WorldWideScience

Sample records for acid rock drainage

  1. Acid rock drainage and climate change

    Science.gov (United States)

    Nordstrom, D.K.

    2009-01-01

    Rainfall events cause both increases and decreases in acid and metals concentrations and their loadings from mine wastes, and unmined mineralized areas, into receiving streams based on data from 3 mines sites in the United States and other sites outside the US. Gradual increases in concentrations occur during long dry spells and sudden large increases are observed during the rising limb of the discharge following dry spells (first flush). By the time the discharge peak has occurred, concentrations are usually decreased, often to levels below those of pre-storm conditions and then they slowly rise again during the next dry spell. These dynamic changes in concentrations and loadings are related to the dissolution of soluble salts and the flushing out of waters that were concentrated by evaporation. The underlying processes, pyrite oxidation and host rock dissolution, do not end until the pyrite is fully weathered, which can take hundreds to thousands of years. These observations can be generalized to predict future conditions caused by droughts related to El Ni??o and climate change associated with global warming. Already, the time period for dry summers is lengthening in the western US and rainstorms are further apart and more intense when they happen. Consequently, flushing of inactive or active mine sites and mineralized but unmined sites will cause larger sudden increases in concentrations that will be an ever increasing danger to aquatic life with climate change. Higher average concentrations will be observed during longer low-flow periods. Remediation efforts will have to increase the capacity of engineered designs to deal with more extreme conditions, not average conditions of previous years.

  2. A Sustainable Approach for Acid Rock Drainage Treatment using Clinoptilolite

    Science.gov (United States)

    Li, L. Y.; Xu, W.; Grace, J. R.

    2009-04-01

    Problems related to acid rock drainage (ARD) occur along many highways of British Columbia. The ARD problem at Pennask Creek along Highway 97C in the Thompson-Okanagan region is an ideal site for pilot study to investigate a possible remediation solution. The highway was opened in 1991. An ARD problem was identified in 1997. Both sides of Highway 97C are producing acidified runoff from both cut rock surface and a fractured ditch. This runoff eventually enters Pennask Creek, the largest spawning source of rainbow trout in British Columbia. The current remediation technique using limestone for ARD treatment appears to be unnecessarily expensive, to generate additional solid waste and to not be optimally effective. A soil mineral natural zeolite - clinoptilolite - which is inexpensive and locally available, has a high metal adsorption capacity and a significant buffering capacity. Moreover, the clinoptilolite materials could be back-flushed and reused on site. An earlier batch adsorption study from our laboratory demonstrated that clinoptilolite has a high adsorption capacity for Cu, Zn, Al, with adsorption concentrations 131, 158 and 215 mg/kg clinoptilolite, respectively, from ARD of pH 3.3. Removal of metals from the loaded clinoptilolite by back-flushing was found to depend on the pH, with an optimum pH range for extraction of 2.5 to 4.0 for a contact time of one hour. The rank of desorption effectiveness was EDTA > NaCl > NaNO3 > NaOAC > NaHCO3 > Na2CO3 > NaOH > Ca(OH)2. A novel process involving cyclic adsorption on clinoptilolite followed by regeneration of the sorbent by desorption is examined for the removal of heavy metals from acid rock drainage. Experimental results show that the adsorption of zinc and copper depends on the pH and on external mass transfer. Desorption is assisted by adding NaCl to the water. A slurry bubble column was able to significantly reduce the time required for both adsorption and desorption in batch tests. XRD analysis indicated

  3. Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...

  4. Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment

    Science.gov (United States)

    The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...

  5. Conceptual models of the formation of acid-rock drainage at road cuts in Tennessee

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott; Byl, Tom

    2015-01-01

    Pyrite and other minerals containing sulfur and trace metals occur in several rock formations throughout Middle and East Tennessee. Pyrite (FeS2) weathers in the presence of oxygen and water to form iron hydroxides and sulfuric acid. The weathering and interaction of the acid on the rocks and other minerals at road cuts can result in drainage with low pH (< 4) and high concentrations of trace metals. Acid-rock drainage can cause environmental problems and damage transportation infrastructure. The formation and remediation of acid-drainage from roads cuts has not been researched as thoroughly as acid-mine drainage. The U.S Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to better understand the geologic, hydrologic, and biogeochemical factors that control acid formation at road cuts. Road cuts with the potential for acid-rock drainage were identifed and evaluated in Middle and East Tennessee. The pyrite-bearing formations evaluated were the Chattanooga Shale (Devonian black shale), the Fentress Formation (coal-bearing), and the Precambrian Anakeesta Formation and similar Precambrian rocks. Conceptual models of the formation and transport of acid-rock drainage (ARD) from road cuts were developed based on the results of a literature review, site reconnaissance, and the initial rock and water sampling. The formation of ARD requires a combination of hydrologic, geochemical, and microbial interactions which affect drainage from the site, acidity of the water, and trace metal concentrations. The basic modes of ARD formation from road cuts are; 1 - seeps and springs from pyrite-bearing formations and 2 - runoff over the face of a road cut in a pyrite-bearing formation. Depending on site conditions at road cuts, the basic modes of ARD formation can be altered and the additional modes of ARD formation are; 3 - runoff over and through piles of pyrite-bearing material, either from construction or breakdown

  6. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  7. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  8. COMPOST-FREE BIOLOGICAL TREATMENT OF ACID ROCK DRAINAGE, TECHNICAL EVALUATION BULLETIN

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  9. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  10. Microbial exoenzymes as bioindicators of acid rock drainage impacts in the Finniss River

    International Nuclear Information System (INIS)

    Sediment samples were collected from several sites along the East Branch of the Finniss River during the dry season (June, 1999), when the East Branch is drying into a series of ponds. The sites included those upstream from the Rum Jungle mine site (EB8A, EB8B, FCA, FCB), a site receiving acid leachate from the waste rock (WO), sites downstream from the mine that are impacted by acid and metal contamination (EB6, TCP, EB5D, EB4U, EB2) and reference sites not subject to acid rock drainage (HS, EB4S, LFRB). Exoenzyme activities were measured with a spectrofluorometric technique that involved measuring the increase in fluorescence when an artificial fluorogenic substrate (that mimics the natural substrate) is hydrolysed to a highly fluorescent product. The present findings indicate that the acid rock drainage impacted sediments contain acidophilic, heterotrophic microorganisms, bacteria and/or fungi, producing extracellular enzymes adapted to the acid conditions. This study has demonstrated that measurements of extracellular enzyme activities in river sediments provide a rapid, sensitive technique for determining microbial activity and productivity. In aquatic ecosystems some exoenzymes, particularly leucine-aminopeptidase, could be used as bioindicators of pollution from acid rock drainage

  11. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    Science.gov (United States)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  12. A review of acid drainage from waste rock dumps and mine sites (Australian and Scandinavia)

    International Nuclear Information System (INIS)

    This report reviews the literature from Australia and Scandinavia on acid drainage from pyritic waste rock dumps with an emphasis on measurements and theory of processes that control the rage of oxidation and the release of pollutants. Conditions within waste rock dumps have been measured at several mine sites and a range of rehabilitation treatments have been tried to reduce the release of pollutants. A number of models have been proposed to calculate air flow, water transport and geochemistry. The data and experience at the mine sites are compared with predictions of the models. Details of Australian and Swedish mine sites where waste rock is a source of acid drainage are described in the Appendices. 92 refs., 2 tabs., 10 figs

  13. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  14. Potential application of oxygen-18 and deuterium in mining effluent and acid rock drainage studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghomshei, M.M. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering; Allen, D.M. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Earth Sciences

    2000-05-01

    Oxygen-18 ({sup 18}O) and deuterium (D, or {sup 2}H) are routinely used in hydrologic, climatologic and geothermal studies. In hydrology, stable isotopes provide information on the type and topology (altitude and latitude) of the recharge waters and the historical effects on water, related to such physical processes as evaporation (in ponds) melting (of snow or ice), condensation, evapotranspiration and mixing. In geothermal studies, stable isotopes provide key information related to recharge and the various temperature-dependent water/rock isotope exchange reactions. The latter is assessed through the oxygen shift in the {sup 18}O/D correlation. At acid rock drainage (ARD) sites, water/rock interactions are primarily controlled by pH and oxidation potential. Using the isotopic characteristics of the rocks and the recharge waters as a basis, the relative oxygen shift of the ARD effluent can provide information on: (1) the residence time, (2) the rate of water/rock reactions, and (3) the actual pH at the rock/water interface. This paper offers a methodology for conducting oxygen and hydrogen isotope studies related to ARD and other mineral effluent problems. The methodology is based on: (1) comprehensive sampling of regional waters, ARD effluent and major contributing minerals and rocks, (2) isotopic and elemental analysis, and (3) data interpretation on the basis of zero-dimensional (mass balance), multi-component mixing model. (orig.)

  15. Effects of bacterial action on waste rock producing acid drainage in the Brazilian first uranium mine

    International Nuclear Information System (INIS)

    This work is an evolution of the methodology showed in the paper 'Study of waste of waste rock piles producing acid drainage in the Brazilian first uranium mine', also submitted for INAC2009. Therefore, the present work also related to the determination of chemical species leaching from waste rock pile 4 (WRP4) of the Uranium Mine and Milling Facility located in the Pocos de Caldas Plateau, as well as the generation of acid waters. With the previous experimental setup, it has been observed that not only water and available oxygen are significant to pyrite oxidation reaction, but bacterial activity as well. As a first approach, the present work addresses the same experiment, but now testing without the influence of bacterial action. Therefore, the new methodology and experimental setup is now capable of determining the acidity of water in contact with material from the WRP4 and the concentration of chemical species dissolved as function of time. Such would also show the extent of bacterial action interference on the pyrite oxidation reaction. Results are based on mass balances comparing concentrations of chemical species in the waste rock before the experiment and in the waste rock plus the remaining water after the experiment. In addition, the evolution of the pH and EMF (electromotive force) values along with chemical species quantified through the experiment are presented through graphics. That is followed by discussions on the significance of such results in terms of concentration of the involved chemical species. The present work has also shown the need of improving the injection of air into the system. A more sophisticated experimental setup should be assembled in the near future, which would allow the quantification of differences between experimental tests with and without bacterial action. (author)

  16. Environmental risk assessment of acid rock drainage under uncertainty: The probability bounds and PHREEQC approach.

    Science.gov (United States)

    Betrie, Getnet D; Sadiq, Rehan; Nichol, Craig; Morin, Kevin A; Tesfamariam, Solomon

    2016-01-15

    Acid rock drainage (ARD) is a major environmental problem that poses significant environmental risks during and after mining activities. A new methodology for environmental risk assessment based on probability bounds and a geochemical speciation model (PHREEQC) is presented. The methodology provides conservative and non-conservative ways of estimating risk of heavy metals posed to selected endpoints probabilistically, while propagating data and parameter uncertainties throughout the risk assessment steps. The methodology is demonstrated at a minesite located in British Columbia, Canada. The result of the methodology for the case study minesite shows the fate-and-transport of heavy metals is well simulated in the mine environment. In addition, the results of risk characterization for the case study show that there is risk due to transport of heavy metals into the environment.

  17. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    Science.gov (United States)

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-19

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.

  18. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    Science.gov (United States)

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. PMID:16570625

  19. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  20. Characterization of Green Liquor Dregs, Potentially Useful for Prevention of the Formation of Acid Rock Drainage

    Directory of Open Access Journals (Sweden)

    Maria Mäkitalo

    2014-04-01

    Full Text Available Using alternative materials such as residual products from other industries to mitigate the negative effects of acid rock drainage would simultaneously solve two environmental problems. The main residual product still landfilled by sulphate paper mills is the alkaline material green liquor dregs (GLD. A physical, mineralogical and chemical characterization of four batches of GLD was carried out to evaluate the potential to use it as a sealing layer in the construction of dry covers on sulphide-bearing mine waste. GLD has relatively low hydraulic conductivity (10−8 to 10−9 m/s, a high water retention capacity (WRC and small particle size. Whilst the chemical and mineralogical composition varied between the different batches, these variations were not reflected in properties such as hydraulic conductivity and WRC. Due to relatively low trace element concentrations, leaching of contaminants from the GLD is not a concern for the environment. However, GLD is a sticky material, difficult to apply on mine waste deposits and the shear strength is insufficient for engineering applications. Therefore, improving the mechanical properties is necessary. In addition, GLD has a high buffering capacity indicating that it could act as an alkaline barrier. Once engineering technicalities have been overcome, the long-term effectiveness of GLD should be studied, especially the effect of aging and how the sealing layer would be engineered in respect to topography and climatic conditions.

  1. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  2. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  3. Acid mine drainage research in Canada

    International Nuclear Information System (INIS)

    Acidic drainage resulting from base metal, precious metal, and uranium mining is the largest single environmental problems facing the Canadian mining industry today. Technologies to prevent acidic drainage from occurring in waste rock piles and tailings sites, and on the walls of open pits and underground mines, need to be developed and demonstrated. There are two grounds in Canada which have accepted this challenge: the national Mine Environment Neutral Drainage (MEND) program and the British Columbia Acid Mine Drainage (BC AMD) Task Force. This paper summarizes the activities of these two organizations

  4. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage

    International Nuclear Information System (INIS)

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ66Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰ ± 0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ66Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰ ± 0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. - Highlights: ► Zinc isotopes of water were measured in samples

  5. Performance of an open limestone channel for treating a stream affected by acid rock drainage (León, Spain).

    Science.gov (United States)

    Santofimia, Esther; López-Pamo, Enrique

    2016-07-01

    The generation of acid rock drainage (ARD) was observed after the oxidation dissolution of pyrite-rich black shales, which were excavated during the construction of a highway in León (Spain). ARDs are characterized by the presence of high concentrations of sulfate and metals (Al, Fe, Mn, Zn, Cu, Co, Ni, Th, and U) that affect the La Silva stream. Dissolved element concentrations showed values between one and four orders of magnitude higher than those of natural waters of this area. A passive treatment system was constructed; the aim of which was to improve the quality of the water of the stream. This work provides a hydrochemical characterization of the La Silva stream after its transit through the different elements that constitute the passive treatment system (open limestone channel (OLC), small ponds, and a wetland), during its first year of operation. The passive treatment system has two sections separated by a tunnel 230 m long. The first section, which stretches between the highway and the tunnel entrance, is an OLC 350 m long with a slope of 16 %. The second section, which stretches from the tunnel exit to the end wetland, has a length of 700 m and a slope of 6 %; it is in this section where six small ponds are located. In the first section of this passive treatment system, the OLC was effectively increasing the pH from 3 to 4-4.5 and eliminating all of the dissolved Fe and the partially dissolved Al. These elements, after hydrolysis at a pH 3-3.5 and 4-4.5, respectively, had precipitated as schwertmannite and hydrobasaluminite, while other dissolved metals were removed totally or partially for adsorption by the precipitates and/or by coprecipitation. The second section receives different inputs of water such as ARDs and natural waters. After exiting the treatment system, the stream is buffered by Al at a pH of 4-4.3, showing high Al concentrations (19-101 mg/L) but with a complete removal of dissolved Fe. Unfortunately, the outflow shows similar or

  6. Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration.

    Science.gov (United States)

    Cui, Heping; Li, Loretta Y; Grace, John R

    2006-10-01

    Preliminary work was carried out to explore a novel process for high-efficiency high-capacity remediation of acid rock drainage. Zn and other metal ions were adsorbed and desorbed in a laboratory Plexiglas slurry bubble column with natural clinoptilolite particles as sorbent. The results indicate that both adsorption and desorption in this medium have considerable advantages over those in the packed beds and rotating columns, leading to faster batch adsorption and desorption, as well as greater uptake of zinc. The adsorption order of clinoptilolite particles to different metal ions appeared to be Fe>Al>Cu>Zn>Mg>Mn on the basis of normalized concentrations. Smaller particles had significantly higher capacity and rates of the adsorption than larger particles for the same operating conditions. PMID:16962631

  7. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Science.gov (United States)

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  8. Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit County, Colorado

    Science.gov (United States)

    Bird, D.A.

    2003-01-01

    Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.

  9. Acid mine drainage: mining and water pollution issues in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The importance of protecting water quality and some of the problems associated with mineral development are described. Negative impacts of mining operations such as sedimentation, water disturbances, and water pollution from waste rock and tailings are considered. Mining wastes, types of water pollution from mining, the legacy of acid mine drainage, predicting acid mine drainage, preventing and mitigating acid mine drainage, examples from the past, and cyanide heap-leaching are discussed. The real costs of mining at the Telkwa open pit coal mine are assessed. British Columbia mines that are known for or are potentially acid generating are shown on a map. 32 refs., 10 figs.

  10. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru.

    Science.gov (United States)

    Skierszkan, E K; Mayer, K U; Weis, D; Beckie, R D

    2016-04-15

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper-Zn-Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ(98)Mo among molybdenites ranged from -0.6 to +0.6‰ (n=9) while sphalerites showed no δ(66)Zn variations (0.11±0.01‰, 2 SD, n=5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ(98)Mo (-0.1 to +2.1‰) and 0.7‰ in δ(66)Zn (-0.4 to +0.3‰) in mine drainage over a wide pH range (pH2.2-8.6). Lighter δ(66)Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn5(OH)6(CO3)2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89±1.25‰, 2 SD, n=16), with some overlap, in comparison to molybdenites and waste rock (0.13±0.82‰, 2 SD, n=9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate of these elements in mine drainage

  11. Discussion on Acidic Mining Drainage Production and Prevention in Carbonate Rock Area%碳酸盐岩地区矿山酸性排水的产生及其防治初探

    Institute of Scientific and Technical Information of China (English)

    罗远红; 雷良奇; 常耀辉; 马于涛

    2011-01-01

    The sulphide in tailings produces acidic mining drainage(AMD) after a series of physical and chemical reactions with air,water,microorganisms.People once have considered that the tailings in carbonate rock areas will not cause acid pollutions because the carbonate minerals in tailings and surrounding rocks have neutralization effect.But there are serious acid pollutions in typical carbonate rock areas like Dachang of Guangxi province,Fankou and Dabaoshan of Guangdong province,Niujiaotang of Guizhou province,etc.The main cause is that in the process of carbonate mineral neutralization,the secondary minerals precipitate and adhere to the surface of carbonate minerals and stop further response,so the actual neutralization dose can not meet the theoretical value.Acidic mining drainage carries large amounts of metal ions which could bring serious damage to ecological environment and mine engineering facilities in carbonate rock areas.According to the characteristics of tailings in carbonate rock areas,the most efficient method for acidification of tailings is to adopt covering method for new tailings and permeable reactive barriers for acidified tailings.%尾矿中的硫化物在空气、水、微生物等的作用下,发生一系列的物理化学反应,形成矿山酸性排水(AMD)。在碳酸盐岩地区,由于尾矿和围岩中都含有大量对酸具有中和效应的碳酸盐矿物,于是人们一直认为碳酸盐岩地区的尾矿不存在酸污染。而如广西大厂、广东凡口及大宝山、贵州牛角塘等碳酸盐岩地区矿山的尾矿却存在着严重的酸污染,其主要原因是碳酸盐矿物在中和酸水过程中,表面会形成阻止反应进一步进行的次生包壳,碳酸盐矿物的实际中和量达不到其理论值。矿山酸性排水携带大量的重金属离子,对碳酸盐岩地区的生态环境及矿山工程设施带来严重的危害。针对碳酸盐岩地区尾矿自身的特殊性,对新建尾矿堆采用覆盖

  12. Application of water flow and geochemical models to support the remediation of acid rock drainage from the uranium mining site of Pocos de Caldas, Brazil

    International Nuclear Information System (INIS)

    Available in abstract form only. Full text of publication follows: This paper discusses the use of two numerical models (HYDRUS-2D and STEADQL-v4) for simulating water flow and relevant geochemical processes in one of the waste rock piles of the first uranium mine in Brazil, in order to facilitate the selection of appropriate remediation strategies. The long time scale required for the oxidation of sulfidic wastes (at least 600 years) implies the need to implement permanent remediation actions. The best remediation scheme should depend on the water flow regime inside the waste pile and on the geochemical processes that occur as a result of the interactions between water and the waste (especially oxidative dissolution of pyrite). Accurate modeling of the waste site, which contains a wide range of grain and rock sizes at different degrees of water saturation and is subject to reactive multicomponent transport, entails considerable physical, mathematical and numerical challenges. This paper describes the approach used to obtain a detailed representation of the system involving both unsaturated/ saturated flow (most of the physical properties of the waste were estimated from measured data) and the geochemical network reactions (including equilibrium and kinetics reactions). (authors)

  13. Bioreactor for acid mine drainage control

    Science.gov (United States)

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  14. Scaling the hydrological and geochemical processes that control drainage from waste-rock piles: an overview.

    Science.gov (United States)

    Pedretti, Daniele; Peterson, Holly; Blackmore, Sharon; Javadi, Mehrnoush; Lorca Ugalde, Maria E.; Laurenzi, Laura; St Arnault, Melanie; Skierszkan, Elliot; Mayer, K. Ulrich; Beckie, Roger D.

    2014-05-01

    Waste rock is a material that must be excavated to access ore. It is typically disposed of in large piles proximal to the mine site where exposure to oxygen and water promotes oxidation of sulfides, releasing metals, heat and acid. The quality of drainage from waste rock is strongly affected by physical processes that control fluid (water and gas) movement. These processes are complex, due largely to the heterogeneity in grain size, pile structure and mineral distribution. Present assessment methods tend to focus on relatively rapid, small-scale tests which have limited predictive ability at field scales. Acid-base accounting and various leaching procedures such as humidity cells can provide useful information, but fail to represent the larger-scale physical and geochemical processes. Indeed, studies at several sites have shown that the rate of waste rock chemical weathering can be many times faster in smaller-scale experiments than is inferred from observations of outflow in larger-scale piles. This so-called scale effect is often attributed to hydrologic processes, rather than differences between lab and field settings in composition or the chemical environment. Fluid flow in waste rock probably represents the largest source of uncertainty in current predictive efforts to characterize the evolution of solute loadings through time. Modeling could perhaps one day routinely be used to link small-scale assessments to more easily measurable physical attributes such as grain size, general pile structure and grain-size segregation and provide reliable predictions of field-scale behavior without the need for large-scale experiments. This contribution provides an overview of the processes controlling drainage quantity and quality and the relationship between smaller-scale, short-time observations and long-term field-scale dynamics.

  15. Copper isotope fractionation in acid mine drainage

    Science.gov (United States)

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes. ?? 2008 Elsevier Ltd.

  16. CONSTRUCTION OF MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    Science.gov (United States)

    The paper focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that, if sup...

  17. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  18. Copper isotope fractionation in acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Bryn E; Mathur, Ryan; Dohnalkova, Alice; Wall, A J; Runkel, R L; Brantley, Susan L

    2009-03-01

    We surveyed the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed located in southwestern Colorado, USA. The δ65Cu values (based on 65Cu/63Cu) of local enargite (δ65Cu = -0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the general range of previously reported values for terrestrial primary Cu sulfides (-1‰ < δ65Cu < 1). These mineral samples show lower δ65Cu values than stream waters (δ65Cu = 1.36 - 1.74 ± 0.10‰), with an average isotopic fractionation (quantified as Δaq-mino = δ65Cuaq – δ65Cu min, where Cuaq is leached Cu and Cu mino is the original mineral) of 1.60 ± 0.14‰ and 1.43 ± 0.14‰ for enargite and chalcopyrite, respectively.

  19. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    International Nuclear Information System (INIS)

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  20. A case study of long-term geochemical evolution of coal waste rock drainage and its remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, A.P.; Gandy, C.J. [Newcastle Univ. (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach Group

    2010-07-01

    The geochemical evolution of drainage from an 35 hectare orphan waste rock pile over a 15-year period was described. Spoil material at the site was generated during coal mining at 2 collieries between 1922 and 1970, and was comprised of grey and black shale, ash, coal, and coal dust. The heap was founded on an impermeable clay layer. Located in northern England, drainage from the rock heap was intercepted by a small compost wetland system installed in 1997. The waste rock heap was selectively capped in 1998. Water samples were collected and analyzed. Anion concentrations were determined using an ion chromatograph. The samples were filtered periodically. Acidity concentrations and flow rates were determined. Results of the study showed measurable improvements in water quality as a result of capping the heap. The study demonstrated that a combination of selective spoil capping and wetland treatment can serve as a low-cost solution to acid mine drainage at some abandoned mine sites. 9 refs., 1 tab., 1 fig.

  1. Erosion characteristic of slope sandstone soaking in acid mine drainage

    Institute of Scientific and Technical Information of China (English)

    JIANG Li-chun; CHEN Jia-sheng; WU Ai-xiang

    2007-01-01

    Acid mine drainage(AMD) is one of the main reasons of slope instability in chemical mines with high sulfide. The pH values of the solution inside the mining pit decrease with the increasing of distance from ore body and vary from 1.2 to 4.6,according to the results of the water environmental investigation and the composition test of the slope sandstone in Xinqiao Pyrite Mine. Comparative experiments between original sandstone and AMD eroded sandstone samples show that after AMD erosion the uniaxial compressive strength and elastic modulus decrease by 30%-50% and 25%-45%, respectively, the cohesion and internal friction angle decrease obviously, and the Poisson ratio fluctuates between 0.20-0.29. The greater joints development, the higher residual stress after peak value, and the longer time to damage. Besides above, the reaction mechanism analysis of AMD eroded sandstone shows that the fillings in joints and fissures of sandstone are frequently decomposed and polyreacted, resulting in changes of interior molecule structure and framework composition, and decreases of cohesion and angle of internal friction between rock structure interfaces.

  2. Chemical evolution of coal mine drainage in a non-acid producing environment, Wasatch Plateau, Utah, USA

    Science.gov (United States)

    Mayo, A. L.; Petersen, E. C.; Kravits, C.

    2000-09-01

    The causes and problems of coal mine drainage, particularly acid mine drainage, in the Eastern and Interior Coal Provinces of the United States are well documented. West of the Mississippi River, where coal mines account for about 45% of total US coal production and where acid mine drainage is rare, the chemical evolution of coal mine drainage is less well documented and understood. In this investigation, we have used solute and isotopic compositions of non-evolved inflow groundwater and evolved mine discharge water to quantify the chemical evolution of mine discharge water in a western underground coal mine. Water enters the mine from fractures and roof bolt holes, which intercept groundwater in the overlying rock. Carbon-14, and 3H data indicate that these waters recharged between 12,000 and 19,500 years ago. The TDS and solute compositions of roof drip waters are spatially zoned and TDS concentrations range from about 300 to 550 mg l -1. After the water encounters minerals and other substances in the mine, the chemical differences between various mine regions become more pronounced and the TDS of mine drainage water increases to about 850 mg l -1. The TDS of mine drainage is related to water-rock ratios. Mine drainage issuing from the older mined areas, where water-rock ratios are low, has the greatest TDS. Geochemical and isotopic mass balance calculations were performed to quantify chemical reactions in the mine, and to identify sources contributing to the TDS of mine drainage. Chemical reaction pathways evaluated include pyrite oxidation, dissolution of native and rock dust gypsum, dissolution of calcite and dolomite, precipitation of calcite, ion exchange, precipitation of iron hydroxide, and organic decomposition of mining machine emulsion fluid. Solute and isotopic mass transfer reaction calculations demonstrate that the oxidation of pyrite triggers a series of cascading in-mine chemical reactions that are the primary cause of the elevated TDS of mine

  3. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, b

  4. Allegheny woodrat (Neotoma magister) use of rock drainage channels on reclaimed mines in southern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Chamblin, H.D.; Wood, P.B.; Edwards, J.W. [West Virginia University, Morgantown, WV (United States)

    2004-04-01

    Allegheny woodrats (Neotoma magister) currently receive protected status throughout their range due to population declines. Threats associated with habitat fragmentation (e.g., introduced predators, disease, and habitat loss) may explain why Allegheny woodrats are no longer found in many areas where they existed just 25 y ago. In southern West Virginia, surface coal mining is a major cause of forest fragmentation. Furthermore, mountaintop mining, the prevalent method in the region, results in a loss of rock outcrops and cliffs within forested areas, typical habitat of the Allegheny woodrat. To determine the extent that Allegheny woodrats make use of reclaimed mine land, particularly rock drainages built during reclamation, we sampled 24 drainage channels on reclaimed surface mines in southern West Virginia, collected habitat data at each site and used logistic regression to identify habitat variables related to Allegheny woodrat presence. During 187 trap nights, 13 adult, 2 subadult and 8 juvenile Allegheny woodrats were captured at 13 of the 24 sites. Percent of rock as a groundcover and density of stems {gt} 15 cm diameter-at-breast-height (DBH) were related to Allegheny woodrat presence and were significantly greater at sites where Allegheny woodrats were present than absent. Sites where Allegheny woodrats were present differed substantially from other described habitats in West Virginia, though they may simulate boulder piles that occur naturally. Our findings suggest the need for additional research to examine the dynamics between Allegheny woodrat populations inhabiting rock outcrops in forests adjacent to mines and populations inhabiting constructed drainage channels on reclaimed mines. However, if Allegheny woodrats can use human-created habitat, our results will be useful to surface mine reclamation and to other mitigation efforts where rocky habitats are lost or disturbed.

  5. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    OpenAIRE

    Bernhard Dold

    2014-01-01

    Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD). The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1) During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reduci...

  6. Behaviour of U-Isotopes in an Estuary Affected by Acid Mine Drainage and Industrial Releases

    International Nuclear Information System (INIS)

    Tinto and Odiel rivers (SW of Spain) is an ecosystem of great interest that is seriously affected by acid mine drainage (AMD) from long-term mining activities (pH < 3). Additionally, a large industrial complex is located in the surroundings of this estuary and Huelva town, which includes two phosphate rock processing plants that produce about 3 millions of tons per year of a byproduct called phosphogypsum (PG) containing high U-series radionuclides concentrations. For these reasons, the estuary of Huelva is one of the most heavy metals and radionuclides polluted estuarine systems in Europe with extremely low pH.

  7. Acid mine-drainage problem of the Patoka River watershed

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, D.M.

    1969-10-01

    Of the 20,000 acres of cast overburden ground-water aquifers in Pike County, less than 4,000 acres produce acidic water. The remaining 16,000 acres produce nonacidic water, most of which is high in sulfate, and in some instances, high in chloride. The acid mine-drainage problem is a creation of past mining operations for coal, and not one of current origin as many have suspected. Most of the abandoned mine areas that produce sustained flows of acidic water, unaffected by storm runoff, are confined to disturbed areas. Acid contributions from storm runoff are usually many times greater than those from sustained flow, and most generally originate in the compacted 5 to 10% of the areas disturbed by surface mining that accelerate runoff. These compacted areas are essentially comprised of mine-waste piles, haulroads and abandoned railroad grades; open pits, and preparation plant and tipple areas. In the early 1950's several dams were constructed in the area forming lakes and reservoirs that ''bottled up'' the acidic water that would have essentially been discharged by gravity; consequently, the sustained flows from the area are still acidic, as is the water in the several lakes. It is not only impracticable but probably infeasible for the coal industry and society to correct the mine-drainage problem in the Patoka River Watershed without first removing the flushout menace. This flushout hazard can be effectively corrected through a well managed program of draining out the ''bottled up'' acidic water in lakes, ponds, and cast overburden in the areas and covering this material either with nontoxic landfill, or continual inundation with nonacidic water. Stabilization of acidic flows at a reduced level would make feasible the treatment of 5,000,000 gallons of water per day.

  8. Microbial aspects of acid mine drainage and its bioremediation

    Institute of Scientific and Technical Information of China (English)

    K.A.NATARAJAN

    2008-01-01

    The role of chemolithotrophs such as Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans which were isolated from some abandoned mines and processed waste tailings in the generation of acid mine drainage and toxic metal dissolution was discussed.Mechanisms of acid formation and dissolution of copper,zinc,iron and arsenic from copper,lead-zinc and arsenopyrite-bearing sulfide ores and tailings were established in the presence of Acidithiobacillus group of bacteria.Sulphate Reducing Bacteria(SRB) isolated from the above mine sites could be used to precipitate dissolved metals such as copper,zinc,iron and arsenic.Arsenic bioremediation was demonstrated through the use of native microorganisms such Thiomonas spp.which could oxidize arsenite to arsenate.Bioremoval of arsenic through the use of jarosite precipitates generated by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans was also found to be very effective.Biotechnological processes hold great promise in the remediation of acid mine drainage and efficient removal of toxic metal ions such as copper,zinc and arsenic.

  9. CCB-based encapsulation of pyrite for remediation of acid mine drainage.

    Science.gov (United States)

    Bulusu, Sowmya; Aydilek, Ahmet H; Rustagi, Neha

    2007-05-17

    Acid mine drainage (AMD) from abandoned coal mines continues to be one of the most significant environmental problems. Remediation of AMD requires an addition of lime source to decrease the acidity, and grouting the entire mine and encapsulating the pyrite by calcium-rich additives is often employed. Utilization of alkaline coal combustion by-products (CCBs) has gained acceptance in such remediation applications because of their cost-effectiveness. A study was conducted to investigate the effectiveness of CCBs to abate acid mine drainage by encapsulation of pyrite. Geomechanical, hydraulic, and environmental tests were performed on grouts prepared with various ratios of CCBs as well as an alternative free lime source, lime kiln dust (LKD). The results indicated that the mechanical properties of grouts were dependent on their free lime contents. Hydraulic conductivities of pyrite-grout columns were relatively high due to the coating of the pyrite rock with the grout rather than the filling of all of the void spaces, as commonly experienced in field applications. The leaching tests indicated that the presence of high amounts of lime in a grout is not solely sufficient to improve the quality of AMD, since the rate of dissolution of a high lime content grout may be slow due to its rapid hardening. Therefore, it is recommended that grouts be selected with consideration of their hardening capacities, as well as the percentage of lime content present in the mixture. PMID:17303328

  10. Fly ash grouts for remediation of acid mine drainage

    International Nuclear Information System (INIS)

    An engineering investigation into the use of electric utility wastes for grouting acidic mine spoil resulting from coal extraction has been undertaken. Laboratory investigations into the physical and chemical properties of various grout mixtures and grouted spoil materials are underway. Grout mixtures are placed in columns and permeated with distilled water. The hydraulic conductivity of the grout was measured. The effect of the high alkaline ashes on the acidic drainage is of particular interest. This series of experiments provided information so that the most favorable grout (low hydraulic conductivity and high alkalinity) could be selected for injection into acidic spoil material. Both standard combustion and fluidized bed ashes were tested. Grout mixtures include ashes, scrubber sludge, lime, bentonite and/or kaolinite. Permeabilities of the mixtures averaged approximately 1.OE-4 cm/sec. A second series of laboratory experiments consists of grouting large diameter drums of acidic spoil with the fly ash grouts. The drums have been constructed and filled with acidic spoil material. The ungrouted infiltration rates have been determined and the resulting effluents chemically analyzed

  11. Modelling of acid mine drainage (AMD in columns

    Directory of Open Access Journals (Sweden)

    C. M. Bernardes de Souza

    2011-09-01

    Full Text Available A model is proposed in this paper to describe the generation of acid mine drainage (AMD in leaching columns. The model considers: (i Water flow through the column, which is calculated using the 1 - D analytic solution of the Richards' equation assuming the existence of a similarity relationship between the water retention function and the water content profiles at a given time; and (ii Pyrite oxidation weighted by microbiological effects occurring in spherical particles according to the shrinking core model. Mass balances of oxygen and pyrite were derived in order to evaluate the intrinsic oxidation rate and the pyrite fraction reacted with time and column position. The model was used to simulate a six month operation of a leaching column, which comprised successive weekly cycles of dry and wet periods. Simulation results demonstrated that AMD generation is strongly affected by the presence of microorganisms. A relative deviation of 5% between simulation and experimental data was obtained.

  12. Acid mine drainage biogeochemistry at Iron Mountain, California

    Directory of Open Access Journals (Sweden)

    Gihring Thomas M

    2004-06-01

    Full Text Available The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9 resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA gene sequences from six sites during a sampling time when lower temperature (0.8 conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1 and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4 contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur which

  13. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD. The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1 During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reducing (water-saturated. Associated environmental problems include the presence of high sulphate concentrations due to dissolution of gypsum-anhydrite, and/or effluents enriched in elements such as Mo and As, which desorbed from primary ferric hydroxides during the alkaline flotation process. (2 Once mining-related operations of the tailings impoundment has ceased, sulphide oxidation starts, resulting in the formation of an acidic oxidation zone and a ferrous iron-rich plume below the oxidation front, that re-oxidises once it surfaces, producing the first visible sign of AMD, i.e., the precipitation of ferrihydrite and concomitant acidification. (3 Consumption of the (reactive neutralization potential of the gangue minerals and subsequent outflow of acidic, heavy metal-rich leachates from the tailings is the final step in the evolution of an AMD system. The formation of multi-colour efflorescent salts can be a visible sign of this stage.

  14. Acid Mine Drainage and Heavy Metal Pollution from Solid Waste in the Tongling Mines, China

    Institute of Scientific and Technical Information of China (English)

    XU Xiaochun; XIE Qiaoqin; CHEN Fang; WANG Jun; WU Wentao

    2008-01-01

    Based on investigation of the characteristics of solid waste of two different mines, the Fenghuangshan copper mine and the Xinqiao pyrite mine in Tongling, Anhui province in central-east China, the possibility and the differences of acid mine drainage (AMD) of the tailings and the waste rocks are discussed, and the modes of occurrence of heavy metal elements in the mine solid waste are also studied. The Fenghuangshan copper mine hardly produces AMD, whereas the Xinqiao pyrite mine does and there are also differences in the modes of occurrence of heavy metal elements in the tailings. For the former, toxic heavy metals such as Cu, Pb, Zn, Cd, As and Hg exist mostly in the slag mode, as compared to the latter, where the dcoxidization mode has a much higher content, indicating that large amounts minerals in the waste rocks have begun to oxidize at the earth surface. AMD is proved to promote the migration and spread of the heavy metals in mining waste rocks and lead to environmental pollution of the surroundings of the mine area.

  15. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    Science.gov (United States)

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  16. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  17. Assessing aluminium toxicity in streams affected by acid mine drainage.

    Science.gov (United States)

    Waters, A S; Webster-Brown, J G

    2013-01-01

    Acid mine drainage (AMD) has degraded water quality and ecology in streams on the Stockton Plateau, the site of New Zealand's largest open-cast coal mining operation. This has previously been attributed largely to the effects of acidity and elevated aluminium (Al) concentrations. However, the toxicity of dissolved Al is dependent on speciation, which is influenced by pH which affects Al hydrolysis, as well as the concentrations of organic carbon and sulphate which complex Al. Methods for the assessment of the toxic fraction of Al, by chemical analysis and geochemical modelling, have been investigated in selected streams on the Stockton Plateau, where dissolved Al concentrations ranged from 0.034 to 27 mg L(-1). Modelling using PHREEQC indicated that between 0.2 and 85% of the dissolved Al was present as the free ion Al(3+), the most toxic Al species, which dominated in waters of pH = 3.8-4.8. Al-sulphate complexation reduced the Al(3+) concentration at lower pH, while Al-organic and -hydroxide complexes dominated at higher pH. Macroinvertebrate richness in the streams identified an Al(3+) 'threshold' of approximately 0.42 mg/L, above which taxa declined rapidly. Colorimetric 'Aluminon' analysis on unpreserved, unfiltered waters provided a better estimation of Al(3+) concentrations than inductively couple plasma-mass spectrometry (ICP-MS) on filtered, acidified waters. The Aluminon method does not react with particulate Al or strong Al complexes, often registering as little as 53% of the dissolved Al concentration determined by ICP-MS. PMID:23579831

  18. Acid mine drainage in Australia: its extent and potential future liability. Supervising Scientist Report 125

    International Nuclear Information System (INIS)

    In order to better understand the impact of acid drainage in Australia and to provide a basis for assessing long-term management options, the Office of the Supervising Scientist (OSS) and the Australian Centre for Minesite Rehabilitation Research (ACMRR) initiated this study to prepare a status report on acid mine drainage in Australia. The study is supported by the Minerals Council of Australia. The coverage of this study includes all mine sites where sulphidic oxidation in mine wastes or mine workings leads to the release of contaminated drainage with off-site impacts. The objectives of the study were: 1. to quantify and characterise the generation of contaminated drainage by sulphidic oxidation from historic and current mining activities in Australia; 2. to develop a classification scheme to characterise the potential for off-site impacts from sulphidic oxidation in mine wastes; 3. to compare the cost at the national level of managing sulphidic oxidation in mine wastes and any resulting contaminated drainage with other mining and environmental costs; 4. to make recommendations based on the information received to improve the understanding and management of acid mine drainage in Australia. Information was collected on the extent and management of sulphidic oxidation and acid drainage at operating, historic and derelict mines in Australia. Mining operators, environmental officers, industry representatives, state government departments and others were asked about their experience with acid mine drainage and how it is currently managed at operating and historic mine sites. Based on the information collected, the additional cost of managing potentially acid generating wastes at operating mine sites is estimated to be about AUD 60 million per year. Potentially, the financial risk could be much greater if sulphide oxidation and release of pollutants is discovered after mine closure, as was the case for historic sites like Mt Lyell, Rum Jungle or Mt Morgan. The

  19. Acid mine drainage. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning laboratory and field analyses of acid mine drainage. Topics include site investigations and characterization, remediation and monitoring programs, contaminant treatment research, and control and abatement studies. Chemical analyses of affected areas, and evaluation of terrestrial and aquatic ecosystem responses to acid drainage are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Geochemical Processes Controlling the Generation and Environmental Impacts of Acid Mine Drainage in Semi Arid Conditions

    OpenAIRE

    Magombedze, Chris

    2006-01-01

    This study evaluates the geochemical processes that control the geochemistry of acid mine drainage in semi arid conditions. The central objective is to characterise and understand the evolution of acid mine drainage and its potential environmental impacts on the Mazowe River sub-catchment, in north east Zimbabwe. The work is based on a case study at three neighbouring metal sulphide mines, namely Trojan Nickel Mine, Mazowe Gold Mine and Iron Duke Pyrites.The methodology used in this research ...

  1. Tracking acid mine-drainage in Southeast Arizona using GIS and sediment delivery models

    Science.gov (United States)

    Norman, L.M.; Gray, F.; Guertin, D.P.; Wissler, C.; Bliss, J.D.

    2008-01-01

    This study investigates the application of models traditionally used to estimate erosion and sediment deposition to assess the potential risk of water quality impairment resulting from metal-bearing materials related to mining and mineralization. An integrated watershed analysis using Geographic Information Systems (GIS) based tools was undertaken to examine erosion and sediment transport characteristics within the watersheds. Estimates of stream deposits of sediment from mine tailings were related to the chemistry of surface water to assess the effectiveness of the methodology to assess the risk of acid mine-drainage being dispersed downstream of abandoned tailings and waste rock piles. A watershed analysis was preformed in the Patagonia Mountains in southeastern Arizona which has seen substantial mining and where recent water quality samples have reported acidic surface waters. This research demonstrates an improvement of the ability to predict streams that are likely to have severely degraded water quality as a result of past mining activities. ?? Springer Science+Business Media B.V. 2007.

  2. Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA

    Science.gov (United States)

    Cowie, Rory; Williams, Mark W.; Wireman, Mike; Runkel, Robert L.

    2014-01-01

    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  3. Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado

    Science.gov (United States)

    McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.

    2006-01-01

    Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.

  4. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    Science.gov (United States)

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  5. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome

    Science.gov (United States)

    Pinto, Ameet J.; Sharp, Jonathan O.; Yoder, Michael J.

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  6. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N, Revealed by Culture-Independent Approaches

    Directory of Open Access Journals (Sweden)

    Antonio García-Moyano

    2015-10-01

    Full Text Available Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae. These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting

  7. MECHANISMS OF HEAVY METAL REMOVAL FROM ACID MINE DRAINAGE USING CHITIN

    Science.gov (United States)

    Acid Mine Drainage (AMD) emanating from inactive or active mine sites contains elevated levels of toxic heavy metals, which can have an adverse impact to the surrounding environment. The major pathway involved in generation of AMD is weathering of pyritic mineral ores, where in s...

  8. Historical overview and future directions of the microbial role in the acidic coal mine drainage system

    International Nuclear Information System (INIS)

    Bacteria have been implicated and analyzed at every step in the production of acidic coal mine drainage (AMD). This review paper provides detailed information about microbial studies in mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 102 refs

  9. NRMRL EVALUATES ACTIVE AND SEMI-PASSIVE TECHNOLOGIES FOR TREATING ACID MINE DRAINAGE

    Science.gov (United States)

    Two-page article describing three SITE demonstration projects underway on the Leviathan mine site in California. BiPhasic lime treatment, lime treatment lagoons and compost free BioReactors are being evaluated as innovative technologies for treating acid mine drainage.

  10. Catalytic decarboxylations of fatty acids in immature oil source rocks

    Institute of Scientific and Technical Information of China (English)

    李哲; 张再龙; 孙燕华; 劳永新; 蔺五正; 吴卫芳

    2003-01-01

    Catalytic decarboxylations of fatty acids in immature oil source rock samples were examined in this study. The rock samples were obtained from seven oil fields in China. In order to clarify the effect of each mineral matter in the rock samples, both the Fe M?ssbauer effect and the X-ray diffraction (XRD) were used to determine the relative content of each mineral in the rock samples, and the catalytic activities of several minerals like clays, carbonates and pyrite were determined. The Fe M?ssbauer effect and the XRD studies show that clays are the main mineral components in the rock samples except for the samples from Biyang and Jianghan in which the main mineral component is ankerite. The other mineral components include calcite, plagioclase, quartz, feldspar, siderite, aragonite, pyrite, analcime, pyroxene and anhydrite. The studies of the catalytic decarboxylations of fatty acids suggest that carbonates and pyrite can make much greater contributions to the catalytic activities of the rock samples than clays. It is found that the overall catalytic activities of the rock samples are well related to the relative contents and the catalytic activities of clays, carbonates and pyrite in the rock samples.

  11. Interaction of trace elements in acid mine drainage solution with humic acid.

    Science.gov (United States)

    Suteerapataranon, Siripat; Bouby, Muriel; Geckeis, Horst; Fanghänel, Thomas; Grudpan, Kate

    2006-06-01

    The release of metal ions from a coal mining tailing area, Lamphun, Northern Thailand, is studied by leaching tests. Considerable amounts of Mn, Fe, Al, Ni and Co are dissolved in both simulated rain water (pH 4) and 10 mg L(-1) humic acid (HA) solution (Aldrich humic acid, pH 7). Due to the presence of oxidizing pyrite and sulfide minerals, the pH in both leachates decreases down to approximately 3 combined with high sulfate concentrations typical to acid mine drainage (AMD) water composition. Interaction of the acidic leachates upon mixing with ground- and surface water containing natural organic matter is simulated by subsequent dilution (1:100; 1:200; 1:300; 1:500) with a 10 mg L(-1) HA solution (ionic strength: 10(-3) mol L(-1)). Combining asymmetric flow field-flow fractionation (AsFlFFF) with UV/Vis and ICP-MS detection allows for the investigation of metal ion interaction with HA colloid and colloid size evolution. Formation of colloid aggregates is observed by filtration and AsFlFFF depending on the degree of the dilution. While the average HA size is initially found to be 2 nm, metal-HA complexes are always found to be larger. Such observation is attributed to a metal induced HA agglomeration, which is found even at low coverage of HA functional groups with metal ions. Increasing the metal ion to HA ratio, the HA bound metal ions and the HA entities are growing in size from 450 nm. At high metal ion to HA ratios, precipitation of FeOOH phases and HA agglomeration due to colloid charge neutralization by complete saturation of HA complexing sites are responsible for the fact that most of Fe and Al precipitate and are found in a size fraction >450 nm. In the more diluted solutions, HA is more relevant as a carrier for metal ion mobilization. PMID:16631855

  12. The fate of arsenic in sediments formed at a river confluence affected by acid mine drainage

    Science.gov (United States)

    Guerra, P. A.; Pasten, P. A.; Pizarro, G.; Simonson, K.; Escauriaza, C. R.; Gonzalez, C.; Bonilla, C.

    2012-12-01

    Fluvial confluences receiving acid mine drainage may play a critical role in a watershed as a suite of interactions between chemistry and hydrodynamics occur, determining the fate of toxic contaminants like arsenic. Solid reactive phases of iron and/or aluminum oxi-hydroxides may form or transform, ranging from iron oxide nanoparticles that aggregate and form floccules that are transported in the suspended load up to gravel and arsenic-rich rock coatings. In order to further understand the role of reactive fluvial confluences, we have studied the mixing between the Caracarani River (flow=170-640 L/s, pH 8, conductivity 1.5 mS/cm, total As 10 mS/cm, total As>2 mg/L, total Fe=35-125 mg/L), located in the Lluta watershed in northern Chile. This site is an excellent natural laboratory located in a water-scarce area, where the future construction of a dam has prompted the attention of decision makers and scientists interested in weighing the risks derived by the accumulation of arsenic-rich sediments. Suspended sediments (> 0.45 μm), riverbed sediments, and coated rocks were collected upstream and downstream from the confluence. Suspended sediments >0.45 μm and riverbed sediments were analyzed by total reflection x-ray fluorescence for metals, while coated river bed rocks were analyzed by chemical extractions and a semi-quantitative approach through portable x-ray fluorescence. Water from the Caracarani and Azufre rivers were mixed in the laboratory at different ratios and mixing velocities aiming to characterize the effect of the chemical-hydrodynamic environment where arsenic solids were formed at different locations in the confluence. Despite a wide range of iron and arsenic concentrations in the suspended sediments from the field (As=1037 ± 1372 mg/kg, Fe=21.0 ± 24.5 g/kg), we found a rather narrow As/Fe ratio, increasing from 36.5 to 55.2 mgAs/kgFe when the bulk water pH increased from 3 to 6. Sequential extraction analyses suggest that ~80% of As in the solid

  13. Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus

    Science.gov (United States)

    Ng, Stephen; Malpas, John

    2013-04-01

    Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white

  14. The zinc stable isotope signature of waste rock drainage in the Canadian permafrost region

    International Nuclear Information System (INIS)

    Highlights: • The leachate of a waste rock pile in Arctic Canada was monitored. • Zinc isotope ratios in the leachate were monitored over two field seasons. • Isotope ratios varied within −0.16‰ and +0.18‰ compared to IRMM 3702. • Processes governing zinc mobility appear not to influence the isotope signature of the leachate. - Abstract: Leachate from a well-instrumented experimental-scale waste-rock pile (test pile) at the Diavik Diamond mine, Northwest Territories, was monitored. The well-characterized waste rock consists of granite, pegmatitic granite and biotite schist with an average total sulfur and carbonate carbon concentration of 0.053 and 0.027 wt.%, respectively. The leachate emerging from the southern basal drain of the waste rock pile has been monitored since 2007. The zinc stable isotope footprint was characterized alongside standard monitoring parameters during two field seasons, May to November 2011 and 2012. The pH ranged between 4.3 and 6.8 and carbonate alkalinity was low or undetectable (<35 mg L−1 CaCO3). The pH was governed by the oxidation of sulfide minerals and the dissolution of primary carbonate minerals and secondary Al and Fe oxyhydroxysulfates and hydroxides. Dissolved Al and Fe concentrations averaged 6.78 mg L−1 and 175 μg L−1, respectively. The main processes controlling Zn concentrations in the range of 0.4 and 4.7 mg L−1 (average = 2.2 mg L−1) were the oxidative dissolution of sphalerite (ZnS) and the attenuation by secondary Fe and Al hydroxides. Zinc isotopes were fractionated mass dependently. Zinc isotope ratios, ranging between −0.16 and +0.18‰ (average = +0.05‰, n = 43) were consistent with values reported for sphalerite from other deposits. The deviations in isotope ratios (Δ = 0.36‰) were significant in comparison to analytical uncertainties (0.06‰). Zinc isotope ratios and concentrations were largely uncorrelated, suggesting that the processes affecting Zn mobility had little or no

  15. The zinc stable isotope signature of waste rock drainage in Arctic Canada

    Science.gov (United States)

    Matthies, Romy; Blowes, David

    2014-05-01

    Leachate emerging from a pilot-scale waste rock pile of the Diavik diamond mine, Northwest Territories, was monitored. The well-characterized waste rock consists of granite, pegmatitic granite and biotite schist with an average total sulfur and carbonate carbon concentration of 0.053 and 0.027 wt. %, respectively. During the field seasons of 2011 and 2012, the Zn stable isotope footprint was characterized alongside standard monitoring parameters. pH ranged between 4.3 and 6.8 and carbonate alkalinity was low or undetectable. Al and Fe concentrations averaged 6.78 mg L-1 and 175 µg L-1, respectively. The pH and metal mobility were governed by sulfide oxidation and sorption and co-precipitation onto iron and aluminium hydroxides. The main processes controlling zinc mobility in the range of 0.4 and 4.7 mg L-1 was the oxidative dissolution of sphalerite (ZnS) in the biotite schist and the attenuation of zinc onto secondary iron and aluminium hydroxides and desorption upon the pH declining below the pHpzc. The isotope ratios between -0.16 and +0.19 ‰ (δ66Zn, avg = +0.05 ‰, n = 43) are consistent with values reported from other sphalerite containing deposits. Zn isotope ratios and concentrations were largely uncorrelated suggesting that the processes affecting Zn mobility had little or no impact on the Zn isotope signature. Data indicate, that the Zn isotope ratios of the waste rock leachate may be used as a fingerprint to track anthropogenic, mine-derived Zn sources under varying environmental conditions.

  16. Techniques to correct and prevent acid mine drainage: A review

    Directory of Open Access Journals (Sweden)

    Santiago Pozo-Antonio

    2014-01-01

    Full Text Available En la actualidad uno de los problemas medioambientales con mayor necesidad de actuación es la contaminación por la formación de drenajes ácidos de mina (AMD: “Acid Mine Drainage” procedentes de estériles de mina. Este es el término utilizado para describir el drenaje generado por la oxidación natural de sulfuros minerales que son expuestos a la acción combinada de agua y oxígeno atmosférico. Los minerales responsables de la generación de AMD son los sulfuros de hierro (pirita, FeS2 y en menor medida la pirrotita, Fe1-XS, los cuales son estables e insolubles mientras no se encuentren en contacto con agua y oxígeno atmosférico. Sin embargo, como consecuencia de la actividad minera, estos dos sulfuros son expuestos a condiciones ambientales oxidantes. La necesidad de prevenir la formación de AMD ha desarrollado numerosas investigaciones sobre los mecanismos de oxidación y su prevención. En el presente trabajo además de realizar una explicación y valoración teórica del proceso de oxidación de la pirita también se realiza un compendio de las medidas preventivas y correctoras más empleadas.

  17. The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China

    International Nuclear Information System (INIS)

    In this paper, geochemical characteristics of rare earth elements (REE) in acid mine drainage (AMD) from the Sitai coal mine of Shanxi Province, North China were investigated by determining concentrations of dissolved REEs and major solutes in the AMD samples, concentrations of REEs in the AMD precipitate samples and country rock samples (mudstone and coal), and modeling REEs species in the AMD. The results show that AMD in the Sitai coal mine have high REEs and SO42- concentrations in comparison with several terrestrial waters worldwide. The REE speciation modeling indicates that sulfate complexes (LnSO4+, > 60%) and free metal species (Ln3+, 20%-40%) are dominant REEs species in the AMD. AMD of the Sitai coal mine also shows a middle REE-enriched NASC (North American Shale Composite)-normalized pattern. The authors suggest that both REE sulfates (LnSO4+) in the AMD and country rock of coal measures are possible reasons for middle REE-enriched NASC-normalized pattern of the Sitai coal mine AMD. Further work on the AMD precipitates is needed to obtain more information on the origin of the middle REE-enriched NASC-normalized patterns. (author)

  18. Application of fracture-flow hydrogeology to acid-mine drainage at the Bunker Hill Mine, Kellogg, Idaho

    Science.gov (United States)

    Lachmar, Thomas E.

    1994-03-01

    The mechanics of groundwater flow through fractured rock has become an object of major research interest during recent years. This project has investigated the flow of groundwater through fractured Precambrian metaquartzite rocks in a portion of the Bunker Hill Mine near Kellogg, Idaho. Groundwater flow through these types of rocks is largely dependent upon the properties of fractures such as faults, joints and relict bedding planes. Groundwater that flows into the mine via the fractures is acidic and is contaminated by heavy metals, which results in a severe acid mine drainage problem. A more complete understanding of how the fractures influence the groundwater flow system is a prerequisite of the evaluation of reclamation alternatives to reduce acid drainage from the mine. Fracture mapping techniques were used to obtain detailed information on the fracture properties observed in the New East Reed drift of the Bunker Hill Mine. The information obtained includes fracture type, orientation, trace length, the number of visible terminations, roughness, waviness, infilling material, and a qualitative measure of the amount of water flowing through each fracture. The hydrogeologic field data collected include routine measurements of the discharge from four individual structural features and four areas where large quantities of water are discharging from vertical rock bolts, the depths to water in three piezometer nests at the ground surface, the pressure variations in four diamond drillholes, and constant discharge flow tests conducted on three of the diamond drillholes. The field data indicate that relict bedding planes are the primary conduits for groundwater flow, and suggest that the two major joint sets that are present connect water flowing through the discontinuous bedding planes. The three minor joint sets that are present do not seem to have a significant impact on groundwater flow, but along with the two major joint sets may store relatively large quantities of

  19. Sediment-water interaction in a water reservoir affected by acid mine drainage : experimental and modeling

    OpenAIRE

    Torres Sánchez, Ester

    2013-01-01

    The discharge of acid mine drainage into a water reservoir may seriously affect the water quality. In this setting, sediment is commonly thought to act as a sink for pollutants. However, redox oscillations in the bottom water promoted by stratification-turnover events may significantly alter the metal cycling. A new sequential extraction procedure has been developed to study the metal partitioning in the sediment. The new scheme for iron, sulfur and organic carbon rich sediments was evaluated...

  20. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. PMID:25193795

  1. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage.

    Science.gov (United States)

    Silva, Luis F O; Fdez-Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L S; Sampaio, Carlos H; de Brum, Irineu A S; de Leão, Felipe B; Taffarel, Silvio R; Madariaga, Juan M

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River.

  2. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.

    Science.gov (United States)

    Chapin, Thomas P; Todd, Andrew S

    2012-11-15

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. PMID:23103760

  3. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    International Nuclear Information System (INIS)

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements

  4. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  5. Behaviour of U-Series Radionuclides in an Estuary Affected by Acid Mine Drainage and Industrial Releases

    International Nuclear Information System (INIS)

    The estuary formed by the Tinto and Odiel rivers is an ecosystem of great interest because it is seriously affected by the acid mine drainage (AMD) produced by the high mining activity in the watersheds of these rivers, generating in their waters an extremely low pH (2.5- 3.5), and consequently high concentrations of heavy metals and natural radionuclides in dissolution. Secondly, in their estuary there is a large chemical industrial complex, and in particular two phosphoric acid production plants, which use a sedimentary phosphate rock from Morocco as raw material containing at approximately 1.5 Bq/g of U-series radionuclides, which produce annually about 2.5-3 millions of tonnes of a byproduct, called phosphogypsum (PG). PG contains high concentrations of some U-series radionuclides as 226Ra (650 Bq/kg), 210Pb-210Po (600 Bq/kg) or 230Th (450 Bq/kg). Seventeen sampling stations along the end of these rivers and this estuary were selected to study the behaviour of U-series radionuclides in the recent surface sediments and its waters. The most relevant results show a non-conservative behaviour of Uisotopes, precipitating in the zone where large pH changes (3-5) are produced. This behaviour is different from the majority of typical estuaries where only salinity changes are produced, and therefore, a conservative behaviour of uranium is observed. (author)

  6. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Elizabeth C. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Capo, Rosemary C. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Stewart, Brian W. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Hedin, Robert S. [Hedin Environmental, Pittsburgh, PA (United States); Weaver, Theodore J. [Hedin Environmental, Pittsburgh, PA (United States); Edenborn, Harry M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  7. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H. [Ohio State University, Columbus, OH (United States)

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  8. Phycomicrobial ecology of acid mine drainage in the Piedmont of Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, R.; Hanger, R.A. [George Washington Univ., Washington, DC (United States). Dept. of Geology

    1998-12-31

    Acid mine drainage encompasses 18 km{sup 2} of Louisa County, Virginia. Heavy metal laden acidic leachate flows from abandoned mines along the Piedmont`s Gold-Pyrite Belt. The oxidation of pyrite, sphalerite, chalcopyrite and other sulfide minerals that are disseminated throughout the mine tailings release H{sub 2}SO{sub 4}, Fe, Cu, Zn, Ni, Cd, As, Pb and other heavy metals into the Contrary Creek watershed and beyond, into Lake Anna. Downstream of these abandoned pyrite mines, high levels of acidity and heavy metals have made this a severely stressed environment incapable of supporting a healthy creek ecosystem. In an effort to assess in-situ, bioaccumulatory remediation of acid mine drainage by phycomicrobial mats, surveys have been conducted for 11 months in Contrary Creek; several extremophiles that are tolerant of acid mine systems have been found. Twelve to thirteen genera of algae and a few cocci and bacilli have been identified in surface waters. Predominant genera include Ulothrix, Pinnularia and Oscillatoria. Preliminary results demonstrate that the phycomicrobial communities found in this acid mine system maintain density and species diversity independent of pH and heavy metal fluctuations. These extremophiles also demonstrate high potential for heavy metal sorption. Phycomicrobial mats bioaccumulate 60--70% more heavy metals than concentrations found in surface waters and the creek. To date, remediatory attempts to restore Contrary Creek have not been successful. Results suggest that the extremophile ecology found in this system will facilitate the remediation process of other, similar acid mine affected ecosystems.

  9. Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicorarat, D.; Dick, W.A.; Dopson, M.; Tuovinen, O.H. [Ohio State University, Columbus, OH (USA)

    2008-02-15

    Microorganisms in acid mine drainage are typically acidophiles that mediate the oxidation of reduced compounds of iron and sulfur. However, microbial populations in wetland systems constructed to treat acid mine drainage are not well characterized. This study was to analyze bacterial diversity, using cultivation-independent molecular ecological techniques, in a constructed wetland that received acid drainage from an abandoned underground coal mine. DNA was purified from Fe(III)-precipitates from the oxidized surface zone of wetland sediments and 16S rRNA gene sequences were amplified and cloned. A total of 200 clones were analyzed by restriction fragment length polymorphism (RFLP) and 77 unique RFLP patterns were obtained with four restriction enzymes. Of these patterns, 30 most dominant unique clones were selected for sequencing of their 16S rRNA genes. Half of these 30 clones could be matched with autotrophic iron- and sulfur-oxidizing bacteria (Acidithiohacillus ferrooxidans and Acidithiobacillus thiooxidans). Several clones also formed a clade with heterotrophic iron-oxidizing bacteria (TRA2-10, TRA3-20, and TRA5-3) and heterotrophic bacteria (Stenotrophomas maltophilia, Bordetella spp., Alcalgenes sp., Alcaligenesfaecalis, and Alcaligenes xylosoxidans). Approximately 40% and 35% of the analyzed RFLP restriction patterns were consistent with A. ferrooxidans and A. thiooxidans, respectively. The relatively high frequency of acidithiobacilli is consistent with the chemical and physical characteristics of this site i.e., continuous, abundant supply of reduced iron and sulfur compounds, pH 3-4, ambient temperature, and limited organics originating from the coal seam and from vegetation or soil surrounding the inlet channel to the wetland.

  10. Acid drainages of the pyritic sterile from the Pocos de Caldas uranium mine: environmental interpretation and implications

    International Nuclear Information System (INIS)

    Considering the planned closure of the first uranium mine and milling plant operating in Brazil, located in the Pocos de Caldas Plateau, in the State of Minas Gerais, in the next two years, there is the need to obtain basic information for its decommissioning. Special attention has been directed to the following critical areas: open pit, tailing, dam and waste rock piles, because these are the main sources of acid drainage generation. These waters cannot be allowed to flow in the external environment because in addition to sulphuric acid, there is a number of elements in concentration above those allowed by regulations. Among the waste piles (bota-foras BF) two of them BF-4 and BF-8, are in a process of acid generation, thus requiring more attention. The objective of this work was to simulate at the laboratory scale the oxidation and the reduction zones of BF-4. The experiments were conducted in acrylic columns, where the waste sample was kept under aerated and saturated conditions, in different columns. The control of the chemical (solubilized chemical species), physico-chemical (redox potential, pH, conductivity) and biological (bacterial activity) parameters has been carried out on the acid solutions generated by the chemical and biological reactions that occur at the waste. Although the results refer to a four month period, some relevant points can be highlighted, which will serve as a basis for further research. The mineralogical characterization identified the existence of other sulphides associated to pyrite with lower oxidation potential than the latter. The results obtained with the biological characterization for the two conditions studied revealed that the bacterial activity is more intense in the region in contact with air, than in saturated region. (author)

  11. Potential risks of effluent from acid mine drainage treatment plants at abandoned coal mines.

    Science.gov (United States)

    Seo, Jaehwan; Kang, Sung-Wook; Ji, Wonhyun; Jo, Hun-Je; Jung, Jinho

    2012-06-01

    The lethal and sublethal toxicity of effluent from three acid mine drainage treatment plants were monitored from August 2009 to April 2010 using Daphnia magna (reference species) and Moina macrocopa (indigenous species). Acute lethal toxicity was observed in Samma effluent due to incomplete neutralization of acid mine drainages by the successive alkalinity producing system (SAPS). Additionally, there was no significant difference in toxicity values (TU) between D. magna and M. macrocopa (p < 0.05). Toxicity identification results of the final effluent collected in January 2010 showed that Al and Zn were key toxicants in addition to acidic pH. Unlike the Samma effluent, both Hwangji and Hamtae effluent had pH values that were near neutrality and showed either no acute toxicity or toxicity values less than 1 TU. However, the feeding rates of D. magna and M. macrocopa were significantly reduced when compared to the control (p < 0.05). These findings suggest that the Hamtae and Hwangji effluent likely have a sublethal effect on aquatic organisms in receiving water bodies. PMID:22415647

  12. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  13. Acid mine drainage and stream recovery: Effects of restoration on water quality, macroinvertebrates, and fish

    OpenAIRE

    Williams K.M.; Turner A.M.

    2015-01-01

    Acid mine drainage (AMD) is a prominent threat to water quality in many of the world’s mining districts as it can severely degrade both the biological community and physical habitat of receiving streams. There are relatively few long-term studies investigating the ability of stream ecosystems to recover from AMD. Here we assess watershed scale recovery of a cold-water stream from pollution by AMD using a 1967 survey of the biological and chemical properties of the stream as a pre-restoration ...

  14. Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate

    OpenAIRE

    Regeane M. Freitas; Perilli, Thomaz A. G.; Ladeira, Ana Claudia Q.

    2013-01-01

    Although oxidative precipitation by potassium permanganate is a widely recognised process for manganese removal, research dealing with highly contaminated acid mine drainage (AMD) has yet to be performed. The present study investigated the efficiency of KMnO4 in removing manganese from AMD effluents. Samples of AMD that originated from inactive uranium mine in Brazil were chemically characterised and treated by KMnO4 at pH 3.0, 5.0, and 7.0. Analyses by Raman spectroscopy and geochemical mode...

  15. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain)

    International Nuclear Information System (INIS)

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with 234U/238U activity ratios close to equilibrium and activity concentrations of 210Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and 210Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1–2) is very low, with 210Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%

  16. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  17. Effect of loess for preventing contamination of acid mine drainage from coal waste

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; WANG Hui-yong; GAO Ran; LI Shu-li

    2012-01-01

    Acid mine drainage (AMD) that releases highly acidic,sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China.In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste,the column leaching tests were conducted.The results come from experiment data analyses show that the loess can effectively immobilize cadmium,copper,iron,lead and zinc in AMD from coal waste,increase pH value,and decrease Eh,EC,and SO42-concentrations of AMD from coal waste.The oxidation of sulfide in coal waste is prevented by addition of the loess,which favors the generation and adsorption of the alkalinity,the decrease of the population of Thiobacillus ferrooxidans,the heavy metals immobilization by precipitation of sulfide and carbonate through biological sulfate reduction inside the column,and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste.The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.

  18. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    Science.gov (United States)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, Asplants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  19. Roles of Benthic Algae in the Structure, Function, and Assessment of Stream Ecosystems Affected by Acid Mine Drainage

    Science.gov (United States)

    Tens of thousands of stream kilometers around the world are degraded by a legacy of environmental impacts and acid mine drainage (AMD) caused by abandoned underground and surface mines, piles of discarded coal wastes, and tailings. Increased acidity, high concentrations of metals...

  20. Application of nanofiltration to the treatment of acid mine drainage waters

    International Nuclear Information System (INIS)

    This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese. (author)

  1. Application of nanofiltration to the treatment of acid mine drainage waters

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Edna T.R.; Barbosa, Celina C.R.; Oliveira, Elizabeth E.M.; Carvalho, Leonel M. de; Pedro Junior, Antonio [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: ednaruas@ien.gov.br; Queiroz, Vanessa B.C. de [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese. (author)

  2. A novel acidophile community populating waste ore deposits at an acid mine drainage site

    Institute of Scientific and Technical Information of China (English)

    HAO Chun-bo; ZHANG Hong-xun; BAI Zhi-hui; HU Qing; ZHANG Bao-guo

    2007-01-01

    Waste ore samples (pH 3.0) were collected at an acid mine drainage site in Anhui, China. The present acidophilic microbial community in the waste ore was studied with 16S rRNA gene clone library and denaturing gradient gel electrophoresis (DGGE). Eighteen different clones were identified and affiliated with Actinobacteria, low G + C Gram-positives, Thermomicrobia, Acidobacteria, Proteobacteria, Candidate division TM7, and Planctomycetes. Phylogenetic analysis of 16S rRNA gene sequences revealed a diversity of acidophiles in the samples that were mostly novel. It is unexpected that the moderately thermophilic acidophiles were abundant in the acidic ecosystem and may play a great role in the generation of AMD. The result of DGGE was consistent with that of clone library analysis. These findings help in the better understanding of the generation mechanism of AMD and in developing a more efficient method to control AMD.

  3. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage

    Directory of Open Access Journals (Sweden)

    Li H

    2016-07-01

    Full Text Available Haigang Li,1,2 Yang Wang,1 Rong Fan,1 Huiying Lv,3 Hua Sun,4 Haitang Xie,4 Tao Tang,1 Jiekun Luo,1 Zian Xia1 1Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 2Department of Pharmacy, Changsha Medical University, 3Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 4Anhui Provincial Centre for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, People’s Republic of China Abstract: According to previous research studies, warfarin can be detected in human bile after oral administration. Ferulic acid (FA is the main bioactive component of many Chinese herbs for the treatment of cardiovascular disease. To elucidate the effects of FA on the pharmacokinetics of warfarin in rats after biliary drainage is necessary. Twenty rats were randomly divided into four groups: Group 1 (WN: healthy rats after the administration of warfarin sodium, Group 2 (WO: a rat model of biliary drainage after the administration of warfarin sodium, Group 3 (WFN: healthy rats after the administration of warfarin sodium and FA, and Group 4 (WFO: a rat model of biliary drainage after the administration of warfarin sodium and FA. Blood samples were collected at different time points after administration. The concentrations of blood samples were determined by ultraperformance liquid chromatography–tandem mass spectrometry. Comparisons between groups were performed according to the main pharmacokinetic parameters calculated by the DAS 2.1.1 software. The pharmacokinetic parameters showed a significant difference between the WN and WO groups, the WO group showed a decrease of 51% and 41.6% in area under the curve from 0 to time (AUC0–t and peak plasma concentration (Cmax, respectively, whereas time to Cmax (Tmax was delayed 3.27 folds. There were significant differences between the WFO and WFN groups, the WFO

  4. Acid Mine Drainage Treatment by Perlite Nanomineral, Batch and Continuous Systems

    Science.gov (United States)

    Shabani, Kumars Seifpanahi; Ardejani, Faramarz Doulati; Badii, Khshayar; Olya, Mohammad Ebrahim

    2014-03-01

    In this paper the adsorption activity of perlite nanoparticles for removal of Cu2+, Fe2+ and Mn2+ ions at Iran Sarcheshmeh copper acid mine drainage was discussed. Thus, raw perlite that provided from internal resource was modified and prepared via particles size reduction to nano scale and characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared and BET specific surface area analysis. The results of acid mine drainage show that pH of acid mine drainage is 5.1 and Cu2+, Fe2+ and Mn2+ ions are 10.5, 4.1 and 8.3 ppm, respectively. Firstly in the batch system the influence of adsorbent dose and temperature parameters were considered and then isothermal and kinetic models were investigated. According to the results the Langmuir isotherm and pseudo-second order kinetic model showed better correlation with the experimental data than other isotherm and kinetic models. Obtained thermodynamic parameters such as ΔG°, ΔH° and ΔS° show that the Cu2+, Fe2+ and Mn2+ ions adsorption from acid mine drainage is spontaneous and endothermic. Finally, perlite nanoparticles adsorbent was packed inside a glass column and used for the removal of heavy metals in 1, 3, 5 ml/min acid mine drainage flow rates, the breakthrough curves show that the column was saturated at 180, 240 and 315 min for different flow rates, respectively. According to the obtained results, this abundant, locally available and cheap silicate mineral showed a great efficiency for the removal of heavy metal pollutants from acid mine drainage and can be utilized for much volume of acid mine drainage or industrial scale. W pracy omówiono zdolności adsorpcyjne nano-cząsteczek perlitu wykorzystywanych o usuwania jonów Cu2+, Fe2+ i Mn2+ z kwaśnych wód kopalniach w kopalni miedzi w Sarcheshmeh w Iranie. Surowy perlit pozyskiwany ze źródeł własnych został zmodyfikowany i odpowiednio spreparowany poprzez zre-dukowanie cz

  5. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    Science.gov (United States)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  6. Accumulation of aluminium and iron by bryophytes in streams affected by acid-mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Engleman, C.J.; McDiffett, W.F. [Bucknell University, Lewisburg, PA (United States). Dept. of Biology

    1996-12-31

    This paper examines the accumulation of two heavy metals (Al and Fe) by bryophytes in a northern Pennsylvania stream system affected by acid-mine drainage. Four sites within one watershed were selected on the basis of their pH and dissolved metal concentrations. Significant differences among sites were found with regard to bioaccumulation of Al an Fe. A negative relationship between pH and Fe concentrations in bryophyte tissues was found, with the highest accumulation of Fe observed at the most acidic site (pH 3.5), whereas accumulation of Al was highest at a site with an intermediate pH of 5.2. Bryophytes transplanted from a circum-neutral site to acidic sites showed highly significant increases in Fe and Al concentrations in tissues after 6 weeks, and transplants from more acidic sites to a circum-neutral site generally showed highly significant declines in Fe and Al concentration in tissues after the incubation period.

  7. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    Science.gov (United States)

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  8. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system.

    Science.gov (United States)

    Choi, Hee-Jeong; Lee, Seung-Mok

    2015-09-01

    This study investigates the use of calcined eggshells and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing calcined eggshells and the microalgae Chlorella vulgaris. The results show that the biomass productivity increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a depth of 305 mm. On the other hand, the simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 99.47 to 100 %. These results indicate that the hybrid system with calcined eggshells and microalgae was highly effective for heavy metal removal in the AMD.

  9. Field validation of specific ecotoxicological tools for aquatic systems impacted with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, I.; Goncalves, F.; Nogueira, A.; Soares, A.M.V.M.; Ribeiro, R. [Instituto do Ambiente e Vida, Coimbra (Portugal). Departamento de Zoologia da Universidade de Coimbra

    2000-07-01

    Acid mine drainage (AMD) is characterised by very low pH and high heavy metal concentrations. Serious ecotoxicological effects, often leading to the complete disruption of the ecosystem, can be observed at the regions suffering this kind of contamination. Those effects can be caused either by low pH itself or by other contaminants that emerge with water acidification (mobilisation and increased solubility of heavy metals). The discrimination between the toxicity due to each of these two factors is not possible with the existing toxicity tests; the addition of chelating agents or serial dilution methods seriously alter the chemical and physical properties of the effluent. A toxicity test, based on the survival time of Ceriodaphnia dubia (Crustacea, Cladocera) neonates exposed to the unchanged effluent was developed and field validated, on an AMD contaminated site. 28 refs.

  10. BONE MEAL AS ALTERNATIVE TREATMENT FOR ACIDIC AND METAL CONTAMINATED ACID MINE DRAINAGE WATER EFFLUENT: LAB SCALE

    Directory of Open Access Journals (Sweden)

    Carolyn Payus

    2014-01-01

    Full Text Available The typical methods of treatment for acidic and metal contaminated water effluent such as the Acid Mine Drainage (AMD will always focus on either civil engineering methods, such as disposal, excavation, drainage and encapsulation or process based technologies such as effluent washing and treatment. These techniques are not environmental friendly, costly and unsustainable, thus environmental damaging. Nowadays, there is a growing need for an alternative remediation treatment that is innovative and more natural in order to prevent pollution in the environment. Therefore, in this study, a new alternative treatment, that is more organic, biodegradable and cost effective, using bone meal was presented. In this research, bone meal comprising of chicken bones were used as an alternative passive treatment to determine its potential in neutralizing and removing heavy metals from the abandoned cooper mine, Mamut Acid Mine Drainage (AMD waste water effluent. A pretreatment process for bone meal was performed by incineration process where it was heated up in the furnace at 500°C for 24 h after it was cleaned, crushed, boiled and dried. Batch experiment test has been carried out to test whether the selected bone meal sizes 45, 75 and 150 µm was able to neutralize the AMD Mamut water samples. Inductive Plasma Couple-Atomic Emission Spectrometry (ICP-AES test was carried out to test the concentration of the heavy metals before and after the treatment. The surface morphology of bone meal was examined by Scanning Electron Microscopy (SEM. Enlargement of pores after the neutralization treatment was seen on the surface morphology of the bone meal by SEM analyses. A significant rising of pH from 2.98 to 5.69 within 6 h 30 min was observed during neutralization process and 99% removal of Fe, Zn, Al, Cu and 36% removal of Mg concentration was achieved after the treatment through the neutralization treatment of the AMD waste water effluent. The results from this

  11. Mine drainage treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2012-01-01

    Water flowing from underground and surface mines and contains high concentrations of dissolved metals is called mine drainage. Mine drainage can be categorized into several basic types by their alkalinity or acidity. Sulfide rich and carbonate poor materials are expected to produce acidic drainage, and alkaline rich materials, even with significant sulfide concentrations, often produce net alkaline water. Mine drainages are dangerous because pollutants may decompose in the environment. In...

  12. Study of weathering velocity of rocks with uranium as a natural tracer. Application to two drainage basins of the north-east of Brazil

    International Nuclear Information System (INIS)

    Study on rock weathering rate, i.e. rock-soil interface formation, by measuring the elements dissolved in river waters. These elements are used as natural tracers. This work has been carried out in the drainage basin of Preto and Salgado Rivers, in Brazil. Conventional elements, sodium, potassium, calcium and magnesium have been utilized first and all dissolved salts have been used as natural tracers to allow comparison with other scientific works. Then, uranium has been used because it is not found in rain waters so that corrections are not necessary and because its abundance can be measured by α and γ spectrometry, and the 234U/238U ratio obtained, 234U being more rapidly dissolved during weathering. Another reason is that no interaction occurs between uranium and the biomass. It is then possible to find a geochemical balance for this area

  13. Implications for global climate change from microbially-produced acid mine drainage

    Science.gov (United States)

    Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Microbial catalysis of sulphur cycling in acid mine drainage (AMD) environments is well known but the reaction pathways are poorly characterised. These reaction pathways involve both acid-consuming and acid- generating steps, with important consequences for overall AMD production as well as sulphur and carbon global biogeochemical cycles. Mining-associated sulphuric acid has been implicated in climate change through the weathering of carbonate minerals resulting in the release of 29 Tg C/year as carbon dioxide. Understanding of microbial AMD generation is based predominantly on studies of Acidithiobacillus ferrooxidans despite the knowledge that other environmentally common strains of bacteria are also active sulphur oxidizers and that microbial consortia are likely very important in environmental processes. Using an integrated experimental approach including geochemical experimentation, scanning transmission X-ray microscopy (STXM) and fluorescent in situ hybridization (FISH), we document a novel syntrophic sulphur metabolism involving two common mine bacteria: autotrophic sulphur oxidizing Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with significant implications for both AMD mitigation and AMD carbon flux modelling. The two bacterial strains are specifically spatially segregated within a macrostructure of extracellular polymeric substance (EPS) that provides the necessary microgeochemical conditions for coupled sulphur oxidation and reduction reactions. STXM results identify multiple sulphur oxidation states associated with the pods, indicating that they are the sites of active sulphur disproportionation and recycling. Recent laboratory experimentation using type culture strains of the bacteria involved in pod-formation suggesting that this phenomenon is likely to be widespread in environments

  14. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    Science.gov (United States)

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  15. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids

    Institute of Scientific and Technical Information of China (English)

    XU Ren-kou; ZHU Yong-guan; David Chittleborough

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by Iow-molecular-weight organic acids.Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with PKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearrly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  16. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  17. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  18. Acid mine drainage and stream recovery: Effects of restoration on water quality, macroinvertebrates, and fish

    Directory of Open Access Journals (Sweden)

    Williams K.M.

    2015-01-01

    Full Text Available Acid mine drainage (AMD is a prominent threat to water quality in many of the world’s mining districts as it can severely degrade both the biological community and physical habitat of receiving streams. There are relatively few long-term studies investigating the ability of stream ecosystems to recover from AMD. Here we assess watershed scale recovery of a cold-water stream from pollution by AMD using a 1967 survey of the biological and chemical properties of the stream as a pre-restoration benchmark. We sampled water chemistry, benthic macroinvertebrates, and fish throughout the watershed during the spring and summer of 2011. Water chemistry results indicated that pH and total alkalinity increased post-restoration, while acidity, sulfate, and iron concentrations decreased. Watershed-level taxa richness, local taxa richness, biomass, diversity, and density of macroinvertebrates were significantly higher post-restoration; however, %EPT was not significantly different. Fish species richness, density, and brook trout density were all significantly higher post-restoration. These results provide clear evidence that both abiotic and biotic components of streams can recover from AMD pollution.

  19. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain).

    Science.gov (United States)

    Asta, Maria P; Ayora, Carlos; Acero, Patricia; Cama, Jordi

    2010-05-15

    Reactive transport modelling of the main processes related to the arsenic natural attenuation observed in the acid mine drainage (AMD) impacted stream of Tinto Santa Rosa (SW Spain) was performed. Despite the simplicity of the kinetic expressions used to deal with arsenic attenuation processes, the model reproduced successfully the major chemical trends observed along the acid discharge. Results indicated that the rate of ferrous iron oxidation was similar to the one obtained in earlier field studies in which microbial catalysis is reported to occur. With regard to the scaled arsenic oxidation rate, it is one order of magnitude faster than the values obtained under laboratory conditions suggesting the existence of a catalytic agent in the natural system. Schwertmannite precipitation rate, which was represented by a simple kinetic expression relying on Fe(III) and pH, was in the range calculated for other AMD impacted sites. Finally, the obtained distribution coefficients used for representing arsenic sorption onto Fe(III) precipitates were lower than those deduced from reported laboratory data. This discrepancy is attributed to a decrease in the schwertmannite arsenate sorption capacity as sulphate increases in the solution.

  20. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage.

    Science.gov (United States)

    Mirete, Salvador; de Figueras, Carolina G; González-Pastor, Jose E

    2007-10-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. PMID:17675438

  1. Colloidal precipitates related to Acid Mine Drainage: bacterial diversity and micro fungi-heavy metal interactions

    Science.gov (United States)

    Lucchetti, G.; Carbone, C.; Consani, S.; Zotti, M.; Di Piazza, S.; Pozzolini, M.; Giovine, M.

    2015-12-01

    In Acid Mine Drainage (AMD) settings colloidal precipitates control the mobility of Potential Toxic Elements (PTEs). Mineral-contaminant relationships (i.e. adsorption, ion-exchange, desorption) are rarely pure abiotic processes. Microbes, mainly bacteria and microfungi, can catalyze several reactions modifying the element speciation, as well as the bioavailability of inorganic pollutants. Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a potential reservoir of extremophile bacteria and fungi exploitable for biotechnological purposes. Two different AMD related colloids, an ochraceous precipitate (deposited in weakly acidic conditions, composed by nanocrystalline goethite) and a greenish-blue precipitate (deposited at near-neutral pH, composed by allophane + woodwardite) were sampled. The aims of this work were to a) characterize the mycobiota present in these colloidal minerals by evaluating the presence of alive fungal propagules and extracting bacteria DNA; b) verify the fungal strains tolerance, and bioaccumulation capability on greenish-blue and ZnSO4 enriched media; c) evaluate potential impact of bacteria in the system geochemistry. The preliminary results show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains were isolated in pure culture. Among them, species belonging to Penicillium and Trichoderma genera were tested on both greenish-blue and ZnSO4 enriched media. The results show a significant tolerance and bioaccumulation capability to some PTEs. The same colloidal precipitates were processed to extract bacteria DNA by using a specific procedure developed for sediments. The results give a good yield of nucleic acids and a positive PCR amplification of 16S rDNA accomplished the first step for future metagenomic analyses.

  2. Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate

    Directory of Open Access Journals (Sweden)

    Regeane M. Freitas

    2013-01-01

    Full Text Available Although oxidative precipitation by potassium permanganate is a widely recognised process for manganese removal, research dealing with highly contaminated acid mine drainage (AMD has yet to be performed. The present study investigated the efficiency of KMnO4 in removing manganese from AMD effluents. Samples of AMD that originated from inactive uranium mine in Brazil were chemically characterised and treated by KMnO4 at pH 3.0, 5.0, and 7.0. Analyses by Raman spectroscopy and geochemical modelling using PHREEQC code were employed to assess solid phases. Results indicated that the manganese was rapidly oxidised by KMnO4 in a process enhanced at higher pH. The greatest removal, that is, 99%, occurred at pH 7.0, when treated waters presented manganese levels as low as 1.0 mg/L, the limit established by the Brazilian legislation. Birnessite (MnO2, hausmannite (Mn3O4, and manganite (MnOOH were detected by Raman spectroscopy. These phases were consistently identified by the geochemical model, which also predicted phases containing iron, uranium, manganese, and aluminium during the correction of the pH as well as bixbyite (Mn2O3, nsutite (MnO2, pyrolusite (MnO2, and fluorite (CaF2 following the KMnO4 addition.

  3. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  4. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.

    Science.gov (United States)

    Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner

    2014-01-21

    Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A. PMID:24367969

  5. The Regulation of Acid Mine Drainage in South Africa: Law and Governance Perspectives

    Directory of Open Access Journals (Sweden)

    Loretta Feris

    2014-12-01

    Full Text Available Acid mine drainage (AMD is arguably one of the most serious environmental concerns in South Africa. AMD is a legacy left behind by abandoned, derelict and defunct mines, and is a continuing by-product of existing mining activities. In addition to its environmental impacts, AMD will also impact on all the parameters of sustainability, including ecological, social and economic concerns. In particular, AMD is set to affect infrastructure, displace people and affect their livelihoods, influence economic activity, impact on the resource extraction industry, and affect South Africa's policies and actions in relation to climate change and its efforts to move towards a low carbon economy; and it will test the efficiency of regulatory interventions emanating from both the private and the public sector to the extreme. Given these pervasive challenges, in this article we provide a survey of the AMD problem in South Africa through the law and governance lens. We commence by highlighting the various issues and challenges that result from AMD in the environmental context on the one hand, and the law and governance context on the other hand. We then describe the many provisions of the regulatory framework that we believe would be instrumental in responding to the threat. We conclude the article with brief remarks on what we believe are important considerations in the future regulation of AMD.

  6. Acid mine drainage abatement using fluidized bed combustion ash grout after geophysical site characterization

    International Nuclear Information System (INIS)

    Pyritic coal refuse and pit cleanings buried in a 15-ha (37-acre) surface mine produce severe acid mine drainage (AMD). The pyritic material had been buried in discrete piles or pods in the backfill. The pods and the resulting contaminant plumes were initially defined using geophysical techniques and were confirmed by drilling. Fluidized bed combustion (FBC) ash, mixed with water to form a grout, was used in different ways to isolate the pyritic material from water and oxygen. In the first approach, grout was pressure injected directly into the buried pods to fill the void spaces within the pods and to coat the pyritic materials with a cementitious layer. A second approach used the grout to divert water from specific areas. Pods which did not accept grout because of a clay matrix were isolated from percolating water with a cap and trench seal of the grout. The grout was also used in certain areas to blanket the clay pit floor since clays are believed to be a primary source of aluminum at this site. In certain areas, the AMD migrates downward though fractures in the pit floor to the groundwater table. Grout was injected along the fractures in some of these areas to seal them. This would inhibit further AMD migration toward one of the receiving streams. The initial postgrouting water quality data have been encouraging

  7. Preservation procedures for arsenic speciation in a stream affected by acid mine drainage in southwestern Spain.

    Science.gov (United States)

    Sánchez-Rodas, Daniel; Oliveira, Vanesa; Sarmiento, Aguasanta M; Gómez-Ariza, José Luis; Nieto, José Miguel

    2006-04-01

    A preservation study has been performed for arsenic speciation in surface freshwaters affected by acid mine drainage (AMD), a pollution source characterized by low pH and high metallic content. Two sample preservation procedures described in the literature were attempted using opaque glass containers and refrigeration: i) addition of 0.25 mol L(-1) EDTA to the samples, which maintained the stability of the arsenic species for 3 h; and ii) in situ sample clean-up with a cationic exchange resin, in order to reduce the metallic load, which resulted in a partial co-adsorption of arsenic onto Fe precipitates. A new proposed method was also tried: sample acidification with 6 mol L(-1) HCl followed by in situ clean-up with a cationic exchange resin, which allowed a longer preservation time of at least 48 h. The proposed method was successfully applied to water samples with high arsenic content, taken from the Aguas Agrias Stream (Odiel River Basin, SW Spain), which is severely affected by AMD that originates at the nearby polymetallic sulfide mine of Tharsis. The speciation results obtained by liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) indicated that during the summer the main arsenic species was As(V) at the hundred microg L(-1) level, followed by DMA (dimethyl arsenic) and As(III) below the ten microg L(-1) level. In winter, As(V) and As(III) increased at least fivefold, whereas the DMA was not detected.

  8. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    Science.gov (United States)

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-01

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited. PMID:27351211

  9. Phytoassessment of acid mine drainage: Lemna gibba bioassay and diatom community structure.

    Science.gov (United States)

    Gerhardt, A; de Bisthoven, L Janssens; Guhr, K; Soares, A M V M; Pereira, M J

    2008-01-01

    An integrated multilevel phytoassessment of an acid mine drainage (AMD, pH range 3.3-6.8) in southern Portugal was performed. A 7-day phytotoxicity bioassay with the duckweed Lemna gibba (chlorosis, necrosis, growth) was carried out, both in the laboratory and in situ, combined with an analysis of the resident epilithic diatom community. The toxicity test was performed with water from the AMD gradient, an unpolluted river control and acidified control water, in order to discriminate potential pH-effects from combined pH- and metal-effects. Diatom communities discriminated well among the sites (alkalophilic species versus halobiontic, acidobiontic and acidophilic species), showing inter-site differences to be larger than intra-site seasonal variations. In L. gibba exposed to AMD, necrosis and growth inhibition were higher in situ compared to the laboratory experiments. L. gibba was more sensitive to AMD than to acidified water. Already after 4 days, growth rate inhibition in L. gibba proved to be a reliable indicator of AMD-stress. Ecotoxicological thresholds obtained with L. gibba corresponded with those obtained previously with animals of intermediate tolerance to AMD. The results were summarised in a multimetric index. PMID:17952593

  10. Biogenic catalysis in sulphide minerals' weathering processes and acid mine drainage genesis.

    Science.gov (United States)

    Kušnierová, Mária; Praščáková, Mária; Nowak, Anna K; Gorazda, Katarzyna; Wzorek, Zbigniew

    2014-01-01

    Bioleaching and biogenesis are the main outputs from a large group of environmental processes participating in the natural material cycle, used in raw materials processing. Bio-oxidation reactions are the main basis for bioleaching procedures, often participating in parallel leaching processes. During the leaching processes of polycomponent sulphide substrates, the factor of process selection also plays an important role, being in direct relation to the electric properties and galvanic effect occurring between the individual components of the leaching substrate. This work gives a summary of the results of a research focused on the possibilities of using biotechnological procedures for treatment of Slovak sulphide ores. The object of the research is extraction of valuable metals, undesirable admixtures and degradation of crystal lattice of sulphides for subsequent chemical leaching processing of precious metals. The results of experiments on the existence of biogenic processes in situ on waste dumps from exploitation containing residual sulphides are also presented. The processes result in acid mine drainage water generation. These waters are strongly mineralised (over 48 g/L) and of low pH; that is why they are very caustic. The arsenic content (2.558 mg/L) in outflowing waters from old mines is high and over the limits set by the law. PMID:24445359

  11. Evaluating remedial alternatives for an acid mine drainage stream: a model post audit

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; Walton-Day, Katherine; Verplanck, Philip L.; Broshears, Robert E.

    2012-01-01

    A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H+, and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.

  12. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage

    International Nuclear Information System (INIS)

    The oxidation of pyritic mining waste is a self-perpetuating corrosive process which generates acid mine drainage (AMD) effluent for centuries or longer. The chemical neutralization of these complex, buffered effluents result in unstable, metal-laden sludges, which require disposal to minimize long-term environmental consequences. A variety of passive treatment systems for AMD, developed in the past two decades, combine limestone and organic substrates in constructed wetlands. These systems work well initially but over the longer term fail due to clogging with and the depletion of available organic carbon. However, some ecologically engineered systems, which exploit the activities of acid reducing microbes in the sediment, rely on photosynthesis in the water column as a source of organic matter. The primary productivity in the water column, which also generates some alkalinity, provides electron donors for the microbial reduction processes in the sediment. In its consideration of 'passive' systems, the literature has placed undue emphasis on sulphate reduction; thermodynamical iron reduction is equally important as is the need to prevent iron oxidation. Secondary precipitates of iron play a significant role in sediment-driven biomineralization processes, which affect the anaerobic degradation of organic matter and the stability of the resulting metal sulfides. One such passive system, which utilized a floating root mass as a source of organic carbon, is described. An extensive review of the literature and the chemical and biogeochemical reactions of AMD treatment systems, lead to the conclusion, that sediment based ecological systems offer the greatest potential for the sustainable treatment of AMD

  13. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.

    Science.gov (United States)

    Kalin, Margarete; Fyson, Andrew; Wheeler, William N

    2006-08-01

    The oxidation of pyritic mining waste is a self-perpetuating corrosive process which generates acid mine drainage (AMD) effluent for centuries or longer. The chemical neutralization of these complex, buffered effluents result in unstable, metal-laden sludges, which require disposal to minimize long-term environmental consequences. A variety of passive treatment systems for AMD, developed in the past two decades, combine limestone and organic substrates in constructed wetlands. These systems work well initially but over the longer term fail due to clogging with and the depletion of available organic carbon. However, some ecologically engineered systems, which exploit the activities of acid reducing microbes in the sediment, rely on photosynthesis in the water column as a source of organic matter. The primary productivity in the water column, which also generates some alkalinity, provides electron donors for the microbial reduction processes in the sediment. In its consideration of 'passive' systems, the literature has placed undue emphasis on sulphate reduction; thermodynamical iron reduction is equally important as is the need to prevent iron oxidation. Secondary precipitates of iron play a significant role in sediment-driven biomineralization processes, which affect the anaerobic degradation of organic matter and the stability of the resulting metal sulfides. One such passive system, which utilized a floating root mass as a source of organic carbon, is described. An extensive review of the literature and the chemical and biogeochemical reactions of AMD treatment systems, lead to the conclusion, that sediment based ecological systems offer the greatest potential for the sustainable treatment of AMD. PMID:16375949

  14. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    Science.gov (United States)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  15. Molecular analysis of benthic biofilms from acidic coal mine drainage, Pennsylvania, USA

    Science.gov (United States)

    Mills, D. B.; Jones, D. S.; Burgos, W. D.; Macalady, J. L.

    2010-12-01

    Acid mine drainage (AMD) is a common environmental problem in Pennsylvania that results from the oxidation of sulfide minerals exposed at abandoned coal mines. In these systems, acidophilic microorganisms catalyze the oxidation of ferrous (Fe2+) to ferric iron (Fe3+), which precipitates as iron-hydroxide minerals. To develop and improve low-pH bioremediation strategies, characterization of the microbiology of AMD systems is essential. An acidic (pH 2-4) AMD spring known as ‘Lower Red Eyes’ in Gallitzan State Forest, PA, is fed by anoxic groundwater with ferrous iron concentrations above 550 mg/L. More than half of the total iron is removed after the springwater flows downstream over 80 m of stagnant pools and iron-oxide terraces. We used fluorescence in situ hybridization (FISH) and 16S rDNA cloning to characterize the microbial communities from orange sediments and green benthic biofilms. 16S rDNA sequences were extracted from a green biofilm found in a pH 3.5 pool 10 m downstream of the emergence. Based on chloroplast 16S rDNA sequences and morphological characteristics, we found that Euglena mutabilis was the dominant eukaryotic organism from this location. Euglena mutabilis is a photosynthetic protozoan common in acidic and heavy metal affected environments, and likely contributes to the precipitation of iron oxides through the production of molecular oxygen. Bacterial 16S rDNA sequences were cloned from iron-oxide sediments with orange cauliflower morphology 27 m downstream from the spring emergence. More than 60% of bacterial sequences retrieved from the orange sediment sample are related to the iron-oxidizing Betaproteobacterium Ferrovum myxofaciens. Other bacterial sequences include relatives of iron-oxidizing genera in the Gammaproteobacteria, Betaproteobacteria, and Actinobacteria. FISH analyses show that Betaproteobacteria-dominated communities are associated with Euglena in multiple upstream locations where pH is above 3.0. Using light microscopy

  16. Humic acid decreases acute toxicity and ventilation frequency in eastern rainbowfish (Melanotaenia splendida splendida) exposed to acid mine drainage.

    Science.gov (United States)

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-12-01

    Acid mine drainage (AMD) is a global problem leading to the acidification of freshwaters, as well as contamination by heavy metals. The ability of humic substances (HS) such as humic acid (HA) to decrease toxicity of heavy metals is widely known, whereas limited studies have examined the ability of HS to decrease toxicity linked with multiple stressors such as those associated with AMD. This study investigated the ability of HA to decrease acute toxicity defined as morbidity and ventilation frequency (measured via the time elapsed for ten operculum movements) in eastern rainbowfish (Melanotaenia splendida splendida) exposed to the multiple stressors of AMD-driven heavy metal concentrations, together with low pH. Water from the Mount Morgan open pit (a now closed gold and copper mine site), located at Mount Morgan, Central Queensland, Australia, was used as the AMD source. Fish were exposed to zero per cent (pH 7.3), two per cent (pH 6.7), three per cent (pH 5.7) and four per cent (pH 4.6) AMD in the presence of 0, 10 and 20mg/L Aldrich Humic Acid (AHA) over 96h. HA was shown to significantly decrease the acute toxicity of AMD and its adverse effects on ventilation frequency. These results are important in showing that HA can influence toxicity of metal mixtures and low pH, thus indicating a potential role for HA in decreasing toxicity of multiple environmental stressors more widely, and possible value as a rehabilitation aid. PMID:25173849

  17. Water quality, fate of metals and predictive model validation of a constructed wetland treating acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Mitsch, W.J.; Wise, K.M. [Ohio State University, Columbus, OH (United States). School of Natural Resources

    1998-06-01

    The paper describes how 0.39 ha constructed wetland designed with 9 cells, including two anaerobic cells that were to stimulate dissimilatory sulfate reduction, was evaluated for its effect on water quality of a low-order acid mine drainage (AMD) stream in southeastern Ohio, USA. Emphasis was on the uptake and fate of selected metals and the accuracy of a simulation model that predicted this specific wetland`s behavior before it was built.

  18. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China

    Science.gov (United States)

    Sun, Jing; Tang, Changyuan; Wu, Pan; Strosnider, William H. J.; Han, Zhiwei

    2013-11-01

    A paired catchment study was used to assess karst hydrogeochemistry of two streams.Chemistry of streams with and without acid mine drainage (AMD) was very different.The observation was supported by PHREEQC modeling of equilibrium conditions.Ionic fluxes of AMD-impacted water were higher than that of non-AMD-impacted water.The higher ionic fluxes were predominantly controlled by the oxidation of pyrite.

  19. Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Highlights: → Huelva estuary is affected by former phosphogypsum releases and pyrite acid mine drainage. → Time evolution of uranium concentration is analyzed after halting of NORM releases. → Two new contamination sources are preventing the complete uranium cleaning: (1) The leaching of phosphogypsum stacks located close to Tinto River. (2) Pyrite acid mine drainage. → High uranium concentrations are dissolved in water and precipitate subsequently. - Abstract: After the termination of phosphogypsum discharges to the Huelva estuary (SW Spain), a unique opportunity was presented to study the response of a contaminated environmental compartment after the cessation of its main source of pollution. The evolution over time of uranium concentrations in the estuary is presented to supply new insights into the decontamination of a scenario affected by Naturally Occurring Radioactive Material (NORM) discharges. The cleaning of uranium isotopes from the area has not taken place as rapidly as expected due to leaching from phosphogypsum stacks. An in-depth study using various techniques of analysis, including 234U/238U and 230Th/232Th ratios and the decreasing rates of the uranium concentration, enabled a second source of uranium contamination to be discovered. Increased uranium levels due to acid mine drainage from pyrite mines located in the Iberian Pyrite Belt (SW Spain) prevent complete uranium decontamination and, therefore, result in levels nearly twice those of natural background levels.

  20. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    Science.gov (United States)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  1. WATER DRAINAGE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  2. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    Science.gov (United States)

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment. PMID:23485423

  3. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  4. Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater.

    Science.gov (United States)

    Wang, Y R; Tsang, Daniel C W; Olds, William E; Weber, Paul A

    2013-01-01

    This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application. PMID:24617077

  5. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  6. Microbial Communities and a Novel Symbiotic Interaction in Extremely Acidic Mine Drainage at Iron Mountain, California

    Science.gov (United States)

    Baker, B. J.; Banfield, J. F.

    2002-12-01

    Culture-independent studies of microbial communities in the acid mine drainage (AMD) system associated with the Richmond ore body at Iron Mountain, CA, demonstrated that the total number of prokaryote lineages is small compared to other environments. Phylogenetic analyses of 232 small subunit ribosomal RNA (rRNA) genes from six clone libraries revealed some novel lines of descent. Many of the novel clones were from libraries constructed from subaerial biofilms associated with fine grained pyrite. The clones form several distinct groups within the order Thermoplasmatales and are most closely related to Ferroplasma spp. and Thermoplasma spp. Another novel group detected in a pH 1.4 pool and a pH 0.8 biofilm falls within the Rickettsiales (alpha-proteobacteria and related to mitochondria) and is most closely related to a-proteobacterial endosymbionts of Acanthamoeba spp. An oligonucleotide rRNA probe designed to target alpha-proteobacteria revealed that these are protist endosymbionts, and that they are associated with a small percentage (2%) of the total eukaryotes in samples from the Richmond mine. Measurements of the internal pH of these protists show that their cytosol is close to neutral. Thus, protists provide a habitat within the AMD system that is at least 5 pH units less acidic than the surroundings. The uncultured AMD endosymbionts have a conserved 273 nucleotide intervening sequence (IVS) in the variable V1 region of their 16S rRNA gene. The IVS does not match any sequence in current databases, but predicted secondary structure form well defined stem loops. The discovery of inserts within a highly conserved gene is extremely rare. At present we have not identified the protist host. However, it is interesting to note that protists previously shown to have a-proteobacterial endosymbionts possess 18S rRNA genes that contain both IVSs and group I introns. The possibility that the IVS in the AMD bacteria is a result of extensive genetic exchange between a

  7. Metals in agricultural produce associated with acid-mine drainage in Mount Morgan (Queensland, Australia).

    Science.gov (United States)

    Vicente-Beckett, Victoria A; McCauley, Gaylene J Taylor; Duivenvoorden, Leo J

    2016-01-01

    Acid-mine drainage (AMD) into the Dee River from the historic gold and copper mine in Mount Morgan, Queensland (Australia) has been of concern to farmers in the area since 1925. This study sought to determine the levels of AMD-related metals and sulfur in agricultural produce grown near the mine-impacted Dee River, compare these with similar produce grown in reference fields (which had no known AMD influence), and assess any potential health risk using relevant Australian or US guidelines. Analyses of lucerne (Medicago sativa; also known as alfalfa) from five Dee fields showed the following average concentrations (mg/kg dry basis): Cd Citrus reticulata) from Dee sites (mg/kg wet weight) were Cd 0.011, Cu 0.59, Fe 2.2, Mn 0.56, Pb 0.18, S 91 and Zn 0.96. Cd and Zn were less than or close to, average Fe and Mn levels were at most twice, Cd 1.8 or 6.5 times, and Pb 8.5 or 72 times the maximum levels in raw oranges reported in the US total diet study (TDS) or the Australian TDS, respectively. Average Cd, Fe, Mn, Pb and Zn levels in the citrus reference samples were found to exceed the maximum reported in one or both TDS surveys. Cu, Fe, Mn, Pb and Zn plant-soil transfer factor (TF) values were citrus fruit samples were 0.14 and 0.73, respectively; lucerne and lucerne hay from both Dee and reference sites gave TF = 10, suggesting some potential risk to cattle, although this conclusion is tentative because Cd levels were close to or less than the detection limit. TF values for S in lucerne, lucerne hay, pasture grass and mandarin oranges from Dee sites were 18, 14, 3 and 3.6, respectively, indicating that S in soil was readily available to plant or fruit. Sulfur in pasture grass and citrus fruit (TF = 11 for both) was apparently more bioavailable at the reference sites than at the Dee sites (TF = 3.0 for pasture grass; TF = 3.6 for citrus fruit). PMID:26979303

  8. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  9. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    Science.gov (United States)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  10. The occurrence of fatty acids in immature source rocks and their distribution characteris-tics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fatty acids in extractable bitumen and kerogen of immature source rocks of the Liaohe Basin and Jiyang sag were investigated in this study. The result showed that the bitumen fatty acids were mainly associated with non-hydrocarbon fraction and that the kerogen fatty acids with some tightly bound fatty acids were mainly bounded in a net structure of kerogen by ester bonds. For the investigated source rocks, the fatty acids in bitumen, bound fatty acids and tightly bound acids in kerogen ranged in 0.01% -0.073 9%, 0.005% - 0.045 5% and 0.005%- 0.010% respectively. Among the fatty acids analyzed in this study, mono-carboxylic acids, a, w-di-carboxylic acids and hydroxy acids accounted for 70%-100%, 0%-30% and <10% respec-tively. It was also found that the mono-carboxylic acids with longer chains mainly existed in bitumen, and that the a, w-di-carboxylic acids and hydroxy acids mainly existed in kerogen. From above, it was assumed that the mono-car- boxylic acids in bitumen might have played an important role in the hydrocarbon generation from fatty acids in imma-ture source rocks.

  11. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Science.gov (United States)

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  12. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration. This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached solution from

  13. Using a mass balance to understand the geology and geochemistry of a reservoir receiving and discharging acid mine drainage

    International Nuclear Information System (INIS)

    Howard-Williams Lake is a 14.5 acre reservoir located in an abandoned coal mine in Perry County, Ohio. With a pH of 3.0 and acidity values of 300--400 mg/L, the reservoir has no plants or fish currently surviving in the lake. Reclamation of spoil piles adjacent to the lake to the north in the late 1980s was not successful in reducing the acidity of the lake. Currently, papermill sludge is being used on the reclaimed area to the north to promote vegetation, but the reservoir has shown no signs of improving. The goal of this project is to transform the lake into a fishable and swimmable one. The reservoir is receiving about 175 gallons per minute of acid mine drainage, not including seepage into the lake, from eight different sources. Three of the sources account for about 165 gallons per minute of the surface water that enters the lake. These inflows have relatively low acidity readings, which range from 66 mg/L to 568 mg/L. The other five sources of acid mine drainage have much lower flowrates, but have acidity values as high as 3,000 mg/L. Samples of all of the surface inflows and the outflow of the lake were taken and sent to a laboratory and tested for the following parameters: total acidity as CaCO3, total alkalinity as CaCO2, specific conductivity, total suspended solids, sulfate, chloride calcium, magnesium, sodium, potassium, total iron, total manganese, aluminum, and hardness. During sampling of the surface inflows, volumetric flowrates were measured for each inflow. Once the flowrates and the concentrations of the various parameters were known, a mass balance could be constructed which would show how much of each parameter was entering the lake each day. These data were then used to gain an understanding of the geochemistry and geology of the site

  14. Drainage, liming and fertilization of organic soils. 1. Long-term effects on acid/base relations

    Energy Technology Data Exchange (ETDEWEB)

    Braekke, F.H. [Norges Landbrukshoegskole, Aas (Norway). Dept. of Forest Sciences

    1999-06-01

    Long-term changes of the acid/base relations of organic soils after drainage, fertilization and/or liming at three experimental sites - two ombrogenous and one soligenous - in south-central Norway are discussed. These sites were drained, fertilized and/or limed in 1953-1956 and sampled in 1991-1992. Drainage at the ombrogenous sites caused: insignificant shifts of pH, higher bulk densities to 40 cm depth, higher ash percentage, higher contents of N and P to 20 cm depth and reduced concentrations of total Ca, K, Mg, Na, Al and Fe in soil layers deeper than 20 cm. The soligenous site was not effectively drained; despite this, pH dropped about 0.5 unit in the surface and subsurface soil layers of the control plots, while small changes were measured for most other soil variables. The suggested reason for the pH drop is limited sulphide oxidation in the upper 20 cm drained layer. Base saturation at actual soil pH, when all treatments were included, was estimated with good precision by four regressors: pH, extractable Al, extractable Fe and extractable Ca (R{sup 2} = 0.90-0.95). Similar models explained 97-99% of the variation in base saturation at soil pH = 7.0. The lime effects at the properly drained oligotrophic sites were proportional to applied doses; for pH to 40 cm, base saturation to 60 cm, and Ca concentration to 60 cm depth. At the less well-drained soligenous site, effects were limited to the upper 30 cm layer. Both drainage and liming caused higher cation exchange capacities and proper drainage seems to be a prerequisite for the liming effect. Estimated recovery of calcium to 60 cm depth was 64-79% at the ombrogenous sites and 42-46% at the soligenous site 28 refs, 3 figs, 8 tabs

  15. Simulation of groundwater drainage into a tunnel in fractured rock and numerical analysis of leakage remediation, Romeriksporten tunnel, Norway

    Science.gov (United States)

    Kitterød, N.-O.; Colleuille, H.; Wong, W. K.; Pedersen, T. S.

    2000-09-01

    Standard geostatistical methods for simulation of heterogeneity were applied to the Romeriksporten tunnel in Norway, where water was leaking through high-permeable fracture zones into the tunnel while it was under construction, causing drainage problems on the surface. After the tunnel was completed, artificial infiltration of water into wells drilled from the tunnel was implemented to control the leakage. Synthetic heterogeneity was generated at a scale sufficiently small to simulate the effects of remedial actions that were proposed to control the leakage. The flow field depends on the variance of permeabilities and the covariance model used to generate the heterogeneity. Flow channeling is the most important flow mechanism if the variance of the permeability field is large compared to the expected value. This condition makes the tunnel leakage difficult to control. The main effects of permeability changes due to sealing injection are simulated by a simple perturbation of the log-normal probability density function of the permeability. If flow channeling is the major transport mechanism of water into the tunnel, implementation of artificial infiltration of water to control the leakage requires previous chemical-sealing injection to be successful. Résumé. Des méthodes géostatistiques standard ont été employées pour simuler l'hétérogénéité des zones de fractures à fortes perméabilitées dans lesquelles, au cours de la construction du tunnel ferroviaire de Romeriksporten (Norvège), l'eau s'est écoulée, causant des problèmes de drainage en surface. Quand les travaux ont été terminés, l'injection d'eau dans des puits forés à partir du tunnel a été réalisée pour contrôler ces infiltrations. Une hétérogénéité synthétique a été créée à une échelle suffisamment petite pour simuler les effets de l'injection d'eau. Le champ des écoulements dépend de la variance des perméabilités et de la covariance du modèle utilisé pour g

  16. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an Acid mine drainage-contaminated natural wetland.

    Science.gov (United States)

    Moreau, John W; Fournelle, John H; Banfield, Jillian F

    2013-01-01

    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  17. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    Directory of Open Access Journals (Sweden)

    John W Moreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  18. Contribution to the study of the weathering rate of minerals and rocks in the drainage basin of the Paraguacu river - Bahia - Brazil

    International Nuclear Information System (INIS)

    The concentrations of Na+, Mg++, Ca++, K+, SiO2, SO sup(=)4, alcalinity and pH have been determined for twenty-nine surface water samples of the Paraguacu river drainage basin, mainly in the Utinga River sub-basin. The stable isotope ratio of carbon 13C/12C as well as concentration of 14C was determined for some samples. The ion influence on local aerosol chemistry has also been subtracted from all samples. The analytical results were used to determine the current rate of weathering the rocks of this region and study the sources of dissolved carbon in this water. The analysis of the data shows that weathering processes are influenced by the local lithology. The data from them Utinga river suggests that dissolution of limestone contributes a large percentage of ions. The influence of groundwater in the river flow also brings high concentrations of Na+, Mg++ and Ca++ ions from aerosols, presumeably concentrated by evapo-transpiration. The presence of aerosols in the samples used is remarkable, the contribution of salts from silicate weathering is rather small. It is proposed that the dissolution of limestone and decomposition of organic matter might explain the origin of carbon in some of the samples but others appear to have suffered equilibration with atmospheric CO2. (Author)

  19. Simulation experiments for evolution of fatty acids in immature source rocks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The anhydrous, hydrous and bitumen-extrac- ted simulations were carried out for the immature source rocks from the Liaohe sag. It has been shown from the result that with increasing temperature in simulation experiments, the fatty acids content decreased at first and then increased. The decrease of fatty acids in immature rocks is presumably related to alkanes generation in immature oils, whilst the increase may be related to the fact that some additional fatty acids are generated from kerogen and the tightly bound fatty acids in kerogen are released as bound fatty acids in kerogen and unbound fatty acids in bitumen. The fact that the bitumen generated from kerogen contains fatty acids has demonstrated that some bound and tightly bound fatty acids in kerogen can be transferred into bitumen. The preferential fatty acids in the immature source rocks are found to be mono-carboxylic acids with longer chains, whilst krogen contains relatively more di-carboxylic acids. It has been found that the fatty acids in immature source rocks can be changed from that with more longer chains to that with more shorter chains when evolution extent has been increased. Based on simulation results and the fact that the majority of fatty acids in immature oils are those with longer chains, it is inferred that the contribution of fatty acids to forming alkanes in immature oils mainly takes place at the evolution stage with R0 (0.6%. The simulation experiments have also demonstrated that H2O could promote the generation of fatty acids with more di-carboxylic acids and delay alkanes formation from fatty acids.

  20. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    Science.gov (United States)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  1. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China.

    Science.gov (United States)

    Zhao, Huarong; Xia, Beicheng; Qin, Jianqiao; Zhang, Jiaying

    2012-01-01

    Dabaoshan Mine, the largest mine in south China, has been developed since the 1970s. Acid mine drainage (AMD) discharged from the mine has caused severe environmental pollution and human health problems. In this article, chemical characteristics, mineralogy of ocher precipitations and heavy metal attenuation in the AMD are discussed based on physicochemical analysis, mineral analysis, sequential extraction experiments and hydrogeochemistry. The AMD chemical characteristics were determined from the initialwater composition, water-rock interactions and dissolved sulfide minerals in the mine tailings. The waters, affected and unaffected by AMD, were Ca-SO4 and Ca-HCO3 types, respectively. The affected water had a low pH, high SO4(2-) and high heavy metal content and oxidation as determined by the Fe2+/Fe3+ couple. Heavy metal and SO4(2-) contents of Hengshi River water decreased, while pH increased, downstream. Schwertmannite was the major mineral at the waste dump, while goethite and quartz were dominant at the tailings dam and streambed. Schwertmannite was transformed into goethite at the tailings dam and streambed. The sulfate ions of the secondary minerals changed from bidentate- to monodentate-complexes downstream. Fe-Mn oxide phases of Zn, Cd and Pb in sediments increased downstream. However, organic matter complexes of Cu in sediments increased further away from the tailings. Fe3+ mineral precipitates and transformations controlled the AMD water chemistry. PMID:23505864

  2. Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Hasiotis, S.T.; Dannelly, H.K.; Connors, K.A. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography, Geology & Anthropology

    2002-07-01

    Biological activity of Euglena mutabilis, an acidophilic, photosynthetic protozoan, contributes to the formation of Fe-rich stromatolites in acid mine drainage systems. E. mutabilis is the dominant microbe in bright green benthic mats (biofilm), coating drainage channels at abandoned coal mine sites in Indiana. It builds biolaminates through phototactic and aerotactic behavior, similar to prokaryotes, by moving through precipitates that periodically cover the mats. E. mutabilis also contributes to formation of Fe-rich stromatolites by (1) intracellularly storing Fe compounds released after death, contributing to the solid material of stromatolites and acting as nucleation sites for precipitation of authigenic Fe minerals, and (2) generating 02 via photosynthesis that further facilitates precipitation of reduced Fe, any excess 02 not consumed by Fe precipitation being released to the atmosphere. Recognition of E. mutabilis-dominated biofilm in acidic systems raises a provocative hypothesis relating processes involved in formation of Fe-rich stromatolites by E. mutabilis to those responsible for development of Precambrian stromatolitic Fe formations and oxygenation of the early atmosphere.

  3. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.

    Science.gov (United States)

    Desoeuvre, Angélique; Casiot, Corinne; Héry, Marina

    2016-04-01

    Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations. PMID:26603631

  4. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  5. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    Science.gov (United States)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  6. Biosorption of Fe, Al and Mn of acid drainage from coal mine using brown seaweed sargassum sp. in continuous process

    International Nuclear Information System (INIS)

    The acid mine drainage (AMD) are leaches as result of a coal mining running, it have low ph and high concentrations of heavy metals that convert them in strong polluter; with the purpose of reduce its concentration, a continuous biosorption system was designed by removing heavy metals from drainages using a cheap biosorbent material. The brown seaweed was pre-treatment with solutions 0,1 N of NaOH, Ca(OH)2 NaCl, CaCl2, NaSO4 y H2SO4 for to study the effect on biosorption process; the removal percentage were determined, which are better than 80% with the exception of pre-treatment with H2SO4 who cancel the algae sorption capacity. The seaweed was packed in plastic mesh and polyester tulle in the shape of a rectangular prism; there isn't effect on the biosorption process by using this packet. The continuous biosorption process was studied in two units of operation: a packed-bed flow-through sorption column and an horizontal vessel like a canal with baffles, which treated adequately 3,5 and 4,71 of AMD respectively, using in each one of them 100 g of algae. The burning of algae was studied like an alternative for the problem of handling of residual algae. The ashes kept the metals removed from AMD, furthermore keep stable too by the attack of solutions of different pH

  7. Benthic Communities of Low-Order Streams Affected by Acid Mine Drainages: A Case Study from Central Europe

    Directory of Open Access Journals (Sweden)

    Marek Svitok

    2014-05-01

    Full Text Available Only little attention has been paid to the impact of acid mine drainages (AMD on aquatic ecosystems in Central Europe. In this study, we investigate the physico-chemical properties of low-order streams and the response of benthic invertebrates to AMD pollution in the Banská Štiavnica mining region (Slovakia. The studied streams showed typical signs of mine drainage pollution: higher conductivity, elevated iron, aluminum, zinc and copper loads and accumulations of ferric precipitates. Electric conductivity correlated strongly with most of the investigated elements (weighted mean absolute correlation = 0.95 and, therefore, can be recommended as a good proxy indicator for rapid AMD pollution assessments. The diversity and composition of invertebrate assemblages was related to water chemistry. Taxa richness decreased significantly along an AMD-intensity gradient. While moderately affected sites supported relatively rich assemblages, the harshest environmental conditions (pH < 2.5 were typical for the presence of a limited number of very tolerant taxa, such as Oligochaeta and some Diptera (Limnophyes, Forcipomyiinae. The trophic guild structure correlated significantly with AMD chemistry, whereby predators completely disappeared under the most severe AMD conditions. We also provide a brief review of the AMD literature and outline the needs for future detailed studies involving functional descriptors of the impact of AMD on aquatic ecosystems.

  8. Application of Ground Phosphate Rock to Diminish the Effects of Simulated Acid Rain of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; LIXUE-YUAN

    1992-01-01

    The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H+,Al3+ and Mn2+ and the amount of SO41- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased,and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.

  9. Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occurring radioactive materials.

    Science.gov (United States)

    Villa, M; Manjón, G; Hurtado, S; García-Tenorio, R

    2011-07-01

    After the termination of phosphogypsum discharges to the Huelva estuary (SW Spain), a unique opportunity was presented to study the response of a contaminated environmental compartment after the cessation of its main source of pollution. The evolution over time of uranium concentrations in the estuary is presented to supply new insights into the decontamination of a scenario affected by Naturally Occurring Radioactive Material (NORM) discharges. The cleaning of uranium isotopes from the area has not taken place as rapidly as expected due to leaching from phosphogypsum stacks. An in-depth study using various techniques of analysis, including (234)U/(238)U and (230)Th/(232)Th ratios and the decreasing rates of the uranium concentration, enabled a second source of uranium contamination to be discovered. Increased uranium levels due to acid mine drainage from pyrite mines located in the Iberian Pyrite Belt (SW Spain) prevent complete uranium decontamination and, therefore, result in levels nearly twice those of natural background levels.

  10. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%. PMID:23437664

  11. Response of macroinvertebrate communities to remediation-simulating conditions in Pennsylvania streams influenced by acid mine drainage

    Science.gov (United States)

    Ross, R.M.; Long, E.S.; Dropkin, D.S.

    2008-01-01

    We compared naturally alkaline streams with limestone lithology to freestone streams with and without acid mine drainage (AMD) to predict benthic macroinvertebrate community recovery from AMD in limestone-treated watersheds. Surrogate-recovered (limestone) and, in many cases, freestone systems had significantly higher macroinvertebrate densities; diversity; taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa; EPT/chironomid ratios; scraper/collector - gatherer ratios; herbivores; collector - filterers; and scrapers. AMD-influenced systems had significantly greater numbers of Diptera and collector - gatherers. An entire trophic level (herbivores) was 'restored' in surrogate-recovered streams, which also showed greater trophic specialization. Indicator analysis identified seven taxa (within Crustacea, Diptera, Nematoda, Trichoptera, and Ephemeroptera) as significant indicators of limestone systems and six taxa (within Ephemeroptera, Plecoptera, Tricoptera, Coleoptera, and Mollusca) as significant freestone indicators, all useful as biological indicators of recovery from AMD. ?? Springer Science+Business Media B.V. 2007.

  12. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  13. Bio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process

    Directory of Open Access Journals (Sweden)

    Hanieh Soleimanifar

    2012-12-01

    Full Text Available Acid mine drainage (AMD containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nativefungi called Aspergillus niger and Phanerochaete chrysosporium which were extracted from the soil andsediment samples of the Shour River at the Sarcheshmeh mine. The live fungi was first harvested andthen killed by boiling in 0.5 N NaOH solution. The biomass was finally dried at 60 C for 24 h andpowdered. The optimum biosorption parameters including pH, temperature, the amount of biosorbent andcontact time were determined in a batch system. The optimum pH varied between 5 and 6. It was foundthat the biosorption process increased with an increase in temperature and the amount of biosorbent.Biosorption data were attempted by Langmuir and Freundlich isotherm models and showed a good match.Kinetic studies were also carried out in the present study. The results show that the second-order kineticsmodel fits well the experimental data. The biosorption experiments were further investigated with acontinuous system to compare the biosorption capacities of two systems. The results show thatbiosorption process using a continuous system increases efficiency up to 99%. A desorption process waseventually performed in order to recover Copper and Manganese ions. This process was successful andfungi could be used again.

  14. Acid Mine Drainage Research in Gauteng Highlighting Impacts on Infrastructure and Innovation of Concrete-Based Remedial Systems

    Science.gov (United States)

    Diop, S.; Ekolu, S.; Azene, F.

    2013-12-01

    Acid mine drainage (AMD) is presently one of the most important environmental problems in in the densely populated Gauteng Province, South Africa. The threat of acid mine drainage has demanded short-term interventions (some of which are being implemented by government) but more importantly sustainable long-term innovative solutions. There have been moments of public apprehension with some media reports dubbing the current scenario as a future 'nightmare of biblical proportions' and 'South Africa's own Chernobyl' that could cause dissolving of concrete foundations of buildings and reinforcement steel, leading to collapse of structures. In response to the needs of local and provincial authorities, this research was conducted to (1) generate scientific understanding of the effects of AMD on infrastructure materials and structures, and (2) propose innovative long-term remedial systems based on cementitious materials for potential AMD treatment applications of engineering scale. Two AMD solutions from the goldfields and two others from the coalfields were used to conduct corrosion immersion tests on mild steel, stainless steel, mortars, pastes and concretes. Results show that AMD water from the gold mines is more corrosive than that from the coal mines, the corrosion rate of the former being about twice that of the latter. The functionality of metal components of mild steel can be expected to fail within one month of exposure to the mine water. The investigation has also led to development of a pervious concrete filter system of water-cement ratio = 0.27 and cement content = 360 kg/m3, to be used as a permeable reactive barrier for AMD treatment. Early results show that the system was effective in removing heavy metal contaminants with removal levels of 30% SO4, 99% Fe, 50-83% Mn, 85% Ca, and 30% TDS. Further work is on-going to improve and optimise the system prior to field demonstration studies.

  15. An improved method for separating quartz from rock using pyrophosphoric acid

    International Nuclear Information System (INIS)

    A method that employs hot dehydrated phosphoric acid (pyrophosphoric acid) to isolate quartz from rock for surface exposure dating with 10Be and 26Al has been improved so that up to 250 g of sample can be decomposed reasonably safely. Because pyrophosphoric acid is more selective in dissolving the silicate minerals than the commonly used mixture of dilute hydrofluoric and nitric acids, the yield of quartz is relatively high. However, serious hazards arise from using large volumes of hot concentrated phosphoric acid to decompose rock. When the acid is heated to evaporate water and initiate the reaction, the crushed rock settles to the bottom of the vessel causing the mixture to superheat and 'bump' severely. Then, as the reaction progresses, the mixture increases in viscosity and will form a solid gel if allowed to cool. Starting with a greater excess of phosphoric acid to reduce the viscosity is impractical for such large amounts of rock so, to avoid a solid gel at the end of the reaction, the mixture has to be diluted with cold water while it is still near 250 degrees C. This step is particularly dangerous as the water at first instantaneously turns to steam that can eject gel resulting in serious thermal burns even through thick gloves. We have mitigated these hazards by keeping the sample suspended using a mixer throughout the procedure. There is no superheating at the start and water can be added slowly at the end thus quenching the reaction and dispersing the particulate matter. Another hazard, boiling sodium hydroxide solution, has been minimised and may ultimately be eliminated. This report covers the prototype mixer, safety features of the new mixer under construction, and an interim procedure for decomposing rock and recovering pure quartz. (author)

  16. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective.

    Science.gov (United States)

    Delgado, Joaquín; Pérez-López, Rafael; Galván, Laura; Nieto, José Miguel; Boski, Tomasz

    2012-09-01

    Rare earth elements (REE) were analyzed in surface sediments from the Guadiana Estuary (SW Iberian Pyrite Belt). NASC (North American Shale Composite) normalized REE patterns show clearly convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE, indicating acid-mixing processes between fluvial waters affected by acid mine drainage (AMD) and seawater. However, REE distributions in the mouth (closer to the coastal area) show slightly LREE-enriched and flat patterns, indicating saline-mixing processes typical of the coastal zone. NASC-normalized ratios (La/Gd and La/Yb) do not discriminate between both mixing processes in the estuary. Instead, a new parameter (E(MREE)) has been applied to measure the curvature in the MREE segment. The values of E(MREE)>0 are indicative of acid signatures and their spatial distribution reveal the existence of two decantation zones from flocculation processes related to drought periods and flood events. Studying REE fractionation through the E(MREE) may serve as a good proxy for AMD-pollution in estuarine environments in relation to the traditional methods. PMID:22748838

  17. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    Science.gov (United States)

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15). PMID:26032451

  18. Predicting the occurrence of acid mine drainage in the Alleghenian coal-bearing strata of western Pennsylvania

    International Nuclear Information System (INIS)

    This paper reports that simulated weathering experiments on coals and shales demonstrate that the critical factors responsible for the generation of acid mine drainage (AMD) are the amounts of total sulfur, total carbonate, and the surface area of the pyrite. Total sulfur and carbonate carbon contents differ markedly among paleoenvironments whose distribution has been mapped for the Alleghenian state of western Pennsylvania. Freshwater (Estheria-bearing) shales have a mean total sulfur content of 0.15 percent and a mean carbonate carbon content of 0.54 percent. Brackish (Lingula-bearing) shales have a mean total sulfur content of 2.40 percent and a mean carbonate carbon content of 0.14 percent. Marine (Chonetes-bearing) shales have a mean total sulfur content of 0.95 percent and a mean carbonate carbon content of 0.63 percent. In the simulated weathering experiments, the amount of acidity, sulfate, and total iron exhibit a well-defined positive linear relation with total sulfur in samples whose carbonate carbon content is ≤ 0.01 percent. Where carbonate carbon contents are >0.01 percent, the amount of acidity, sulfate, and total iron is considerably less, and the linear relation no longer exists

  19. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Institute of Scientific and Technical Information of China (English)

    Gulsen Tozsin

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sul-fide-bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neu-tralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment (t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sul-fate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  20. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    Science.gov (United States)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  1. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: A new perspective

    International Nuclear Information System (INIS)

    Rare earth elements (REE) were analyzed in surface sediments from the Guadiana Estuary (SW Iberian Pyrite Belt). NASC (North American Shale Composite) normalized REE patterns show clearly convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE, indicating acid-mixing processes between fluvial waters affected by acid mine drainage (AMD) and seawater. However, REE distributions in the mouth (closer to the coastal area) show slightly LREE-enriched and flat patterns, indicating saline-mixing processes typical of the coastal zone. NASC-normalized ratios (La/Gd and La/Yb) do not discriminate between both mixing processes in the estuary. Instead, a new parameter (EMREE) has been applied to measure the curvature in the MREE segment. The values of EMREE > 0 are indicative of acid signatures and their spatial distribution reveal the existence of two decantation zones from flocculation processes related to drought periods and flood events. Studying REE fractionation through the EMREE may serve as a good proxy for AMD-pollution in estuarine environments in relation to the traditional methods.

  2. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.

    Science.gov (United States)

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

    2012-07-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.

  3. The development of bio-carbon adsorbents from Lodgepole Pine to remediate acid mine drainage in the Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Jae [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)], E-mail: eshin@mines.edu; Lauve, Alexander; Carey, Maxwell [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Bukovsky, Eric; Ranville, James F. [Department of Chemistry and Geochemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Evans, Robert J.; Herring, Andrew M. [Department of Chemical Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2008-03-15

    Activated carbon adsorbents were produced from biomass locally available in the Rocky Mountain West, e.g. Lodgepole Pine (Pinus contorta), by vacuum pyrolysis at moderate temperatures followed by steam activation, for use as metal adsorbents for acid mine drainage (AMD). Wood cubes from fresh cut Lodgepole Pine (P. contorta) with different sizes, 3 and 12 mm, were made. Sawdust was also used to study the effect of sample size as well as sample material. We applied chemical pretreatment with potassium hydroxide before charring to improve the quality of the activated carbons. We compared the characteristics of the activated carbons, which were chemically pretreated, before and after washing with water. After washing, the BET surface area was found to increase and diffuse reflectance infrared spectroscopy showed changes in the carbon matrix. We then tested the samples for metal adsorption from AMD sampled from AMD sites in Colorado, Clear Creek County and the Leadville mine drainage tunnel, along with a commercial activated carbon for comparison. We used a batch method to measure maximum metal adsorption of the activated carbons. The metals chosen to be monitored were copper, cadmium, manganese, nickel, lead, and zinc, because they are the principal metals of interest for the test areas, and metal concentrations were determined by ion coupled plasma-atomic emission spectroscopy. The samples produced in this work outperformed the commercial activated carbon in two AMD water treatment tests and for the six metals monitored. This metal adsorption data indicate that locally produced inexpensive activated carbons can be used as adsorbents for AMD successfully.

  4. Distribution, ecology and inhibition of Thiobacillus ferrooxidans in relation to acid drainage from Witwatersrand gold mine dumps

    International Nuclear Information System (INIS)

    The distribution and ecology of Thiobacillus ferrooxidans in gold mine dumps and possible means for its inhibition were investigated. A literature survey of the micro-ecology of mine waste dumps in various parts of the world was undertaken. A linear alkylbenzene sulphonate (LAS), NANSA 80/S, and a cetyl pyridinium chloride, Ceepryn, were tested as possible inhibitors for mine dump application. The LAS was rejected because it is poorly soluble in water and required higher concentrations than SLS for the inhibition of T.ferrooxidans. Ceepryn was an efficient inhibitor, but its efficiency was dramatically impeded in the presence of mine dump sand making it unsuitable for application on dumps. The SLS and LAS were tested against a mixed population of T.ferrooxidans from gold mine dumps and these bacteria were shown to be marginally more resistant to the inhibitors than the pure T.ferrooxidans culture. Sampling from mine dumps on the Witwatersrand suggested that the major T.ferrooxidans populations occurred in the moist sand of the drainage areas at the base of dumps, with few viable iron-oxidising bacteria located on the surfaces or in the centre of dumps. Sites of low moisture in dumps contained few or no viable bacteria. In the laboratory the bacterial viability decreased rapidly with loss of moisture from the sand. Moisture was shown to be important to bacterial activity and should be considered with respect to acid drainage control. Experimental sand columns showed that iron was leached with water from mine dump sand in the absence and presence of bacteria. In this study substrates, moisture, oxygen and carbon dioxide availability, ph, temperature, microorganisms and metal pollutants of uranium waste dumps are also covered

  5. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    Science.gov (United States)

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  6. Plan for injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    International Nuclear Information System (INIS)

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990's, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. Injecting grout into the mine workings to reduce AMD (and thus reducing treatment costs) is proposed. The procedure involves injecting grout mixes composed primarily of coal combustion byproducts (CCB's) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. The injection program was developed to account for this by utilizing closer injection hole spacing in second-mined areas. Construction began in January 1998, with grout injection expected to commence in mid-April 1998

  7. pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage

    Science.gov (United States)

    McKnight, Diane M.; Kimball, B.A.; Runkel, R.L.

    2001-01-01

    The redox speciation of dissolved iron and the transport of iron in acidic, metal-enriched streams is controlled by precipitation and dissolution of iron hydroxides, by photoreduction of dissolved ferric iron and hydrous iron oxides, and by oxidation of the resulting dissolved ferrous iron. We examined the pH dependence of these processes in an acidic mine-drainage stream, St Kevin Gulch, Colorado, by experimentally increasing the pH of the stream from about 4.0 to 6.5 and following the downstream changes in iron species. We used a solute transport model with variable flow to evaluate biogeochemical processes controlling downstream transport. We found that at pH 6.4 there was a rapid and large initial loss of ferrous iron concurrent with the precipitation of aluminium hydroxide. Below this reach, ferrous iron was conservative during the morning but there was a net downstream loss of ferrous iron around noon and in the afternoon. Calculation of net oxidation rates shows that the noontime loss rate was generally much faster than rates for the ferrous iron oxidation at pH 6 predicted by Singer and Stumm (1970. Science 167: 1121). The maintenance of ferrous iron concentrations in the morning is explained by the photoreduction of photoreactive ferric species, which are then depleted by noon. Copyright ?? 2001 John Wiley & Sons, Ltd.

  8. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Science.gov (United States)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  9. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L-1, iron 348 mg L-1) with an average discharge of about 114 and 40 L s-1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  10. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    Science.gov (United States)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  11. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage

    OpenAIRE

    Mirete, Salvador; González de Figueras, Carolina; González-Pastor, José Eduardo

    2007-01-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two m...

  12. Agronomic Potential of Partially Acidulated Rock Phosphates in Acid Soils of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLI-MING; B.TRUONG; 等

    1995-01-01

    A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulated rock phosphates(PARP) in three representative solis sampled from subtripical China.The PARPs were manufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or with combination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation.Shoot dry weight and P accumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of these fertilizers with that of the raw rock phosphate(RP) and monocalcium phosphate (MCP).Results indicated that the effectiveness of various phosphates was determined both by the solubility of the phosphates and by the acidity and P-fixing capacity of the soils.The higher the watersoluble P contained,the better the effectiveness of the fertilizer was.Although plant P accumulation of PARP treatments was constantly lower than that of MCP treatment,some PARPs could still get a dry matter production similar to that of MCP treatment.PARP SP60,which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60 percent of acidulation and contained the highest soluble,P,was as effective as MCP in terms of dry matter production on all the soils.S60 and C1 which were both acidulated with sulfuric acid with the former at 60 percent of acidulation and the latter at 30 percent but with a further addition of monoammonium phosphate,were more than 80 percent as efective as MCP,Raw RP also showed a reasonable effectiveness which increased with soil acidity.It was suggested from the study that some of these APRPs could be expected to have a comparable field performance as soluble P fertilizers in the acid soil regions.

  13. Acid mine drainage prevention, control and treatment technology development for the Stockett/Sand Coulee area. Topical report, March 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    The project was initiated to assist the State of Montana to develop a methodology to ameliorate acid mine drainage problems associated with the abandoned mines located in the Stockett/Sand Coulee area near Great Falls, Montana. Extremely acidic water is continuously discharging from abandoned coal mines in the Stockett/Sand Coulee area at an estimated rate of greater than 600 acre-feet per year (about 350 to 400 gallons per minute). Due to its extreme acidity, the water is unusable and is contaminating other water supplies. Most of the local alluvial aquifers have been contaminated, and nearly 5% of the private wells that were tested in the area during the mid-1980's showed some degree of contamination. Significant government money has been spent replacing water supplies due to the magnitude of this problem. In addition, millions of dollars have been spent trying to remediate acid mine drainage occurring in this coal field. To date, the techniques used have focused on the management and containment of mine waters, rather than designing technologies that would prevent the formation of acid mine drainage

  14. Effects of humic acid on adsorption of actinide elements on rocks and others

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masakazu; Sato, Seichi; Ohashi, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Sakamoto, Yoshiaki; Nagao, Seiya; Onuki, Toshihiko; Senoo, Muneaki

    1996-01-01

    Since the transfer rates of radionuclides are reduced by their adsorption to rocks and soils, it is essential to elucidate the adsorption process for safety assessment of their geological disposal. In this study, adsorption of Np(V) to goethite, one of the widely distributed minerals was investigated as functions of pH and humic acid concentration. The surface charge density of goethite was determined and the zero charge point was 6.2 for synthesized and 6.4 for natural goethite. Since the point for humic acid was 4.5, adsorption sites for humic acid were reduced as the increase of negative charge density above pH6, resulting in a decrease in its adsorption rate. Np(V) adsorption to goethite was raised by the presence of humic acid in the range of 0-10ppm because the surface charge on the rock was shifted to negative by the adsorption of humic acid, resulting in easy adsorption of NpO{sub 2}{sup +}, which is stable in the condition below pH 9.5. On the other hand, humic acid adsorption was saturated at a concentration higher than 50 ppm, but its content in the solution would increase. Thus, it was thought that Np(V)-humic acid complex becomes more stable, resulting in the decrease in Np(V) adsorption rate. (M.N.)

  15. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    Science.gov (United States)

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new process in treatment of acid impaired waters that were

  16. Heavy metal removal in groundwater originating from acid mine drainage using dead Bacillus drentensis sp. immobilized in polysulfone polymer.

    Science.gov (United States)

    Kim, Insu; Lee, Minhee; Wang, Sookyun

    2014-12-15

    Batch, column, and pilot scale feasibility experiments for a bio-sorption process using a bio-carrier (beads) with dead Bacillus drentensis sp. in polysulfone polymer were performed to remove heavy metals in groundwater originating from an acid mine drainage (AMD). For batch experiments, various amounts of bio-carrier each containing a different amount of dead biomass were added in artificial solution, of which the initial heavy metal concentration and pH were about 10 mg/L and 3, respectively. The heavy metal removal efficiencies of the bio-carrier under various conditions were calculated and more than 92% of initial Pb and Cu were found to have been removed from the solution when using 2 g of bio-carriers containing 5% biomass. For a continuous experiment with a column packed with bio-carriers (1 m in length and 0.02 m in diameter), more than 98% of Pb removal efficiency was maintained for 36 pore volumes and 1.553 g of Pb per g of bio-carrier was removed. For the pilot scale feasibility test, a total of 80 tons of groundwater (lower than pH of 4) were successfully treated for 40 working days and the removal efficiencies of Cu, Cd, Zn, and Fe were maintained above 93%, demonstrating that one kg of bio-carrier can clean up at least 1098 L of groundwater in the field.

  17. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage.

    Science.gov (United States)

    Nicomrat, Duongruitai; Dick, Warren A; Tuovinen, Olli H

    2006-01-01

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at detection in the bacterial community. The results from the FISH technique from this field study are consistent with results from other experiments involving enumeration by most probable number, dot-blot hybridization, and denaturing gradient gel electrophoresis analyses and with the geochemistry of the site. PMID:16825452

  18. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.K.; Roy, A.; Koschorreck, M.; Mandal, S.M.; Wendt-Potthoff, K.; Bhattacharya, J. [Indian Institute for Technology, Kharagpur (India). Dept. of Mining Engineering

    2009-03-15

    Passive remediation of Acid Mine Drainage (AMD) is a popular technology under development in current research. Roles of algae and fungi, the natural residents of AMD and its attenuator are not emphasized adequately in the mine water research. Living symbiotically various species of algae and fungi effectively enrich the carbon sources that help to maintain the sulfate reducing bacterial (SRB) population in predominantly anaerobic environment. Algae produce anoxic zone for SRB action and help in biogenic alkalinity generation. While studies on algal population and actions are relatively available those on fungal population are limited. Fungi show capacity to absorb significant amount of metals in their cell wall, or by extracellular polysaccharide slime. This review tries to throw light on the roles of these two types of microorganisms and to document their activities in holistic form in the mine water environment. This work, inter alia, points out the potential and gap areas of likely future research before potential applications based on fungi and algae initiated AMD remediation can be made on sound understanding.

  19. Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage. Effects of trophic level

    Energy Technology Data Exchange (ETDEWEB)

    Winterbourn, M.J. [Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); McDiffett, W.F.; Eppley, S.J. [Biology Department, Bucknell University, Lewisburg, PA (United States)

    2000-05-24

    Concentrations of Al and Fe were determined in samples of filamentous algae, bryophytes and invertebrates from 24 stream sites in North Westland, South Island, New Zealand. Sites were variably contaminated by acid coal mine drainage and ranged in pH from 2.6 to 6.2. Conductivity of stream water ranged from 16 to 944 {mu}S{sub 25} cm{sup -1} and maximum concentrations of total dissolved Al and total Fe measured in two successive years were 35.5 and 32.6 mg l{sup -1}, respectively. Metal burdens of algae and bryophytes were not correlated with pH, conductivity or the concentrations of Al and Fe observed in stream water. Metal concentrations in invertebrates were significantly lower than those in plants (mg per g dry wt.), and were similar in herbivore-detritivores (mainly mayfly larvae) and carnivorous species. No evidence was found for the biomagnification of either metal within aquatic food webs. However, invertebrate species exposed to very high concentrations of Al and Fe varied considerably in body burdens, suggesting that groups of insects differ considerably in their physiological or morphological ability to exclude potentially toxic metals.

  20. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H. [Ohio State University, Wooster, OH (United States). Environmental Science Graduate Programme

    2006-07-15

    Microorganisms are an integral part of the biogeochemical processes in wetlands, yet microbial communities in sediments within constructed wetlands receiving acid mine drainage (AMD) are only poorly understood. The purpose of this study was to characterize the microbial diversity and abundance in a wetland receiving AMD using fluorescence in situ hybridization (FISH) analysis. Seasonal samples of oxic surface sediments, comprised of Fe(III) precipitates, were collected from two treatment cells of the constructed wetland system. The pH of the bulk samples ranged between pH 2.1 and 3.9. Viable counts of acidophilic Fe and S oxidizers and heterotrophs were determined with a most probable number (MPN) method. The MPN counts were only a fraction of the corresponding FISH counts. The sediment samples contained microorganisms in the Bacteria (including the subgroups of acidophilic Fe- and S-oxidizing bacteria and Acidiphilium spp.) and Eukarya domains. Archaea were present in the sediment surface samples at < 0.01% of the total microbial community. The most numerous bacterial species in this wetland system was Acidithiobacillus ferrooxidans, comprising up to 37% of the bacterial population. Acidithiobacillus thiooxidans was also abundant.

  1. Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Moo Joon; Choi, Byoung Young; Lee, Giehyeon; Hwang, Yun Ho; Yang, Jung-Seok; O' Loughlin, Edward J.; Kwon, Man Jae

    2015-12-01

    To determine the long-term effectiveness of the limestone treatment for acid mine drainage (AMD) in Gangneung, Korea, we investigated the elemental distribution in streams impacted by AMD and compared the results of previous studies before and approximately 10 years after the addition of limestone. Addition of limestone in 1999 leads to a pH increase in 2008, and with the exception of Ca, the elemental concentrations (e.g., Fe, Mn, Mg, Sr, Ni, Zn, S) in the streams decreased. The pH was 2.5–3 before the addition of limestone and remained stable at around 4.5–5 from 2008 to 2011, suggesting the reactivity of the added limestone was diminished and that an alternative approach is needed to increase the pH up to circumneutral range and maintain effective long-term treatment. To identify the processes causing the decrease in the elemental concentrations, we also examined the spatial (approximately 7 km) distribution over three different types of streams affected by the AMD. The elemental distribution was mainly controlled by physicochemical processes including redox reactions, dilution on mixing, and co-precipitation/adsorption with Fe (hydr)oxides.

  2. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage.

    Science.gov (United States)

    Deng, Dongyang; Weidhaas, Jennifer L; Lin, Lian-Shin

    2016-03-15

    The kinetics and microbial ecology in sulfidogenic bioreactors used in a novel two-stage process for co-treatment of acid mine drainage (AMD) and municipal wastewater (MWW) were investigated. Michaelis-Menten modeling of COD oxidation by sulfate reducing bacteria (SRB) (Vmax=0.33mgL(-1)min(-1), Km=4.3mgL(-1)) suggested that the Vmax can be reasonably achieved given the typical COD values in MWW and anticipated mixing with AMD. Non-competitive inhibition modeling (Ki=6.55mgL(-1)) indicated that excessive iron level should be avoided to limit its effects on SRB. The COD oxidation rate was positively correlated to COD/sulfate ratio and SRB population, as evidenced by dsrA gene copies. Phylogenetic analysis revealed diverse microbial communities dominated by sulfate reducing delta-proteobacteria. Microbial community and relative quantities of SRB showed significant differences under different COD/sulfate ratios (0.2, 1 and 2), and the highest dsrA gene concentration and most complex microbial diversity were observed under COD/sulfate ratio 2. Major species were associated with Desulfovirga, Desulfobulbus, Desulfovibrio, and Syntrophus sp. The reported COD kinetics, SRB abundances and the phylogenetic profile provide insights into the co-treatment process and help identify the parameters of concerns for such technology development.

  3. Fixed bed sorption of phosphorus from wastewater using iron oxide-based media derived from acid mine drainage

    Science.gov (United States)

    Sibrell, Philip L.; Tucker, T.W.

    2012-01-01

    Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed concentration. Optimal test results were obtained with a relatively small media particle size (average particle radius 0.028 cm) and resulted in 96 % removal of P from the influent over 46 days of continuous operation. These results indicate that fixed bed sorption of P would be a feasible option for the utilization of AMD residues, thus helping to decrease AMD treatment costs while at the same time ameliorating the impacts of P contamination.

  4. Hyperspectral analysis for qualitative and quantitative features related to acid mine drainage at a remediated open-pit mine

    Science.gov (United States)

    Davies, G.; Calvin, W. M.

    2015-12-01

    The exposure of pyrite to oxygen and water in mine waste environments is known to generate acidity and the accumulation of secondary iron minerals. Sulfates and secondary iron minerals associated with acid mine drainage (AMD) exhibit diverse spectral properties in the ultraviolet, visible and near-infrared regions of the electromagnetic spectrum. The use of hyperspectral imagery for identification of AMD mineralogy and contamination has been well studied. Fewer studies have examined the impacts of hydrologic variations on mapping AMD or the unique spectral signatures of mine waters. Open-pit mine lakes are an additional environmental hazard which have not been widely studied using imaging spectroscopy. A better understanding of AMD variation related to climate fluctuations and the spectral signatures of contaminated surface waters will aid future assessments of environmental contamination. This study examined the ability of multi-season airborne hyperspectral data to identify the geochemical evolution of substances and contaminant patterns at the Leviathan Mine Superfund site. The mine is located 24 miles southeast of Lake Tahoe and contains remnant tailings piles and several AMD collection ponds. The objectives were to 1) distinguish temporal changes in mineralogy at a the remediated open-pit sulfur mine, 2) identify the absorption features of mine affected waters, and 3) quantitatively link water spectra to known dissolved iron concentrations. Images from NASA's AVIRIS instrument were collected in the spring, summer, and fall seasons for two consecutive years at Leviathan (HyspIRI campaign). Images had a spatial resolution of 15 meters at nadir. Ground-based surveys using the ASD FieldSpecPro spectrometer and laboratory spectral and chemical analysis complemented the remote sensing data. Temporal changes in surface mineralogy were difficult to distinguish. However, seasonal changes in pond water quality were identified. Dissolved ferric iron and chlorophyll

  5. THE USE OF COAL COMBUSTION BY-PRODUCTS FOR IN SITU TREATMENT OF ACID MINE DRAINAGE

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey A. Canty; Jess W. Everett

    2004-09-30

    In 1994 a demonstration project was undertaken to investigate the effectiveness of using CCBs for the in situ treatment of acidic mine water. Actual injection of alkaline material was performed in 1997 with initial positive results; however, the amount of alkalinity added to the system was limited and resulted in short duration treatment. In 1999, a CBRC grant was awarded to further investigate the effectiveness of alkaline injection technology (AIT). Funds were released in fall 2001. In December 2001, 2500 tons of fluidized bed combustion (FBC) ash were injected into the wells used in the 1997 injection project. Post injection monitoring continued for 24 months. During this period the mine chemistry had gone through a series of chemical changes that manifested as stages or ''treatment phases.'' The mine system appeared to be in the midst of reestablishing equilibrium with the partial pressure of mine headspace. Alkalinity and pH appeared to be gradually increasing during this transition. As of December 2003, the pH and alkalinity were roughly 7.3 and 65 ppm, respectively. Metal concentrations were significantly lower than pre-injection levels, but iron and manganese concentrations appeared to be gradually increasing (roughly 30 ppm and 1.25 ppm, respectively). Aluminum, nickel, and zinc were less than pre-injection concentrations and did not appear to be increasing (roughly

  6. Mineral-microorganism interactions in Acid Mine Drainage environments: preliminary results

    Science.gov (United States)

    Carbone, Cristina; Zotti, Mirca; Pozzolini, Marina; Giovine, Marco; Di Piazza, Simone; Mariotti, Mauro; Lucchetti, Gabriella

    2014-05-01

    Minerals play a key role in controlling the mobility and distribution of metals and metalloids of environmental concern in supergenic environments. These are involved in a variety of processes, spanning the alteration of primary minerals to the formation of secondary authigenic phases and can represent a source or a trap for Potentially Ecotoxic Elements (PTEs). Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a reservoir of a unusual bacteria and fungi well adapted to these toxic environments. Classical studies of biotic weathering have mainly focused on water-mineral interaction and on the ability of microorganism to influence the soil solution chemical composition. In this work, we analyzed two different representative ochreous and greenish-blue AMD colloidal precipitates in order to i) characterize the biota population present in these colloidal minerals and ii) verify the bioaccumulation of PTEs into the fungi and the potential impact of bacteria in the geochemistry of the system. The samples are composed by nanocrystalline goethite which contains high amounts of Fe, Cu, Zn, Pb, and Ni and woodwardite that is characterized by Cu, Zn, Ni, Y, and Ce. These precipitates were examined in order to evaluate the presence of fungal strains and to extract bacteria DNA. The preliminary results of fungi characterization show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains was isolated in pure culture. Most of them belong to the genus Mucor and Penicillium. It is worth noting the presence of Trametes versicolor, a macrofungal lignicolous species already known for heavy metal biosorption capability from aqueous solution (Gülay et al 2003). The same colloidal precipitates have been processed to extract bacteria DNA, using a specific procedure developed for DNA extraction from sediments. The results gave a good yield of nucleic acids and the positive PCR

  7. Foam drainage

    Energy Technology Data Exchange (ETDEWEB)

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  8. Acid mine drainage abatement from small, buried piles of tipple refuse using fluidized bed fly ash grout

    International Nuclear Information System (INIS)

    Buried, pyrite-rich tipple refuse and pit cleanings on a reclaimed 37 acre surface coal mine site in Pennsylvania were found to be producing severe acid mine drainage (AMD). The pyritic material is located in discrete piles or pods in the backfill. The pods and the resulting contaminant plumes were initially defined using geophysical techniques and were confirmed by drilling. A fluidized bed combustion (FBC) fly ash was used as a grout in two different ways to isolate the pyritic material from water and oxygen, thus preventing AMD production. The first was pressure injecting grout directly into the buried pods to fill the void spaces within the pods and to coat the pyritic materials with a cementitious layer. Pods which would not accept the grout because of a clayey matrix were isolated from percolating water with a cap and trench seal of the grout. In certain areas, the AMD migrates to the groundwater table below the mine through fractures in the pit floor. The FBC ash grout was used in some of these areas in an attempt to seal the pit floor. A combination of geophysical mapping and monitoring wells is being used to monitor changes in the water quality. Minimal surface disturbance is required because only the sources of severe AMD production were targeted with the grout applications. Reduced costs are also possible since the FBC ash is a waste product. This methodology is designed as a true abatement technique requiring no future maintenance. The project was nearing completion at the time of this writing. This paper is an interim report

  9. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    Science.gov (United States)

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  10. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  11. Relationships between sources of acid mine drainage and the hydrochemistry of acid effluents during rainy season in the Iberian Pyrite Belt.

    Science.gov (United States)

    Pérez-Ostalé, E; Grande, J A; Valente, T; de la Torre, M L; Santisteban, M; Fernández, P; Diaz-Curiel, J

    2016-01-01

    In the Iberian Pyrite Belt (IPB), southwest Spain, a prolonged and intense mining activity of more than 4,500 years has resulted in almost a hundred mines scattered through the region. After years of inactivity, these mines are still causing high levels of hydrochemical degradation in the fluvial network. This situation represents a unique scenario in the world, taking into consideration its magnitude and intensity of the contamination processes. In order to obtain a benchmark regarding the degree of acid mine drainage (AMD) pollution in the aquatic environment, the relationship between the areas occupied by the sulfide mines and the characteristics of the respective effluents after rainfall was analysed. The methodology developed, which includes the design of a sampling network, analytical treatment and cluster analysis, is a useful tool for diagnosing the contamination level by AMD in an entire metallogenic province, at the scale of each mining group. The results presented the relationship between sulfate, total dissolved solids and electrical conductivity, as well as other parameters that are typically associated with AMD and the major elements that compose the polymetallic sulfides of IPB. This analysis also indicates the low level of proximity between the affectation area and the other variables. PMID:26819390

  12. Application of small hollow concrete blocks in earth-rock dam drainage body%小型空心砼砌块在土石坝排水体中的应用

    Institute of Scientific and Technical Information of China (English)

    宁杨

    2012-01-01

      根据土石坝排水体除险加固设计实践,借鉴砌体结构设计相关成果,论述了合理引进混凝土小型空心砌块,对土石坝排水体出水面进行优化设计的方法,使得坝体排水更通畅,施工更方便,外观更整齐漂亮。%  According to reinforcement design practice and masonry structural design achievements, small hollow concrete blocks were applied at the outflow surface of earth-rock dam drainage body, rendering more smooth drain⁃age, more convenient construction, more even and beautiful appearance.

  13. Phosphate Rock Fertilizer in Acid Soil:Comparing Phosphate Extraction Methods for Measuring Dissolution

    Institute of Scientific and Technical Information of China (English)

    T.S.ANSUMANA-KAWA; WANGGUANGHUO

    1998-01-01

    Three phosphate extraction methods were used to investigate the dissolution,availability and transfo-mation of Kunyang phosphate rock(KPR) in two surface acid soils.Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions,and did not differ signifi-cantly among the three methods.Significant correlations were obtained among P fractions got by the three extraction methods.Dissolution continued until the end of the 90-day incubation period.At the end of the period,much of the applied phosphate recovered in both soils were in the Al- and Fe-P or in the hydroxide-and bicarbonate-extractable inorganic P fractions.The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution.The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution,namely low CEC,pH,P level,and base status;and high clay and free iron and aluminum oxide contents.The results suggested that KPR could be an aternative P source in the soils are not limiting.

  14. Stabilisation of acid generating waste rock with fly ash : immobilization of arsenic under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, M. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Sartz, L. [Bergslagen, Kopparberg (Sweden)

    2010-07-01

    This study evaluated the potential for using fly ash as an alkaline material for increasing the pH and decreasing arsenic leaching from highly acidic mine waste. A wood ash sample known to contain high concentrations of both calcium and barium was tested with highly acidic mine waste samples that leached approximately 200 mg/L of arsenic at a liquid/solid ratio of 2. Samples were mixed with the fly ash. Control samples consisted of only mine waste, while the amended samples contained 10 g of mine waste and 10 g of wood ash. Ultra pure water was used as a leachant for both systems until the liquid-solid ratio that corresponded to 900 years of drainage for a waste pile that was 3 m high with an annual run-off of 300 mm. Results of the experimental study showed that the pH in the control increased from 1.7 to 2.7, while the pH in the amended system decreased from 12.6 to 11.5. Initial concentrations of arsenic decreased by almost 3 orders of magnitude in the amended systems. Co-precipitation with the iron, and the calcium arsenate precipitation process were identified as the principal arsenic immobilization mechanisms. The study demonstrated that under the right chemical conditions, alkaline amendments can be used to reduce arsenic leaching from mine wastes. 5 refs., 2 tabs., 1 fig.

  15. Acid drainages of the pyritic sterile from the Pocos de Caldas uranium mine: environmental interpretation and implications; Drenagens acidas do esteril piritoso da mina de uranio de Pocos de Caldas: interpretacao e implicacoes ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vicente Paulo de

    1995-12-01

    Considering the planned closure of the first uranium mine and milling plant operating in Brazil, located in the Pocos de Caldas Plateau, in the State of Minas Gerais, in the next two years, there is the need to obtain basic information for its decommissioning. Special attention has been directed to the following critical areas: open pit, tailing, dam and waste rock piles, because these are the main sources of acid drainage generation. These waters cannot be allowed to flow in the external environment because in addition to sulphuric acid, there is a number of elements in concentration above those allowed by regulations. Among the waste piles (bota-foras BF) two of them BF-4 and BF-8, are in a process of acid generation, thus requiring more attention. The objective of this work was to simulate at the laboratory scale the oxidation and the reduction zones of BF-4. The experiments were conducted in acrylic columns, where the waste sample was kept under aerated and saturated conditions, in different columns. The control of the chemical (solubilized chemical species), physico-chemical (redox potential, pH, conductivity) and biological (bacterial activity) parameters has been carried out on the acid solutions generated by the chemical and biological reactions that occur at the waste. Although the results refer to a four month period, some relevant points can be highlighted, which will serve as a basis for further research. The mineralogical characterization identified the existence of other sulphides associated to pyrite with lower oxidation potential than the latter. The results obtained with the biological characterization for the two conditions studied revealed that the bacterial activity is more intense in the region in contact with air, than in saturated region. (author) 30 refs., 29 figs., 8 tabs.

  16. Magmatic and petrologic evolution of the mesozvic vulcanic acid rocks from Piraju-Ourinhos region (SP-PR)

    International Nuclear Information System (INIS)

    This work presents the result of geological, petrological and geochemical studies, on the volcanic rocks from Piraju-Ourinhos region, SP, with special emphasis on the rocks. A geological mapping was carried out by using images from Landsat satellite. Petrographic and chemical analyses have defined a suite represented by basic lithotype - tholeutic andesibasalt - with high TiO2, rich in incompable elements - mainly Sr, Zr, La, Ce, and Ba - and by acid lithotype - rhyolite - rhyodacite. k-Ar ages are determined in feldspar concentrated, and indicate an age of 133+- 4m,y, for the volcanic acid rocks. Determinations of Sr isotopes. In order to explain the genesis of Chapeco type acid magnas quantitative models were tested using both fractional Crystallization

  17. Using environmental isotopes to characterize hydrologic processes of the Nelson Tunnel acid mine drainage site, West Willow Creek watershed, Creede, CO

    Science.gov (United States)

    Krupicka, A.; Williams, M. W.

    2010-12-01

    Acid mine drainage continues to be a pressing ecological issue across the Mountain West. Traditional remediation strategies usually involve the installation of an expensive and unsightly “end-of-pipe” water treatment plant without a full understanding of the overall hydrology of the system. In this study we show how applying water chemistry techniques to investigate water sources, ages, flow paths and residence times in a watershed affected by acid mine drainage can lead to alternative, less expensive methods of reclamation. We use both radiogenic (3H and 14C) and stable (18O and D) environmental isotopes to age waters and characterize the level of surface and groundwater interaction. Tritium content for waters collected in the tunnel was largely found to be 0-3 TU, indicating an age of greater than 50 years. This was supported by 14C values of DIC in tunnel samples that indicated ages and a hydraulic residence time on the order of hundreds to thousands of years. Stable isotopes 18O and D plotted closely to the Global Meteoric Water Line (GMWL). Combined with the heavy faulting and dominant welded volcanic tuffs of the region, this all indicates a system with very little surface-ground water interaction and a long, deep, likely channelized flow path. A future up-gradient pumping test would help confirm these findings and further elucidate the location and mechanism of the system’s primary recharge to the mine workings.

  18. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  19. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gitari, W.M. [Venda Univ., Thohoyandou (South Africa). Dept. of Ecology and Resources Management, School of Environmental Studies; Petrik, L.F.; Etchebers, O. [Western Cape Univ., Bellville (South Africa). Environmental and Nanosciences Group, Dept. of Chemistry; Key, D.L. [Western Cape Univ., Bellville (South Africa). Dept. of Chemistry; Okujeni, C. [Western Cape Univ., Bellville (South Africa). Dept. of Earth Sciences

    2010-07-01

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  20. Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da Água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal)

    International Nuclear Information System (INIS)

    This work focuses on the geochemical processes taking place in the acid drainage in the Ribeira da Água Forte, located in the Aljustrel mining area in the Iberian Pyrite Belt. The approach involved water and stream sediment geochemical analyses, as well as other techniques such as sequential extraction, Mössbauer spectroscopy, and X-ray diffraction. Ribeira da Água Forte is a stream that drains the area of the old mine dumps of the Aljustrel mine, which have for decades been a source of acid waters. This stream flows to the north for a little over than 10 km, but mixes with a reduced, organic-rich, high pH waste water from the municipal waste water pools of the village. This water input produces two different results in the chemistry of the stream depending upon the season: (i) in the winter season, effective water mixing takes place, and the flux of acid water from the mine dumps is continuous, resulting in the immediate precipitation of the Fe from the acid waters; (ii) during the summer season, acid drainage is interrupted and only the waste water feeds the stream, resulting in the reductive dissolution of Fe hydroxides and hydroxysulfates in the stream sediments, releasing significant quantities of metals into solution. Throughout the year, water pH stays invariably within 4.0–4.5 for several meters downstream of this mixing zone even when the source waters come from the waste water pools, which have a pH around 8.4. The coupled interplay of dissolution and precipitation of the secondary minerals (hydroxides and sulfates), keeps the system pH between 3.9 and 4.5 all along the stream. In particular, evidence suggests that schwertmannite may be precipitating and later decomposing into Fe hydroxides to sustain the stream water pH at those levels. While Fe content decreases by 50% from solution, the most important trace metals are only slightly attenuated before the solution mixes with the Ribeira do Rôxo stream waters. Concentrations of As are the only ones

  1. Determination of in situ speciation of manganese in treated acid mine drainage water by using multiple diffusive gradients in thin films devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes F de Oliveira, Rodrigo; Pedrobom, Jorge H. [Centro de Estudos Ambientais - CEA, UNESP - Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, SP (Brazil); Menegário, Amauri A., E-mail: amenega@rc.unesp.br [Centro de Estudos Ambientais - CEA, UNESP - Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, SP (Brazil); Domingos, Roberto N. [Centro de Estudos Ambientais - CEA, UNESP - Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, SP (Brazil); Py, Delcy A. [INB - Indústrias Nucleares do Brasil, Estrada Poços – Andradas Km 20,6, CEP 37780-000 Caldas, MG (Brazil); Kiang, Chang Hung [Laboratório de Estudos de Bacias - LEBAC, Instituto de Geociências e Ciências Exatas - IGCE, UNESP - Universidade Estadual Paulista, Avenida 24-A, 1515, CEP 13506-900 Rio Claro, SP (Brazil)

    2013-10-17

    Graphical abstract: -- Highlights: •In situ speciation of Mn by using multiple DGT devices was evaluated. •Chelex resin, DE81 and P81 membranes were used as binding phases in the DGT devices. •The proposed approach was applied to analyze treated acid mine drainage. •Good results were found for speciation of Mn in site containing <40 mg Ca L{sup −1}. DGT speciation were in agreement with speciation by software and by on site SPE. -- Abstract: Acid mine drainage (AMD) is a serious environmental problem that creates acidic solution with high Mn concentrations. The speciation of residual Mn from AMD after an active treatment involving the addition of a neutralizing agent can reliably evaluate the treatment efficiency and provide knowledge of the Mn species being inputted into the environment. The aim of this study was to evaluate the in situ lability and speciation of Mn using the diffusive gradients in thin films (DGT) technique with treated drainage water from a uranium mine (TAMD). DGT devices with different binding phases (Chelex-100 and P81 and DE81membranes) were used to perform the in situ speciation of Mn. A comparison of the results from deploying DGT in the laboratory and in situ shows that the speciation of Mn in TAMD should be performed in situ. Linear deployment curves (from in situ experiments) indicate that the DGT device containing the Chelex-100 binding phase can be used to evaluate Mn lability in TAMD. The labile Mn fraction (from in situ measurements) obtained using the device containing the Chelex-100 resin ranged from 63 to 81% of the total Mn concentration and, when compared to the speciation obtained using the CHEAQS software, indicated that this device was capable of uptaking the free Mn{sup 2+} and a portion of the MnSO{sub 4(aq)}. The values obtained using the DGT technique were compared to those from on site solid phase extraction, and a good agreement was found between the results. The amount of negative Mn species sampled by DE81

  2. Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage neutralised solids

    Directory of Open Access Journals (Sweden)

    Donald Cowan

    2010-03-01

    Full Text Available An arsenic resistant Bacillus sp. UWC was isolated from fly ash acid mine drainage (FA-AMD neutralised solids. A genomic library was prepared and screened in an arsenic sensitive mutant Escherichia coli strain for the presence of arsenic resistance (ars genes. Sequence analysis of a clone conferring resistance to both sodium arsenite and sodium arsenate revealed homologues to the arsR (regulatory repressor, arsB (membrane located arsenite pump, arsC (arsenate reductase, arsD (second regulatory repressor and a metallochaperone and arsA (ATPase genes from known arsenic resistance operons. The Bacillus sp. UWC arsRBCDA genes were shown to be arranged in an unusual manner with the arsDA genes immediately downstream of arsC.

  3. Preliminary evaluation of acid mine drainage in Minas Gerais State, Brazil Avaliação preliminar de drenagem ácida no estado de Minas Gerais, Brasil

    Directory of Open Access Journals (Sweden)

    Jaime Wilson Vargas de Mello

    2006-04-01

    Full Text Available Mining in the State of Minas Gerais-Brazil is one of the activities with the strongest impact on the environment, in spite of its economical importance. Amongst mining activities, acid drainage poses a serious environmental problem due to its widespread practice in gold-extracting areas. It originates from metal-sulfide oxidation, which causes water acidification, increasing the risk of toxic element mobilization and water resource pollution. This research aimed to evaluate the acid drainage problem in Minas Gerais State. The study began with a bibliographic survey at FEAM (Environment Foundation of Minas Gerais State to identify mining sites where sulfides occur. Substrate samples were collected from these sites to determine AP (acidity potential and NP (neutralization potential. The AP was evaluated by the procedure of the total sulfide content and by oxygen peroxide oxidation, followed by acidity titration. The NP was evaluated by the calcium carbonate equivalent. Petrographic thin sections were also mounted and described with a special view to sulfides and carbonates. Based on the chemical analysis, the acid-base accounting (ABA was determined by the difference of AP and NP, and the acid drainage potential obtained by the ABA value and the total volume of material at each site. Results allowed the identification of substrates with potential to generate acid drainage in Minas Gerais state. Altogether these activities represent a potential to produce between 3.1 to 10.4 billions of m³ of water at pH 2 or 31.4 to 103.7 billions of m³ of water at pH 3. This, in turn, would imply in costs of US$ 7.8 to 25.9 millions to neutralize the acidity with commercial limestone. These figures are probably underestimated because some mines were not surveyed, whereas, in other cases, surface samples may not represent reality. A more reliable state-wide evaluation of the acid drainage potential would require further studies, including a larger number of

  4. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rodriguez, A.M. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Ambientales, Universidad Pablo de Olavide. Carretera de Utrera, km 1. 41013 Sevilla (Spain); Duran-Barrantes, M.M. [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Sevilla, C/Profesor Garcia Gonzalez, s/n, 41071 Sevilla (Spain); Borja, R., E-mail: rborja@cica.es [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain); Sanchez, E.; Colmenarejo, M.F. [Consejo Superior de Investigaciones Cientificas (CSIC), Centro de Ciencias Medioambientales, C/Serrano, 115-duplicado, 28006 Madrid (Spain); Raposo, F. [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain)

    2009-06-15

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  5. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    International Nuclear Information System (INIS)

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  6. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Gautama, R.S.; Kusuma, G.J.; Lestari, I.; Anggana, R.P. [Bandung Inst. Teknologi (Indonesia). Dept. of Mining Engineering, Faculty of Mining and Petroleum Engineering

    2010-07-01

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  7. Rare-earth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: A case study in SW Spain

    International Nuclear Information System (INIS)

    Processes of seawater dilution and acid neutralization cause significant effects upon REE fractionation between the aqueous solution and sediments. This study describes the results of a recent investigation into such processes in the sediments of the Tinto and Odiel estuary. The results show differences in behaviour between light REEs (LREEs) and middle and heavy REEs (MREEs and HREEs). A relative depletion in La is observed as a consequence of the low pH values, which prevents the separation of LREEs from solution to the suspended matter. When acid neutralization occurs, on the other hand, an increase in the La content is related to the preferential separation of LREEs compared to MREEs and HREEs. Under these conditions three main fractionation patterns were distinguished: the first shows a slightly MREEenriched shape in sediments deposited in the fluvial zone; the second displays significant depletion in LREEs and a nearly flat tendency in MREEs and HREEs towards the estuarine mixing zone; and the third is enriched in total REEs and shows a relative increase in LREEs and MREEs. The evolution of these patterns reveals that pH is the key variable controlling REE fractionation in environments affected by acid mine drainage. (Author) 55 refs.

  8. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  9. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Villalobos, Marusia, E-mail: marusia@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Vioque, Ignacio, E-mail: ivioque@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Mantero, Juan, E-mail: manter@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain); Manjon, Guillermo, E-mail: manjon@us.es [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Departamento de Fisica Aplicada, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. {sup 226}Ra and {sup 210}Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 {mu}m of high porosity, and could be easily mobilized by leaching and/or erosion.

  10. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain

    International Nuclear Information System (INIS)

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. 226Ra and 210Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 μm of high porosity, and could be easily mobilized by leaching and/or erosion.

  11. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  12. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA

    Science.gov (United States)

    Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.

    2003-01-01

    Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.

  13. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  14. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  15. Major and trace-element analyses of acid mine waters in the Leviathan mine drainage basin, California/Nevada - October, 1981 to October, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, Tl, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd, Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these acid waters are derived from pyrite oxidation and not from the oxidation of elemental sulfur. 16 refs., 17 figs., 5 tabs.

  16. Manifestation of Preferential Flow and Nitrate Transport in Central European Soils on Acid Crystalline Rocks

    Science.gov (United States)

    Dolezal, F.; Cislerova, M.; Vogel, T.; Zavadil, J.; Vacek, J.; Kvitek, T.; Prazak, P.; Nechvatal, M.; Bayer, T.

    2006-12-01

    Large areas of Central Europe are occupied by highlands and peneplains of medium altitudes, built by acid crystalline rocks. The soils overlying them are typically of medium textures. They are neither markedly water- repellent nor greatly swelling and shrinking. These landscapes are characterized by high vulnerability of water bodies, both surface and subsurface. The existing methodologies of vulnerability assessment regard the heavier among these soils as little vulnerable to diffuse pollution, while in reality they may be virtually equally vulnerable, because of the short-circuiting effect of preferential flow and transport. Our experiment site was Valeèov (49° 38' 40" N, 14° 30' 25" E, 461 m a.s.l.) in the Bohemo-Moravian highland, with average annual precipitation 660 mm and average annual air temperature 7.2 ° C. The field trials, starting from 2001, were focused on growing potato under different conditions. Soil moisture content was measured by Theta- probe capacitance sensors, soil water suction by Watermark sensors and tensiometers. Nitrate leaching was monitored by soil solution sampling with ceramic suction cups and zero-tension lysimeters. The hydraulic conductivity of the soil was measured on small cores and by suction and pressure infiltrometers. The following preferential flow manifestations are analyzed and quantified: a) the spatial variability of soil moisture content and suction after rainstorms, b) the spatial and temporal variability of soil's hydraulic conductivity and its dependence on soil moisture content, c) the spatial variability of percolation volumes in parallel lysimeters, d) the variability of nitrate concentrations in the lysimeter leachate, e) the apparent absence of correlation between leachate volumes and leachate concentrations in lysimeters, f) the lower mean and higher variance of leachate concentrations in lysimeters, in comparison with those in suction cups.

  17. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary; Incubation and pot experiments

    International Nuclear Information System (INIS)

    A series of experiments was conducted to compare the agronomic effectiveness of phosphate rock (from Algeria) and of single superphosphate (from Russia, Kola) on a moderately acidic pseudogley brown forest soil (Szentgyoergyvoelgy) and on a slightly acidic chernozem brown forest soil (Kompolt). Dynamics of water-soluble and ammonium lactate-soluble P-contents (AL-P) and soil pH-H2O changes were studied in a half-year long incubation experiment. A follow-up pot experiment with the same soils was carried out with winter rape as test plants. Both experiments were set up with similar P fertilizer sources and P rates (100, 200, and 400 mg mineral acid soluble P2O5 per kg soil). At the beginning of incubation experiment, the water-soluble P content of the pseudogley brown forest soil was influenced by both the sources of P and the experimental conditions. The water-soluble P content decreased with time. After the 15th to 20th day of incubation, when the fast binding process of the water-soluble P ended, the effects of the P forms decreased. In this stage, the effects of environmental conditions depended on the form of the P fertilizer. The water-soluble P content of the phosphate rock-treated samples was affected to a great extent by soil water content, while the incubation temperature had a greater effect in soils treated with superphosphate. The AL-P content of soils was increased similarly by addition of equal rates of phosphate rock and super-phosphate at the beginning of incubation. The AL-P content of phosphate rock-treated soils was higher throughout the incubation period than of the superphosphate-treated soils -treated. Temperature had a greater effect on the AL-P content of soils than soil water content. As the AL-extraction may dissolve a substantial amount of the undecomposed phosphate rock, this method is not applicable to soil testing of available P forms from phosphate rock-treated soils. Initial soil pH decreased on average by 0.5 units in the

  18. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary; Incubation and pot experiments

    International Nuclear Information System (INIS)

    A series of experiments was conducted to compare the agronomic effectiveness of phosphate rock (from Algeria) and of single superphosphate (from Russia, Kola) on a moderately acidic pseudogley brown forest soil (Szentgyoergyvoelgy) and on a slightly acidic chernozem brown forest soil (Kompolt). Dynamics of water-soluble and ammonium lactate-soluble P-contents (AL-P) and soil pH-H2O changes were studied in a half-year long incubation experiment. A follow-up pot experiment with the same soils was carried out with winter rape as test plants. Both experiments were set up with similar P fertilizer sources and P rates (100, 200, and 400 mg mineral acid soluble P2O5 per kg soil). At the beginning of incubation experiment, the water-soluble P content of the pseudogley brown forest soil was influenced by both the sources of P and the experimental conditions. The water-soluble P content decreased with time. After the 15th to 20th day of incubation, when the fast binding process of the water-soluble P ended, the effects of the P forms decreased. In this stage, the effects of environmental conditions depended on the form of the P fertilizer. The water-soluble P content of the phosphate rock-treated samples was affected to a great extent by soil water content, while the incubation temperature had a greater effect in soils treated with superphosphate. The AL-P content of soils was increased similarly by addition of equal rates of phosphate rock and super-phosphate at the beginning of incubation. The AL-P content of phosphate rock-treated soils was higher throughout the incubation period than of the superphosphate-treated soils -treated. Temperature had a greater effect on the AL-P content of soils than soil water content. As the AL-extraction may dissolve a substantial amount of the undecomposed phosphate rock, this method is not applicable to soil testing of available P forms from phosphate rock-treated soils. Initial soil pH decreased on average by 0.5 units in the

  19. Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA

    Science.gov (United States)

    Balistrieri, L.S.; Seal, R.R., II; Piatak, N.M.; Paul, B.

    2007-01-01

    The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 ??g/L in the dynamic mixing and reaction zone that is downstream of the river's confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates. The uptake of dissolved metals by aquatic organisms is dependent on the aqueous speciation of the metals and kinetics of complexation reactions between metals, ligands and solid surfaces. Dissolved speciation of Cd, Cu, Ni and Zn in the mixing and reaction zone is assessed using the diffusive gradients in thin films (DGT) technique and results of speciation calculations using the Biotic Ligand Model (BLM). Data from open and restricted pore DGT units indicate that almost all dissolved metal species are inorganic and that aqueous labile or DGT available metal concentrations are generally equal to total dissolved concentrations in the mixing zone. Exceptions occur when labile metal concentrations are underestimated due to competition between H+ and metal ions for Chelex-100 binding sites in the DGT units at low pH values. Calculations using the BLM indicate that dissolved Cd and Zn species in the mixing and reaction zone are predominantly inorganic

  20. Phosphate Stability in Diagenetic Fluids Constrains the Acidic Alteration Model for Lower Mt. Sharp Sedimentary Rocks in Gale Crater, Mars

    Science.gov (United States)

    Berger, J. A.; Schmidt, M. E.; Izawa, M. R. M.; Gellert, R.; Ming, D. W.; Rampe, E. B.; VanBommel, S. J.; McAdam, A. C.

    2016-01-01

    The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.

  1. Mine Drainage Generation and Control Options.

    Science.gov (United States)

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew

    2016-10-01

    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes.

  2. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2016-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  3. Evaluation of the effects of water hardness and chemical pollutants on the zooplankton community in uranium mining lakes with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Nascimento, M.R. [Brazilian Nulcear Energy Commission/Pocos de Caldas Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Institute (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil)

    2014-07-01

    Several mining lakes are characterized by the inorganic pollution of its waters, known as acid mine drainage (AMD). The current study was developed in order to evaluate the effect of water hardness and chemical pollutants on the richness and density of the zoo-planktonic community species. A seasonal study was conducted in a uranium mining lake affected by AMD. In environmental conditions of extremely high hardness water values (960.3 to 1284,9 mg/l), zoo-planktonic species have indicated resistance to the combined effect of elevated average concentrations of chemical pollutants such as Al (81.9 mg/l), Zn (15.5 mg/l), Mn (102.8 mg/l), U (2.9 mg/l) and low pH values (average = 3.8). Thus, in environments of extreme chemical conditions, such as a uranium mining lake affected by AMD, the hardness showed to be the best predictor of the zoo-planktonic community richness, indicating a protective effect of ions Ca{sup +2} over in special to Bosminopsis deitersi, Bosmina sp., Keratella americana and K. cochlearis. Document available in abstract form only. (authors)

  4. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    Science.gov (United States)

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine. PMID:27338270

  5. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Zhou, Lixiang; Zhang, Shasha; Liu, Lanlan; Wang, Ming

    2015-12-15

    Bio-oxidation of ferrous ions prior to lime neutralization exhibits great potential for acid mine drainage (AMD) treatment, while slow ferrous ion bio-oxidation or total iron precipitation is a bottleneck in this process. In this study, neutralized solid waste (NSW) harvested in an AMD lime neutralization procedure was added as a crystal seed in AMD for iron oxyhydroxysulfate bio-synthesis. The effect of this waste on ferrous ion oxidation efficiency, total iron precipitation efficiency, and iron oxyhydroxysulfate minerals yield during ferrous ion bio-oxidation by Acidithiobacillus ferrooxidans was investigated. Ferrous ion oxidation efficiency was greatly improved by adding NSW. After 72 h incubation, total iron precipitation efficiency in treatment with 24 g/L of NSW was 1.74-1.03 times higher than in treatment with 0-12 g/L of NSW. Compared with the conventional treatment system without added NSW, the iron oxyhydroxysulfate minerals yield was increased by approximately 21.2-80.9% when 3-24 g/L of NSW were added. Aside from NSW, jarosite and schwertmannite were the main precipitates during ferrous ion bio-oxidation with NSW addition. NSW can thus serve as the crystal seed for iron oxyhydroxysulfate mineral bio-synthesis in AMD, and improve ferrous ion oxidation and total iron precipitation efficiency significantly.

  6. Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Dannelly, H.K.; Connors, K.A.; Hasiotis, S.T. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography Geology & Anthropology

    2001-07-01

    Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0-4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO{sub 4}(up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO{sub 4} was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO{sub 4} may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.

  7. Using fluorescence-based microplate assay to assess DOM-metal binding in reactive materials for treatment of acid mine drainage

    Institute of Scientific and Technical Information of China (English)

    Carmen Mihaela Neculita; Yves Dudal; Gerald J Zagury

    2011-01-01

    One potential drawback of compost-based passive bioreactors, which is a promising biotechnology for acid mine drainage (AMD) treatment, is the transport of dissolved organic matter (DOM)-metal complexes in surface waters.To address this problem, the objective of this study was to assess the maximum capacity of organic substrates to release soluble DOM-metal complexes in treated water.The reactivities of DOM in maple wood chips and sawdust, composted poultry manure, and leaf compost were quantified toward Cd2+, Ni2+, Fe2+, and Cu2+ using fluorescence quenching.The DOM showed the highest reactivity toward Fe, but a limited number of available sites for sorption, whereas DOM-Cd complexes exhibited the lowest fluorescence quenching.Overall, the DOM from a mixture of wastes formed higher concentrations of DOM-metal complexes relative to sole substrates.Among DOM-metal complexes, the concentrations of DOM-Ni complexes were the highest.After reaching steady-state, low concentrations of DOM-metal complexes were released in treated water, which is in agreement with theoretical predictions based on geochemical modeling.Therefore, in addition to physicochemical characterization, fluorescence quenching technique is recommended for the substrate selection of bioreactors.

  8. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    Science.gov (United States)

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors.

  9. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    Science.gov (United States)

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  10. Evaluation of the effects of water hardness and chemical pollutants on the zooplankton community in uranium mining lakes with acid mine drainage

    International Nuclear Information System (INIS)

    Several mining lakes are characterized by the inorganic pollution of its waters, known as acid mine drainage (AMD). The current study was developed in order to evaluate the effect of water hardness and chemical pollutants on the richness and density of the zoo-planktonic community species. A seasonal study was conducted in a uranium mining lake affected by AMD. In environmental conditions of extremely high hardness water values (960.3 to 1284,9 mg/l), zoo-planktonic species have indicated resistance to the combined effect of elevated average concentrations of chemical pollutants such as Al (81.9 mg/l), Zn (15.5 mg/l), Mn (102.8 mg/l), U (2.9 mg/l) and low pH values (average = 3.8). Thus, in environments of extreme chemical conditions, such as a uranium mining lake affected by AMD, the hardness showed to be the best predictor of the zoo-planktonic community richness, indicating a protective effect of ions Ca+2 over in special to Bosminopsis deitersi, Bosmina sp., Keratella americana and K. cochlearis. Document available in abstract form only. (authors)

  11. Evaluation of genetic toxicity caused by acid mine drainage of coal mines on fish fauna of Simsang River, Garohills, Meghalaya, India.

    Science.gov (United States)

    Talukdar, B; Kalita, H K; Baishya, R A; Basumatary, S; Sarma, D

    2016-09-01

    Fishery ecology of the Simsang River, Meghalaya is being threatened by large scale environmental degradation due to acid mine drainage (AMD) of coal mines. In the present paper, effort has been made to evaluate the genotoxicity caused due to AMD of coal mines on Channa punctata under laboratory condition through comet assay, micronucleus and chromosome aberration tests. Water samples were collected seasonally from affected and unaffected sites of the River and physico-chemical quality of water indicated low pH (4.6), high concentration of sulphates (270mgL(-1)) and iron (7.2mgL(-1)) beyond permissible limits. Polycyclic aromatic hydrocarbon (PAH) showed highest concentration of 4-ring PAH and Benzo[a]anthracene was the most important pollutant in the water collected from affected sites. The highest and the lowest mean concentrations of PAHs were estimated in monsoon and winter season, respectively. The index of DNA damage assessed by comet assay, micronucleus and chromosome aberration tests demonstrated significant differences season wise in different sampling sites. Frequency of DNA-damaged cells was found highest in the water samples collected from affected site in monsoon season. PMID:27213561

  12. Acid dissolution of soils and rocks for the determination of boron by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    The boron concentration in rocks, soils and standard reference materials was determined using hydrofluoric acid-aqua regia dissolution followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) using the B 1 249.773 -nm line, corrected for spectral interference by iron. An excess of fluoride was complexed with aluminium to release boron from the stable fluoroborate ion and to protect the borosilicate and quartz components of the instrument. Boron was not lost by volatilisation during volume reduction. Soil and rock boron values determined using the recommended dissolution procedures were comparable to those obtained using the accepted sodium carbonate fusion procedure and by d.c. arc emission spectrophotometry, and those for standard reference materials showed good agreement and precision with the literature values. (author)

  13. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Cortina, José Luis; Ayora, Carlos

    2005-08-01

    The efficiency of the sulphate reducing bacteria-based in situ treatment of acid mine drainage is often limited by the low degradability of the current carbon sources, typically complex plant-derived materials. In such non-sulphate-reducing conditions, field and laboratory experiences have shown that mechanisms other than sulphide precipitation should be considered in the metal removal, i.e. metal (oxy)hydroxides precipitation, co-precipitation with these precipitates, and sorption onto the organic matter. The focus of the present paper was to present some laboratory data highlighting the Zn and Cu sorption on vegetal compost and to develop a general and simple model for the prediction of their distribution in organic-based passive remediation systems. The model considers two kinds of sorption sites ( succeeds SO(2)H(2)) and the existence of monodentate and bidentate metal-binding reactions, and it assumes that only free M(2+) species can sorb onto the compost surface. The acid-base properties of the compost were studied by means of potentiometric titrations in order to identify the nature of the involved surface functional groups and their density. The distribution coefficient (K(D)) for both Zn and Cu were determined from batch experiments as a function of pH and metal concentration. The model yielded the predominant surface complexes at the experimental conditions, being succeeds SO(2)Zn for Zn and succeeds SO(2)HCu(+) and ( succeeds SO(2)H)(2)Cu for Cu, with log K(M) values of -2.10, 3.36 and 4.65, respectively. The results presented in this study have demonstrated that the proposed model provides a good description of the sorption process of Zn and Cu onto the vegetal compost used in these experiments.

  14. Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water

    Science.gov (United States)

    Mapanda, F.; Nyamadzawo, G.; Nyamangara, J.; Wuta, M.

    Compacted clay layers are commonly used as liners to limit acid-mine drainage (AMD) percolation into the surrounding environment from containment areas or ponds. In the long term, this practical and sometimes economical means of AMD disposal has often presented other considerable environmental challenges. The chemical quality of soil, river water and groundwater surrounding evaporation ponds lined with clay was determined at Iron-Duke Mine in Glendale, Zimbabwe. At this mine over 150 m 3/d of wastewater containing AMD were discharged daily for over a decade. The soils located downslope in relation to the ponds and closer to the ponds were acidified (pH 2.8-4.4) and enriched with salts. The level of contamination was highest within 15 m from the ponds and at 2-6 m depths from the surface. The variability in soil pH and electrical conductivity with position, distance from the ponds and depth from surface was attributed to the vertical and lateral flow of contaminated groundwater containing leachates from the ponds. The groundwater and river water surrounding the ponds were contaminated with arsenic (As), iron (Fe), nickel (Ni), sulphate, salts and acidity, and the level of contamination increased with proximity to the ponds. Potential public health hazards from consumption of the groundwater and river water were high. It was concluded that discharging of AMD into the ponds has not been an environmentally effective means of AMD containment and disposal. There was need for better AMD disposal means, particularly those that would improve the containment of AMD to reduce its seepage.

  15. Overall hydrochemical characterization of the Iberian Pyrite Belt. Main acid mine drainage-generating sources (Huelva, SW Spain)

    Science.gov (United States)

    Grande, J. A.; de la Torre, M. L.; Cerón, J. C.; Beltrán, R.; Gómez, T.

    2010-09-01

    SummaryAMD is an anthropogenic process caused by sulfide mineralization and the increase in the contact surface due to mining activity and grain-size reduction. In Spain, the contamination comes from the metal sulfide mines in the Iberian Pyrite Belt (IPB). Spreading over an area 230 km long and approximately 50 km wide, it is one of the largest metallogenic regions in the world, with massive sulfide reserves of about 1700 Mt. In the present study we will characterize AMD contamination processes in the IPB, especially by As, by identifying the sources responsible for these processes (active mines and effluents from mines and slag heaps) in the basins of the Tinto and Odiel rivers. It is also the aim of this study to discover the mineral associations of the deposits. The study of the AMD process generating source is complemented with hydrochemical characterization of the effluents produced, which will be carried out by means of sample-taking and subsequent chemical analysis and statistical treatment (cluster analysis). Characteristics in common with samples taken in other AMD-affected watercourses are observed in the seven zones defined in the study area. With respect to the samples studied, obvious differences can also be found. These differences are inherent to the mineral associations, watershed and distance to the generating source and, ultimately, to the affected area, and the type, intensity and duration of the mine treatment process developed in the acid-producing area.

  16. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A. [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Olías, M., E-mail: manuel.olias@dgyp.uhu.es [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Cánovas, C.R. [Department of Geodynamics and Paleontology, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain); Martín, J.E.; Bolivar, J.P. [Department of Applied Physics, Facultad de Ciencias Experimentales, University of Huelva, Campus de El Carmen, Campus de Excelencia Internacional del Mar CEIMAR, 21071 Huelva (Spain)

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  17. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

    International Nuclear Information System (INIS)

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH ∼ 6 Cu is desorbed, probably by the formation of Cu(I)–chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes. - Highlights: • The Tinto estuary shows strong pH gradients and high trace elements concentrations. • PM has a hysteretic relationship with tides and high contents of Fe, Al, As and Pb. • Co and Mn are controlled by river and sea water mixing and sorption processes. • Sorption processes strongly affect Cu below pH 6, above this value Cu is desorpted. • Cadmium behaves conservatively along the pH range studied (4.4–6.9)

  18. Multiple injected and natural conservative tracers quantify mixing in a stream confluence affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Cox, M.H.; Runkel, R.L.; Kimball, B.A.

    2006-01-01

    The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral-pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42- between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl- 'reference' tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across-channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentrations measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end-member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer.

  19. Drainage of radioactive areas

    International Nuclear Information System (INIS)

    This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)

  20. Transient drainage summary report

    International Nuclear Information System (INIS)

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  1. Development of a biotechnological process for the treatment of acid mine drainages. Final report; Entwicklung eines biotechnischen Verfahrens zur Behandlung saurer, sulfat- und metallhaltiger Waesser. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Tommerdich, D.; Pfeifer, F.; Schacht, S. [DMT-Inst. fuer Chemische Umwelttechnologie, Essen (Germany)

    1992-05-01

    This project was to develop a biotechnological process for the simultaneous removal of metals and sulfate from acid mine drainage. The metabolic capability of sulfate reducing bacteria was used to convert sulfates to sulfides which will induce the precipitation of metal ions as metal sulfides. Stages of the developed water treatment process should be characterized and proved for application with original waste water in laboratory scale. A sulfate reducing consortium was enriched and characterized due to its relevant growth requirements like substrate spectrum of complex and defined carbon sources, pH and temperature optimum and sulfide tolerance. The stoichiometric quotient of substrate conversion to sulfate reduction which is an important cost factor was estimated in batch and continuous cultures. For continuous cultivation a fixed bed reactor with external loop was used. The pH-shift formed during growth of the sulfate reducing bacteria was used to develop a pH auxostatic regulation system which improves process safety of continuous cultivation. As a method for biomass estimation a new enzymatic assay based on bioluminescent estimation of APS-reductase, a key enzyme of desulfuricants, was developed and tested for its applicability. Precipitation of metals was carried out in a separate reactor stage. The precipitation was preferentially efficient using gaseous H{sub 2}S rather than Na{sub 2}S as reactant resulting in a better flocculation and crystallization of the product. The complete configuration of bioreactor and precipitation stage was tested with original acid drainage from an old coal mining field. With lactic acid as carbon source and a hydraulic retention time of 7.6 h a sulfate reduction rate of 9 g/l/d was obtained. The sediment contained 30% of solid phase which after drying could be characterized as machinavite. [Deutsch] Ziel des Forschungsvorhabens war die Entwicklung eines biotechnischen Verfahrens, in welchem Sulfat durch mikrobielle Reduktion zu

  2. Solution of rocks and refractory minerals by acids at high temperatures and pressures. Determination of silica after decomposition with hydrofluoric acid

    Science.gov (United States)

    May, I.; Rowe, J.J.

    1965-01-01

    A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.

  3. Volcanic stratigraphy of intermediate to acidic rocks in southern Paraná Magmatic Province, Brazil

    Directory of Open Access Journals (Sweden)

    Liza Angélica Polo

    2014-06-01

    Full Text Available This article presents the first map in detail scale for an area covered by Palmas type volcanic rocks in the south border of the eocretaceous Paraná Magmatic Province, south Brazil. The study of the structural features coupled with petrography and geochemistry made it possible to separate these rocks into three main volcanic sequences and recognize their stratigraphy. The older Caxias do Sul sequence rests directly over the first low-Ti basalt flows (Gramado type, and corresponds to the stacking of lobated lava flows, laminar flows and lava domes, mostly emitted as continuous eruptions; only the latest eruptions are intercalated with thin sandstone deposits. These rocks have dacitic composition (~ 68 wt% SiO2 with microphenocrysts of plagioclase and subordinate pyroxenes and Ti-magnetite immersed in glassy or devitrified matrix. A second volcanic sequence, named Barros Cassal, is composed of several lava flows of basaltic andesite, andesitic and dacitic composition (~ 54; ~ 57 and ~ 63 wt% SiO2 , respectively, with microphenocrysts of plagioclase, pyroxenes and Ti-magnetite. The frequent intercalation of sandstone between the flows attests to the intermittent behaviour of this event. The upper sequence, Santa Maria, is made up of more silica-rich (~ 70 wt% SiO2 rocks occurring as laminar flows, lobated flows and lava-domes. These rocks have rhyolitic composition with microphenocrysts of plagioclase and Ti-magnetite set in a glassy or devitrified matrix with microlites. The structures and textures of all three silicic sequences favor the interpretation that they had a predominantly effusive character, which is thought to be a reflection of the remarkably high temperatures of the lavas (~ 1,000 ºC.

  4. Deciphering the role of Paenibacillus strain Q8 in the organic matter recycling in the acid mine drainage of Carnoulès

    Science.gov (United States)

    2012-01-01

    Background The recycling of the organic matter is a crucial function in any environment, especially in oligotrophic environments such as Acid Mine Drainages (AMDs). Polymer-degrading bacteria might play an important role in such ecosystem, at least by releasing by-products useful for the rest of the community. In this study, physiological, molecular and biochemical experiments were performed to decipher the role of a Paenibacillus strain isolated from the sediment of Carnoulès AMD. Results Even though Paenibacillus sp. strain Q8 was isolated from an oligotrophic AMD showing an acidic pH, it developed under both acidic and alkaline conditions and showed a heterotrophic metabolism based on the utilization of a broad range of organic compounds. It resisted to numerous metallic stresses, particularly high arsenite (As(III)) concentrations (> 1,800 mg/L). Q8 was also able to efficiently degrade polymers such as cellulose, xylan and starch. Function-based screening of a Q8 DNA-library allowed the detection of 15 clones with starch-degrading activity and 3 clones with xylan-degrading activity. One clone positive for starch degradation carried a single gene encoding a "protein of unknown function". Amylolytic and xylanolytic activities were measured both in growing cells and with acellular extracts of Q8. The results showed the ability of Q8 to degrade both polymers under a broad pH range and high As(III) and As(V) concentrations. Activity measurements allowed to point out the constitutive expression of the amylase genes and the mainly inducible expression of the xylanase genes. PACE demonstrated the endo-acting activity of the amylases and the exo-acting activity of the xylanases. Conclusions AMDs have been studied for years especially with regard to interactions between bacteria and the inorganic compartment hosting them. To date, no study reported the role of microorganisms in the recycling of the organic matter. The present work suggests that the strain Q8 might play

  5. Deciphering the role of Paenibacillus strain Q8 in the organic matter recycling in the acid mine drainage of Carnoulès

    Directory of Open Access Journals (Sweden)

    Delavat François

    2012-02-01

    Full Text Available Abstract Background The recycling of the organic matter is a crucial function in any environment, especially in oligotrophic environments such as Acid Mine Drainages (AMDs. Polymer-degrading bacteria might play an important role in such ecosystem, at least by releasing by-products useful for the rest of the community. In this study, physiological, molecular and biochemical experiments were performed to decipher the role of a Paenibacillus strain isolated from the sediment of Carnoulès AMD. Results Even though Paenibacillus sp. strain Q8 was isolated from an oligotrophic AMD showing an acidic pH, it developed under both acidic and alkaline conditions and showed a heterotrophic metabolism based on the utilization of a broad range of organic compounds. It resisted to numerous metallic stresses, particularly high arsenite (As(III concentrations (> 1,800 mg/L. Q8 was also able to efficiently degrade polymers such as cellulose, xylan and starch. Function-based screening of a Q8 DNA-library allowed the detection of 15 clones with starch-degrading activity and 3 clones with xylan-degrading activity. One clone positive for starch degradation carried a single gene encoding a "protein of unknown function". Amylolytic and xylanolytic activities were measured both in growing cells and with acellular extracts of Q8. The results showed the ability of Q8 to degrade both polymers under a broad pH range and high As(III and As(V concentrations. Activity measurements allowed to point out the constitutive expression of the amylase genes and the mainly inducible expression of the xylanase genes. PACE demonstrated the endo-acting activity of the amylases and the exo-acting activity of the xylanases. Conclusions AMDs have been studied for years especially with regard to interactions between bacteria and the inorganic compartment hosting them. To date, no study reported the role of microorganisms in the recycling of the organic matter. The present work suggests that

  6. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.

    Science.gov (United States)

    Sağlam, Emine Selva; Akçay, Miğraç

    2016-04-01

    Being one of the largest copper-producing resources in Turkey, the Murgul deposit has been a source of environmental pollution for very long time. Operated through four open pits with an annual production of about 3 million tons of ore at an average grade of about 0.5 % Cu, the deposit to date has produced an enormous pile of waste (exceeding 100 million tons) with tailings composed of 36 % SiO2, 39 % Fe2O3 and 32 % S, mainly in the form of pyrite and quartz. Waters in the vicinity of the deposit vary from high acid-acid (2.71-3.85) and high-extremely metal rich (34.48-348.12 mg/l in total) in the open pits to near neutral (6.51-7.83) and low metal (14.39-973.52 μg/l in total) in downstream environments. Despite low metal contents and near neutral pH levels of the latter, their suspended particle loads are extremely high and composed mainly of quartz and clay minerals with highly elevated levels of Fe (3.5 to 24.5 % Fe2O3; 11 % on average) and S (0.5 to 20.6 % S; 7 % on average), showing that Fe is mainly in the form of pyrite and lesser hematite. They also contain high concentrations of As, Au, Ba, Cu, Pb, and Zn. Waters collected along the course of polluted drainages are supersaturated with respect to Fe phases such as goethite, hematite, maghemite, magnetite, schwertmannite and ferrihydrite. Secondary phases such as Fe-sulphates are only found near the pits, but not along the streams due to neutral pH conditions, where pebbles are covered and cemented by Fe-oxides and hydroxides indicating that oxidation of pyrite has taken place especially at times of low water load. It follows, then, that the pyrite-rich sediment load of streams fed by the waste of the Murgul deposit is currently a big threat to the aquatic life and environment and will continue to be so even after the closure of the deposit. In fact, the oxidation will be enhanced and acidity increased due to natural conditions, which necessitates strong remedial actions to be taken. PMID:26637995

  7. Acid drainage at the inactive Santa Lucia mine, western Cuba: Natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Francisco Martin, E-mail: fmrch@geologia.unam.mx [Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Delegacion Coyoacan, 04510 Mexico D.F. (Mexico); Prol-Ledesma, Rosa Maria; Canet, Carles [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Delegacion Coyoacan, 04510 Mexico D.F. (Mexico); Alvares, Laura Nunez; Perez-Vazquez, Ramon [Facultad de Geologia y Mecanica, Universidad de Pinar del Rio (Cuba)

    2010-05-15

    A detailed geochemical study was conducted at the inactive Zn-Pb mine of Santa Lucia, in western Cuba. The studied mine-wastes are characterized by high total concentrations of potentially toxic elements (PTE), with average values of 17.4% Fe, 5.47% Ba, 2.27% Pb, 0.83% Zn, 1724 mg/kg As and 811 mg/kg Cu. Oxidation of sulfide minerals in mine-waste dumps and in the open pit produces acid mine effluents (pH = 2.5-2.6) enriched in dissolved SO{sub 4}{sup 2-} (up to 6754 mg/L), Fe (up to 4620 mg/L) and Zn (up to 2090 mg/L). Low pH values (2.5-2.8) and high dissolved concentrations of the same PTE were found in surface waters, up to 1500 m downstream from the mine. Nevertheless, concentrations of As, Ba and Pb in acid mine effluents and impacted surface waters are relatively low: 0.01-0.3 mg/L As, 0.002-0.03 mg/L Ba and 0.3-4.3 mg/L Pb. Analysis by X-ray diffraction and electron microscopy revealed the occurrence of lead-bearing barite and beudantite and the more common solid phases, reported elsewhere in similar environments including Fe-oxyhydroxides, jarosite, anglesite and plumbojarosite. Because the reported solubilities for barite and beudantite are very low under acidic conditions, these minerals may serve as the most important control in the mobility of As, Ba and Pb. In contrast, Fe-oxyhydroxides are relatively soluble under acidic conditions and, therefore, they may have a less significant role in PTE on-site immobilization. Mine-wastes and stream sediments show a light REE (LREE) and middle REE (MREE) enrichment relative to heavy REE (HREE). In contrast, acid mine effluents and surface waters are enriched in HREE relative to LREE. These results suggest that the LREE released during the oxidation of sulfides are captured by secondary (weathering) minerals, while the MREE are removed from the altered rocks. The low concentrations of LREE in acid stream water suggest that these elements can be retained in the sediments more strongly than HREE and MREE. One

  8. Aluminium (Al) fractionation and speciation; getting closer to describing the factors influencing Al(3+) in water impacted by acid mine drainage.

    Science.gov (United States)

    Chamier, Jessica; Wicht, Merrill; Cyster, Lilburne; Ndindi, Nosintu P

    2015-07-01

    Acid mine drainage (AMD) severely impacts the water chemistry of a receiving resource, changing the occurrence, speciation and toxicity of metals such as Aluminium (Al). The toxicity of Al is determined by its speciation represented by the labile monomer Al fraction or Al(3+). The purpose of the study was to combine fractionation and Visual MINTEQ speciation to calculate the effect of AMD altered water chemistry on Al speciation and Al(3+) concentration. Water in rivers impacted by AMD presented with monomeric Al (Almon) concentrations between 0.35 and 15.37mgL(-)(1) which existed almost exclusively in the toxic labile form (98%). For the reference site, Almon was less than 2% (10μgL(-1)), suggesting significantly lower Al toxicity. Principal component analysis plots illustrated that labile Al was directly related to the total Al and iron concentrations and strongly influenced by parameters such as pH, electrical conductivity, sulphate and dissolved organic carbon. Visual MINTEQ modelling was used to determine the primary Al species distribution. The dominant form of Al in AMD impacted water was AlSO4(+), which increased proportionally with the sulphate and Al(3+) concentration. Heavily impacted areas, presented with an average of 1mgmL(-)(1) Al(3+), which poses a potential human health risk. A novel centrifugal ultrafiltration method was investigated as an alternative to determining Almon to simplify the speciation of Al. Monomeric and centrifugal ultrafiltrated (<10kD) Al fractions were significantly similar (p=0.74), suggesting that ultrafiltration may present a time, energy and cost saving alternative to organic extraction of Almon.

  9. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine. The Gantt Chart on the following page details progress by task.

  10. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion -- FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  11. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China.

    Science.gov (United States)

    Liao, Jianbo; Wen, Zewei; Ru, Xuan; Chen, Jundong; Wu, Haizhen; Wei, Chaohai

    2016-02-01

    Acid mine drainages (AMD) contain high concentrations of heavy metals, and their discharges into streams and rivers constitute serious environmental problems. This article examines the effects of AMD on soil, plant and human health at Dabaoshan mine in Guangdong Province, China. Although the large scale mining was stopped in 2011, the heavy metal pollution in soil continues to endanger crops and human health in that region. The objectives of this study were to elucidate distribution and migration of Cd, Cu, Zn, As and Pb and associated health implications to local inhabitants. We collected and analyzed 74 crop samples including 28 sugarcane, 30 vegetables, 16 paddy rice and the corresponding soil samples, used correlation and linear relationship for transformation process analysis, and applied carcinogenic and non-carcinogenic risk for hazard evaluation. Results showed that the local soils were heavily polluted with Cd, Cu and As (especially for Cd) and the mean Igeo value was as high as 3.77. Cadmium, Cu, and Zn in rice and vegetables were comparable with those found four years ago, while As and Pb in edible parts were 2 to 5 times lower than before. The root uptake of Cd and Zn contributed mainly to their high concentrations in crops due to high exchangeable fraction of soil, while leafy vegetables accumulated elevated As and Pb contents mainly due to the atmospheric deposition. Metal concentrations in sugarcane roots were higher than those in rice and vegetable roots. The risk assessment for crops consumption showed that the hazard quotients values were of 21 to 25 times higher than the threshold level for vegetables and rice, indicating a potential non-carcinogenic risk to the consumers. The estimated mean total cancer risk value of 0.0516 more than 100 times exceeded the USEPA accepted risk level of 1×10(-4), indicating unsuitability of the soil for cultivating the food crops. Therefore, the local agricultural and the land-use policies need to be reevaluated

  12. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities

  13. Aluminium (Al) fractionation and speciation; getting closer to describing the factors influencing Al(3+) in water impacted by acid mine drainage.

    Science.gov (United States)

    Chamier, Jessica; Wicht, Merrill; Cyster, Lilburne; Ndindi, Nosintu P

    2015-07-01

    Acid mine drainage (AMD) severely impacts the water chemistry of a receiving resource, changing the occurrence, speciation and toxicity of metals such as Aluminium (Al). The toxicity of Al is determined by its speciation represented by the labile monomer Al fraction or Al(3+). The purpose of the study was to combine fractionation and Visual MINTEQ speciation to calculate the effect of AMD altered water chemistry on Al speciation and Al(3+) concentration. Water in rivers impacted by AMD presented with monomeric Al (Almon) concentrations between 0.35 and 15.37mgL(-)(1) which existed almost exclusively in the toxic labile form (98%). For the reference site, Almon was less than 2% (10μgL(-1)), suggesting significantly lower Al toxicity. Principal component analysis plots illustrated that labile Al was directly related to the total Al and iron concentrations and strongly influenced by parameters such as pH, electrical conductivity, sulphate and dissolved organic carbon. Visual MINTEQ modelling was used to determine the primary Al species distribution. The dominant form of Al in AMD impacted water was AlSO4(+), which increased proportionally with the sulphate and Al(3+) concentration. Heavily impacted areas, presented with an average of 1mgmL(-)(1) Al(3+), which poses a potential human health risk. A novel centrifugal ultrafiltration method was investigated as an alternative to determining Almon to simplify the speciation of Al. Monomeric and centrifugal ultrafiltrated (<10kD) Al fractions were significantly similar (p=0.74), suggesting that ultrafiltration may present a time, energy and cost saving alternative to organic extraction of Almon. PMID:25747302

  14. Recognition of a Biofilm at the Sediment-Water Interface of AN Acid Mine Drainage-Contaminated Stream, and its Role in Controlling Iron Flux

    Science.gov (United States)

    Boult, Stephen; Johnson, Nicholas; Curtis, Charles

    1997-03-01

    Material collected over a month on plates attached to the bed of the Afon Goch, Anglesey, a stream highly contaminated by acid mine drainage (AMD), was either examined intact by electron microscopy or suspended and cultured to reveal the presence of microbiota. Certain of the aerobic microbiota were identified, the genus Pseudomonas formed the commonest isolate and cultures of Serratia plymuthica were grown in order to compare the biofilms formed with the material collected in the Afon Goch. The material at the sediment-water interface of the Afon Goch was of similar underlying morphology to that of the cultured biofilms. However, the former had a superficial granular coating of equidimensional (60-100 nm) and evenly spaced iron rich particles (determined by X-ray microanalysis). The sediment-water interface of this AMD-contaminated stream is therefore best described as a highly contaminated biofilm. Evidence from previous work suggests that the streambed is active in iron removal from the water column. The intimate association of iron with microbiota at the streambed, therefore, implies that iron flux prediction may not be possible from physical and chemical data alone but requires knowledge of biofilm physiology and ecology.Microbially mediated metal precipitation, both by single bacteria and by biofilms, has been reported elsewhere but mass balance considerations suggest that this explanation cannot hold good for the large amounts of iron hydroxide depositing from waters of the prevalent pH and redox status. Filtered stream water analyses indicate the presence of colloidal iron hydroxide and also its removal downstream where ochreous (iron hydroxide rich) material accumulates. The process of iron immobilization is likely to be the attraction and physical trapping of colloidal iron hydroxide by extracellular polymeric substances (EPS) which constitute the matrix of biofilms.

  15. The impact of acid mine drainage on the methylmercury cycling at the sediment-water interface in Aha Reservoir, Guizhou, China.

    Science.gov (United States)

    He, Tianrong; Zhu, Yuzhen; Yin, Deliang; Luo, Guangjun; An, Yanlin; Yan, HaiYu; Qian, Xiaoli

    2015-04-01

    The methylmercury (MeHg) cycling at water-sediment interface in an acid mine drainage (AMD)-polluted reservoir (Aha Reservoir) and a reference site (Hongfeng Reservoir) were investigated and compared. Both reservoirs are seasonal anoxic and alkaline. The concentrations of sulfate, sulfide, iron, and manganese in Aha Reservoir were enriched compared to the reference levels in Hongfeng reservoir due to the AMD input. It was found that the MeHg accumulation layer in Aha Reservoir transitioned from the top sediment layer in winter to the water-sediment interface in spring and then to the overlying water above sediment in summer. It supported the assumption that spring methylation activity may start in sediments and migrate into the water column with seasonal variation. The weaker methylation in sediment during spring and summer was caused by the excessive sulfide (∼15-20 μM) that reduced the bioavailability of mercury, while sulfate reduction potential was in the optimal range for the methylation in the overlying water. This led to a transport flux of MeHg from water to sediment in spring and summer. In contrast, such inversion of MeHg accumulation layer did not occur in Hongfeng Reservoir. The sulfate reduction potential was in the optimal range for the methylation in top sediment, and dissolved MeHg was positively related to sulfide in pore water of Hongfeng Reservoir (r = 0.67, p water and cycling of MeHg at sediment-water interface associate with some sensitive environmental factors, such as sulfur.

  16. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China.

    Science.gov (United States)

    Liao, Jianbo; Wen, Zewei; Ru, Xuan; Chen, Jundong; Wu, Haizhen; Wei, Chaohai

    2016-02-01

    Acid mine drainages (AMD) contain high concentrations of heavy metals, and their discharges into streams and rivers constitute serious environmental problems. This article examines the effects of AMD on soil, plant and human health at Dabaoshan mine in Guangdong Province, China. Although the large scale mining was stopped in 2011, the heavy metal pollution in soil continues to endanger crops and human health in that region. The objectives of this study were to elucidate distribution and migration of Cd, Cu, Zn, As and Pb and associated health implications to local inhabitants. We collected and analyzed 74 crop samples including 28 sugarcane, 30 vegetables, 16 paddy rice and the corresponding soil samples, used correlation and linear relationship for transformation process analysis, and applied carcinogenic and non-carcinogenic risk for hazard evaluation. Results showed that the local soils were heavily polluted with Cd, Cu and As (especially for Cd) and the mean Igeo value was as high as 3.77. Cadmium, Cu, and Zn in rice and vegetables were comparable with those found four years ago, while As and Pb in edible parts were 2 to 5 times lower than before. The root uptake of Cd and Zn contributed mainly to their high concentrations in crops due to high exchangeable fraction of soil, while leafy vegetables accumulated elevated As and Pb contents mainly due to the atmospheric deposition. Metal concentrations in sugarcane roots were higher than those in rice and vegetable roots. The risk assessment for crops consumption showed that the hazard quotients values were of 21 to 25 times higher than the threshold level for vegetables and rice, indicating a potential non-carcinogenic risk to the consumers. The estimated mean total cancer risk value of 0.0516 more than 100 times exceeded the USEPA accepted risk level of 1×10(-4), indicating unsuitability of the soil for cultivating the food crops. Therefore, the local agricultural and the land-use policies need to be reevaluated.

  17. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment

    OpenAIRE

    Jeff B. Langman; Mandy L. Moore; Carol J. Ptacek; Leslie Smith; David Sego; David W. Blowes

    2014-01-01

    A five-year, humidity-cell experiment was used to study the weathering evolution of a low-sulfide, granitic waste rock at 5 and 22 °C. Only the rock with the highest sulfide content (0.16 wt %) released sufficient acid to overcome a limited carbonate acid-neutralization capacity and produce a substantial decline in pH. Leached SO4 and Ca quickly increased then decreased during the first two years of weathering. Sulfide oxidation continued to release acid and SO4 after carbonate depletion, res...

  18. Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2011-01-01

    We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

  19. Abatement of acid mine drainage by encapsulation of acid-producing geological material. Final research report, 1 August 1990-31 October 1992

    International Nuclear Information System (INIS)

    A novel coating technology was developed to prevent pyrite oxidation and acid production in coal waste. The mechanism underlying this technology involves leaching coal waste with a coating solution composed of H2O2, KH2PO4, and sodium acetate (NaAC). During the leaching process, H2O2 oxidizes pyrite and produces Fe3+ so that iron phosphate precipitates as a coating on pyrite surfaces. The purpose of NaAC in the coating solution is to eliminate the inhibitory effect of the protons, produced during pyrite oxidation, on the precipitation of iron phosphate. In the study, it was shown that iron phosphate coatings on pyrite surfaces could be established by consuming 5% to 10% of the available pyrite, under a wide range of conditions. It was also demonstrated in the study that iron phosphate coatings on pyrite surfaces could prevent pyrite oxidation and acid production in coal waste

  20. Major and trace-element analyses of acid mine waters in the Leviathan Mine drainage basin, California/Nevada; October, 1981 to October, 1982

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these

  1. Experimental Acid Weathering of Fe-Bearing Mars Analog Minerals and Rocks: Implications for Aqueous Origin of Hematite-Bearing Sediments in Meridiani Planum, Mars

    Science.gov (United States)

    Golden, D. C.; Koster, A. M.; Ming, D. W.; Morris, R. V.; Mertzman, S. A.

    2011-01-01

    A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [1, 2]. However, there are no reported experimental studies for the formation of jarosite and gray hematite (spherules), which are characteristic of Meridiani rocks from Mars analog precursor minerals. A terrestrial analog for hematite spherule formation from basaltic rocks under acidic hydrothermal conditions has been reported [3], and we have previously shown that the hematite spherules and jarosite can be synthetically produced in the laboratory using Fe3+ -bearing sulfate brines under hydrothermal conditions [4]. Here we expand and extend these studies by reacting Mars analog minerals with sulfuric acid to form Meridiani-like rock-mineral compositions. The objective of this study is to provide environmental constraints on past aqueous weathering of basaltic materials on Mars.

  2. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    Science.gov (United States)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  3. Emprego de coberturas secas no controle da drenagem ácida de mina: estudos em campo Use of dry cover systems to control acid mine drainage: field studies

    Directory of Open Access Journals (Sweden)

    Sérgio Luciano Galatto

    2007-06-01

    Full Text Available No sul catarinense, cristais de pirita associados a rejeitos de beneficiamento de carvão mineral, quando alterados, desencadeiam o processo conhecido como drenagem ácida de mina (DAM. Este trabalho objetivou avaliar a eficiência de três sistemas de coberturas secas sobre estes rejeitos, como uma opção para o controle da DAM. Agentes neutralizantes da DAM como a cinza pesada e o calcário foram misturados com os rejeitos ou dispostos acima destes. Para reduzir a infiltração de água e difusão de oxigênio no meio, foi empregada uma camada de 50 cm de solo silte-argiloso compactado. Os experimentos foram monitorados por um ano, sendo analisados nos lixiviados alguns parâmetros indicadores da DAM, além da presença de bactérias ferro-oxidantes e sulfato-redutoras. Os resultados obtidos indicaram uma boa eficiência na prevenção da DAM de dois dos três sistemas de coberturas pesquisados.In the southern of the Santa Catarina state, the weathering and oxidation of pyrite-containing coal has been the major agent of Acid Mine Drainage (AMD production. The purpose of this study was to verify the efficiency of three different cover systems to inhibit AMD. Experiments were built in field lysimeters with alkaline agents - bottom ash and limestone - placed over or mixed with fresh coal waste. To reduce the water infiltration rates and oxygen diffusion 50 cm of compact mud soil layer was put over waste. The top cover was constituted by 10 cm of the same soil, mixed with bottom ash. During one year, these experiments have been monitored through chemical (pH, Eh, Fe2+, Fe total, Al, Ca, Mg, Zn, Pb and Mn and microbiological (Thiobacilus ferroxidans presence composition of effluents. The results indicated that two of three cover systems employed were efficient on AMD prevention.

  4. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  5. Oxalic-acid leaching of rock, soil, and stream-sediment samples as an anomaly-accentuated technique

    Science.gov (United States)

    Alminas, Henry V.; Mosier, Elwin L.

    1976-01-01

    In many instances total-rock and sieved-soil and stream-sediment samples lack the sensitivity and contrast required for reconnaissance exploration and necessary in the search for blind ore deposits. Heavy-mineral concentrates incorporate the required sensitivity and contrast but are overly expensive for two reasons: time-consuming sample preparation is required to obtain them, and they cannot be easily derived from all bulk-sample types. Trace-metal-content comparisons of the oxalic-acid-leachable portions with heavy-mineral concentrates show that the leachates are equal to the heavy-mineral concentrates in sensitivity and contrast. Simplicity of preparation and the resultant cost savings are additional advantages of this proposed method.

  6. Mine Drainage and Oil Sand Water.

    Science.gov (United States)

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive.

  7. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    OpenAIRE

    Saeed Yousefi; Faramarz Doulati Ardejan; Arezoo Abedi; Mansour Ziaii; Esmat Esmaeil Zadeh

    2015-01-01

    Introduction Pyrite oxidation and acid mine drainage (AMD) are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003). Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986). Although comprehensive researc...

  8. Ecological response of benthic foraminifera to the acid drainage from mine areas. An example from the Gromolo torrent mouth (Eastern Ligurian Sea, Italy)

    Science.gov (United States)

    Bergamin, Luisa; Capello, Marco; Carbone, Cristina; Magno, Maria Celia; Consani, Sirio; Cutroneo, Laura; Ferraro, Luciana; Pierfranceschi, Giancarlo; Romano, Elena

    2016-04-01

    Benthic foraminiferal assemblages react in short time to natural and anthropogenic environmental changes and, for this, they are considered as reliable indicators of environmental quality. An interesting application of these indicators is the study of their response to environmental changes in coastal marine areas, affected by dismissed mines and dump areas. The Libiola Fe-Cu sulphide mine was intensively exploited in 19th and 20th centuries, and the activity ended in 1962. The sulphide mineral assemblages consist of pyrite and chalcopyrite, with minor sphalerite and pyrrhotite, in a gangue of quartz and chlorite. The sulphide ore occurs within the Jurassic ophiolites of the Northern Apennines which were subjected to metamorphic and tectonic processes during the subsequent Apennine orogenesis. Waters circulating in the Libiola mine area, and discharging in the adjacent streams and creeks, are strongly polluted due to the diffuse occurrence of Acid Mine Drainage processes. The Gromolo torrent collects these acidic waters enriched of heavy metals which flow into Ligurian Sea. The study area is characterised by a shelf with a gentle slope, mainly constituted by sediment supplied by Entella torrent. The general circulation has trend from East to West and the coastal drift is generally eastwards. A total of 15 marine sediment samples (upper 2 cm) were collected by means of Van Veen grab in the coastal zone close to the Gromolo mouth and analyzed for living (rose Bengal stained) and dead benthic foraminifera, together with grain size, metals and trace elements, and metal fractioning. Quantitative foraminiferal parameters, like as abundance, species diversity, heterogeneity and assemblage composition, were determined and evaluated for environmental purpose. Additionally, possible increase above the natural background level of deformed specimens was considered as indicative of metal contamination. The grain-size analyses highlighted mainly sandy sediments, characterized by

  9. Tracing the interaction of acid mine drainage with coal utilization byproducts in a grouted mine: Strontium isotope study of the inactive Omega Coal Mine, West Virginia (USA)

    International Nuclear Information System (INIS)

    In order to ameliorate acidic discharge, the inactive Omega Coal Mine, West Virginia was partially filled by injection of a grout consisting of 98% coal utilization byproducts (CUB), including fluidized bed combustion ash and fly ash, and 2% Portland cement. In this study, discharge chemistry and Sr isotope ratios were determined to identify and quantify the extent of interaction between mine waters and the CUB-cement grout. Eight sampling sites were monitored around the downdip perimeter of the mine. The major and trace element chemistry of the discharges was generally not sufficient to distinguish between discharges that interacted with grout and those that did not. Elements that showed the most separation include K and As, which were elevated in some waters that interacted with CUB-cement grout. In contrast, the Sr isotope ratios clearly distinguished discharges from grouted and non-grouted areas. Discharges that bypassed the grouted portions had 87Sr/86Sr ratios ranging from 0.71510 to 0.71594, while two discharges that interacted with grout had ratios in the range of 0.71401-0.71456. The Treatment Inlet, which includes both grouted and ungrouted discharges, yielded intermediate isotopic ratios. Leaching experiments on CUB-cement grout, coal and surrounding rocks are consistent with the isotopic trends observed in the discharges. Based on these results, waters that interacted with grout received 30-40% of their Sr from the CUB-cement grout material. These results suggest that the grout material is chemically eroding at a rate of approximately 0.04% per year. This novel application of the Sr isotope system illustrates its ability to sensitively track and quantify fluid interaction with coal and CUB-based grout.

  10. Phosphorus leaching in an acid tropical soil "recapitalized" with phosphate rock and triple superphosphate.

    Science.gov (United States)

    Gikonyo, Esther W; Zaharah, Abdul R; Hanafi, Mohamed M; Anuar, Rahim A

    2010-01-01

    With high rates of phosphorus applied to increase "capital P" as a stock for plant uptake over several years, the question of P leaching is inevitable. We conducted an intact soil column experiment in the field to evaluate P leached from soils treated with triple superphosphate (TSP) and Gafsa phosphate rock (GPR) at 300, 600, and 900 kg P ha-1 with and without integration of cattle manure. The lysimeters, made from PVC tubes of 30-cm length, were inserted into the soil up to the 25-cm depth. The tubes were fitted with a resin bag containing a mixture of cation and anion exchange resin (50:50) at the lower end of the tube inserted into the soil. The tubes, arranged in a completely randomized design, were sampled randomly at 10-week intervals for 12 months. Phosphorus extractable from the top- and subsoil at the end of experiment and leached P were determined. More P was leached out from TSP (threefold) compared to GPR, and the amount of P leached increased with increasing rates of P fertilizer applied. Application of manure intensified the amounts of P leached from TSP, particularly at the 6-month sampling time. There was hardly any substantial P leached from the soil treated with GPR. Thus, for effective and efficient long-term P fertilizer management strategies, choosing the right P fertilizer source and monitoring P losses through leaching has to be done for enhanced fertilizer use efficiency and thus reducing P pollution of ground waters. PMID:20694445

  11. Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão Remediation of acid mine drainage using zeolites synthesized from coal fly ash

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2006-07-01

    Full Text Available Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.

  12. Phosphorus Leaching in an Acid Tropical Soil “Recapitalized” with Phosphate Rock and Triple Superphosphate

    Directory of Open Access Journals (Sweden)

    E. Gikonyo

    2010-01-01

    Full Text Available With high rates of phosphorus applied to increase “capital P” as a stock for plant uptake over several years, the question of P leaching is inevitable. We conducted an intact soil column experiment in the field to evaluate P leached from soils treated with triple superphosphate (TSP and Gafsa phosphate rock (GPR at 300, 600, and 900 kg P ha-1 with and without integration of cattle manure. The lysimeters, made from PVC tubes of 30-cm length, were inserted into the soil up to the 25-cm depth. The tubes were fitted with a resin bag containing a mixture of cation and anion exchange resin (50:50 at the lower end of the tube inserted into the soil. The tubes, arranged in a completely randomized design, were sampled randomly at 10-week intervals for 12 months. Phosphorus extractable from the top- and subsoil at the end of experiment and leached P were determined. More P was leached out from TSP (threefold compared to GPR, and the amount of P leached increased with increasing rates of P fertilizer applied. Application of manure intensified the amounts of P leached from TSP, particularly at the 6-month sampling time. There was hardly any substantial P leached from the soil treated with GPR. Thus, for effective and efficient long-term P fertilizer management strategies, choosing the right P fertilizer source and monitoring P losses through leaching has to be done for enhanced fertilizer use efficiency and thus reducing P pollution of ground waters.

  13. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    Science.gov (United States)

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load

  14. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  15. Preoperative biliary drainage.

    Science.gov (United States)

    Saxena, Payal; Kumbhari, Vivek; Zein, Mohamad E L; Khashab, Mouen A

    2015-01-01

    The role of preoperative biliary drainage (PBD) in patients with distal or proximal biliary obstruction secondary to resectable tumors has been a matter for debate. A review of the literature using Medline, Embase and Cochrane databases was undertaken for studies evaluating routes of drainage (endoscopic or percutaneous) and stent types (plastic or metal) in patients with resectable disease. Preoperative biliary drainage is indicated for relief of symptomatic jaundice, cholangitis, patients undergoing neoadjuvant therapy or those patients where surgery may be delayed. Endoscopic methods are preferred over percutaneous methods because of lower complication rates. In patients with proximal biliary obstruction, PBD should be guided by imaging studies to aid in selective biliary cannulation for unilateral drainage in order to reduce the risk of cholangitis in undrained liver segments. PMID:25293587

  16. Comparative study on precipitation methods of yellow-cake from acid leachate of rock phosphate and Its purification

    International Nuclear Information System (INIS)

    This study was carried-out to leach uranium from rock phosphate using sulphuric acid in presences of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia ((NH4)2 U2 O7), magnesia (UO3.xH2O) and sodium hydroxide (Na2U2O7) as precipitants, as well as purification of the products with TBP extraction and matching its impurity levels with specification of the commercial products. Alpha-particle spectrometry was for used for determination of activity concentration of uranium isotopes (''2''3''4U and ''2''3''8U) in rock phosphate, resulting green phosphoric acid solution, and in different forms of the yellow cake from which the equivalent mass concentration of uranium was deduced. Likewise, AAS was used for determination of impurities (Pb, Ni, Cd, Fe, Zn, Mn, and Cu). On the average, the activity concentration of uranium in the rock phosphate was 1468±979 Bq/Kg (119.38±79.66 ppm), and 711±252 Bq/L (57.85±20.46 ppm) in the resulting green solution with corresponding percent of dissolution amounting to 48% which is considered low indicating that the experimental conditions (i.e. dissolution container, temperature, PH, retention time) were not optimal. However, the isotopic ratio (''2''3''4U, ''2''3''8U) in all stages of hydrometallurgical process was not much different from unity indicating lack of fractionation. Crude yellow cakes (hydrate uranium trioxide, ammonium diuranate and sodium diuranate) were precipitated from the green solutions prior to separation of iron and once after iron separation. Although, iron was tested using bipyridine and SCN, it was found in all types of crude samples analyzed this might be attributed to either the quality of the reagent used or inhibition of Fe present in the solution by stronger complexing agent. Uranium mass concentration in crude yellow cakes precipitated before iron separation was found following the order: UO3.xH2O>ammonium diuranate

  17. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    to 10 °C higher than the mean annual air temperature of -5.8 °C. Subsurface temperatures are currently decreasing with 0.5 °C per year due to decreasing heat production, which can be modelled using an exponential decay function corresponding to a half-life period of pyrite oxidation of 7 years......Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  18. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment

    Directory of Open Access Journals (Sweden)

    Jeff B. Langman

    2014-04-01

    Full Text Available A five-year, humidity-cell experiment was used to study the weathering evolution of a low-sulfide, granitic waste rock at 5 and 22 °C. Only the rock with the highest sulfide content (0.16 wt % released sufficient acid to overcome a limited carbonate acid-neutralization capacity and produce a substantial decline in pH. Leached SO4 and Ca quickly increased then decreased during the first two years of weathering. Sulfide oxidation continued to release acid and SO4 after carbonate depletion, resulting in an increase in acid-soluble elements, including Cu and Zn. With the dissolution of Al-bearing minerals, the pH stabilized above 4, and sulfide oxidation continued to decline until the end of the experiment. The variation in activation energy of sulfide oxidation correlates with changes in sulfide availability, where the lowest activation energies occurred during the largest releases of SO4. A decrease in sulfide availability was attributed to consumption of sulfide and weathered rims on sulfide grains that reduced the oxidation rate. Varying element release rates due to changing carbonate and sulfide availability provide identifiable geochemical conditions that can be viewed as neutralization sequences and may be extrapolated to the field site for examining the evolution of mineral weathering of the waste rock.

  19. DRAINAGE NETWORKS AFTER WILDFIRE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small- and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  20. Drainage networks after wildfire

    Science.gov (United States)

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  1. Assessment, water-quality trends, and options for remediation of acidic drainage from abandoned coal mines near Huntsville, Missouri, 2003-2004

    Science.gov (United States)

    Christensen, Eric D.

    2005-01-01

    Water from abandoned underground coal mines acidifies receiving streams in the Sugar Creek Basin and Mitchell Mine Basin near Huntsville, Missouri. A 4.35-kilometer (2.7-mile) reach of Sugar Creek has been classified as impaired based on Missouri's Water Quality Standards because of small pH values [water quality in Sugar Creek. Metal and sulfate loads increased and pH decreased immediately downstream from Sugar Creek's confluence with the Calfee Slope and Huntsville Gob drainages that discharge AMD into Sugar Creek. Similar effects were observed in the Mitchell Mine drainage that receives AMD from a large mine spring. Comparisons of water-quality samples from this study and two previous studies by the U.S. Geological Survey in 1987-1988 and the Missouri Department of Natural Resources in 2000-2002 indicate that AMD generation in the Sugar Creek Basin and Mitchell Mine Basin is declining, but the data are insufficient to quantify any trends or time frame. AMD samples from the largest mine spring in the Calfee Slope subbasin indicated a modest but significant increase in median pH from 4.8 to 5.2 using the Wilcoxan rank-sum test (p water or sewage effluent can further increase pH as indicated by geochemical modeling, but will not totally achieve water-quality goals because of limited discharges. A combination of treatments including settling ponds, oxic or anoxic limestone drains, and possibly successive alkalinity producing systems to remediate AMD will likely be required in the Sugar Creek Basin and Mitchell Mine Basin to consistently meet Missouri's Water Quality Standards.

  2. Effect of losartan (COZAAR) on drainage of serum uric acid%氯沙坦(科素亚)促尿酸排泄作用的临床研究

    Institute of Scientific and Technical Information of China (English)

    梁颖慈; 李卓仁

    2001-01-01

    目的尿酸是高血压病的危险因素之一,其主要表现为血尿酸(SUA)升高。由于高血压病人肾功能减退或肾血流量下降,故高血压患者中高尿酸血症较正常血压者多[1]。高血压患者中,伴有高尿酸血症者心血管事件增多。在高血压病的治疗中,特异性阻断1型血管紧张素Ⅱ(AT1)受体的血管紧张素Ⅱ(ATⅡ)拮抗剂—氯沙坦(科素亚),业已显示它是一个有效的降血压药物,且有促尿酸排泄作用[2]。本文收集了60例本院住院高血压病(1~2级)病人,随机抽取30例作治疗组,单独应用氯沙坦(科素亚)治疗,另30例作对照组。观察表明,氯沙坦(科素亚)可显著促尿酸排泄,降低血尿酸水平。%Objective Uric acid is one of the risk factors of hypertension, the main character is increased serum uric acid (SUA). High serum uric acid resulted in renal function letdown or descending in renal blood flow is more frequent in the patients with hypertension than those with normal blood pressure[1]. The hypertension patients associated with high serum uric acid increase the outbreaks of cardiovascular diseases. Losartan-The angiotension Ⅱ receptor blocker which is specific for angiotension Ⅱ type 1 (AT1) has been proved to be an effective antihypertensive drug. Moreover, it can increase the drainage of uric acid[2]. In the article, we collected 60 cases of hypertension in-patients(Ⅰ-Ⅱ grade), then took out 30 cases as the treated group randomly. They were treated with Losartan independently, and other 30 cases as the control group. The results suggested that Losartan increased the drainage of uric acid (P<0.001) and reduced the serum uric acid concentration significantly(P<0.001).

  3. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  4. Characteristics of the eukaryotic community structure in acid mine drainage lake in Anhui Province, China%安徽某铁矿酸性矿山废水中真核生物的群落结构特征

    Institute of Scientific and Technical Information of China (English)

    张丽娜; 郝春博; 王丽华; 李思远; 冯传平

    2012-01-01

    [目的]研究酸性矿山废水中真核生物的群落结构特征以及群落结构与环境因子之间的关系.[方法]利用分子生物学方法,通过构建18S rRNA基因克隆文库进行系统发育分析;利用典范对应分析(CCA)方法解析环境因子对真核生物群落结构的影响.[结果]系统发育分析表明:子囊菌门(Ascomycota)普遍存在于4个样品中,并在样品1和样品3中占统治地位,而绿藻门(Chlorophyta)和担子菌门(Basidiomycota)分别为样品2和样品4的优势类群.该酸性矿山废水中的克隆与许多已知的耐酸耐重金属真核生物亲缘关系较近,如Sarcinomyces petricola、Penicillium janthinellum、Coniochaeta velutina、Trichoderma viride、Chlorella protothecoides var.acidicola、Ochromonas sp.等.此外,样品中还存在大量的已知人类病原菌,如Lecythophora hoffmannii、Cryptococcus neoformans.CCA分析表明:TN、SO24-、Fe2+、Eh是影响真核生物群落空间分布的主要因素.[结论]所研究的酸性矿山废水中真核生物的群落结构在时间和空间上均有较大差异,这可能与水体的理化性质有关;高含量人类致病菌的存在是之前研究所未发现的;酸性环境中真核生物的生态学研究有助于开发高效处理酸性矿山废水的方法.%[Objective] We characterized eukaryotic community structure and the relationship between the community structure and environmental factors in acidic mine drainage (AMD) lake of a sulfide mine in Anhui Province, China. [Methods] The 18S rRNA gene clone libraries were constructed by using molecular biology techniques to analyze the eukaryotic phylogenetic relationships, and the canonical correspondence analysis (CCA) was used to analyze the relationship between the community structure and environmental factors. [Results] The phylogenetic analysis shows that Ascomycota is widespread in the four samples and dominated in the AMD-1 and AMD-3 clone libraries, whereas Chlorophyta and

  5. Use of wetlands for the treatment of acidic mining drainage: the processes in the wetland; Utilizacion de humedales para el tratamiento de aguas acidas de mina: procesos que tienen lugar en el humedal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lastra, M.; Loredo Perez, J. [Departamento de Explotacion y Prospeccion de Minas. Escuela de Minas, Universidad de Oviedo, Oviedo (Spain)

    1995-04-01

    Wetlands constitute an alternative method for the treatment of acidic mining drainage, through the utilization of some plant species complex physico-chemical and biological processes take place, producing and improvement of the quality of waters moving through. The inherent characteristics of a wetland in operation will originate an horizontal zonation as for the quality of waters due to their progressive ameliorations of pH increase and heavy metals concentration decreases, anyway a vertical zonation, giving rise to oxidation and reduction zones on the wetland. From the different physical processes occurring on the wetland, the plant roots filtering, the dilution of effluents with superficial and underground waters and aeration phenomena can be considered very important. Oxidation, hydrolysis and sulphate reduction constitute important chemical processes leading to the removal of heavy metals from contaminated effluents. Wetlands have plants as sphagnum, typha and algae advantageous for the treatment of acidic waters provided that they retain heavy metals in their tissues and the contribute furthermore to modify the substrate conditions favoring the creation of reduction zones. The aerobic-anaerobic mixed systems are from the different wetland types those are prevailing because of the advantages of sulphate reduction as contrasted with oxides precipitation for the removal of heavy metals. Wetlands although are not the panacea for the treatment of acidic mining waters they offer advantages and some disadvantages too, over other treatment methods, and they constitute a real alternative for the conventional methods of chemical neutralization. (Author)

  6. Wound Drainage Culture (For Parents)

    Science.gov (United States)

    ... Melon Smoothie Pregnant? Your Baby's Growth Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A Text Size What's in ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  7. Long-term field evaluation of phosphate rock and superphosphate use strategies in acid soils of Hungary: Two comparative field trials

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, T. [Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)]. E-mail: t_nemeth@rissac.hu; Magyar, M.; Csatho, P.; Osztoics, E.; Baczo, G. [Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary); Hollo, S. [Kompolt Research Institute of Szent Istvan University, Godollo (Hungary); Nemeth, I. [Faculty of Georgikon Agricultural Sciences, University of Veszprem, Keszthely (Hungary)

    2002-05-15

    The effect of two P-forms and the P fertilization system were studied in field trials set up on two moderately acidic Hungarian soils. Reactive Algerian rock phosphate and Kola superphosphate doses were based on the phosphorus equivalence. The experimental design makes it possible to compare the effect of annual 35 kg/ha P doses with initial one-time application of the 175 kg/ha P level in a five-year interval. Ammonium-lactate (AL)-, NaHCO{sub 3} (Olsen)- and DW-P contents as well as Lakanen- Ervio (LE)- soluble Cd, Cr and Sr contents were also determined. The results of the first five-year period are reported in the paper. Responses to P fertilization were related to the original P supply of the soils. There was no significant difference between the two P forms and between the P fertilization systems on both grain yield and P-uptake. While AL- method overestimated, and Olsen-method - on the other hand - underestimated the P supply of reactive Algerian rock phosphate, distilled water (DW)-soluble P contents indicated the soil P status more accurately. Phosphorus balances were positive after the fifth year of the trials in the P treated plots. The soluble Cd and Cr contents did not increase in the Algerian rock phosphate treated plots. On the other hand, Kola superphosphate application at 175 kg/ha P level resulted in higher LE-Sr contents in soils. The Algerian rock phosphate is an economic alternative P source on the moderately or strongly acidic Hungarian soils. (author)

  8. Treatment of drainage solution from hydroponic greenhouse production with microalgae.

    Science.gov (United States)

    Hultberg, Malin; Carlsson, Anders S; Gustafsson, Susanne

    2013-05-01

    This study investigated treatment of the drainage solution from greenhouse production with microalgae, through inoculation with Chlorella vulgaris or through growth of the indigenous microalgal community. A significant reduction in nitrogen, between 34.7 and 73.7 mg L(-1), and particularly in phosphorus concentration, between 15.4 and 15.9 mg L(-1), was observed in drainage solution collected from commercial greenhouse production. The large reduction in nutrients was achieved through growth of the indigenous microalgal community i.e., without pre-treatment of the drainage solution or inoculation with the fast growing green microalgae C. vulgaris. Analysis of the fatty acid composition of the algal biomass revealed that compared with a standard growth medium for green algae, the drainage solution was inferior for lipid production. Despite the biorefinery concept being less promising, microalgae-based treatment of drainage solution from greenhouse production is still of interest considering the urgent need for phosphorus recycling.

  9. Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag, NW Argentina

    Directory of Open Access Journals (Sweden)

    Jesica Murray

    2014-05-01

    Full Text Available Secondary jarosite and water-soluble iron-sulfate minerals control the composition of acid mine waters formed by the oxidation of sulfide in tailings impoundments at the (Zn-Pb-Ag Pan de Azúcar mine located in the Pozuelos Lagoon Basin (semi-arid climate in Northwest (NW Argentina. In the primary zone of the tailings (9.5 wt % pyrite-marcasite precipitation of anglesite (PbSO4, wupatkite ((Co,Mg,NiAl2(SO44 and gypsum retain Pb, Co and Ca, while mainly Fe2+, Zn2+, Al3+, Mg2+, As3+/5+ and Cd2+ migrate downwards, forming a sulfate and metal-rich plume. In the oxidation zone, jarosite (MFe3(TO42(OH6 is the main secondary Fe3+ phase; its most suitable composition is M = K+, Na+, and Pb2+and TO4 = SO42−; AsO42−. During the dry season, iron-sulfate salts precipitate by capillary transport on the tailings and at the foot of DC2 (tailings impoundment DC2 tailings dam where an acid, Fe2+ rich plume outcrops. The most abundant compounds in the acid mine drainage (AMD are SO42−, Fe2+, Fe3+, Zn2+, Al3+, Mg2+, Cu2+, As3+/5+, Cd2+. These show peak concentrations at the beginning of the wet season, when the soluble salts and jarosite dissolve. The formation of soluble sulfate salts during the dry season and dilution during the wet season conform an annual cycle of rapid metals and acidity transference from the tailings to the downstream environment.

  10. Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay.

    Science.gov (United States)

    Lee, Sang-Ho; Kim, Injeong; Kim, Kyoung-Woong; Lee, Byung-Tae

    2015-01-01

    In order to assess the ecological effect of acid mine drainage, metal mine (Dalsung) and coal mine (Samtan) drainage in South Korea were collected. The each mine drainage then investigated by whole effluent toxicity test (WET) and toxicity identification evaluation (TIE). WET results demonstrated that DS leachate and ST mine water is more toxic than other mine drainage due to the presence of cationic metals and acidic pH. TIE results revealed that the acidic pH and copper (Cu) could be the main toxicants in both mine drainage. The strong acidic pH (pH toxicity by increase of metal activity and bioavailability. The toxicity of most mine drainage revealed that the positive correlation between metal concentration and toxicity unit (TU). The regression data between TU and sum of cumulative criterion unit (CCU) demonstrated the reasonable statistical significance (R = 0.89; p toxicity by the effect of amorphous iron precipitate. PMID:26405638

  11. Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay

    OpenAIRE

    Lee, Sang-Ho; Kim, Injeong; Kim, Kyoung-Woong; Lee, Byung-Tae

    2015-01-01

    In order to assess the ecological effect of acid mine drainage, metal mine (Dalsung) and coal mine (Samtan) drainage in South Korea were collected. The each mine drainage then investigated by whole effluent toxicity test (WET) and toxicity identification evaluation (TIE). WET results demonstrated that DS leachate and ST mine water is more toxic than other mine drainage due to the presence of cationic metals and acidic pH. TIE results revealed that the acidic pH and copper (Cu) could be the ma...

  12. Geochemistry and stable sulfur and oxygen isotope ratios of the Podwisniowka pit pond water generated by acid mine drainage (Holy Cross Mountains, south-central Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Migaszewski, Zdzislaw M. [Jan Kochanowski University (Pedagogical University), Institute of Chemistry, Geochemistry and the Environment Division, 15G Swietokrzyska Street, 25-406 Kielce (Poland)], E-mail: zmig@ujk.kielce.pl; Galuszka, Agnieszka [Jan Kochanowski University (Pedagogical University), Institute of Chemistry, Geochemistry and the Environment Division, 15G Swietokrzyska Street, 25-406 Kielce (Poland); Halas, Stanislaw [Maria Curie-Sklodowska University, Institute of Physics, Mass Spectrometry Laboratory, 1 Maria Curie-Sklodowska Square, 20-031 Lublin (Poland); Dolegowska, Sabina [Jan Kochanowski University (Pedagogical University), Institute of Chemistry, Geochemistry and the Environment Division, 15G Swietokrzyska Street, 25-406 Kielce (Poland); Dabek, Jozef [Maria Curie-Sklodowska University, Institute of Physics, Mass Spectrometry Laboratory, 1 Maria Curie-Sklodowska Square, 20-031 Lublin (Poland); Starnawska, Ewa [Electron Microscope Laboratory, Polish Geological Institute, 4 Rakowiecka Street, 00-975 Warsaw (Poland)

    2008-12-15

    The paper presents the results of a geochemical and isotopic study of acidic pond water in the abandoned Podwisniowka quarry (Poland). The scope of investigations also encompassed mineralogical and isotopic studies of pyrite and related supergene minerals. Compared to similar sites throughout the world, the pit pond water examined is characterized by a very low pH averaging 2.64 {+-} 0.33 and simultaneously very low concentrations of SO{sub 4}{sup 2-} (geometric mean of 237 {+-} 57 mg L{sup -1}), Fe(II) (4.8 {+-} 3.4 mg L{sup -1}), Fe(III) (10.0 {+-} 6.2 mg L{sup -1}) and other trace elements. This acidity has been generated by complex processes of As-rich pyrite oxidation combined primarily with hydrolysis, precipitation, and transformation of Fe oxyhydroxysulfates and oxyhydroxides into goethite. The specific mineralogy of ore and gangue minerals, but especially the lack of acid-buffering constituents, has additionally contributed to the very low pH and element concentrations. Of the toxic elements, the high content of As (1111-1879 mg kg{sup -1}) in the western part of pit pond sediment may be of great concern, especially when using lime as a neutralizing agent of the acidic water. The {delta}{sup 34}S of soluble SO{sub 4} varied from -19.8 per mille to -11.1 per mille and was different from that of efflorescent sulfates (-25.7 per mille to -25.4 per mille ) and host pyrite (-25.4 {+-} 2.5 per mille ). The comparison of the {delta}{sup 18}O-SO{sub 4}{sup 2-} (-2.0 {+-} 1.2 per mille ) and {delta}{sup 18}O-H{sub 2}O (-6.2 {+-} 3.5 per mille ) values indicated that the pyrite underwent bacterially catalyzed oxidation by two natural oxidants, primarily by Fe{sup 3+} and to a lesser extent O{sub 2}.

  13. KREEP Rocks

    Institute of Scientific and Technical Information of China (English)

    邹永廖; 徐琳; 欧阳自远

    2004-01-01

    KREEP rocks with high contents of K, REE and P were first recognized in Apollo-12 samples, and it was confirmed later that there were KREEP rock fragments in all of the Apollo samples, particularly in Apollo-12 and-14 samples. The KREEP rocks distributed on the lunar surface are the very important objects of study on the evolution of the moon, as well as to evaluate the utilization prospect of REE in KREEP rocks. Based on previous studies and lunar exploration data, the authors analyzed the chemical and mineral characteristics of KREEP rocks, the abundance of Th on the lunar surface materials, the correlation between Th and REE of KREEP rocks in abundance, studied the distribution regions of KREEP rocks on the lunar surface, and further evaluated the utilization prospect of REE in KREEP rocks.

  14. Rock Stars

    Institute of Scientific and Technical Information of China (English)

    张国平

    2000-01-01

    Around the world young people are spending unbelievable sums of money to listen to rock music. Forbes Magazine reports that at least fifty rock stars have incomes between two million and six million dollars per year.

  15. Rock Finding

    Science.gov (United States)

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  16. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    Science.gov (United States)

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units

  17. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.-C. [INRA, Departement Environnement et Agronomie, Versailles (France)]. E-mail: fardeau@versailles.inra.fr; Zapata, F. [IAEA, Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Programme, Vienna (Austria)

    2002-05-15

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P{center_dot}kg{sup -1}, and incubated for one month in moist conditions. In another series, 1000 mg P kg{sup -1} applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg{sup -1} as triple superphosphate (TSP) were added. The {sup 32}P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  18. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    Science.gov (United States)

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs.

  19. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  20. Neutralization Sediment Treatment of Minim Harmful Heavy Metal Elements in Acid Mine Drainage%矿山酸性废水中微量有害重金属元素的中和沉淀去除

    Institute of Scientific and Technical Information of China (English)

    李笛; 张发根; 曾振祥

    2012-01-01

    Although treating the acid mine drainage by the neutralization method of limestone and lime is the most common practice, few researches have done to analyze the removal effects on those minimal a-mounts of toxic heavy metal elements in it. In our series of experiments the acid mine drainage of some py-rite excavating plant has been treated by neutralization of lime and limestone. And the sedimentation performance and removal effects on those minim harmful heavy metal ions are studied carefully. The experiments show that in terms of most heavy metal ions, the greater the pH values are, the better sedimentation removal effects will be. But if the metal ion will produce amphoteric compound deposits, there will be a better pH value which will result the best removal effect. The neutralization method of limestone has better removal effects to those metallic ions produced in acid conditions and has better sedimentation performance. But the highest pH value required by this method is 6, and its removal effects to other kinds of metal ions are not so satisfactory. In contrast, the neutralization of lime can have more flexible pH value ranges and its removal effects are better than limestone. The experiments further discover that the two stage neutralization of limestone and lime can reduce about a third lime dozing quantity and sediment, causing better sedimentation performance and lower water ratio in produced sediment compared with lime treatment method. Since the sedimentation performance and removal effects of those minim harmful heavy metal elements are closely related to the pH value, the accurate operation of equipment, the feeding pattern and feeding quantity of neutralizer are critical besides the careful design of processing. These study results provide valid basis for establishing optimum technology and process controlling conditions in treating the acid mine drainage by the neutralization sediment treatment of limestone and lime.%石灰中和及其衍生方法

  1. 生物成因次生铁矿物对酸性矿山废水中三价砷的吸附%THERMODYNAMICS AND KINETICS OF ADSORPTION OF ARSENITE IN ACID MINING DRAINAGE BY BIOGENIC SECONDARY IRON MINERALS

    Institute of Scientific and Technical Information of China (English)

    谢越; 周立祥

    2012-01-01

    Schwertmannite, jarosite and goethite are common secondary iron minerals found in acid mining drainage. They were formed biological under normal temperature and pressure with the aid of Acidithiobacillus ferrooxidans in this study. Batch adsorption experiments were conducted under three different temperatures ( 15℃ , 25℃ and 35℃) to explore arse-nite adsorption behaviors of the three biogenic secondary iron minerals in simulated acid mining drainage ( pH3. 0) . It was found that arsenite adsorption of the three biogenic minerals were of the second order of reaction and could well be described by the Lagergren pseudo-second order rate equation, with correlation coefficient being 0. 94. Their adsorption enthalpy was 11.76 , 18.40 and 9. 34 kJ mol-1, separately for the three different minerals and their △G's were all <0. The adsorption of arsenite was a kind of endothemnic spontaneous process.%在常温常压条件下,利用嗜酸性氧化亚铁硫杆菌的促进作用,生物合成了酸性矿山废水中常见的三种次生铁矿物:施氏矿物(schwertmannite)、黄钾铁矾(jarosite)和针铁矿(goethite).在15℃、25℃、35℃三个不同温度下,通过序批式吸附试验研究,在pH3.0的模拟酸性矿山废水条件下,3种生物成因次生铁矿物对As(Ⅲ)的吸附性能.结果表明:3种生物成因的次生矿物对As(Ⅲ)的吸附属于拟二级反应,可以用Lagergren 拟二级速率方程进行拟合,相关系数均在0.97以上.吸附速率常数K分别为施氏矿物0.094 g mg-1 min-1,针铁矿0.042 g mg-1 min-1,黄钾铁矾0.02 g mg-1 min-1.3种生物成因铁矿物对As(Ⅲ)的吸附等温线符合Langmuir方程和Freundlich方程,相关系数均在0.94以上.吸附反应的焓变Δ/分别为11.76、18.40和9.34 kJ mol-1,ΔG均小于0,吸附过程属于吸热的自发反应.

  2. Application of maghemite nanoparticles as sorbents for the removal of Cu(II), Mn(II) and U(VI) ions from aqueous solution in acid mine drainage conditions

    Science.gov (United States)

    Etale, Anita; Tutu, Hlanganani; Drake, Deanne C.

    2016-06-01

    The adsorptive removal of Cu(II), Mn(II) and U(VI) by maghemite nanoparticles (NPs) was investigated under acid mine drainage (AMD) conditions to assess NP potential for remediating AMD-contaminated water. The effects of time, NP and metal concentration, as well as manganese and sulphate ions were quantified at pH 3. Adsorption of all three ions was rapid, and equilibrium was attained in 5 min or less. 56 % of Cu, 53 % of Mn and 49 % of U were adsorbed. In addition, adsorption efficiencies were enhanced by ≥10 % in the presence of manganese and sulphate ions, although Cu sorption was reduced in 1:2 Cu-to-Mn solutions. Adsorption also increased with pH: 86 % Cu, 62 % Mn and 77 % U were removed from solution at pH 9 and increasing initial metal concentrations. Increasing NP concentrations did not, however, always increase metal removal. Kinetics data were best described by a pseudo-second-order model, implying chemisorption, while isotherm data were better fitted by the Freundlich model. Metal removal by NPs was then tested in AMD-contaminated surface and ground water. Removal efficiencies of up to 46 % for Cu and 54 % for Mn in surface water and 8 % for Cu and 50 % for Mn in ground water were achieved, confirming that maghemite NPs can be applied for the removal of these ions from AMD-contaminated waters. Notably, whereas sulphates may increase adsorption efficiencies, high Mn concentrations in AMD will likely inhibit Cu sorption.

  3. ExperimentaI research on maifan stone+scrape iron process for treating acidic mine drainage%麦饭石+铁屑处理煤矿酸性废水试验研究

    Institute of Scientific and Technical Information of China (English)

    狄军贞; 江富; 朱志涛; 戴男男; 郭旭颖

    2015-01-01

    针对多组分煤矿酸性废水(AMD)污染程度严重、治理费用高的特点,选取麦饭石、铁屑作为AMD井下原位处理的试验材料,开展了动态土柱试验研究。试验结果表明,由麦饭石及铁屑复合组成的1#柱对AMD的去除效果明显好于仅由麦饭石组成的2#柱,其对 Fe2+、Mn2+、SO42-、COD 的平均去除率分别为99.9%、64.5%、60.0%、53.8%,出水pH为8.0。该方法为AMD的井下原位廉价处理及麦饭石的新应用提供了参考。%Aimed at the acidic mine drainage (AMD) characteristics,such as serious contamination and expensive treatment cost,a dynamic pillar study has been executed by using maifan stone and scrape iron as materials for the in-situ treatment of AMD under the shaft. The experiments show that Column 1 which consists of maifan stone and scrap iron has obviously better removing capacity than Column 2 which consists of maifan stone alone. In Column 1 , the average removing rates of Fe2+,Mn2+,SO42-,COD are 99.9%,64.5%,60.0%,53.8%,respectively,and the effluent pH is 8.0. This method provides references for the treatment of AMD in-situ at a low cost,and new applications of maifan stone.

  4. Drainage structures and transit-time distributions in conduit-dominated and fissured karst aquifer systems

    OpenAIRE

    Lauber, Ute

    2014-01-01

    Karst aquifers are important groundwater resources. Solutionally-enlarged conduits embedded in a fissured rock matrix result in a highly heterogeneous underground drainage pattern that makes karst aquifers difficult to characterize. This thesis emphasizes the identification of drainage structures and the quantification of related transit-time distributions of diverse karst aquifer systems. Applied methods include artificial tracer tests, natural tracer analysis, and discharge analysis.

  5. Adequate drainage system design for heap leaching structures.

    Science.gov (United States)

    Majdi, Abbas; Amini, Mehdi; Nasab, Saeed Karimi

    2007-08-17

    The paper describes an optimum design of a drainage system for a heap leaching structure which has positive impacts on both mine environment and mine economics. In order to properly design a drainage system the causes of an increase in the acid level of the heap which in turn produces severe problems in the hydrometallurgy processes must be evaluated. One of the most significant negative impacts induced by an increase in the acid level within a heap structure is the increase of pore acid pressure which in turn increases the potential of a heap-slide that may endanger the mine environment. In this paper, initially the thickness of gravelly drainage layer is determined via existing empirical equations. Then by assuming that the calculated thickness is constant throughout the heap structure, an approach has been proposed to calculate the required internal diameter of the slotted polyethylene pipes which are used for auxiliary drainage purposes. In order to adequately design this diameter, the pipe's cross-sectional deformation due to stepped heap structure overburden pressure is taken into account. Finally, a design of an adequate drainage system for the heap structure 2 at Sarcheshmeh copper mine is presented and the results are compared with those calculated by exiting equations. PMID:17321044

  6. Mercury mine drainage and processes that control its environmental impact

    Science.gov (United States)

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  7. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    Science.gov (United States)

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  8. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    Science.gov (United States)

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  9. Drainage of curd.

    NARCIS (Netherlands)

    Akkerman, J.C.

    1992-01-01

    Cheese making starts with transformation of the liquid milk into a gel by proteolytic enzymes and/or acid producing bacteria. The gel is cut into pieces. The protein matrix contracts, by which whey is expelled from the pieces, this process is called syneresis. The process of whey expulsion is enhanc

  10. Incorporação de resíduo do tratamento de drenagem ácida em massa de cerâmica vermelha Incorporation of acid drainage treatment sludge waste into red ceramic products

    Directory of Open Access Journals (Sweden)

    S. L. Galatto

    2009-03-01

    Full Text Available Neste trabalho, apresenta-se o estudo experimental em escala laboratorial e industrial da incorporação de resíduo do tratamento de Drenagem Ácida de Mina (DAM na formulação de massa de cerâmica vermelha, com substituição parcial das argilas. Foram realizados algumas análises e ensaios nas amostras dos blocos cerâmicos: análise dilatométrica a verde, absorção de água, resistência à compressão, eflorescência de sais solúveis e emissões atmosféricas (MP e SOx. Os resultados das análises nos corpos de prova ensaiados indicam aumento de resistência a compressão. Os ensaios de eflorescência de sais solúveis indicam maior intensidade de cristalização de sais solúveis na superfície dos corpos de prova e blocos cerâmicos à medida que se aumenta o percentual de resíduo. As análises realizadas nos blocos cerâmicos ensaiados em escala industrial, recomendam uma proporção de até 2,5% de resíduo na massa cerâmica.An experimental laboratory and industry scale study of the incorporation of residue from Acid Drainage Mine (ADM in the ceramics mass, with partial substitution of clays, is presented. Some analyses and assays of the ceramic blocks were been carried out: dilatometry, water absorption, compressive strength, efflorescence and emissions (MP and SOx. The results show an increase of compressive strength. The efflorescence assays indicate greater intensity of crystallization of soluble salts in the surface of the ceramic blocks for increasing residue content. The analyses in the ceramic blocks in industrial scale recommend a ratio of up to 2.5% of waste in bulk ceramics.

  11. Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation

    Science.gov (United States)

    Maillot, Fabien; Morin, Guillaume; Juillot, Farid; Bruneel, Odile; Casiot, Corinne; Ona-Nguema, Georges; Wang, Yuheng; Lebrun, Sophie; Aubry, Emmanuel; Vlaic, Gilberto; Brown, Gordon E.

    2013-03-01

    Poorly ordered nanocrystalline hydroxysulfate minerals of microbial origin, such as schwertmannite, Fe8O8(OH)6SO4, are important arsenic scavengers in sulfate-rich acid mine drainage (AMD) environments. However, despite the fact that As(III) and As(V) have been shown to sorb on schwertmannite, little is known about the actual mechanism of arsenic scavenging processes after microbial Fe(II) oxidation in AMD environments. The major focus of the present study is to determine the molecular-level structure of poorly ordered As(III) and As(V) bearing Fe oxyhydroxysulfate minerals from the Carnoulès AMD, France, which exhibits exceptional As(III) concentrations. Powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to compare field samples with a large set of synthetic analogs prepared via biotic or abiotic pathways, with As/Fe ratios typical of minerals and mineraloids ranging from nanocrystalline schwertmannite to amorphous hydroxysulfate compounds. Our results yield further evidence for the poisoning effect of As(V) in limiting the nucleation of schwertmannite. For initial dissolved As(V)/Fe(III) molar ratios ⩾0.2, amorphous Fe(III)-As(V) hydroxysulfate forms, with a local structure consistent with that of amorphous ferric arsenate. EXAFS data for this amorphous material are consistent with corner-sharing FeO6 octahedra to which AsO4 tetrahedra attach via double-corner 2C linkages. For As(V)/Fe(III) molar ratios lower than 0.2, As(V) binds to schwertmannite via 2C surface complexes. In contrast with the As(V)-containing samples, As(III) has a lower affinity for schwertmannite following its nucleation, as this mineral phase persists up to an initial As(III)/Fe(III) molar ratio of 0.6. EXAFS data indicate that during the precipitation process, As(III) forms dominantly 2C surface complexes on schwertmannite surfaces, likely on the sides of double-chains of Fe(III)(O,OH)6 octahedra, with a smaller proportion of edge

  12. DRAINAGE AND FLEXIBLE PAVEMENT PERFORMANCE

    Directory of Open Access Journals (Sweden)

    SIDDHARTHA ROKADE

    2012-04-01

    Full Text Available Providing adequate drainage to a pavement system has been considered as an important design consideration to prevent premature failures due to water related problems such as pumping action, loss of support, and rutting, among others. Most water in pavements is due to rainfall infiltration into unsaturated pavement layers, throughjoints, cracks, shoulder edges, and various other defects, especially in older deteriorated pavements. Water also seep upward from a high groundwater table due to capillary suction or vapour movements, or it may flow laterally from the pavement edges and side ditches. Providing adequate drainage to a pavement system has been considered as an important design consideration to ensure satisfactory performance of the pavement, particularly from the perspective of life cycle cost and serviceability. To minimize premature pavement distresses and to enhance the pavement performance, it is imperative to provide adequate drainage to allow infiltrated water to drain out from the base and sub-base, thus avoiding saturation of base and subgrade soils. This paper deals with the analysis of the impact of subsurface drainage on pavement system performance. The requirement ofeffective subsurface drainage for pavement performance is also discussed.

  13. Analysis of Microbial Community Composition in Obturating Acid Mine Drainage%封闭环境下酸性矿坑水中微生物生态多样性的研究

    Institute of Scientific and Technical Information of China (English)

    霍强; 刘晰; 刘文斌; 谢建平; 刘新星

    2009-01-01

    Tong Lushan Copper Mine has the longest exploitation time span in the world. Many disused mines produce a large amount of environmental detrimental acid mine drainage (AMD). The microbial community in obturating AMD samples,which collected from Tong Lushan Copper Mine,was identified by the technology of the restriction fragment length polymorphisma (RFLP) analysis of bacterial and archaeal 16S rDNA clone libraries. The bacterial and archaeal richness of acidophilic communities in this acidic and high-ion-concentration AMD were lower when compared with other extremophile and non-extremophile assemblages. The result of RFLP analysis and phylogenetic anlysis show that the majority of the bacterial clones were A. ferrooxidans belonging to the gamma-Proteobacteria and L. ferrooxidans belonging to the Nitospira while the majority of the archaeal clones were affiliated with Thermoplasma.Archaeal clones related to uncultured methanogenic archaeon were first found in obturating AMD environment and accounted for more than a quarter of the total archaeal clones. This microbial community structure composed by both bacteria and archaea contributed much to the generation of AMD.%铜绿山铜矿是世界开采时间最长的矿井之一,在开采过程中有许多矿井被废弃,许多废弃的矿井内产生了大量的对环境有害的酸性矿坑水.酸性矿坑水取自铜绿山铜矿某废弃矿井,利用限制性酶切片断多样性分析(RFLP分析)对酸性矿坑水中的微生物生态多样性进行了研究.研究表明,酸性矿坑水呈酸性,相对于其他极端与非极端生态环境,酸性矿坑水中的细菌与古菌的群落多样性较低.RFLP分析与系统发育分析表明,酸性矿坑水中细菌主要由A.fcrrooxidans(属于gamma-Proteobacteria)和L.ferrooxidans(属于Nitospira)成;古菌主要由Thermoplasma相关古菌组成.在这种封闭环境的酸性矿坑水中首次发现了类似于产甲烷古菌的克隆片断,其占古菌种群的四分

  14. Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings

    Science.gov (United States)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2013-08-01

    In present work, we applied two sets of new multi-dimensional geochemical diagrams (Verma et al., 2013) obtained from linear discriminant analysis (LDA) of natural logarithm-transformed ratios of major elements and immobile major and trace elements in acid magmas to decipher plate tectonic settings and corresponding probability estimates for Paleoproterozoic rocks from Amazonian craton, São Francisco craton, São Luís craton, and Borborema province of Brazil. The robustness of LDA minimizes the effects of petrogenetic processes and maximizes the separation among the different tectonic groups. The probability based boundaries further provide a better objective statistical method in comparison to the commonly used subjective method of determining the boundaries by eye judgment. The use of readjusted major element data to 100% on an anhydrous basis from SINCLAS computer program, also helps to minimize the effects of post-emplacement compositional changes and analytical errors on these tectonic discrimination diagrams. Fifteen case studies of acid suites highlighted the application of these diagrams and probability calculations. The first case study on Jamon and Musa granites, Carajás area (Central Amazonian Province, Amazonian craton) shows a collision setting (previously thought anorogenic). A collision setting was clearly inferred for Bom Jardim granite, Xingú area (Central Amazonian Province, Amazonian craton) The third case study on Older São Jorge, Younger São Jorge and Maloquinha granites Tapajós area (Ventuari-Tapajós Province, Amazonian craton) indicated a within-plate setting (previously transitional between volcanic arc and within-plate). We also recognized a within-plate setting for the next three case studies on Aripuanã and Teles Pires granites (SW Amazonian craton), and Pitinga area granites (Mapuera Suite, NW Amazonian craton), which were all previously suggested to have been emplaced in post-collision to within-plate settings. The seventh case

  15. Gravitational drainage of foam films.

    Science.gov (United States)

    Sett, S; Sinha-Ray, S; Yarin, A L

    2013-04-23

    Gravitational drainage from thick plane vertical soap films and hemispherical bubbles is studied experimentally and theoretically. The experiments involve microinterferometry kindred to the one used in the experiments in the Scheludko cell. The following surfactants were used in the experiments: cationic dodecyltrimethylammonium bromide (DTAB), anionic sodium dodecyl sulfate (SDS), anionic Pantene shampoo which primarily contains sodium lauryl sulfate, nonionic tetraethylene glycol monooctyl ether (C8E4), and nonionic Pluronic (P-123) surfactants at different concentrations. The theoretical results explain the drainage mechanism and are used to develop a new method of measurement of the surface elasticity and to test it on the above-mentioned surfactants. PMID:23557027

  16. THE EFFECT OF ACID ROCK FROM CĂLIMANI MOUNTAINS ON MAKING UP A NUTRITIVE SUPPORT FOR PLANTS, BASED ON RED MUD

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2013-12-01

    Full Text Available The paper presents the results of an experiment carried out in controlled conditions, regarding triticale plants growth on a nutritive layer consisting of a mixture of red mud, acid rock and compost, in different proportions. The analytical results highlighted the strongly alkaline reaction of the layer, high organic carbon, mobile phosphorus and potassium contents and low nitrogen contents. The layer has a high salinity and sodium salts are predominant. The total microelements and heavy metals contents are generally acceptable. The triticale plants grew in these conditions up to 10-15 cm height, when the experiment was stopped. The plants accumulated normal nitrogen, calcium and magnesium quantities, low potassium ones, high phosphorus and very high sodium contents. The metallic microelements (copper, iron, manganese, zinc accumulated at relatively normal levels, but the heavy metals (cadmium, cobalt, chromium, nickel, lead concentrated up to values several tens of times higher than the normal contents. Introducing the obtained vegetal mass in the nutritive layer will contribute to enhancing its fertility for the next vegetation cycles.

  17. Groundwater in granitic rocks

    International Nuclear Information System (INIS)

    A comparison of published chemical analyses of ground waters found in granitic rocks from a variety of locations shows that their compositions fall into two distinct classes. Ground waters from shallow wells and springs have a high bicarbonate/chloride ratio resulting from the neutralization of carbonic acid (dissolved CO2) by weathering reactions. The sodium, potassium, and silica released by weathering reactions drive the solutions away from equilibrium with the dominant minerals in the granites (i.e., quartz, muscovite, potassium feldspar, and albite). On the other hand, ground waters from deep wells and excavations are rich in chloride relative to bicarbonate. Their Na, K, H, and silica activities indicate that they are nearly equilibrated with the granite minerals suggesting a very long residence time in the host rock. These observations furnish the basis for a powerful tool to aid in selecting sites for radioactive waste disposal in granitic rocks. When water-bearing fractures are encountered in these rocks, a chemical analysis of the solutions contained within the fracture can determine whether the water came from the surface, i.e., is bicarbonate rich and not equilibrated, or whether it is some sort of connate water that has resided in the rock for a long period, i.e., chloride rich and equilibrated. This technique should allow immediate recognition of fracture systems in granitic radioactive waste repositories that would allow radionuclides to escape to the surface

  18. The Immobilization Effect of Oxalic Acid Activated Phosphate Rocks Applied to the Cd Contaminated Farmland Soil in Mining Area%草酸活化磷矿粉对矿区污染土壤中Cd的钝化效果

    Institute of Scientific and Technical Information of China (English)

    许学慧; 姜冠杰; 胡红青; 刘永红; 付庆灵; 黄丽

    2011-01-01

    通过盆栽莴苣试验,研究施加草酸活化磷矿粉对矿区农田土壤Cd污染钝化修复的效果.结果表明:施加南漳磷矿粉后,供试土壤交换态Cd的含量比对照降低了12.5%~20.3%;施加不同浓度经草酸活化过的南漳磷矿粉后,交换态Cd的含量与对照相比最高降低了39.5%.施加保康磷矿粉后,随着施加量的增加,与对照相比,交换态Cd的含量变化不显著;施加经草酸活化保康磷矿粉,土壤交换态Cd含量比对照最高降低了21.5%.同时,与对照相比,施加南漳磷矿粉后,残渣态Cd含量最大值是对照的2.03倍,施加经草酸活化的南漳磷矿粉后,残渣态Cd含量最大值是对照的2.61倍;施加保康磷矿粉和活化磷矿粉后,残渣态Cd含量与对照也有显著增加.施加磷矿粉和活化磷矿粉可以显著降低莴苣各部分对Cd的吸收,减少Cd在莴苣植株的累积.在施加两种活化磷矿粉后,与对照相比,莴苣地上部分Cd含量分别最多可降低41.4%、59.3%,根部Cd含量最多降低47.7%、55.1%.因此,低品位磷矿粉经草酸活化后施于Cd污染土壤,可以更好地钝化固定土壤中的Cd.%A pot experiment was conducted to study the Cd immobilization effect of oxalic acid activated phosphate rocks on a contaminated soil in mining area, using lettuce as a test crop. The results showed that when applied Nanzhang phosphate rock, the content of exchangeable Cd in the soil was reduced by 12.5%~20.3%. Application of oxalic acid activated Nanzhang phosphate rock at different levels, decreased the content of exchangeable Cd up to 39.5%, compared with the control treatment. The change in the content of exchangeable Cd as the amount of applied Baokang phosphate rock increased was slightly significant. The maximum reduction of 21.5% exchangeable Cd was obtained after applying Baokang activated phosphate rock to the soil. At the same time, the maximum content of residual Cd was 2.03 times higher than

  19. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  20. Laparoscopic Drainage of Pancreatic Pseudocysts

    Directory of Open Access Journals (Sweden)

    Filip Eugen Târcoveanu

    2015-09-01

    Full Text Available Pancreatic pseudocyst is a complication of acute or chronic pancreatitis. The invasive treatment (surgical or endoscopic is recommended if the pseudocyst persisted for more than 6 weeks after the diagnosis and if the size is larger than 6 cm and is symptomatic. The laparoscopic techniques have been developed to provide the patient with the benefits of a minimal access alternative. The aim of this article is to analyze the postoperative results of the pancreatic pseudocyst laparoscopic surgery. We have accomplished a restrospective study using clinical and para-clinical test results and postoperative results from the patients who have been treated with laparoscopic drainage. We reported a case of a large symptomatic pseudocyst after an attack of gallstone pancreatitis. Laparoscopic cholecystectomy and extern drainage have been performed at the same time with good postoperative results. Starting with year 2000 until year 2015, 85 patients, diagnosed with pancreatic pseudocyst, have been treated in the First Surgical Clinic, University Hospital Saint Spiridon Iasi. From which only 8 have been treated with laparoscopic drainage, encountering no mortality and morbidity. Postoperative hospital stay was 9,41 days. The postoperative drainage duration was between 5 and 21 days with a mean of 7 days. Late postoperative results were good in 6 patients and mediocre in the 2 patients. Conclusion: The laparoscopic technique has all the benefits of the minimal invasive approach. Better postoperative results were seen in cysto-digestive anastomosis using a Endo GIA stapler.

  1. Evaluation of phospherus uptake from Minjingu phosphate rock, growth and nodulation of agroforestry tree species on an acid soil from Kenya

    International Nuclear Information System (INIS)

    A series of studies were carried out to study the effect of P application on fast growing multi-purpose trees. A greenhouse experiment was conducted to evaluate availability and uptake of phosphorus (P) from Minjingu phosphate rock (MPR). An acid soil and six agroforestry tree species namely Leucena leuco-cephala, Gliricidia sepium, Sesbania sesban, Grevillea robusta, Cassia siamea and Eucalyptus grandis were used. Phosphorus was applied at 25.8 mg P/ kg soil as Minjingu phosphate rock (MPR) or Triple Superphosphate (TSP). Pregerminated seedlings were transplanted and divided into two sequential harvests at 3 and 6 MAT (months after transplanting). 32P isotope carrier free solution was added to transplanted seedlings at the beginning and when they were 3 months old. The soil was tested for isotopically exchangeable P by incubating the soil with the MPR and TSP. The soil was high in P-fixing capacity. At 3 MAT all the species except G. robusta gave a 150-250% significantly higher stem dry weights where P was added and L. leuco-cephala, S. sesban and C. siamea maintained this up to 6 MAT. The legumes and E. grandis where P was applied differed significantly from controls in root dry weight with Minjingu PR being superior with G.sepium and E. grandis. The legumes and E. grandis had significantly higher P uptake where P was applied at 3 MAT. The relative availability of MPR at 3 MAT showed that L.leucocephala and G. sepium derived 2.93 and 1.06 times more P from Minjingu PR than from TSP respectively. Data obtained from G. robusta P uptake showed that this species preferred soil P to externally supplied P in the three sampling periods. Tree species and fertilizer P interactions at 6 MAT were highly significant (P=0.01). Vesicular arbuscular mycorrhiza (VAM) inoculation improved growth, P uptake from MPR and nodulation of G. sepium seedlings. Inoculating L. leucocephala seedlings with VAM increased availability of P from MPR. (author)

  2. Rock Paintings.

    Science.gov (United States)

    Jones, Julienne Edwards

    1998-01-01

    Discusses the integration of art and academics in a fifth-grade instructional unit on Native American culture. Describes how students studied Native American pictographs, designed their own pictographs, made their own tools, and created rock paintings of their pictographs using these tools. Provides a list of references on Native American…

  3. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  4. Feasibility study of a self-remediation system for mine drainage using its thermal energy

    Science.gov (United States)

    Oh, Chamteut; Cheong, Youngwook; Yim, Giljae; Ji, Sangwoo

    2016-04-01

    Mine drainage is defined as the water which is discharged to the ground surface through shafts and/or cracks formed by mining activities. Typically, mine drainage features high concentration of acidity and metals since it passes through the underground. Therefore, for the purpose of protecting the surrounding natural environment, mine drainage should be remediated before being discharged to nature. Mine drainage, due to its nature of being retained underground, shows constant temperature which is independent from the temperature of the atmosphere above ground. This condition allows mine drainage to become a promising renewable energy source since energy can be recovered from water with constant temperature. In this research, a self-remediation system is proposed which remediates the mine drainage through electrochemical reactions powered by the thermal energy of mine drainage. High energy efficiency is able to be achieved by shortening the distance between the energy source and consumption, and therefore, this system has a strong advantage to be actualized. A feasibility study for the system was conducted in this research where the thermal energy of mine drainage over time and depth was calculated as energy supply and the required electrical energy for remediating the mine drainage was measured as energy consumption. While the technology of converting thermal energy directly into electrical energy is yet to be developed, energy balance analysis results showed that the proposed self-remediation system is theoretically possible.

  5. Study on the treatment of simulated acid mine drainage using air cathode microbial fuel cell%空气阴极微生物燃料电池处理模拟酸性矿井水的研究

    Institute of Scientific and Technical Information of China (English)

    戚甫长; 蔡昌凤; 江林; 李祝宁

    2014-01-01

    酸性矿井水因 pH 值低、重金属离子含量高,难以直接采用硫酸盐还原菌生化处理.试验构建了空气阴极微生物燃料电池系统来处理酸性矿井水,有效处理废水 H +和重金属离子,同时还能产电.构建的空气阴极微生物燃料电池系统(污泥量40 mL,硫酸盐还原菌30 mL,阳极材料为碳布,室温)的最大功率密度达到82.24 mW/m2,最大电压为332.2 mV;硫酸根的最大去除率达到41.6,对 Zn2+、Cu2+、Cd2+和 Fe2+的去除率分别达到83.7%、77.4%、84.2%和66.8%,化学需氧量的最大去除率达到60.9%.分析认为,空气阴极微生物燃料电池有效处理废水 H +,弱化了 H 2 S 的生物抑制作用,强化了硫酸盐还原菌还原产生的 S2-与重金属离子生成硫化物,并经能谱分析加以验证.%Acid mine drainage (AMD)with low pH and high metal ions is difficult and costly to treat by sulfate reducing bacteria .Air cathode microbial fuel cell (MFC)is constructed to treat AMD and re-move H + .It can treat wastewater while producing electricity.The maximum power density was 82.24 mW/m2 ,maximum voltage was 332.2 mV;maximum removal of sulfate was 41.6%,Zn2 + , Cu2 + ,Cd2 + and Fe2 + removal rates were 83.7%,77.4%,84.2% and 66.8% respectively and maximum percent removal of chemical oxygen demand (COD)60.9% are obtained in MFC (activated sludge 40 mL,SRB 30 mL,carbon cloth as anode material,room temperature).It is conclnded that air cathode microbial fuel cell can effectively remove H + ,weaken the inhabitation of H 2 S on the bacteria and strengthen the forming of sulfide using metal ions,which are tested and proved by Energy Dispersive Spectrometer (EDS).

  6. Definition of the drainage filter problem

    NARCIS (Netherlands)

    Zaslavsky, D.

    1977-01-01

    It is common to consider the following: I. Retention of soil particles that may enter the drainage pipe and cause its clogging. For some sensitive structures it is important to prevent settlements due to soil transportation by drainage water.

  7. Proceedings of the Fourteenth International Symposium on Water-Rock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, Roland [Institute for Earth Sciences - ISTerre, CNRS UMR 5275 Grenoble (France); Pitsch, Helmut [IRSN, DSDP, SPIIC, BP17, 92262 Fontenay-aux-Roses Cedex (France)

    2013-07-01

    The 14. edition of the International Symposium on Water-Rock Interaction was held from 9-14 June 2013 in the Palais des Papes in the historic city of Avignon, located in southeastern France. As is the tradition with WRI symposia, earth scientists and guests from around the world convened over a week's time to exchange the latest ideas, advances, and data covering some of the most important aspects of rock-water interactions. The research that was presented in both oral and poster format covered studies derived from experimental and laboratory work, modeling and theoretical approaches, and field measurements. The presentations at the symposium showed the immense range of conditions associated with natural, experimental, and theoretical rock-water systems, encompassing a wide range of pH, as well as temperature and pressure conditions ranging from ambient to beyond the critical point of water. In addition, as can be evidenced from the presentations, many water-rock systems are increasingly being described in terms of control by both abiotic and biogeochemical processes. Advances in fundamental WRI research are also making significant contributions to better understanding current environmental problems, which are quite often highlighted in today's media headlines. Reflecting the importance of these environmental and societal challenges, an important number of presentations in this symposium described the current state of the knowledge concerning acid mine drainage, geological CO{sub 2} sequestration, shale gas extraction, aquifer salinization and diminishing potable water resources, and nuclear waste storage. Some 260 manuscripts were submitted to WRI-14 by scientists from 37 countries. Each manuscript was peer reviewed for scientific content by two reviewers. In the end, 230 manuscripts were accepted for either oral or poster presentation at the symposium. Each one of these papers can be found in this special symposium volume. The WRI-14 symposium has been

  8. 24 CFR 3285.604 - Drainage system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage system. 3285.604 Section... § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one section require drainage system crossover connections to join all sections of the home. The crossover...

  9. Drainage water management for water quality protection

    Science.gov (United States)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  10. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  11. Identification of Bedrock Lithology using Fractal Dimensions of Drainage Networks extracted from Medium Resolution LiDAR Digital Terrain Models

    Science.gov (United States)

    Cámara, Joaquín; Gómez-Miguel, Vicente; Martín, Miguel Ángel

    2016-03-01

    Geologists know that drainage networks can exhibit different drainage patterns depending on the hydrogeological properties of the underlying materials. Geographic Information System (GIS) technologies and the increasing availability and resolution of digital elevation data have greatly facilitated the delineation, quantification, and study of drainage networks. This study investigates the possibility of inferring geological information of the underlying material from fractal and linear parameters describing drainage networks automatically extracted from 5-m-resolution LiDAR digital terrain model (DTM) data. According to the lithological information (scale 1:25,000), the study area is comprised of 30 homogeneous bedrock lithologies, the lithological map units (LMUs). These are mostly igneous and metamorphic rocks, but also include some sedimentary rocks. A statistical classification model of the LMUs by rock type has been proposed based on both the fractal dimension and drainage density of the overlying drainage networks. The classification model has been built using 16 LMUs, and it has correctly classified 13 of the 14 LMUs used for its validation. Results for the study area show that LMUs, with areas ranging from 177.83 ± 0.01 to 3.16 ± 0.01 km2, can be successfully classified by rock type using the fractal dimension and the drainage density of the drainage networks derived from medium resolution LiDAR DTM data with different flow support areas. These results imply that the information included in a 5-m-resolution LiDAR DTM and the appropriate techniques employed to manage it are the only inputs required to identify the underlying geological materials.

  12. Analysis of organic acid salts of marine carbonate rocks in Tarim Basin%塔里木盆地海相碳酸盐岩中有机酸盐的分析

    Institute of Scientific and Technical Information of China (English)

    孙敏卓; 孟仟祥; 郑建京; 王国仓; 房嬛; 王作栋

    2013-01-01

    提出热重/差热(TG/DTA)、红外光谱(IR)和气相色谱/质谱联用结合(GC/MS)分析塔里木盆地海相碳酸盐岩中有机酸盐的方法.用TG/DTA对标样(硬脂酸、硬脂酸镁、硬脂酸钙和碳酸钙)进行分析,确定有机酸气化而有机酸盐不气化的温度区间,由此设计从碳酸盐岩中分离和提取有机酸盐的实验步骤.研究结果表明:验证碳酸盐岩中确实存在有机酸盐;塔里木盆地海相碳酸盐岩中有机酸盐的含量与样品中的碳酸盐含量无相关性,而与样品的沉积相类型具有一定的相关性,即斜坡相沉积环境的沉积岩中相对富集有机酸盐.%A method was developed for the determination of the organic acid salts of marine carbonate rocks in Tarim Basin by the thermogravimetric/differential thermal (TG/DTA), infrared spectroscopy (IR) and gas chromatography/mass spectrometry (GC/MS).By analyzing the guide sample such as the stearic acid, the magnesium stearate, the calcium stearate and the calcium carbonate by TG/DTA, the temperature range where the organic acid was gasificated while the organic acid salt wasn't gasificated were defined, and thereby the experimental procedures for separating and extracting the organic acid salt from the carbonatite rock was designed.The results show that the organic acid salt exists in carbonatite rock by using the infrared spectroscopy and gas chromatography/mass spectrometry. The quantity of the organic acid salts of marine carbonate rocks in Tarim Basin is insignificantly correlated with the carbonate content of samples, but it is correlated with the types of sedimentary facies of samples, namely relative enrichment of the organic acid salts in sedimentary strata of the slope facies sedimentary environment.

  13. Processos físico-químicos em drenagem ácida de mina em mineração de carvão no sul do Brasil Physico-chemical processes in acid mine drainage in coal mining, south Brazil

    Directory of Open Access Journals (Sweden)

    Veridiana Polvani Campaner

    2009-01-01

    Full Text Available Acid mine drainage generated from coal mine showed a pH of 3.2, high concentrations of SO4(2-, Al, Fe, Mn, Zn and minor As, Cd, Co, Cr, Cu, Ni and Pb. The major reduction in the concentration occurred for Al, As, Cr, Fe and Pb after the treatment with CaO. The evolution of these acid waters within the tributary stream showed decreasing concentration for all soluble constituents, except Al. This natural attenuation was controlled by pH (6.4 to 10.8 as a result of concurrent mixing with tributary stream and reaction with local bedrock that contains limestone. Aluminum increasing concentration during this evolution seems to be related to an input of Al-enriched waters due to the leaching of silicate minerals in alkaline conditions.

  14. Geology and Geochemistry of Reworking Gold Deposits in Intrusive Rocks of China—Ⅰ. Features of the Intrusive Rocks

    Institute of Scientific and Technical Information of China (English)

    王秀璋; 程景平; 等

    1998-01-01

    Most gold deposits in intrusive rocks were formed as a result of reworking processes.the intrusive rocks containing gold deposits and consisting of ultramafic-mafic,intermediateacid and alkaline rocks of the Archean,Proterozoic,Caledonian,Hercynian and Yenshanian periods occur in cratons,activated zones of cratons and fold belts.Among them,ultramaficmafic rocks,diorite,alkaline rocks,and anorthosite are products of remelting in the mantle or mantle-crust or mantle with crustal contamination,However,auriferous intermediate-acid rocks are products of metasomatic-remelting in auriferous volcainc rocks or auriferous volcanosedimentary rocks in the deep crust.

  15. Drainage Areas of Selected Streams in Virginia

    Science.gov (United States)

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  16. The variation in composition of ultramafic rocks and the effect on their suitability for carbon dioxide sequestration by mineralisation following acid leaching

    OpenAIRE

    Styles, M. T.; Sanna, A.; Lacinska, A.M.; Naden, J.; Maroto-Valer, M.

    2014-01-01

    Carbon dioxide capture and storage by mineralization has been proposed as a possible technology to contribute to the reduction of global CO2 levels. A main candidate as a feed material, to supply Mg cations for combination with CO2 to form carbonate, is the family of ultramafi c rocks, Mgrich silicate rocks with a range of naturally occurring mineralogical compositions. A classifi cation scheme is described and a diagram is proposed to display the full range of both fresh and alte...

  17. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP)

  18. Comparison of greenhouse and 32P isotopic laboratory methods for evaluating the agronomic effectiveness of natural and modified rock phosphates in some acid soils of Ghana

    International Nuclear Information System (INIS)

    Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg-1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 deg C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha-1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP-1) and low exchangeable P (E1min -1). The capacity factor and the

  19. Vertical drainage capacity of new electrical drainage board on improvement of super soft clayey ground

    Institute of Scientific and Technical Information of China (English)

    沈扬; 励彦德; 黄文君; 徐海东; 胡品飞

    2015-01-01

    As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage (EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.

  20. 溶血磷脂酸调控RhoA/ROCK2信号通路对乳腺癌细胞增殖的影响%Influence of lysophosphatidic acid on proliferation of breast cancer cell by adjusted RhoA/ROCK2 signal pathway

    Institute of Scientific and Technical Information of China (English)

    许海; 段刚峰

    2013-01-01

    目的 探讨溶血磷脂酸(LPA)与RhoA/ROCK2信号通路对乳腺癌细胞增殖的影响及其作用机制.方法 以不同浓度LPA干预乳腺癌MDA-MB-231细胞,每隔24 h以细胞计数法观察和记录细胞的增殖.以最佳LPA促增殖浓度作用于MDA-MB-231细胞,观察Rho激酶抑制剂(Y-27632)对癌细胞的影响;以Pull-down及Western blot法检测各组细胞内RhoA活性及RhoA、ROCK2蛋白表达.结果 LPA以时间及剂量依赖性关系显著促进MDA-MB-231细胞的增殖(P<0.05);Y-27632可以显著抑制LPA的促增殖作用;LPA干预后RhoA活性及RhoA、ROCK2蛋白表达显著升高(P<0.05),Y-27632干预后RhoA活性及RhoA、ROCK2蛋白表达显著下降(P<0.05).结论 LPA可能通过调控RhoA/ROCK2信号通路促进乳腺癌细胞的增殖,为乳腺癌的临床治疗提供了新思路.%Objective To investigate the influence and mechanism of lysophosphatidic acid and RhoA/ROCK2 signal pathway on proliferation of breast cancer cell. Methods After treatment with different concentration of LPA, the proliferation of breast cancer cell MDA-MB-231 was observed and recorded by cell count method every of 24 h. MDA-MB-231 treated with optimal concentration of LPA and observed the effect of Rho kinase inhibitor( Y-27632) on LPA-induced proliferation. The activity of RhoA was tested by a pull-down way. The protein expression of RhoA and ROCK2 were determined by Western blot. Results LPA could promote MDA-MB-231 proliferation in a time and dose-dependent manner (P 〈 0. 05). ROCK inhibitor significantly inhibited LPA-induced cell proliferation (P 〈 0. 05 ). The activity of RhoA and expressionof RhoA, ROCK2 were enhanced significantly after LPA intervention (P 〈0. 05). However Y-27632 markedly decreased LPA-induced the increase of RhoA activity and protein expression of RhoA and ROCK2 ( P 〈 0. 05). Conclusions LPA may promote breast cancer cell proliferation through regulating RhoA/ROCK2 signal pathway. It provides a new idea

  1. Drainage area data for Alabama streams

    Science.gov (United States)

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  2. Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2007-10-01

    The detailed analysis of landforms,drainages and geology of the area between the rivers Amaravati and Karjan was carried out in order to understand the tectonic history of the lower Narmada basin. Movement along the various faults in the area was studied on the basis of the drainage offsetting. Horizontal offsetting of stream channels was found quite demonstrable along NNW –SSE trending transverse faults.Tectonic landforms including systematic de flection of stream channels and ridges, alignment of fault scarp and saddles and displacement in the basement rocks and alluvial deposits show that the area is undergoing active deformation driven by the NSF system.

  3. 烃源岩生成有机酸过程的高分辨质谱研究%Characterizing thermal evolution of acid species in hydrocarbon source rock by using negative-ion ESI FT-ICR MS

    Institute of Scientific and Technical Information of China (English)

    蒋启贵; 刘鹏; 黎茂稳; 陶国亮

    2014-01-01

    研究石油中有机酸的生成过程对研究储层改造、石油润湿性及页岩油可动性评价具有重要意义。在热压生烃模拟实验基础上,对Ⅲ型烃源岩不同演化阶段生成油中的非烃馏分进行了负离子电喷雾傅立叶变换离子回旋共振质谱分析,研究了烃源岩生成有机酸过程。对样品生成有机酸分析表明,在整个演化过程烃源岩都能生成有机酸,在低演化阶段主要生成脂肪酸,随演化程度的升高,脂肪酸丰度快速减少,芳环酸开始大量生成。随演化程度的增加,芳环上短链取代基发生断裂,并促进了有机酸的缩合,使得生成的有机酸缩合度逐渐提高,高碳数有机酸逐渐减少;烃源岩生成脂肪酸系列中存在偶奇优势,生成的C16、C18脂肪酸存在异常高丰度, C16、C18脂肪酸异常丰度现象可能是污染造成的,是否与烃源岩类型及成熟度有关尚需进一步研究。%The study on the generation process of organic acid species in hydrocarbon source rocks is of a great significance for understanding reservoir alteration, oil wettability, and shale oil removability evaluation. Based on the thermocompression simulation experiment of hydrocarbon generation, the polar species of the expelled oils from a source rock (Type Ⅲ kerogen) at different maturity stages were determined by negative-ion electrospray ionization (ESI) Fourier Transform Ion Cyclotron Mass Spectrometry (ESI FT-ICR MS). The result shows that the organic acid species can be generated during the whole thermal evolution of hydrocarbon source rock. At low maturity levels (early oil window), fatty acids (DBE=1) are the most abundant species. With the increasing maturity, naphthenic acids and aromatic acids become dominant species. At higher maturity levels, most of the acidic species have been thermally cracked and aromatized, thus only the O2 class with short chains and high DBE values (aromatic acids

  4. Resources of Kaolinite Rocks in China Coal Measures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The proved reserve of kaolinite rocks in China coal measures is about 1. 673 billion tons. The types of kaolinite rocks contain tonstein, flintclay and soft kaolin. Their origin modes include alteration of volcanic ash, terrigenous clay deposit and weathering of coal and adjacent rocks. The organic matter and organic acid play an important role in the formation of kaolinite rocks of coal measures. The difference in properties between kaolinite rock and traditional kaolin requires different processing technologies.

  5. ndophthalmitis Following Glaucoma Drainage Implant Surgery

    OpenAIRE

    Tolga Kocatürk; Erol Erkan; Harun Çakmak

    2014-01-01

    Glaucoma surgery is performed widely in our country and all around the world to lower the intraocular pressure in refractory glaucoma. Glaucoma drainage implant surgery has a special and important place among glaucoma surgeries. Among various complications, endophthalmitis is a rare but the most devastating complication after glaucoma drainage implantation. In this review, the clinical characteristics and treatment options of endophthalmitis after glaucoma drainage implant surgery ar...

  6. ndophthalmitis Following Glaucoma Drainage Implant Surgery

    Directory of Open Access Journals (Sweden)

    Tolga Kocatürk

    2014-03-01

    Full Text Available Glaucoma surgery is performed widely in our country and all around the world to lower the intraocular pressure in refractory glaucoma. Glaucoma drainage implant surgery has a special and important place among glaucoma surgeries. Among various complications, endophthalmitis is a rare but the most devastating complication after glaucoma drainage implantation. In this review, the clinical characteristics and treatment options of endophthalmitis after glaucoma drainage implant surgery are discussed according to recent literature. (Turk J Ophthalmol 2014; 44: 138-43

  7. Drainage in a rising foam.

    Science.gov (United States)

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different. PMID:26554500

  8. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  9. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    Science.gov (United States)

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize

  10. Drainage basin delineations for selected USGS streamflow-gaging stations in Virginia (Drainage_Basin)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Drainage_Basin polygon feature class was created as a digital representation of drainage basins for more than 1,650 continuous-record streamflow-gaging...

  11. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  12. Lithologic identification method and application of acidic volcanic rocks%酸性火山岩岩性识别方法及应用

    Institute of Scientific and Technical Information of China (English)

    葛红旗

    2015-01-01

    In Zhongguai area, lithology of volcanic rocks is complex and changes rapidly in vertical horizontal direction. Volcanic rocks interbed with pyroclastic rocks and form alteration. Log response characteristic has a great difference from normal volcanic rocks; however it is similar to pyroclastic rocks. Due to the extremely difficult lithology identification, aiming at common and per⁃sonality features, it needs to research corresponding volcanic rock logging recognition method. Firstly, micro resistivity was used to scan different image texture types of full bore microscan imager(FMI), which could preferably reflect rock texture and structure. Combined with FMI and core data, different FMI image patterns of volcanic rock were summarized, and rock types were identified. The rock types are volcanic breccia, dacite, tuff, andesibasalt and ganite, among them, volcanic breccia and andesibasalt are the main types. Secondly, logging parameters of conventional logging to lithological response sensitive marked by FMI were analyzed, and cross plot lithology identification method were established. Finally, compared with recognition results and thin slices, the coin⁃cidence rate reached 88 %, thereby, the interpretation accuracy of logging lithology was greatly improved.%中拐地区火山岩岩性复杂多样、纵横向变化快,火山岩与火山碎屑岩互层,且发生蚀变,测井响应特征与正常火山岩差别较大,与火山岩碎屑岩特征相似,岩性识别极其困难,需要针对共性及个性特征研究相应的火山岩测井识别方法。首先利用微电阻率扫描成像测井(FMI)上不同的图像纹理类型能较好反映岩石结构、构造特点,将FMI与岩心资料相结合,分析总结不同火山岩FMI图像模式,识别出岩石类型有火山角砾岩、英安岩、凝灰岩、玄武安山岩及花岗岩等,以火山角砾岩、玄武安山岩为主。然后分析出常规测井对FMI标定的岩性响应敏

  13. Comparison of greenhouse and {sup 32}P isotopic laboratory methods for evaluating the agronomic effectiveness of natural and modified rock phosphates in some acid soils of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Bennoah, E. [Department of Soil Science, University of Ghana, Legon, Accra (Ghana); Zapata, F. [International Atomic Energy Agency, Vienna (Austria)]. E-mail: F.Zapata@iaea.org; Fardeau, J.C. [Departement Environnement et Agronomie, INRA, Versailles (France)

    2002-05-15

    Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the {sup 32}P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the {sup 32}P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg{sup -1} soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 deg C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha{sup -1}, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (C{sub P}<0.02 mg P l{sup -1}) and low

  14. Oxygen influx and geochemistry of percolate water from reactive mine waste rock underlying a sloping channelled soil cover

    Energy Technology Data Exchange (ETDEWEB)

    Song Qing, E-mail: qsong3@uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada); Yanful, Ernest K., E-mail: eyanful@eng.uwo.ca [Geotechnical Research Center, Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B9 (Canada)

    2011-05-15

    Research Highlights: > A channelled cover with preferential flow can still mitigate ARD to some extent. > Oxygen ingress was more sensitive to the location of the channel than to K{sub s}. > The channel in the barrier layer was a major passage for O{sub 2} ingress. > Actual flushing was an important factor when estimating O{sub 2} decay coefficient. - Abstract: An ideal engineered soil cover can mitigate acid rock drainage (ARD) by limiting water and gaseous O{sub 2} ingress into an underlying waste rock pile. However, the barrier layer in the soil cover almost invariably tends to develop cracks or fractures after placement. These cracks may change water flow and O{sub 2} transport in the soil cover and decrease performance in the long run. The present study employed a 10-cm-wide sand-filled channel installed in a soil barrier layer (silty clay) to model the aggregate of cracks or fractures that may be present in the cover. The soil cover had a slope of 20%. Oxygen transport through the soil cover and oxidation of the underlying waste rock were investigated and compared to a controlled column test with bare waste rock (without soil cover). Moreover, gaseous O{sub 2} transport in the soil cover with channel and its sensitivity to channel location as well as the influence of the saturated hydraulic conductivity of the channel material were modeled using the commercial software VADOSE/W. The results indicted that the waste rock underlying the soil cover with channel had a lower oxidation rate than the waste rock without cover because of reduced O{sub 2} ingress and water flushing in the soil cover with channel, which meant a partial soil cover might still be effective to some extent in reducing ARD generation. Gaseous O{sub 2} ingress into the covered waste rock was more sensitive to the channel location than to the saturated hydraulic conductivity of the material filling the channel. Aqueous equilibrium speciation modeling and scanning electron microscopy with energy

  15. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  16. 24 CFR 3280.610 - Drainage systems.

    Science.gov (United States)

    2010-04-01

    .... (a) General. (1) Each fixture directly connected to the drainage system shall be installed with a water seal trap (§ 3280.606(a)). (2) The drainage system shall be designed to provide an adequate... less than 3 inches inside diameter. (5) Preassembly of drain lines. Section(s) of the drain...

  17. Drainage Water Management for the Midwest

    Science.gov (United States)

    Subsurface tile drainage is an essential water management practice on many highly productive fields in the Midwest. However, nitrate carried in drainage water can lead to local water quality problems and contribute to hypoxia in the Gulf of Mexico, so strategies are needed to reduce the nitrate load...

  18. Drainage Evolution during the Uplift of the Central Anatolia Plateau

    Science.gov (United States)

    Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.

    2015-12-01

    The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat

  19. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  20. An analytical model for predicting water table dynamics during drainage and evaporation

    Science.gov (United States)

    Cook, F. J.; Rassam, D. W.

    2002-06-01

    Water table dynamics in tile-drained fields have been thoroughly investigated by numerous researchers. Recent studies have highlighted the importance of incorporating the effects of evaporation into the design of such drainage systems. In tropical areas, evaporation plays a particularly crucial role in lowering the water table in finely textured soils. In this paper, water table dynamics are investigated for the case of coupled drainage and evaporation. A simple analytical model that determines the relative contribution of the drainage component to the draw down of the water table is proposed. The model's estimates compare reasonably well to field data, as well as those derived from numerical simulations conducted for various evaporation rates and soil types. When presented in a non-dimensional form, the model's results can provide a quick estimate of the relative contribution of drainage to lowering the water table, which is highly relevant to the hydrology of acid sulphate soils.

  1. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts

    DEFF Research Database (Denmark)

    Saftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or...

  2. Percutaneous biliary drainage and stenting

    International Nuclear Information System (INIS)

    Full text: Percutaneous transhepatic cholangiography (PTC) is an X-ray or US guided procedure that involves the injection of a contrast material directly into the bile ducts inside the liver to produce pictures of them. If a blockage or narrowing is found, additional procedures may be performed: 1. insertion of a catheter to drain excess bile out of the body or both - internal and external; 2. plastic endoprothesis placement; 3. self-expandable metal stents placement to help open bile ducts or to bypass an obstruction and allow fluids to drain. Current percutaneous biliary interventions include percutaneous transhepatic cholangiography (PTC) and biliary drainage to manage benign and malignant obstructions. Internal biliary stents are either plastic or metallic, and various types of each kind are available. Internal biliary stents have several advantages. An external tube can be uncomfortable and have a psychological disadvantage. An internal stent prevents the problems related to external catheters, for example, pericatheter leakage of bile and the need for daily flushing. The disadvantages include having to perform endoscopic retrograde cholangiopancreatography (ERCP) or new PTC procedures to obtain access in case of stent obstruction. Better patency rates are reported with metallic than with plastic stents in cases of malignant obstruction, though no effect on survival is noted. Plastic internal stents are the cheapest but reportedly prone to migration. Metallic stents are generally not used in the treatment of benign disease because studies have shown poor long-term patency rates. Limited applications may include the treatment of patients who are poor surgical candidates or of those in whom surgical treatment fails. Most postoperative strictures are treated surgically, though endoscopic and (less commonly) percutaneous placement of nonmetallic stents has increasingly been used in the past few years. Now there are some reports about use of biodegradable biliary

  3. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  4. Chemical weathering in Zhujiang River Drainage%珠江流域的化学侵蚀

    Institute of Scientific and Technical Information of China (English)

    高全洲; 沈承德; 孙彦敏; 易熙; 邢长平; 陶贞

    2001-01-01

    he chemical weathering processes on the continental carbonate and silicate minerals consume a large amount of carbon dioxide both from atmosphere and soil air. This gaseous substance, which is the dominating greenhouse gases in the atmosphere, was transformed into fluid substance and transported into the ocean by rivers in the form of bicarbonate ion. In this aspect, the weathering and transportation of bicarbonate ion in river system stand for an important linkage in the global carbon cycle. The range of global climate change in the geological history was weakened through this kind of negative feedback mechanism, i.e., the higher the atmospheric temperature is, the intense the chemical weathering process will be. However, an intense chemical weathering process will consume much greater amount of carbon dioxide, which can drop down the atmospheric temperature.   The Xijiang and Beijiang river drainage areas, which buildup most of the area of the Zhujiang (Pearl) river drainage, located in the typical sub tropical region in South China, are about 353 120 and 46 710 km2 in area, respectively. The discharge is about 230× 109 m3/a for Xijiang River, and 51× 109 m3/a for Beijiang River. The two drainage areas, characterized by the superposition temporarily of the high atmospheric temperature and plenty of precipitation, are the only areas of highest yield of biomass in mid low latitude zone in Northern Hemisphere. The carbonate rocks distribute widely in the two drainage basins. Red regolith crust and limestone red earth are the main soil forming material in those areas. The surficial geochemistry process taken place in the two drainage areas is intense due to the high degree of plant coverage, and due to the plenty of precipitation and a high atmospheric temperature. On the other hand, the mechanical erosion is also intense due to the precipitous topography, and due to high population density, which lead to a high ratio of cultivated area.

  5. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    Science.gov (United States)

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    The Leadville mining district is historically one of the most heavily mined regions in the world producing large quantities of gold, silver, lead, zinc, copper, and manganese since the 1860s. A multidisciplinary investigation was conducted by the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, to characterize large-scale groundwater flow in a 13 square-kilometer region encompassing the Canterbury Tunnel and the Leadville Mine Drainage Tunnel near Leadville, Colorado. The primary objective of the investigation was to evaluate whether a substantial hydraulic connection is present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel for current (2008) hydrologic conditions. Altitude in the Leadville area ranges from about 3,018 m (9,900 ft) along the Arkansas River valley to about 4,270 m (14,000 ft) along the Continental Divide east of Leadville, and the high altitude of the area results in a moderate subpolar climate. Winter precipitation as snow was about three times greater than summer precipitation as rain, and in general, both winter and summer precipitation were greatest at higher altitudes. Winter and summer precipitation have increased since 2002 coinciding with the observed water-level rise near the Leadville Mine Drainage Tunnel that began in 2003. The weather patterns and hydrology exhibit strong seasonality with an annual cycle of cold winters with large snowfall, followed by spring snowmelt, runoff, and recharge (high-flow) conditions, and then base-flow (low-flow) conditions in the fall prior to the next winter. Groundwater occurs in the Paleozoic and Precambrian fractured-rock aquifers and in a Quaternary alluvial aquifer along the East Fork Arkansas River, and groundwater levels also exhibit seasonal, although delayed, patterns in response to the annual hydrologic cycle. A three-dimensional digital representation of the extensively faulted bedrock was developed and a geophysical direct

  6. Solar system for soil drainage

    International Nuclear Information System (INIS)

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  7. Effects of intraarticular tranexamic acid injection combined with 3-hour drainage tube occlusion postoperatively on blood loss in unicompartmental knee arthroplasty%氨甲环酸关节腔内注射联合置换后3 h夹闭引流管对膝关节单髁置换失血量的影响

    Institute of Scientific and Technical Information of China (English)

    曾兵; 刘刚; 贺志盛; 郑连杰; 荆丰博; 吕浩

    2016-01-01

    BACKGROUND:Unicompartmental knee arthroplasty has become mainstream operation for treatment of unicompartmental osteoarthritis of the knee, but unicompartmental knee arthroplastystil has some problems, such as excessive bleeding-induced postoperative blood transfusion, increased blood transfusion rate, hospitalization expense and complication of blood transfusion. As tranexamic acid for total knee arthroplasty has achieved good effects. It is significant to investigate whether local application of tranexamic acid can effectively reduce blood loss in unicompartmental arthroplasty. OBJECTIVE:To investigate the efficacy and safety of the intra-articular tranexamic acid injection in treating perioperative blood loss in patients undergoing unicompartmental knee arthroplasty. METHODS:122 patients with knee osteoarthritis undergoing unicompartmental knee arthroplastyinthe Department of Orthopedics, the Second Affiliated Hospital ofDalian Medical University from January 2014 to August 2015wereenroled in this study. Al patients were randomly divided into two groups. Patients in the tranexamic acid group were injected with 10 mL of tranexamic acid (containing 1000 mg) + 10 mL of sodium chloride injection in the articular cavity before loosening the tourniquet. Patients in the control group received 20 mL of sodium chloride injection in the articular cavity. In both groups, the drainage tube was clipped for 3 hours after injection.At 48 hours after replacement, the drainage tube was puled out. We compared and analyzed hemoglobin levels and hematocrit at 2 days and 1 month postoperatively, total blood loss and drainage volume at 2 days postoperatively, the number of patients receiving blood transfusion, Hospital for Special Surgery scores of knee function at 1 week and 1 month postoperatively, and thrombosis at 1 week postoperatively, and evaluated effects of tranexamic acid on blood loss after unicompartmental knee arthroplasty. RESULTS AND CONCLUSION:(1) Hemoglobin levels

  8. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    Science.gov (United States)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze

  9. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    Science.gov (United States)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  10. Mineral exploration in the Lower Palaeozoic rocks of south-west Cumbria. Part 1, regional surveys

    OpenAIRE

    Cameron, D G; Cooper, D. C.; E. W. Johnson; Roberts, P D; Cornwell, J.D.; Bland, D.J.; Nancarrow, P.H.A.

    1993-01-01

    The results of geochemical, geological and geophysical surveys over Lower Palaeozoic rocks in the south-western part of Cumbria are given in two reports. This report (Part 1) describes the results of a geochemical drainage survey and an examination of mineralised sites, and relates them to information from new geological mapping and an assessment of regional geophysical data. Part 2 contains details of follow-up surveys in the Black Combe inlier. The geochemical drainage survey...

  11. Preliminary Report on the Sny Drainage District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report deals with the Sny River drainage in the Mississippi River and its management. The Sny bottoms will remain a major wildlife area in this portion of...

  12. Fractal Analysis of Drainage Basins on Mars

    Science.gov (United States)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  13. 中低品位磷矿生产磷酸联产石膏晶须技术现状%Present Status of Technology for Co-Production of Phosphoric Acid and Gypsum Whiskers from Medium-and Low-Grade Phosphate Rock

    Institute of Scientific and Technical Information of China (English)

    石学勇; 王金铭

    2013-01-01

    阐述了中低品位磷矿生产磷酸联产石膏晶须工艺技术的意义,并介绍了该工艺技术的基本原理和应用前景.采用盐酸和硫酸萃取磷矿并添加活性添加剂提高磷矿萃取速度和磷矿分解率,分离酸不溶物和部分杂质(铁、铝、镁),然后采用硫酸脱钙获得石膏晶须和磷酸,为中低品位磷矿综合利用提供了一条可行的途径.%A description is given of the technology for the co-production of phosphoric acid and gypsum whiskers from medium- and low-grade phosphate rock and its significance, also the fundamental principles of the technology and prospects for its use. Hydrochloric acid and sulfuric acid react with phosphate rock with the addition of an active additive to increase the extraction rate and decomposition rate of the rock, the acid-insolubles and some impurities ( iron, aluminum and magnesium) are separated out, and then sulfuric acid is used for decalcification to obtain phosphoric acid and gypsum whiskers, thereby providing a feasible route for comprehensive utilization of medium-and low-grade phosphate rock.

  14. Behavior of uranium isotopes along a tidal cycle in a study affected by acid mine drainage; Comportamiento de los isotopos de uranio a lo largo de un ciclo mareal en un estuario afectado por denaje acido de minas

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, A.; Martin, J. e.; Olias, M.; Garcia, C.; Bolivar, J. P.

    2013-07-01

    The Tinto and Odiel rivers converge in an estuarine system known as the Ria de Huelva, which is an ecosystem of great interest, conditioned by hydrochemical facts. The main objective of this study was to analyze the behavior of uranium isotopes in the waters of the Red River estuary in a tidal cycle under hydrochemical conditions of high gradients of salinity and pH generated by the acidic waters of the Rio Tinto and seawater. (Author)

  15. Failures and complications of thoracic drainage

    Directory of Open Access Journals (Sweden)

    Đorđević Ivana

    2006-01-01

    Full Text Available Background/Aim. Thoracic drainage is a surgical procedure for introducing a drain into the pleural space to drain its contents. Using this method, the pleura is discharged and set to the physiological state which enables the reexpansion of the lungs. The aim of the study was to prove that the use of modern principles and protocols of thoracic drainage significantly reduces the occurrence of failures and complications, rendering the treatment more efficient. Methods. The study included 967 patients treated by thoracic drainage within the period from January 1, 1989 to June 1, 2000. The studied patients were divided into 2 groups: group A of 463 patients treated in the period from January 1, 1989 to December 31, 1994 in whom 386 pleural drainage (83.36% were performed, and group B of 602 patients treated form January 1, 1995 to June 1, 2000 in whom 581 pleural drainage (96.51% were performed. The patients of the group A were drained using the classical standards of thoracic drainage by the general surgeons. The patients of the group B, however, were drained using the modern standards of thoracic drainage by the thoracic surgeons, and the general surgeons trained for this kind of the surgery. Results. The study showed that better results were achieved in the treatment of the patients from the group B. The total incidence of the failures and complications of thoracic drainage decreased from 36.52% (group A to 12.73% (group B. The mean length of hospitalization of the patients without complications in the group A was 19.5 days versus 10 days in the group B. The mean length of the treatment of the patients with failures and complications of the drainage in the group A was 33.5 days versus 17.5 days in the group B. Conclusion. The shorter length of hospitalization and the lower morbidity of the studied patients were considered to be the result of the correct treatment using modern principles of thoracic drainage, a suitable surgical technique, and a

  16. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts

    OpenAIRE

    Săftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter

    2015-01-01

    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage, or surgical drainage. The aim of this review is to assess critically the current literature concerning EUS-guided pseudocyst drainage and to review the place of the procedure in the clinical decision ma...

  17. THE EXTENT OF MINE DRAINAGE INTO STREAMS OF THE CENTRAL APPALACHIAN AND ROCKY MOUNTAIN REGIONS

    Science.gov (United States)

    Runoff and drainage from active and inactive mines are contaminating streams throughout the United States with acidic and metal contaminated waters and sediments. The extent of mining impacts on streams of the coal bearing region of the Central Appalachians and the metal bearing...

  18. Characterisation of sulphide-bearing waste-rock dumps using electrical resistivity imaging: the case study of the Rio Marina mining district (Elba Island, Italy).

    Science.gov (United States)

    Mele, Mauro; Servida, Diego; Lupis, Domenico

    2013-07-01

    Sulphide-bearing mine dumps are potential sources of pollution when acid mine drainage (AMD) occurs. Because the generation of AMD depends on the volume and composition of waste materials, their characterisation is crucial for the evaluation of geochemical hazards and for the design of remediation strategies to minimise their environmental impact. In this paper, a cost-effective strategy for the characterisation of an inactive mine dump in the Rio Marina mining district (Elba Island, Italy) using earth resistivity imaging (ERI) is presented. As no information regarding the nature of waste rocks is found in reports for the mine, five ERI profiles were acquired at the top of the waste pile. The results show that waste rocks are heterogeneous with a maximum thickness of 30 m. Due to the large amounts of dispersed sulphide minerals, the waste rocks are characterised by an electrically conductive geophysical signature in comparison to the surrounding resistive metamorphic bedrock. A geostatistical approach was adopted to estimate the elevation of the edges of the mine dump, and the net volume of the waste rocks was computed through a raster analysis of the elevations of the upper and lower boundaries of the mine dump. High-conductivity anomalies were detected within the core of the mine dump. The integration of the hydrogeological, geochemical and geological framework of the Rio Marina mining district suggests that these anomalies could be a geophysical signature of subsurface regions where AMD is currently generated or stored, thus representing sources of environmental pollution. PMID:23179723

  19. [Appropriate Biliary Drainage Methods for Unresectable Cholangiocarcinomas].

    Science.gov (United States)

    Oishi, Tatsurou; Kanemoto, Yoshiaki; Yoshioka, Yuuta; Sawada, Ryuuichirou; Sekine, Sachi; Miyanaga, Hiroto; Sakahira, Hideki; Takahashi, Hironori; Miyamoto, Katsufumi; Koyama, Takashi

    2015-11-01

    We investigated the efficacy of different biliary drainage methods for the treatment of unresectable cholangiocarcinomas. We performed a retrospective study of 28 patients with unresectable cholangiocarcinomas who underwent biliary drainage at our hospital between January 2008 and June 2014 to compare the incidence of post-drainage stent dysfunction (SD) and reintervention (RI) for SD according to primary drainage method, lesion site, and complication status (the presence or absence of cholangitis). The duration of stent patency was compared between the different stent types. No significant differences in the incidence of SD and RI were found according to primary drainage methods, lesion site, or the presence or absence of cholangitis. The mean durations of stent patency for plastic and metal stents were 2.7 months and 7.4 months, respectively, suggesting that metal stents should be selected when the estimated prognosis is ≥2 months. Furthermore, metal stent placement, rather than the additional placement of plastic stents, should be considered a feasible option in cases of SD. PMID:26805093

  20. My Pet Rock

    Science.gov (United States)

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  1. The rock diet

    OpenAIRE

    Fordyce, Fiona; Johnson, Chris

    2002-01-01

    You may think there is little connection between rocks and our diet, indeed a serving of rocks may sound very unappetising! But rocks are a vital source of the essential elements and minerals we need to keep us healthy, such as calcium for healthy teeth and bones.

  2. Bronchoscopic drainage of a malignant lung abscess.

    Science.gov (United States)

    Katsenos, Stamatis; Psathakis, Konstantinos; Chatzivasiloglou, Fotini; Antonogiannaki, Elvira-Markela; Psara, Anthoula; Tsintiris, Konstantinos

    2015-04-01

    Bronchoscopic drainage of a pyogenic lung abscess is an established therapeutic approach in selected patients in whom conventional antibiotic therapy fails. This intervention has also been undertaken in patients with abscess owing to underlying lung cancer and prior combined radiochemotherapy. However, this procedure has rarely been performed in cavitary lesions of advanced tumor origin before initiating any chemotherapy/radiotherapy scheme. Herein, we describe a case of a 68-year-old woman with lung adenocarcinoma stage IIIB, who underwent bronchoscopic drainage of necrotizing tumor lesion, thus improving her initial poor clinical condition and rendering other treatment modalities, such as radiotherapy, more effective and beneficial. Bronchoscopic drainage of a symptomatic cancerous lung abscess should be considered as an alternative and palliative treatment approach in patients with advanced inoperable non-small cell lung cancer. PMID:25887013

  3. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  4. 模拟酸雨条件下石灰土-碳酸盐岩体系的碳汇效应%Carbon sink effect of simulated acid rain in lime soil and carbonate rock system

    Institute of Scientific and Technical Information of China (English)

    李春龙; 赵家梅; 龙偲; 陈中吉; 周运超; 张春来

    2014-01-01

    为揭示不同酸度降雨对石灰土-碳酸盐岩体系内岩溶碳汇效应的影响,以贵阳市花溪区历史降水量为参照,选取贵阳市青岩镇纯灰岩发育土壤与贵阳市花溪水库三叠纪大冶组纯灰岩为样本进行淋溶试验。测定了6个月时长内不同酸度降水﹑不同土壤深度下模拟石灰土-碳酸盐岩体系降水淋出液的 HCO-3﹑DOC含量和土壤呼吸速率,研究了模拟酸雨对石灰土-石灰岩体系碳汇的影响。结果表明:(1)在土壤深度10~50 cm 匀质状态的样本中,随着土壤厚度的增加,淋出液中 HCO-3含量逐渐增大﹑DOC含量逐渐减小﹑土壤呼吸速率逐渐增大,显示出土壤厚度对石灰土-碳酸盐岩体系的碳汇效应有着明显的影响;(2)在 pH=3.5~6.8的范围内,降水酸度的增强可以抑制岩溶作用与有机碳的溶解,并降低岩溶碳汇效应;(3)在日降水量90~230 mm 范围内,随着降水量的增大碳汇效应也会随之增强。%In order to investigate the influence of rainfall acidity on the carbon sink in a lime soil and carbonate rock system,a leaching test was conducted using lime soil sample developed in pure limestone in Qingyan town and a pure limestone sample of Triassic Daye formation from Huaxi reservoir,Guiyang,comparing to the historical precipitation in Huaxi district,Guiyang.The influence of simulated acid rain on lime soil and the limestone system carbon sink was studied by measuring the HCO-3 content,DOC in the leachates and the soil respiration rate in the lime soil and carbonate rocks system leached over six-months using a range of pre-cipitation acidities and at various depths in the soil.The results showed that,(1)in the homogeneous sample in the soil of 10-50 cm deep ,the content of HCO-3 increased with increased thickness of soil,however the DOC content decreased and the rate of soil respiration increased,indicating that soil thickness significantly affected the carbon sink in

  5. Percutaneous transhepatic biliary drainage for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Objective: To evaluate the effect of PTBD in treating malignant biliary obstruction caused by hilar cholangiocarcinoma. Methods: We retrospectively analyzed the data of 103 patients(M:62,F:41)with malignant obstructive jaundice caused by hilar cholangiocarcinoma. After taking percutaneous transhepatic cholangiography, metallic stent or plastic external catheter or external-internal catheter for drainage was deployed and then followed up was undertaken with clinical and radiographic evaluation and laboratory. examination. Results: All patients went though PTBD successfully (100%). According to Bismuth classification, all 103 cases consisted of I type(N=30), II type (N=30), III type (N=26) and IV type (N=17). Thirty-nine cases were placed with 47 stents and 64 eases with drainage tubes. 4 cases installed two stems for bilateral drainage, 2 cases installed two stents because of long segmental strictures with stent in stent, 1 case was placed with three stents, and 3 cases installed stent and plastic catheter together. Sixty-four cases received plastic catheters in this series, 35 cases installed two or more catheters for bilateral drainage, 28 cases installed external and internal drainage catheters, 12 eases installed external drainage catheters, and 24 eases installed both of them. There were 17 patients involving incorporative infection before procedure, 13 cases cured after procedure, and 15 new patients got inflammation after procedure. 13 cases showed increase of amylase (from May, 2004), 8 eases had bloody bile drainage and 1 case with pyloric obstruction. Total serum bilirubin reduced from (386 ± 162) μmol/L to (161 ± 117) μmol/L, (P<0.01) short term curative effect was related with the type of hilar cholangiocarcinoma. The survival time was 186 days(median), and 1, 3, 6, 12 month survival rate were 89.9%, 75.3%, 59.6%, 16.9%, respectively. Conclusion: Percutaneous transhepatic bile drainage is a safe and effective palliative therapy of malignant

  6. Effect of powder substrate on foaml drainage and collapse: implications to foam granulation.

    Science.gov (United States)

    Koo, Otilia M Y; Ji, Jiangning; Li, Jinjiang

    2012-04-01

    Foam granulation is a relatively newer wet granulation process whereby foamed binder solutions are added to powders in a mixer. It is essential to understand the effect of powder substrate on foam drainage and half-life, which are relevant to nucleation and agglomeration during foam granulation. Hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) foams were characterized. Anhydrous lactose and stearic acid were selected as model soluble and insoluble substrates, respectively. The effect of these substrates on foam stability was measured by foam drainage and collapse time and microscopic observations. Both HPMC and HPC foams were similar in foam quality and foam density. Lactose destabilized both HPMC and HPC foams and foam drainage and collapse times were reduced two to four times in the presence of lactose. On the contrary, stearic acid did not significantly change foam drainage and collapse times. Microscopically, lactose exhibited rapid wetting within 15 s upon contacting the HPMC and HPC foam beds, whereas stearic acid remained unwetted even after 8 min and collapse of the foam beds. Substrate solubility can influence foam-substrate interaction. On the basis of this, we suggest potential mechanisms of nucleation and agglomeration of soluble and insoluble substrates during foam granulation. PMID:22234920

  7. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini

    2013-12-01

    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  8. Saturation dependence of the streaming potential during drainage and imbibition

    Science.gov (United States)

    Vinogradov, J.; Leinov, E.; Jackson, M.

    2012-12-01

    The rock pore space in many subsurface settings is saturated with water and one or more immiscible fluid phases; examples include NAPLs in contaminated aquifers, supercritical CO2 during sequestration in deep saline aquifers, the vadose zone, and hydrocarbon reservoirs. To interpret spontaneous potential measurements for groundwater flow and hydraulic properties in these settings requires an understanding of the saturation dependence of the streaming potential. Vinogradov and Jackson [2011] recently reported measurements of the streaming potential during drainage and, for the first time, imbibition in sandstone plugs saturated with water and either undecane or nitrogen. However, they reported effective values of the streaming potential coupling coefficient (C) at partial saturation (Sw), because Sw in the plugs was not uniform during drainage or imbibition. The aim of this study is to determine the true value of C as a function of Sw. We use a three-step approach in which hydraulic and electrical parameters are determined using numerical simulation and either Nelder-Mead simplex unconstrained optimisation or Active-set constrained optimisation algorithm. In the first step, we determine the saturation dependence of the relative permeability and capillary pressure, assuming these are simple exponential functions of Sw (Corey-type) and using an objective function which is a weighted average of the measured (i) pressure drop across the plug, (ii) liquid rate flowing out of the plug, and (iii) fraction of water flowing out of the plug. In the second, we determine the saturation dependence of the electrical conductivity, using the measured conductivity of the plug as the objective function. In the final step, we determine the saturation dependence of the streaming potential, using the measured streaming potential across the plug as the objective function. We obtain a good match between simulated and measured values of C, and find that it (i) exhibits hysteresis, (ii) can

  9. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism

    Science.gov (United States)

    He, Bin; Xu, Yi-Gang; Zhong, Yu-Ting; Guan, Jun-Peng

    2010-09-01

    Previous studies on the temporal link between the end-Guadalupian mass extinction event and Emeishan flood volcanism were mainly based on geochronological and bio- and chemostratigraphic correlation techniques (Wignall et al., 2009). The absence of material-based hard evidence that directly links the extinction with the Emeishan volcanism remains a major obstacle regardless of the indication of coincidence in timing (Isozaki et al., 2007). The Emeishan basalts overlie Permian platform carbonates that may contain a record of the end-Guadalupian mass extinction and erosional product of this province. This paper presents mineralogy and geochemistry of mudstones from the Guadalupian-Lopingian Boundary (G-LB) at Chaotian, SW China. Results indicate that these G-LB mudstones are not air-fall acidic tuff as previously thought, but likely represent clastic rocks derived from erosional deposits of the Emeishan large igneous province (ELIP). Mudstones of the lower part (Group 1) have a geochemical affinity to the Emeishan felsic volcanic rocks, whereas mudstones of the upper part (Group 2) are compositionally akin to mafic components of the Emeishan traps. This chemostratigraphic sequence resembles the Xuanwei Formation which sits on the Emeishan basalts (He et al., 2007). These data therefore indicate that the lower part of the mudstones at the Chaotian G-LB section, the lowermost part of Xuanwei and Longtan Formations and the Emeishan felsic extrusives broadly constitute an isochron horizon throughout the ELIP and adjacent region, suggesting a short duration for the Emeishan volcanism. A temporal coincidence between Emeishan volcanism and the end-Guadalupian mass extinction are therefore inferred thus providing support for a cause-and-effect relationship.

  10. The use of 32P radioisotope techniques for evaluating the relative agronomic effectiveness of phosphate rock materials in a soybean-maize crop rotation in acid soils of Thailand

    International Nuclear Information System (INIS)

    A series of greenhouse experiments was conducted over three years to evaluate the relative agronomic effectiveness (RAE) of phosphate rock materials in a soybean - maize crop sequence, using 32P isotope dilution techniques. For the first two years, the crops were grown in a pot experiment in four acid soils of Thailand. In the first year, four increasing rates of TSP and one rate of four phosphate rocks (PRs) were used. The PRs used were Algerian PR, North Carolina PR, Petchaburi PR, and Ratchaburi PR. Soybean did not respond to P application from TSP, while there was good response in maize which was planted after soybean (1st residual effect). The percent P derived from TSP or PR fertilizer (%Pdff) had the following order: Warin soil > Mae Tang soil > Rangsit soil > Pakchong soil for soybean and Warin soil > Pakchong soil > Rangsit soil > Mae Tang soil for maize. In the second year, the soybean - maize rotation was replanted to study the residual effect of TSP and PRs, both applied at 180 mg P kg-1 . No significant response of soybean and maize to TSP was found in terms of dry matter yield. In terms of %Pdff and %RAE the soils ranked as follows: Rangsit soil > Pakchong soil Mae Tang soil > Warin soil for soybean and Warin soil > Rangsit soil > Mae Tang > Pakchong soil for maize. Both crops absorbed more P from TSP than from PRs. The %RAE in the 2nd year experiment was higher than %RAE in the 1st year In the third year, TSP and two PRs were applied at one P rate to Pakchong and Warin soils. The applied PRs were North Carolina PR (NCPR) and Lamphun phosphate rock (LPPR). PRs were applied either alone or in combination with TSP (50:50). Soybean was planted first, followed by maize. The P-response in terms of dry matter yield and %Pdff was highly significant in both soils. The RAE ranked as follows: TSP > NCPR + TSP > LPPR + TSP > NCPR > LPPR. Maize showed the same trend in RAE as soybean in both soils. The RAE for both crops was highest in Warin soil. (author)

  11. Gas drainage technology of high gas and thick coal seam

    Institute of Scientific and Technical Information of China (English)

    HE Tian-cai; LI Hai-gui; ZHANG Hai-jun

    2009-01-01

    Gas drainage in Jincheng Mining Group Co., Ltd. was introduced briefly and the importance of gas drainage in gas control was analyzed. Combined with coal-bed gas oc-currence and gas emission, the double system of gas drainage was optimized and a pro-gressive gas drainage model was experimented on. For guaranteed drainage, excavation and mining and realization of safety production and reasonable exploitation of gas in coal seams, many drainage methods were adopted to solve the gas problem of the working face.

  12. Safety analysis of stability of surface gas drainage boreholes above goaf areas

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-zhou; LI Xiao-hong

    2007-01-01

    As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward holes to roof strata in tailgate or drilling inseam and cross-measure boreholes, could not meet methane drainage requirements in a gassy mine. The alternative is to drill boreholes from surface down to the longwall goaf area to drain the gas out. As soon as a coal seam is extracted out, the upper rock strata above the goaf start to collapse or become fractured depending upon the rock characteristics and the height above the coal seam. During overlying rock strata being fractured,boreholes in the area may be damaged due to ground movement after the passage of the longwall face. The sudden damage of a borehole may cause a longwall production halt or even a serious mine accident. A theoretical calculation of the stability of surface boreholes in mining affected area is introduced along with an example of determination of borehole and casing diameters is given for demonstration. By using this method for the drilling design, the damage of surface boreholes caused by excessive mining induced displacement can be effectively reduced if not totally avoided. Borehole and casing diameters as well as characteristics of filling materials can be determined using the proposed method by calculating the horizontal movement and vertical stain at different borehole depths.

  13. ASSESSING THE IMPACT OF WASTE ROCKS ON GROUNDWATER QUALITY IN THE ABANDONED COAL MINE OF JERADA CITY (NORTH EASTERN MOROCCO

    Directory of Open Access Journals (Sweden)

    BENDRA B.

    2011-11-01

    Full Text Available The exponential growth of urban dwellers calls for an increased awareness of urban ecosystems and appropriate,long-term management practices. Especially the water supply needs to be secured, both in terms of quantity and quality. In Morocco, numerous urban mine sites were abandoned regardless rehabilitation strategy.Consequently, mining activity contributes massively to deteriorate air, soil and water quality, to degrade natural ecosystems and to menace public health. The abandoned coalmine of Jerada is located in north east of Morocco,in horst zone, in the productive geological formation of Westphalian C. The mining activity has generated along 65 years (1936-2001, 15 to 20 millions tons of washery waste rocks, cumulated principally in urban center. The groundwater (n=30 and waste rock (n=7 sampling was led in the middle of May 2008, which presents in local climatic context the end of rainy season and the beginning of sec season. Waste rocks are exhaustively black schist, with a paucity in pyrite (anthracite debris contain between 2 to 5% of synergic pyrite and predominance of calcareous minerals essentially as dolomite. Consequently, the majority of waste rock samples are not acid generators. The pyrite oxidation produces sulphuric acid, which will be quickly neutralized by carbonates. The alkaline tendency of pH classifies Jerada abandoned coal mine in circum neutral mining drainage type (NMD. The leaching through unsaturated and saturated zone will be facilitated due to a big pore size and a breakingtectonic having fractured Jerada coal basin. The deformed black schist alternative to sandstone permits a good water circulation. The massive product of mining drainage and the major pollutant of groundwater is undoubtedly S-SO4 (27/30 exceed WHO guideline. The spatial correlation between S-total and salinity illustrates the deterioration of groundwater quality due to pyrite oxidation. The alteration of schist and halite dissolution contribute to

  14. Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada

    Science.gov (United States)

    Wallick, E. I.

    1981-12-01

    Chemical evolution of groundwater in a small drainage basin of glacial origin (10,250 yr. B.P., based on radiocarbon age dating of gyttja from a closed saline lake in the basin) was studied in order to understand the generation of salts in surface-mined areas on the interior plains of Alberta. The basin was considered to be a natural analogue of a surface-disturbed area because of the large volumes of rock that had been redistributed by glaciers with the resulting change in topography and drainage. The distributions of hydraulic head, total dissolved solids (TDS), and environmental isotopes essentially reflect the superimposition of groundwater flow systems associated with the post-glacial topography upon a regional bedrock flow system of older but undertermined age. In the glacial drift aquifers and aquitards (sands and till), the groundwater composition was typically Ca-Mg-bicarbonate type at depths less than 30 m, but at depths of 30-100 m, the composition was Na-bicarbonate-sulfate type. In the deeper bedrock aquifers (> 100 m), Nabicarbonate-sulfate and Na-bicarbonate-chloride types were present. TDS was as low as 400 mg/l in the shallow drift aquifer, generally constant at ˜1000 mg/l in the deep drift and shallow bedrock aquifer, and over 1700 mg/l in the deep bedrock aquifer system. Chemical evolution of groundwater in the area appears to be dominated by two depth zones having different types of water-rock interaction. In the shallow drift zone, the dissolution of soil CO 2 in infiltrating groundwater, oxidation of organic carbon, sulfur and pyrite result in the formation of carbonic and sulfuric acids that attack carbonate and silicate minerals. On the basis of X-ray diffraction analysis, these minerals were calcite, dolomite, plagioclase feldspar, and smectite clays. However, in the deep regional bedrock aquifer, conditions are reducing (presence of methane), groundwater is alkaline (pH 8.6-10.3), and the Na-bicarbonate-chloride composition of groundwater

  15. Transanal Endoscopic Drainage of Abdominopelvic Sepsis

    OpenAIRE

    Abbas, Maher A; Falls, Garietta

    2008-01-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) is an evolving experimental field exploring the technical feasibility and outcome of therapeutic interventions performed through the natural orifices of the body. The knowledge accumulating in NOTES is the result of animal experimentation and ongoing early clinical experience in humans. In this report we describe a patient treated with transanal endoscopic drainage of postoperative abdominopelvic sepsis.

  16. Drainage hydraulics of permeable friction courses

    Science.gov (United States)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  17. Reality named endoscopic ultrasound biliary drainage

    Institute of Scientific and Technical Information of China (English)

    Hugo; Gon?alo; Guedes; Roberto; Iglesias; Lopes; Joel; Fernandez; de; Oliveira; Everson; Luiz; de; Almeida; Artifon

    2015-01-01

    Endoscopic ultrasound(EUS) is used for diagnosis and evaluation of many diseases of the gastrointestinal (GI) tract. In the past, it was used to guide a cholangio-graphy, but nowadays it emerges as a powerful thera-peutic tool in biliary drainage. The aims of this review are: outline the rationale for endoscopic ultrasound-guided biliary drainage(EGBD); detail the procedural technique; evaluate the clinical outcomes and limitations of the method; and provide recommendations for the practicing clinician. In cases of failed endoscopic retro-grade cholangiopancreatography(ERCP), patients are usually referred for either percutaneous transhepatic biliary drainage(PTBD) or surgical bypass. Both these procedures have high rates of undesirable complications. EGBD is an attractive alternative to PTBD or surgery when ERCP fails. EGBD can be performed at two locations: transhepatic or extrahepatic, and the stent can be inserted in an antegrade or retrograde fashion. The drainage route can be transluminal, duodenal or trans-papillary, which, again, can be antegrade or retrograde [rendezvous(EUS-RV)]. Complications of all techniques combined include pneumoperitoneum, bleeding, bile leak/peritonitis and cholangitis. We recommend EGBD when bile duct access is not possible because of failed cannulation, altered upper GI tract anatomy, gastric outlet obstruction, a distorted ampulla or a periampullary diverticulum, as a minimally invasive alternative to surgery or radiology.

  18. Advanced Reservoir Characterization and Evaluation of C02 Gravity Drainage in the Naturally Fractured Sprayberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    1998-04-30

    The objective is to assess the economic feasibility of CO2 flooding of the naturally fractured Straberry Trend Area in west Texas. Research is being conducted in the extensive characterization of the reservoirs, the experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, the analytical and numerical simulation of Spraberry reservoirs, and the experimental investigations on CO2 gravity drainage in Spraberry whole cores.

  19. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    Science.gov (United States)

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    The Leadville mining district is historically one of the most heavily mined regions in the world producing large quantities of gold, silver, lead, zinc, copper, and manganese since the 1860s. A multidisciplinary investigation was conducted by the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, to characterize large-scale groundwater flow in a 13 square-kilometer region encompassing the Canterbury Tunnel and the Leadville Mine Drainage Tunnel near Leadville, Colorado. The primary objective of the investigation was to evaluate whether a substantial hydraulic connection is present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel for current (2008) hydrologic conditions. Altitude in the Leadville area ranges from about 3,018 m (9,900 ft) along the Arkansas River valley to about 4,270 m (14,000 ft) along the Continental Divide east of Leadville, and the high altitude of the area results in a moderate subpolar climate. Winter precipitation as snow was about three times greater than summer precipitation as rain, and in general, both winter and summer precipitation were greatest at higher altitudes. Winter and summer precipitation have increased since 2002 coinciding with the observed water-level rise near the Leadville Mine Drainage Tunnel that began in 2003. The weather patterns and hydrology exhibit strong seasonality with an annual cycle of cold winters with large snowfall, followed by spring snowmelt, runoff, and recharge (high-flow) conditions, and then base-flow (low-flow) conditions in the fall prior to the next winter. Groundwater occurs in the Paleozoic and Precambrian fractured-rock aquifers and in a Quaternary alluvial aquifer along the East Fork Arkansas River, and groundwater levels also exhibit seasonal, although delayed, patterns in response to the annual hydrologic cycle. A three-dimensional digital representation of the extensively faulted bedrock was developed and a geophysical direct

  20. Topological Analysis of Urban Drainage Networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh

    2016-04-01

    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  1. In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland

    Directory of Open Access Journals (Sweden)

    S. S. W. Mavimbela

    2011-11-01

    Full Text Available The soil water release (SWC and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h and unsaturated hydraulic conductivity (K-coefficient as a function of soil water content, SWC (θ, were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400–700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.

  2. Hungry for Rocks

    Science.gov (United States)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  3. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  4. Quantitative Modeling of Acid Wormholing in Carbonates- What Are the Gaps to Bridge

    KAUST Repository

    Qiu, Xiangdong

    2013-01-01

    Carbonate matrix acidization extends a well\\'s effective drainage radius by dissolving rock and forming conductive channels (wormholes) from the wellbore. Wormholing is a dynamic process that involves balance between the acid injection rate and reaction rate. Generally, injection rate is well defined where injection profiles can be controlled, whereas the reaction rate can be difficult to obtain due to its complex dependency on interstitial velocity, fluid composition, rock surface properties etc. Conventional wormhole propagation models largely ignore the impact of reaction products. When implemented in a job design, the significant errors can result in treatment fluid schedule, rate, and volume. A more accurate method to simulate carbonate matrix acid treatments would accomodate the effect of reaction products on reaction kinetics. It is the purpose of this work to properly account for these effects. This is an important step in achieving quantitative predictability of wormhole penetration during an acidzing treatment. This paper describes the laboratory procedures taken to obtain the reaction-product impacted kinetics at downhole conditions using a rotating disk apparatus, and how this new set of kinetics data was implemented in a 3D wormholing model to predict wormhole morphology and penetration velocity. The model explains some of the differences in wormhole morphology observed in limestone core flow experiments where injection pressure impacts the mass transfer of hydrogen ions to the rock surface. The model uses a CT scan rendered porosity field to capture the finer details of the rock fabric and then simulates the fluid flow through the rock coupled with reactions. Such a validated model can serve as a base to scale up to near wellbore reservoir and 3D radial flow geometry allowing a more quantitative acid treatment design.

  5. Fatty acid profiles of phyllosoma larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic eddies of the Leeuwin Current off Western Australia

    Science.gov (United States)

    Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.

    2014-03-01

    The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.

  6. Processing method for drainage-containing ethanol amine

    International Nuclear Information System (INIS)

    Ethanol amine is decomposed by aerobically acting Pseudomonas sp. When drainage contains hydrazine, copper sulfate and hydrogen peroxide are added to the drainage under exposed condition to remove hydrazine as a pretreatment of the decomposing step. With such procedures, ethanol amine in the drainage can be processed efficiently. (T.M.)

  7. 46 CFR 178.420 - Drainage of cockpit vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit vessels. (a) Except as follows, the cockpit on a cockpit vessel may be watertight: (1) A cockpit may...

  8. Research on information model for metallogenic specialization of the intermediate-acid magmatic rocks in nanling region: a case of hydrothermal uranium deposit and hydrothermal tungsten and tin deposit

    International Nuclear Information System (INIS)

    Based on geochemistry analysis data of Nanling granite massifs, according to the granite hydrothermal mineralization principle, the article initially proposes the metallogenic specialization factor group target system using GIS geo-information model, establishes metallogenic specialization information model of the uranium and the tungsten mineral intrusions. According to mineralization granite rock element geochemical behavior and magmatic evolution, the paper suggests the measure that metallogenic specialization influence factor will divided into the acidity factor group, the alkalinity factor group, magmatic fractionation factor group, oxidation reduction factor group, rare-earth element factor group, source area factor group, geostructure environment factor group and so on. The paper selects the best factor group meeting the mechanism of mineralization geological and geochemical principles by using kind of statistical analysis model analyses the space and intrinsic relations of some factor. On the basis of the above aspects, it forecasts undistinguished granite massifs by using the model and the criterion. The result accords with geological fact, indicates that metallogenic specialization information model has objectivity and operability, realizes metallogenic specialization quantitative appraisal, and provides a scientific basis further distinguished the ore-bearing granite massifs. (authors)

  9. APPLICATION OF BORON MODIFIED SILICA SOL ON RETENTION AND DRAINAGE

    Institute of Scientific and Technical Information of China (English)

    JinxiaMa; YuxiuPeng; ZhongzhengLi

    2004-01-01

    In this paper it was studied that these dosage effectsof CPAM, cationic starch,boron modified silica sol(BMS), A12(SO4)3, pH value and electrolyte on theretention and drainage of different microparticulatesystems including CPAM, cationic starch and boronsilica sol. The research results indicated that CPAMhad no good retention when used with boron silicasol. The best retention efficiency was the micropar-ticulate system of CPAM + cationic starch withboron modified silica sol; Secondly was that ofcationic starch with boron modified silica sol; Theworst was that of CPAM with boron modified silicasol. The retention efficiency had no relation with theaddition order between CPAM and cationic starch. Itwas also found that the microparticulate retentionsystem of boron modified silica sol could be used inalum-rosin sizing and in acidity, neutral or alkalinepapermaking conditions. This system also could beused with close circulate water so that it could reducethe water pollution and waste.

  10. Soft rocks in Argentina

    Institute of Scientific and Technical Information of China (English)

    Giambastiani; Mauricio

    2014-01-01

    Soft rocks are a still fairly unexplored chapter in rock mechanics. Within this category are the clastic sedimentary rocks and pyroclastic volcanic rocks, of low to moderate lithification (consolidation, cemen-tation, new formed minerals), chemical sedimentary rocks and metamorphic rocks formed by minerals with Mohs hardness less than 3.5, such as limestone, gypsum, halite, sylvite, between the first and phyllites, graphitic schist, chloritic shale, talc, etc., among the latter. They also include any type of rock that suffered alteration processes (hydrothermal or weathering). In Argentina the study of low-strength rocks has not received much attention despite having extensive outcrops in the Andes and great impact in the design criteria. Correlation between geomechanical properties (UCS, deformability) to physical index (porosity, density, etc.) has shown promising results to be better studied. There are many studies and engineering projects in Argentina in soft rock geological environments, some cited in the text (Chihuído dam, N. Kirchner dam, J. Cepernic Dam, etc.) and others such as International Tunnel in the Province of Mendoza (Corredor Bioceánico), which will require the valuable contribution from rock mechanics. The lack of consistency between some of the physical and mechanical parameters explored from studies in the country may be due to an insufficient amount of information and/or non-standardization of criteria for testing materials. It is understood that more and better academic and professional efforts in improv-ing techniques will result in benefits to the better understanding of the geomechanics of weak rocks.

  11. Siliceous microfossil extraction from altered Monterey rocks

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  12. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  13. Stress dependent thermal pressurization of a fluid-saturated rock

    CERN Document Server

    Ghabezloo, Siavash

    2008-01-01

    Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformation of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on therma...

  14. Coal acid mine drainage treatment using cement kiln dust

    Directory of Open Access Journals (Sweden)

    Edgar Alberto Martínez

    2014-01-01

    Full Text Available Los sulfuros están presentes en distintas rocas. Durante las actividades mineras y el proceso de remoción de sulfuros se pueden producir Drenajes Ácidos de Minería (DAM, con iones de sulfato (SO4-2. Los DAMs son fuente de polución en las actividades mineras y en Colombia su descarga en los cuerpos de agua debe cumplir las regulaciones nacionales (pH entre 5 y 9. Polvo de horno cementero (CKD, con carbonato de calcio principalmente, de una planta de Cementos Argos S.A. fue usado para neutralizar un DAM generado en la biodesulfurización de carbón. Los DAMs neutralizados tuvieron pHs entre 7,72 y 8,05 y la eliminación de sulfatos entre 67% a 70%. El precipitado se secó y analizó para determinar su composición química y mineralógica. Se encontró humedad entre 69% y 81%; yeso con un 50% de pureza aproximadamente y carbonato de calcio. Esta composición lo hace adecuado para uso en la producción de cemento.

  15. PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES

    Science.gov (United States)

    After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...

  16. Radon as a natural tracer for gas transport within uranium waste rock piles.

    Science.gov (United States)

    Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P

    2014-07-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3).

  17. Heterogeneity of Parent Rocks and Its Constraints on Geochemical Criteria in Weathering Crusts of Carbonate Rocks

    Institute of Scientific and Technical Information of China (English)

    WANG Shijie; FENG Zhigang

    2004-01-01

    Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions,especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected in geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution.Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity.

  18. Range of drainage effect of surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Sozanski, J.

    1978-03-01

    This paper discusses methods of calculating the range of effects of water drainage from surface coal mines and other surface mines. It is suggested that methods based on test pumping (water drainage) are time consuming, and the results can be distorted by atmospheric factors such as rain fall or dry period. So-called empirical formulae produce results which are often incorrect. The size of a cone shaped depression calculated on the basis of empirical formulae can be ten times smaller than the size of the real depression. It is suggested that using a formula based on the Dupuit formula is superior to other methods of depression calculation. According to the derived formulae the radius of the depresion cone is a function of parameters of the water bearing horizons, size of surface mine working and of water depression. The proposed formula also takes into account the influence of atmospheric factors (water influx caused by precipitation, etc.). (1 ref.) (In Polish)

  19. Numerical simulation of transient flow in horizontal drainage systems

    Institute of Scientific and Technical Information of China (English)

    Ze-yu MAO; Han XIAO; Ying LIU; Ying-jun HU

    2009-01-01

    A numerical simulation model based on the characteristic-based finite-difference method with a time-line interpolation scheme was developed for predicting transient free surface flow in horizontal drainage systems. The fundamental accuracy of the numerical model was first clarified by comparison with the experimental results for a single drainage pipe. Boundary conditions for junctions and bends, which are often encountered in drainage systems, were studied both experimentally and numerically. The numerical model was applied to an actual drainage system. Comparison with a full-scale model experiment indicates that the model can be used to accurately predict flow characteristics in actual drainage networks.

  20. Bilothorax as a complication of percutaneous transhepatic biliary drainage.

    Science.gov (United States)

    Sano, Atsushi; Yotsumoto, Takuma

    2016-01-01

    We report two cases of bilothorax that occurred as a complication of percutaneous transhepatic biliary drainage. In an 86-year-old woman who had undergone percutaneous transhepatic biliary drainage for obstructive jaundice, bilothorax occurred after accidental removal of the tube. She recovered with chest drainage only. An 83-year-old man who had undergone percutaneous transhepatic biliary drainage for cholecystitis developed bilothorax with infection. He recovered with thoracoscopic curettage. Although bilothorax is a rare complication of percutaneous transhepatic biliary drainage, appropriate diagnosis and prompt treatment is important, especially when bilothorax is accompanied by infection. PMID:26294694

  1. Urban drainage models - making uncertainty analysis simple

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana;

    2012-01-01

    There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modif...... probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model using a dataset collected from Melbourne, Australia....

  2. Geochemical drainage survey of central Argyll, Scotland

    OpenAIRE

    Coats, J.S.; Tandy, B.C.; Michie, U.McL

    1982-01-01

    A reconnaissance geochemical drainage survey of 720 km2 of Dalradian outcrop in central Argyll identified base-metal anomalies in the Pyrite Zone, Ardrishaig Phyllites, Loch Tay Limestone and the Green Beds. Faulting and igneous intrusion modified the distribution of metal content within these formations. In the results of the reconnaissance survey, copper reached maxima of 170 ppm and 1454 ppm in stream sediments and panned concentrates respectively; lead 1050 ppm ...

  3. Drainage basins and channel incision on Mars

    OpenAIRE

    Aharonson, Oded; Zuber, Maria T.; Rothman, Daniel H.; Schorghofer, Norbert; Whipple, Kelin X.

    2002-01-01

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally ...

  4. Congresverslag Urban Drainage Modelling 9 te Belgrado

    OpenAIRE

    Rombouts, P.M.M.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E.; Pothof, I.W.M.; Langeveld, J.G.

    2012-01-01

    Van 3 tot en met 7 september 2012 is de negende Urban Drainage Modelling conferentie gehouden in Belgrado, de hoofdstad van Seme. Hieronder volgt een verslag van de indrukken die zijn opgedaan in Servië en de belangrijkste, wetenschappelijke ontwikkelingen die aan de orde zijn gekomen. Het congres had een vol wetenschappelijk programma, mede doordat de organisatie ook graag de stad en het land wilde promoten.

  5. Numerical simulations of drainage flows on Mars

    Science.gov (United States)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  6. Treatment of severe acute pancreatitis through retroperitoneal laparoscopic drainage

    Institute of Scientific and Technical Information of China (English)

    Chun Tang; Baolin Wang; Bing Xie; Hongming Liu; Ping Chen

    2011-01-01

    A treatment method based on drainage via retroperitoneal laparoscopy was adopted for 15 severe acute pancreatitis (SAP) patients to investigate the feasibility of the method.Ten patients received only drainage via retroperitoneai laparoscopy,four patients received drainage via both retroperitoneal and preperitoneal laparoscopy,and one patient received drainage via conversion to laparotomy.Thirteen patients exhibited a good drainage effect and were successfully cured without any other surgical treatment.Two patients had encapsulated effusions or pancreatic pseudocysts after surgery,but were successfully cured after lavage and B ultrasound-guided percutaneous catheter drainage.SAP treatment via retroperitoneal laparoscopic drainage is an effective surgical method,resulting in minor injury.

  7. A STUDY OF VARIABLES CHARACTERIZING DRAINAGE PATTERNS IN RIVER NETWORKS

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-07-01

    Full Text Available In GIS and in terrain analysis, drainage systems are important components. Due to local topography and subsurface geology, a drainage system achieves a particular drainage pattern based on the form and texture of its network of stream channels and tributaries. Drainage pattern recognition helps to provide a qualitative description of the terrain for analysis and classification and is useful for terrain modelling and visualization and applications in environment. Much research has been done on the description of drainage patterns in geography and hydrology. However automatic drainage pattern recognition in river networks is not well developed. This paper introduces a method based on geometric quantitative indicators to recognize drainage patterns in a river network automatically. Experiment results are presented and discussed.

  8. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct OPeration (DROP-trial

    Directory of Open Access Journals (Sweden)

    Sosef Meindert N

    2007-03-01

    Full Text Available Abstract Background Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to improve the general condition and thus reduce postoperative morbidity and mortality. Early studies showed a reduction in morbidity. However, more recently the focus has shifted towards the negative effects of drainage, such as an increase of infectious complications. Whether biliary drainage should always be performed in jaundiced patients remains controversial. The randomized controlled multicenter DROP-trial (DRainage vs. Operation was conceived to compare the outcome of a 'preoperative biliary drainage strategy' (standard strategy with that of an 'early-surgery' strategy, with respect to the incidence of severe complications (primary-outcome measure, hospital stay, number of invasive diagnostic tests, costs, and quality of life. Methods/design Patients with obstructive jaundice due to a periampullary tumor, eligible for exploration after staging with CT scan, and scheduled to undergo a "curative" resection, will be randomized to either "early surgical treatment" (within one week or "preoperative biliary drainage" (for 4 weeks and subsequent surgical treatment (standard treatment. Primary outcome measure is the percentage of severe complications up to 90 days after surgery. The sample size calculation is based on the equivalence design for the primary outcome measure. If equivalence is found, the comparison of the secondary outcomes will be essential in selecting the preferred strategy. Based on a 40% complication rate for early surgical treatment and 48% for preoperative drainage, equivalence is taken to be demonstrated if the percentage of severe complications with early surgical treatment is not more than 10% higher compared to standard treatment

  9. Direct measurement of relative permeability in rocks from unsteady-state saturation profiles

    Science.gov (United States)

    Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.

    2016-08-01

    We develop a method to measure liquid relative permeability in rocks directly from transient in situ saturation profiles during gravity drainage experiments. Previously, similar methods have been used for sandpacks; here, this method is extended to rocks by applying a slight overpressure of gas at the inlet. Relative permeabilities are obtained in a 60 cm long vertical Berea sandstone core during gravity drainage, directly from the measured unsteady-state in situ saturations along the core at different times. It is shown that for obtaining relative permeability using this method, if certain criteria are met, the capillary pressure of the rock can be neglected. However, it is essential to use a correct gas pressure gradient along the core. This involves incorporating the pressure drop at the outlet of the core due to capillary discontinuity effects. The method developed in this work obtains relative permeabilities in unsteady-state fashion over a wide range of saturations quickly and accurately.

  10. Space Weathering of Rocks

    Science.gov (United States)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  11. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Seal, Robert R., II; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  12. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1995-10-15

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy.

  13. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    International Nuclear Information System (INIS)

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy

  14. CRITERIA FOR ROCK ENGINEERING FAILURE

    Institute of Scientific and Technical Information of China (English)

    ZHUDeren; ZHANGYuzhuo

    1995-01-01

    A great number of underground rock projects are maintained in the rock mass which is subject to rock damage and failure development. In many cases, the rock. engineering is still under normal working conditions even though rock is already fails to some extent. This paper introduces two different concepts: rock failure and rock engineering failure. Rock failure is defined as a mechanical state under which an applicable characteristic is changed or lost.However, the rock engineering failure is an engineering state under which an applicable function is changed or lost. The failure of surrounding rocks is the major reason of rock engineering failure. The criterion of rock engineering failure depends on the limit of applicable functions. The rock engineering failure state possesses a corresponding point in rock failure state. In this paper, a description of rock engineering failure criterion is given by simply using a mechanical equation or expression. It is expected that the study of rock engineering failure criterion will be an optimal approach that combines research of rock mechanics with rock engineering problems.

  15. Determination of chlorine in silicate rocks

    Science.gov (United States)

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  16. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2008-01-01

    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  17. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-

    2001-01-01

    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  18. Preliminary Study on weathering and pedogenesis of carbonate rock

    Institute of Scientific and Technical Information of China (English)

    王世杰; 季宏兵; 欧阳自远; 周德全; 郑乐平; 黎廷宇

    1999-01-01

    South China is the largest continuous distribution area of carbonate rock in the world. The origin of the soils over the bedrock carbonate rock has long been a controversial topic. Here further exploration is made by taking five soil profiles as examples, which are developed over the bedrock dolomitite and limestone and morphologically located in upland in karst terrain in the central, west and north Guizhou as well as west Hunan, and proved to be the weathering profiles of carbonate rock by the research results of acid-dissolved extraction experiment of bedrock, mineralogy and trace element geochemistry. Field, mineralogical and trace element geochemical characteristics of weathering and pedogenesis for carbonate rock are discussed in detail. It is pointed out that weathering and pedogenesis of carbonate rock are important pedogenetic mechanisms for soil resources in karst area, providing a basis for further researches on the origin of soils widely overlying bedrock carbonate rocks in South China.

  19. Metal mobility in river and sea sediments affected by mine drainage (Sestri Levante, Italy)

    Science.gov (United States)

    Consani, Sirio; Capello, Marco; Cutroneo, Laura; Vagge, Greta; Zuccarelli, Andrea; Carbone, Cristina

    2016-04-01

    The Gromolo Torrent is a metal-polluted Apennine streamflow located near Sestri Levante (Liguria, Italy). It springs from the Monte Rocca Grande (850 m a.s.l.), and flows for 11.5 km through the Gromolo Valley before flowing into the Ligurian Sea. Inside the Gromolo basin is located the abandoned Fe-Cu mine of Libiola, which was the most important sulfide deposit of the Ligurian Apennines. In this mining site, extensive Acid Mine Drainage (AMD) processes are active, both inside the mine tunnels and in the sulfide rich waste-rock dumps; the solutions generated are characterised by low pH values and high amounts of dissolved SO42-, Fe, and other chemical elements such as Cu, Zn, Pb, Al, Co, and Ni. Moreover, exstensively precipitation of Fe and Cu-rich secondary minerals occurs both as soft crusts inside the mine adits and as loose suspensions associated with overland flow of mine drainage. AMD waters flowed into the uncontaminated Gromolo Torrent where abundant precipitation of amorphous Fe(III)-oxy-hydroxides occurred. The marine study area is characterised by the presence of the headland of Sestri Levante with two bays, the western one named "Baia delle Favole". The dynamics of the area is dominated by a permanent north-westward off-shore current flowing approximately along isobath, and an eastward counter-current along the north coast with a resulting drift of the coastal materials from the West to Est towards "Baia delle Favole". The bottom sediment are principally characterised by coarse materials, mostly consisting of fine sand, with a percentage of the fine sediment increasing inside the bay, where the dynamics is low. The aims of this work are to 1) evaluate the metal mobility of colloidal river precipitates for about 7 km up to its mouth in the Ligurian Sea; 2) verify the contamination state of the marine bottom sediments off the mouth of the Gromolo Torrent ("Baia delle Favole" of Sestri Levante), and 3) identify the main sources and diffusion ways of

  20. Reuse of drainage water model : calculation method of drainage water and watertable depth

    NARCIS (Netherlands)

    Roest, C.W.J.; Rijtema, P.E.; Abdel Khalik, M.A.

    1986-01-01

    The main objective of the project is to assist the Ministry of Irrigation in Egypt in the planning of future watermanagement strategies incorporating reuse of drainage water practices. In order to achieve this main objective a comprehensive measurement programme has been initiated and a mathematical

  1. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    NARCIS (Netherlands)

    N.A. van der Gaag; S.M.M. de Castro; E.A.J. Rauws; M.J. Bruno; C.H.J. van Eijck; E.J. Kuipers; J.J.G.M. Gerritsen; J.P. Rutten; J.W. Greve; E.J. Hesselink; J.H.G. Klinkenbijl; I.H.M. Borel Rinkes; D. Boerma; B.A. Bonsing; C.J. van Laarhoven; F.J.G.M. Kubben; E. van der Harst; M.N. Sosef; K. Bosscha; I.H.J.T. de Hingh; L.T. de Wit; O.M. van Delden; O.R.C. Busch; T.M. van Gulik; P.M.M. Bossuyt; D.J. Gouma

    2007-01-01

    Background Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to improve the gen

  2. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    NARCIS (Netherlands)

    N.A. van der Gaag (Niels); S.M.M. de Castro (Steve); E.A.J. Rauws; M.J. Bruno (Marco); C.H.J. van Eijck (Casper); E.J. Kuipers (Ernst); J.J.G.M. Gerritsen (Josephus); J.P. Rutten (Joost Paul); J.W. Greve; E.J. Hesselink (Eric); J.H. Klinkenbijl (Jean); I.H.M.B. Rinkes; D. Boerma (Djamila); B.A. Bonsing (Bert); C.J. van Laarhoven (Cees); F.J. Kubben; E. van der Harst (Erwin); M.N. Sosef (Meindert); K. Bosscha (Koop); I.H.J.T. de Hingh (Ignace); L. Th de Wit (Laurens); O.M. van Delden (Otto); O.R.C. Busch (Olivier); T.M. van Gulik (Thomas); P.M.M. Bossuyt (Patrick); D.J. Gouma (Dirk)

    2007-01-01

    textabstractBackground. Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to im

  3. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P;

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  4. Endoscopic Ultrasound-guided Bilio-pancreatic Drainage

    OpenAIRE

    Giovannini, Marc; Bories, Erwan; Téllez-Ávila, Félix I.

    2012-01-01

    The echoendoscopic biliary drainage is an option to treat obstructive jaundices when endoscopic retrograde cholangiopancreatography (ERCP) drainage fails. These procedures compose alternative methods to the side of surgery and percutaneous transhepatic biliary drainage, and it was only possible by the continuous development and improvement of echoendoscopes and accessories. The development of linear sectorial array echoendoscopes in early 1990 brought a new approach to diagnostic and therapeu...

  5. Correlation of laboratory and installed drainage system solid transport measurements

    OpenAIRE

    Bokor, Shaun

    1982-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The transport of solids in 'horizontal' above ground drainage pipes was the subject of an investigation, based upon the measurement of both sterile 'model' solid velocity and 'live' waste load velocity, aimed at the establishment of a sound basis for the development of a comprehensive empirical drainage design method linked directly to installed drainage system solid transport measurements...

  6. Urban drainage design and climate change adaptation decision making

    OpenAIRE

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten; Mikkelsen, Peter Steen; Nielsen, Susanne Balslev; Halsnæs, Kirsten

    2012-01-01

    Since the middle of the 19th century urban drainage has been a vital infrastructure in cities. Traditionally, urban drainage has been used as a convenient cleaning mechanism for public hygiene and an efficient conveyance facility to tackle floods for life and assets protection. From the early 20th century, the design objectives of urban drainage systems also include elements such as environmental protection and amenity values. Among the objectives, flood protection has received much attention...

  7. Foam drainage on a sloping weir.

    Science.gov (United States)

    Grassia, P; Neethling, S J; Cilliers, J J

    2002-08-01

    Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies Kbulk of the flotation tank. The liquid volume fraction in the jet is likewise O(K(-2/3)) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K(4/3)) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth. PMID:15015124

  8. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  9. Coupling between drainage and coarsening in wet foam

    Indian Academy of Sciences (India)

    S Saha; S Bhaumik; A Roy

    2009-06-01

    Drainage and coarsening are two coupled phenomena during the evolution of wet foam. We show the variation in the growth rate of bubble size, along the height in a column of Gillette shaving foam, by microscope imaging. Simultaneously, the drainage of liquid at the same heights has been investigated by Raman spectroscopic measurements. The observations made in these two sets of experiments indicate the coupling between drainage and coarsening in wet foam. We could explain the correlation between our observed data on drainage and coarsening by the empirical relation, proposed by others, in the literature.

  10. Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth

    Science.gov (United States)

    Bishop, Janice L.; Darby Dyar, M.; Lane, Melissa D.; Banfield, Jillian F.

    2004-10-01

    We interpret recent spectral data of Mars collected by the Mars Exploration Rovers to contain substantial evidence of sulfate minerals and aqueous processes. We present visible/near-infrared (VNIR), mid-IR and Mössbauer spectra of several iron sulfate minerals and two acid mine drainage (AMD) samples collected from the Iron Mountain site and compare these combined data with the recent spectra of Mars. We suggest that the sulfates on Mars are produced via aqueous oxidation of sulfides known to be present on Mars from Martian meteorites. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to AMD environments on Earth. Because microorganisms are typically involved in the oxidation of sulfides to sulfates in terrestrial AMD sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals is likely to lead to aqueous processes and chemical weathering. Our results imply that sulfate minerals formed in Martian soils via chemical weathering, perhaps over very long time periods, and that sulfate minerals precipitated following aqueous oxidation of sulfides to form the outcrop rocks at Meridiani Planum.

  11. Rock mechanics research awards

    Science.gov (United States)

    Wagner, John E.

    The U.S. National Committee for Rock Mechanics, at its June 1983 annual meeting, adopted three actions to enhance the competition and public awareness of its annual awards program for rock mechanics papers. It will issue a call for nominations of outstanding papers; it will request participating societies to announce the names of award winners and the titles of papers, and it will publish an abstract of the winning papers in the proceedings of the annual U.S. Rock Mechanics Symposium in the year following the awards.The competition is open to papers, by U.S residents or students in a U.S. school, published in an English language publication normally available in the United States. The following authors and papers are the 1983 award winners:

  12. Digital carbonate rock physics

    Science.gov (United States)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  13. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  14. Rock Hellsinki, Marketing Research

    OpenAIRE

    Todd, Roosa; Jalkanen, Katariina

    2013-01-01

    This paper is a qualitative research about rock and heavy metal music tourism in the capital city of Finland, Helsinki. As Helsinki can be considered the city of contrasts, the silent nature city mixed with urban activities, it is important to also use the potential of the loud rock and heavy metal music contrasting the silence. Finland is known abroad for bands such as HIM, Nightwish, Korpiklaani and Children of Bodom so it would make sense to utilize these in the tourism sector as well. The...

  15. Session: Hard Rock Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  16. Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness

    Directory of Open Access Journals (Sweden)

    WU Wei

    2016-02-01

    Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine,