn did not present significant differences between samples thereby indicating the appropriateness of the sampling procedure adopted to evaluate the analytes of interest. (author)

  4. Progress in evaluating the hazard of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, Harry; Cash, Robert J.; Postma, Arlin

    1992-01-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 suggested that ferrocyanide tank accident scenarios exceed the bounds of the Hanford Environmental Impact Statement. Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic wastes and characterization of actual tank samples. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks. (author)

  5. Progress in evaluating the hazards of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, H.; Cash, R.; Postma, A.

    1992-03-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring to determine whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 (1) suggested that ferrocyanide-tanks accident scenarios exceed the bounds of the Hanford Environmental Impact Statement (2). Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic and actual waste tank characterization. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks

  6. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan.

    Science.gov (United States)

    Miyagi, Kazufumi; Sano, Kouichi; Hirai, Itaru

    2017-08-01

    To provide for temporary restrictions of the public water supply system, storage tanks are commonly installed in the domestic water systems of houses and apartment buildings in Okinawa Prefecture of Japan. To learn more about the sanitary condition and management of these water supply facilities with storage tanks (hereafter called "storage tank water systems") and the extent of bacterial contamination of water from these facilities, we investigated their usage and the existence of Aeromonas, enteric and related bacteria. Verbal interviews concerning the use and management of the storage tank water systems were carried out in each randomly sampled household. A total of 54 water samples were collected for bacteriological and physicochemical examinations. Conventional methods were used for total viable count, fecal coliforms, identification of bacteria such as Aeromonas, Enterobacteriaceae and non-fermentative Gram-negative rods (NF-GNR), and measurement of residual chlorine. On Aeromonas species, tests for putative virulence factor and an identification using 16S rRNA and rpoB genes were also performed. Water from the water storage systems was reported to be consumed directly without boiling in 22 of the 54 houses (40.7%). 31 of the sampled houses had installed water storage tanks of more than 1 cubic meter (m 3 ) per inhabitant, and in 21 of the sampled houses, the tank had never been cleaned. In all samples, the total viable count and fecal coliforms did not exceed quality levels prescribed by Japanese waterworks law. Although the quantity of bacteria detected was not high, 23 NF-GNR, 14 Enterobacteriaceae and 5 Aeromonas were isolated in 42.6%, 7.4% and 3.7% of samples respectively. One isolated A. hydrophila and four A. caviae possessed various putative virulence factors, especially A. hydrophila which had diverse putative pathogenic genes such as aer, hlyA, act, alt, ast, ser, and dam. Many bacteria were isolated when the concentration of residual chlorine

  7. Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents

    International Nuclear Information System (INIS)

    Todd, T.A.; Mann, N.R.; Tranter, T.J.; Sebesta, F.; John, J.; Motl, A.

    2002-01-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm 3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogravimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 deg C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions. (author)

  8. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 01/2004

    International Nuclear Information System (INIS)

    HANLON, B.M.

    2004-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28,2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks

  9. Multi-Function Waste Tank Facility phase out basis. Revision 2

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space

  10. Multi-Function Waste Tank Facility phase out basis. Revision 1

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space.''

  11. Underground storage tanks cause environmental chaos

    International Nuclear Information System (INIS)

    Cruver, P.C.

    1991-01-01

    This paper reports that during the 1950s and the subsequent three decades, petroleum products were stored in single-walled steel underground tanks; an out-of-sight, out-of-mind philosophy prevailed. Unfathomable amounts of toxic petroleum products leaking into the nation's ground water supplies has prompted enactment of recent and much needed legislation and regulation to remedy this major problem. Is the public aware of this serious ecological imbroglio? No, not as yet; except for the closing of many rural service stations and the plethora of dug-up, exposed tanks at urban stations, one could never imagine the severity of this debacle confronting the petroleum industry and the nation's environment

  12. Aging mechanisms for concrete components of High-Level Waste storage tanks

    International Nuclear Information System (INIS)

    Kassir, M.; Bandyopadhyay, K.; Bush, S.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    The age-related degradation mechanisms which affect the concrete and the reinforcing steel in the high-level waste (HLW) storage tanks art evaluated with respect to their potential significance to the continued performance of the concrete, and am classified into non-significant and potentially significant. The identified potentially significant degradation mechanisms include the effects of elevated temperature, freezing and thawing, leaching of calcium hydroxide, aggressive chemical attack, and corrosion of the reinforcing steel. To the extent that available knowledge permits, these mechanisms are generically evaluated and quantified so that site-specific plans may be developed to verify whether significant degradation has occurred in the concrete, and, if so, to formulate mitigating measures to avoid further deterioration and possibly repair the degradation or pursue other management options

  13. Alternative designs for petroleum product storage tanks for groundwater protection.

    Science.gov (United States)

    Oke Adeleke, Samson

    In developing countries, there are numerous occurrences of petroleum product spillage in groundwater. The current practice of burying storage tanks beneath the surface without adequate safety devices facilitates this phenomenon. Underground tanks rust and leak, and spilled petroleum products migrate downward. The movement of the oil in the soil depends on its viscosity and quantity, the permeability of the soil/rock, and the presence of fractures within the rock. The oil spreads laterally in the form of a thin pancake due to its lower specific gravity, and soluble components dissolve in water. The pollution plume of petroleum products and dissolved phases moves in the direction of groundwater flow in the aquifer within the pores of soil and sediments or along fractures in basement complex areas. Most communities reply heavily on groundwater for potable and industrial supplies. However, the sustainability of this resource is under threat in areas where there are filling stations as a result of significant groundwater contamination from petroleum product spillage. Drinking water becomes unpalatable when it contains petroleum products in low concentrations, and small quantities may contaminate large volumes of water. Considering the losses incurred from spillage, the cost of cleaning the aquifer, and the fact that total cleansing and attenuation is impossible, the need to prevent spillage and if it happens to prevent it from getting into the groundwater system is of paramount importance. This paper proposes alternative design procedures with a view to achieving these objectives.

  14. Tank 241-BY-110 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110

  15. Tank 241-AN-102 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

  16. Tank 241-U-111 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111

  17. Tank 241-S-107 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-S-107

  18. Tank 241-B-106 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106

  19. Tank 241-SY-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103

  20. LH2 on-orbit storage tank support trunnion design and verification

    International Nuclear Information System (INIS)

    Bailey, W.J.; Fester, D.A.; Toth, J.M.

    1986-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment is being designed for flight in the shuttle cargo bay. The Cryogenic Fluid Management Facility (CFMF) includes a liquid hydrogen storage tank supported in a vacuum jacket by two fiberglass epoxy composite trunnion mounts. The capability of the CFMF to meet a seven mission requirement is extremely sensitive to the fatigue life of the composite trunnions at cryogenic temperatures. An E-glass/S-glass epoxy composite material was selected for the trunnions since it provided desirable strength, weight and thermal characteristics. Because of the limited extent of analytical or experimental treatment of the fatigue life of this composite at cryogenic temperature, an experimental program was conducted to provide verification of the trunnion design and performance capability at ambient and liquid hydrogen temperatures. Basic material fatigue property data were obtained for the laminate of interest using specifically prepared test specimens. Full-scale trunnions were manufactured and subjected to cyclic load testing to verify fatigue life. An analytical evaluation of the thermal performance of the trunnions was conducted, and a test setup is being manufactured to correlate analytical predictions with test results

  1. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  2. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  3. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Allison Urban

    1999-01-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site

  4. SRS tank closure. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure

  5. Nondestructive examination of DOE high-level waste storage tanks

    International Nuclear Information System (INIS)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  6. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    Science.gov (United States)

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management

  7. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    International Nuclear Information System (INIS)

    Narbutovshih, S.M.

    1996-01-01

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  8. Extended tank use analysis

    International Nuclear Information System (INIS)

    DeFigh-Price, C.; Green, D.J.

    1991-01-01

    The single-shell tanks at the Hanford Site were originally designed for open-quotes temporaryclose quotes use. The newer double-shell tanks were designed for 50 years of use. A number of single-shell tanks failed their original design criteria to contain liquid waste soon after they were constructed. These single-shell and double-shell tanks now will be required to contain semi-solid high-activity waste well beyond their design lives. It must be determined that the waste contained in these tanks will remain stable for up to an additional 30 years of storage. This paper describes the challenge of demonstrating that the tanks that have exceeded or will exceed their design lifetime can safely store high-level waste until planned disposal actions are taken. Considerations will include structural and chemical analyses

  9. Application of risk curve for statistical analysis of backside corrosion in the bottom floors of oil storage tanks

    International Nuclear Information System (INIS)

    Kasai, Naoya; Maeda, Takuma; Tamura, Koichi; Kitsukawa, Shigeo; Sekine, Kazuyoshi

    2016-01-01

    Overall thickness profile data for backside corrosion of the bottom floors of 17 oil storage tanks were collected, and a risk curve from the overall thickness profile and discrete thickness data was derived to evaluate the corrosion risk of the bottom floors. The slope of the risk curve in the large corrosion region was found to indicate the local corrosion condition. Parameters for evaluating localized corrosion derived from the corrosion distributions were also investigated to evaluate the corrosion risk of the bottom floors. Compared with the parameters obtained using the overall thickness profile and discrete thickness data, the slope of the risk curve is an excellent evaluation parameter using discrete thickness data. Thus, it is possible to accurately evaluate the corrosion characteristics of the bottom floors of oil storage tanks with the parameters obtained from discrete thickness data. - Highlights: • The risk curves for corrosion show the corrosion characteristic. • The obtained parameters indicate the corrosion characteristic. • The corrosion characteristic can be evaluated with discrete thickness data.

  10. Petro-Canada's project to add petroleum product storage tanks to the Municipality of Montreal-East

    International Nuclear Information System (INIS)

    Lefebvre, G.; Joly, R.; Guay, T.

    2006-01-01

    This paper explored the environmental impacts associated with Petro-Canada's project to add petroleum product storage tanks to its refinery in the east-end of Montreal. The project plan is based on a 6 year horizon from 2006-2012. The additional reservoirs would store new products destined for the petrochemical industry and for consumers, thus improving the flexibility and reliability of the refinery. The products would include low sulfur diesel and ethanol gasoline. The project does not involve any increase in refining capacity, and is estimated to cost $15 million. The main issues associated with this project are ambient air quality, the protection of groundwater and soil, as well as the security of areas inhabited by neighbouring areas in risk of a major accident. Emissions of organic compounds, including benzene, are considered minimal considering the use of sealed floating roofs. Geomembranes will be installed under the storage tanks to ensure the protection of groundwater and soil. Any consequences to the population of neighbouring areas resulting from accidents inside the industrial park will be limited since the reservoirs will be located more than 1 km away from a populated area. Quebec's Ministry of Sustainable Development, Environment and Parks recommended that this project be approved as long as the terms and measures of environmental regulations are respected, and that an emergency plan is submitted before the operation of the first reservoir. 1 tab

  11. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  12. Concentration of Melton Valley Storage Tank surrogates with a wiped film evaporator

    International Nuclear Information System (INIS)

    Boring, M.D.; Farr, L.L.; Fowler, V.L.; Hewitt, J.D.

    1994-08-01

    This report describes experiments to determine whether a wiped film evaporator (WFE) might be used to concentrate low-level liquid radioactive waste (LLLW). Solutions used in these studies were surrogates that contain no radionuclides. The compositions of the surrogates were based on one of Oak Ridge National Laboratory's (ORNL's) Melton Valley Storage Tanks (MVSTs). It was found that a WFE could be used to concentrate LLLW to varying degrees by manipulating various parameters. The parameters studied were rotor speed, process fluid feed temperature and feed rate, and evaporator temperature. Product consistency varied from an unsaturated liquid to a dry powder. Volume reductions up to 68% were achieved. System decontamination factors were consistently in the range of 10 4

  13. Underground storage tank 291-D1U1: Closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  14. Tank 19F Folding Crawler Final Evaluation

    International Nuclear Information System (INIS)

    Nance, T.

    2000-01-01

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste FR-om 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28

  15. Waste Tank Summary Report for Month Ending February 28 2001

    International Nuclear Information System (INIS)

    HANLON, B.M.

    2001-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 435.I (DOE-RL, July 1999, Radioactive Waste Management, U.S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks

  16. Waste Tank Summary Report for Month Ending 04/30/2002

    International Nuclear Information System (INIS)

    HANLON, B.M.

    2002-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks

  17. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

  18. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    International Nuclear Information System (INIS)

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D ampersand D) program in future years

  19. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  20. NGLW RCRA Storage Study

    International Nuclear Information System (INIS)

    Waters, R.J.; Ochoa, R.; Fritz, K.D.; Craig, D.W.

    2000-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning

  1. NGLW RCRA Storage Study

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  2. Research on volume metrology method of large vertical energy storage tank based on internal electro-optical distance-ranging method

    Science.gov (United States)

    Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang

    2018-01-01

    A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.

  3. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  4. Operational Plan for Underground Storage Tank 322 R2U2

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-07

    This Operational Plan provides the operator of the tank system with guidelines relating to the safe and compliant operation and maintenance of the tank system. The tank system schematic and list of emergency contacts shall be posted near the tank so they are visible to tank personnel. This Operational Plan shall be kept on file by the Facility Supervisor. It should be understood when managing this tank system that it is used to store hazardous waste temporarily for 90 calendar days or less. The rinsewater handled in the tank system is considered hazardous and may exhibit the characteristic of toxicity.

  5. Fuel tank for liquefied natural gas

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  6. Volatile liquid storage system

    International Nuclear Information System (INIS)

    Laverman, R.J.; Winters, P.J.; Rinehart, J.K.

    1992-01-01

    This patent describes a method of collecting and abating emission from a volatile liquid in an above ground storage tank. It comprises the liquid storage tank having a bottom, a vertical cylindrical circular wall having a lower edge portion joined to the bottom, and an external fixed roof, the tank having an internal floating roof floating on a volatile liquid stored in the tank, and air vent means in the tank in communication with a vapor space in the tank constituting at least the space above the floating roof when the floating roof floats on a predetermined maximum volume of volatile liquid in the tank; permitting ambient air; pumping emission laden air from the tank vapor space above the floating roof; and by means of the emissions abatement apparatus eliminating most of the emission from the emissions laden air with formation of a gaseous effluent and then discharging the resulting gaseous effluent to the atmosphere

  7. 30 CFR 77.1103 - Flammable liquids; storage.

    Science.gov (United States)

    2010-07-01

    ... storage tanks shall be mounted securely on firm foundations. Outlet piping shall be provided with flexible connections or other special fittings to prevent adverse effects from tank settling. (c) Fuel lines shall be... hazards. (d) Areas surrounding flammable-liquid storage tanks and electric substations and transformers...

  8. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  9. Light duty utility arm deployment in Hanford tank T-106

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1997-07-01

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges

  10. Light duty utility arm deployment in Hanford tank T-106

    Energy Technology Data Exchange (ETDEWEB)

    Kiebel, G.R.

    1997-07-01

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

  11. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  12. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    Science.gov (United States)

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  13. Investigations of fabric stratifiers for solar tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Fan, Jianhua

    2005-01-01

    The thermal performance of solar heating systems is strongly influenced by the thermal stratification in the heat storage. The higher the degree of thermal stratification is, the higher the thermal performance of the solar heating systems. Thermal stratification in water storages can be achieved...... in different ways. For instance, water heated by the solar collectors or water returning from the heating system can enter the water storage through stratification inlet devices in such a way that the water enters the tank in a level, where the tank temperature is the same as the temperature of the entering...

  14. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  15. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  16. Estimating heel retrieval costs for underground storage tank waste at Hanford. Draft

    International Nuclear Information System (INIS)

    DeMuth, S.

    1996-01-01

    Approximately 100 million gallons (∼400,000 m 3 ) of existing U.S. Department of Energy (DOE) owned radioactive waste stored in underground tanks can not be disposed of as low-level waste (LLW). The current plan for disposal of UST waste which can not be disposed of as LLW is immobilization as glass and permanent storage in an underground repository. Disposal of LLW generally can be done sub-surface at the point of origin. Consequently, LLW is significantly less expensive to dispose of than that requiring an underground repository. Due to the lower cost for LLW disposal, it is advantageous to separate the 100 million gallons of waste into a small volume of high-level waste (HLW) and a large volume of LLW

  17. History of waste tank 1, 1954 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.; Stevens, W.E.

    1978-10-01

    Tank 1 was placed in service as a receiver of high heat waste (HW) in October 1954. The supernate was removed from the tank in October 1961 and the tank began receiving low heat waste (LW) in January 1962. The LW supernate was decanted in October 1962 and prior to beginning a second HW filling in April 1963. The supernate from this HW filling was decanted twice in 1969. Sludge removal operations were conducted in May and August 1969 in order to use tank 1 for salt storage. The first evaporator concentrate receipt was in September 1969 and tank 1 has only been used as a salt storage tank since. Leakage from the tank into the annulus was discovered in February 1969. Deposits less than 1/4 inch deep of leaked waste were found on the pan floor. However, no leak sites have been found. Inspections of the tank interior and annulus were made by direct observation and by using a 40-ft optical periscope. Samples of sludge, supernate, tank vapors, and leaked material into the annulus were analyzed and tank temperature profiles were taken. Deflection measurements were made of the primary tank bottom knuckle plate while filling the tank with salt. Two vertical cooling coils have failed. Several equipment modifications and various equipment repairs were made. 18 figures, 2 tables

  18. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-02-01

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  19. Dehydration and desalting of heavy crude Maya into the TMDB by means of tanks of storage of 500 TB converted to type gun-barrel

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, L.F.L.; Abundes, A.A.; Aguinaga, C.A.L.; Monroy, J.D.A.; Jimenez, R.M.; Sanchez, M.R.; Medina, J.L.H.; Vazquez, J.V.; Montano, A.E.G.; Villanueva, A.G.; Moreno, W.N.C.; Maria, G.B.; Mendez, J.L.J.; Cordero, E.D.; Ponce, F.C.; Estrada, C.D.; Azuara, V.H.C. [Petroleos Mexicanos, PEMEX, Mexico City (Mexico)

    2009-07-01

    When crude oil emerges from the production well, it is polluted with congenital waters and in some cases with sea water. These waters can be present as free water or emulsified. When the water reaches the surface, the free water is eliminated by sedimentation. However, the reduction of emulsified water is not directly due to the stability presented by the drops of emulsified water in the crude, therefore chemical injection for the separation of both phases is required. This paper discussed the design of a system for dehydration and desalting of 750 TBD Maya heavy crude, by means of tanks type gun-barrel. The design was performed using the simulation packages HYSYS and computational fluid dynamics of ANSYS, considering the parameters that were studied in bottle tests and profiled in tanks storage of 500 TB. The design was based on the settling speed that affects the dehydration and desalting of crude. The paper discussed the production facilities used in the crude dehydration, with particular reference to the gun barrel tank; washer tank; heat treater tanks; free water separator; and electrostatic separator. The development of the system was described in terms of data compilation using Stokes' Law and interpretation of the field data using bottle tests. It was concluded that the gun barrel train was the best option to dehydrate and desalt Mayan oil in the TMDB, since this processing system takes advantage of the existing facilities, specifically the storage tanks of 500 TB capacity. 16 refs., 5 tabs., 5 figs.

  20. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  1. Microstructural and Mechanical Properties of Welded High Strength Steel Plate Using SMAW and SAW Method for LPG Storage Tanks

    Science.gov (United States)

    Winarto, Winarto; Riastuti, Rini; Kumeidi, Nur

    2018-03-01

    Indonesian government policy to convert energy consumption for domestic household from kerosene to liquefied petroleum gas (LPG) may lead to the increasing demand for LPG storage tank. LPG storage tank with a large capacity generally used the HSLA steel material of ASTM A516 Grade 70 joined by SMAW or combination between SMAW and SAW method. The heat input can affect the microstructure and mechanical properties of the weld area. The input heat is proportional to the welding current and the arc voltage, but inversely proportional to its welding speed. The result shows that the combination of SMAW-SAW process yield the lower hardness in the HAZ and the fusion zone compared to the singe SMAW process. PWHT mainly applied to reduce residual stress of welded joint. The result shows that PWHT can reduce the hardness in the HAZ and the fusion zone in comparing with the singe SMAW process. The microstructure of weld joint shows a coarser structure in the combined welding process (SMAW-SAW) comparing with the single welding process (SMAW).

  2. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  3. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    Science.gov (United States)

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  4. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur

  5. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  6. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  7. Risk assessment of liquefied petroleum gas (LPG storage tanks in the process industries using the Bowtie technique

    Directory of Open Access Journals (Sweden)

    Mostafa Mirzaei aliabadi

    2016-09-01

    Full Text Available Introduction: LPG storage tanks contain of large volumes of flammable and pressurized gases. Release of these fluids can lead to disastrous accidents such BLEVE, fiery explosion. Therefore, identifying the causes, consequences, probabilities and scenarios of accidents using Bowtie technique, that is combination of Fault Tree Analyses (FTA and Event Tree Analyses (ETA, is imperative and the purpose of this study. Methods: The hazards of the mentioned in Tehran Refinery LPG tanks were identified by Fault Tree Analyses and the consequences of the top event were predicted by Event Tree Analyses. Then probabilities of the events were calculated and the accident route, from causes phase to consequences phase, was drawn by Bowtie diagram. Results: In total, 21 events and 11 minimal cut sets with their occurrence probabilities and importance measure were determined at the left side of the Bowtie diagram. Also 9 consequences and scenarios of the top event were determined at the right side of the diagram. The occurrence probability of the top event (LPG release of spherical tanks was calculated 3.45×10-2. Conclusion: All factors involved in the occurrence of accidents and their consequences are showed in the Bowtie diagram. According to the obtained data, failure of cathodic protection systems and instrumentation, and overflow of tanks are included as important defects of the LPG tanks. Due to the high probability of the consequences, preventing systems such as cooling systems and Fire stop systems are required for installing in the studied unit to reduce the consequences of accidents.

  8. Assessment of sludges and tank bottoms treatment processes

    International Nuclear Information System (INIS)

    Bhutto, A.W.; Bazmi, A.A.

    2005-01-01

    The petroleum refining industries generate considerable amounts of sludge and tank bottoms as waste. Petroleum refinery receives crude oil containing emulsified water and solids. As the crude oil storage tanks are repeatedly filled and emptied, the water and solids settle towards the bottom as sludge. For tanks that have been in service for several years, the sludge accumulation becomes several feet deep, results in a loss of ullage in refinery crude storage tanks. The accumulation of crude storage tank bottoms is a serious problem experienced by local refineries. The refinery sludge waste is categorized as hazardous waste, which is at present buried in the tankform ground. Since the no hazardous material land filling option available, the disposal of these hazardous materials has become a major problem because of the ISO-14000 certification requirements and expectation of stakeholder. To maximize the waste oil recovery from sludge and tank bottoms and to minimize the volume of the hazardous waste, a number of waste recovery and treatment processes are available. The process designs and unit operations of each process are different and each has its own merits, in terms of the technical complexity, operation friendliness, and costs and economics. A study on each of these technologies and the subsequent tide-up to the existing unit operations is conducted, and the associated technical comparisons are made. (author)

  9. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  10. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  11. 241-AY/AZ waste storage tanks: Supplemental gravity load analysis. Volume 1

    International Nuclear Information System (INIS)

    Baliga, R.

    1994-01-01

    An analysis of the 241SY tanks performed by ADVENT(1994b) to resolve dome overload issues indicated that the tank can sustain the dome loads resulting from additional soil overburden depth, increased soil density, and increased concentrated load. Similar issues exist for the 241AY/AZ tanks and therefore, an interim analysis of the 241AY/AZ tanks is presented herein. The scope of this effort is to review and compare all design drawings pertaining to the 241AY and 241AZ tanks with those pertaining to the 241SY tanks; to modify the axisymmetric model of the 241SY tanks to represent the 241AY/AZ tanks; and to evaluate the effect of additional dome load on the 241AY/AZ tanks by performing a structural analysis for gravity loads (dead load + live load). ADVENTS's additional scope of work is to perform a qualitative evaluation of the 241AY/AZ tanks for seismic and thermal loadings (Vollert 1982 and Blume 1971). This qualitative evaluation does not include any detailed finite element analysis of the tanks. The following design-based gravity loading conditions are used in this interim analysis of the 241AY/AZ tanks to determine a baseline for the tank stresses or section loads

  12. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  13. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    Science.gov (United States)

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  14. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    International Nuclear Information System (INIS)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale

  15. A review of technology for verification of waste removal from Hanford Underground Storage Tanks (WHC Issue 30)

    International Nuclear Information System (INIS)

    Thunborg, S.

    1994-09-01

    Remediation of waste from Underground Storage Tanks (UST) at the Hanford Waste storage sites will require removal of all waste to a nearly clean condition. Current requirements are 99% clean. In order to meet remediation legal requirements, a means to remotely verify that the waste has been removed to sufficient level is needed. This report discusses the requirements for verification and reviews major technologies available for inclusion in a verification system. The report presents two operational scenarios for verification of residual waste volume. Thickness verification technologies reviewed are Ultrasonic Sensors, Capacitance Type Sensors, Inductive Sensors, Ground Penetrating Radar, and Magnetometers. Of these technologies Inductive (Metal Detectors) and Ground Penetrating Radar appear to be the most suitable for use as waste thickness sensors

  16. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  17. Waste analysis plan for 222-S dangerous and mixed waste storage area

    International Nuclear Information System (INIS)

    Warwick, G.J.

    1994-01-01

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility

  18. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  19. Developments in the safe design of LNG tanks

    Science.gov (United States)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  20. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters