WorldWideScience

Sample records for acid producing saccharomyces

  1. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review

    Directory of Open Access Journals (Sweden)

    Liwei Chen

    2016-11-01

    Full Text Available Production of fatty acid-derived biofuels and chemicals have garnered attention in recent years owing to their potential to replace petroleum and plant oil-derived products. Through the metabolic engineering of the fatty acid metabolism pathway, advanced fuels and chemicals such as free fatty acid, triacylglycerol, biodiesel, fatty alcohols, alkanes/alkene, R-3-hydroxybutyric acid, polyhydroxyalkanoates and flavonoids have been produced. The robustness, high tolerance to organic solvent, good reputation in industrial fermentations and excellent availability of genetic tools make the yeast Saccharomyces cerevisiae a suitable cell factory for fatty acid-derived biofuels and chemicals production. This review will describe the successful metabolic engineering strategies employed to produce the fatty acid-derived bio-products in S. cerevisiae, including the enhancement of precursors and co-factors supply, promotion of the enzyme expression and activity, elimination of competing pathways, and the improvement of strain tolerance.

  2. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    Science.gov (United States)

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  3. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Shi, Tonglei; Yu, Aiqun; Li, Ming; Ou, Xiuyuan; Xing, Laijun; Li, Mingchun

    2012-12-01

    Isochrysis galbana, produces long chain polyunsaturated fatty acids including docosahexaenoic acid (DHA, 22:6n-3). A novel gene (IgFAD4-2), encoding a C22-∆4 polyunsaturated fatty acid specific desaturase, has been isolated and characterized from I. galbana. A full-length cDNA of 1,302 bp was cloned by LA-PCR technique. The IgFAD4-2 encoded a protein of 433 amino acids that shares 78 % identity with a previously reported ∆4-desaturase (IgFAD4-1) from I. galbana. The function of IgFAD4-2 was deduced by its heterologous expression in Saccharomyces cerevisiae, which then desaturated docosapentaenoic acid (DPA, 22:5n-3) to DHA. The conversion ratio of DPA to DHA was 34 %, which is higher than other ∆4-desaturases cloned from algae. However, IgFAD4-2 did not catalyze the desaturation or elongation reactions with other fatty acids. These results confirm that IgFAD4-2 has C22-∆4-PUFAs-specific desaturase activity.

  4. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  5. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  6. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  7. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  8. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  9. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].

    Science.gov (United States)

    Yan, Daojiang; Wang, Caixia; Zhou, Jiemin; Liu, Yilan; Yang, Maohua; Xing, Jianmin

    2013-10-01

    Malic acid is widely used in food, and chemical industries. Through overexpressing pyruvate carboxylase and malate dehydrogenase in pdc1-deficient Saccharomyces cerevisiae, malic acid was successfully produced through the reductive TCA pathway. No malic acid was detected in wild type Saccharomyces cerevisiae, however, 45 mmol/L malic acid was produced in engineered strain, and the concentration of byproduct ethanol also reduced by 18%. The production of malic acid enhanced 6% by increasing the concentration of Ca2+. In addition, the final concentration reached 52.5 mmol/L malic acid by addition of biotin. The increasing is almost 16% higher than that of the original strain.

  10. Triacetic acid lactone production from Saccharomyces cerevisiae

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  11. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carbosylation, oxaloacetate reduction and malate export

    NARCIS (Netherlands)

    Zelle, R.M.; Hulster, de E.; Winden, van W.A.; Waard, de P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  12. Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Van Winden, W.A.; De Waard, P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  13. Isolation of a novel C18-Δ9 polyunsaturated fatty acid specific elongase gene from DHA-producing Isochrysis galbana H29 and its use for the reconstitution of the alternative Δ8 pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Ming; Ou, Xiuyuan; Yang, Xiangdong; Guo, Dongquan; Qian, Xueyan; Xing, Laijun; Li, Mingchun

    2011-09-01

    A novel gene (IgASE2) encoding a C18-Δ9 polyunsaturated fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, Isochrysis galbana H29. The IgASE2 gene was 1,653 bp in length, contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with Δ9 elongase, IgASE1, and possessed a 44 bp 5'-untranslated region (5'-UTR) and a 823 bp 3'-untranslated region (3'-UTR). IgASE2, by its heterologous expression in Saccharomyces cerevisiae, elongated linoleic acid (LA, 18:2n-6) and α-linolenic (ALA, 18:3n-3) to eicosadienoic acid (EDA, 20:2n-6) and eicosatrienoic acid (ETrA, 20:3n-3), respectively. The conversions of LA to EDA and ALA to ETrA were 57.6 and 56.1%, respectively. Co-expression of this elongase with Δ8 desaturase required for the synthesis of C20-polyunsaturated fatty acids resulted in the accumulation of dihomo-γ-linolenic acid (20:3n-6) from LA and eicosatetraenoic acid (20:4n-6) from ALA. These results demonstrated that IgASE2 exhibited C18-Δ9-PUFAs-specific elongase activity and the alternative Δ8 pathway was reconstituted.

  14. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems.

  15. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  16. Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

    DEFF Research Database (Denmark)

    Otero, José Manuel; Cimini, Donatella; Patil, Kiran Raosaheb

    2013-01-01

    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought......-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals....

  17. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  18. Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Xiao, Yin; Hu, Yun; Sun, Haiye; Xue, Wei; Zhang, Liang; Shi, Gui-Yang

    2016-09-01

    Dissection of the hereditary architecture underlying Saccharomyces cerevisiae tolerance to acetic acid is essential for ethanol fermentation. In this work, a genomics approach was used to dissect hereditary variations in acetic acid tolerance between two phenotypically different strains. A total of 160 segregants derived from these two strains were obtained. Phenotypic analysis indicated that the acetic acid tolerance displayed a normal distribution in these segregants, and suggested that the acetic acid tolerant traits were controlled by multiple quantitative trait loci (QTLs). Thus, 220 SSR markers covering the whole genome were used to detect QTLs of acetic acid tolerant traits. As a result, three QTLs were located on chromosomes 9, 12, and 16, respectively, which explained 38.8-65.9 % of the range of phenotypic variation. Furthermore, twelve genes of the candidates fell into the three QTL regions by integrating the QTL analysis with candidates of acetic acid tolerant genes. These results provided a novel avenue to obtain more robust strains.

  19. ORGANIC ACIDS CONCENTRATION IN WINE STOCKS AFTER Saccharomyces cerevisiae FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-04-01

    Full Text Available The biochemical constituents in wine stocks that influence the flavor and quality of wine are investigated in the paper. The tested parameters consist of volume fraction of ethanol, residual sugar, phenolic compounds, tartaric, malic, citric, lactic, acetic acids, titratable acidity and volatile acids. The wine stocks that were received from white and red grape varieties Tairov`s selection were tested. There was a correlation between titratable acidity and volatile acids in the wine stocks from white and red grape varieties. High correlation was also found between lactic and acetic acids, between volatile acids, acetic acid and sugar. It was determined that wine stocks with a high concentration of ethanol originated from those yeast strains of Saccharomyces cerevisiae, in a fermented grape must of high speed of enzyme activity. The taste of wine stocks correlated with the ratio of tartaric to malic acid. Analysis showed significant differences between the varieties of white and red wine stocks in concentrations of organic acids, phenolic compounds, residual sugar, and volume fraction of ethanol. Positive correlation was indicated for both studied groups for volatile acids and acetic acid, tartaric, malic, lactic acids and total sugar. Prospective yeast cultures with high productivity of alcohol (ethanol were selected for winemaking biotechnology.

  20. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.

  1. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis.

    Science.gov (United States)

    Koivistoinen, Outi M; Kuivanen, Joosu; Barth, Dorothee; Turkia, Heidi; Pitkänen, Juha-Pekka; Penttilä, Merja; Richard, Peter

    2013-09-23

    Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound. It can be polymerised to produce biodegradable polymers with excellent gas barrier properties. Currently, glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative. The yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are suitable organisms for glycolic acid production since they are acid tolerant and can grow in the presence of up to 50 g l(-1) glycolic acid. We engineered S. cerevisiae and K. lactis for glycolic acid production using the reactions of the glyoxylate cycle to produce glyoxylic acid and then reducing it to glycolic acid. The expression of a high affinity glyoxylate reductase alone already led to glycolic acid production. The production was further improved by deleting genes encoding malate synthase and the cytosolic form of isocitrate dehydrogenase. The engineered S. cerevisiae strain produced up to about 1 g l(-1) of glycolic acid in a medium containing d-xylose and ethanol. Similar modifications in K. lactis resulted in a much higher glycolic acid titer. In a bioreactor cultivation with D-xylose and ethanol up to 15 g l(-1) of glycolic acid was obtained. This is the first demonstration of engineering yeast to produce glycolic acid. Prior to this work glycolic acid production through the glyoxylate cycle has only been reported in bacteria. The benefit of a yeast host is the possibility for glycolic acid production also at low pH, which was demonstrated in flask cultivations. Production of glycolic acid was first shown in S. cerevisiae. To test whether a Crabtree negative yeast would be better suited for glycolic acid production we engineered K. lactis in the same way and demonstrated it to be a better host for glycolic acid production.

  2. Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Juncker, Agnieszka; Hallstrom, Bjorn;

    2013-01-01

    a sustainable alternative for production of acrylic acid from renewable feedstocks. We are establishing Saccharomyces cerevisiae as an alternative host for 3HP production. However, 3HP also inhibits yeast grow th at level well below what is desired for commercial applications. Therefore, we are aiming...... to improve 3HP tolerance in S. cerevisiae by applying adaptive evolution approach. We have generated yeast strains with sign ificantly improved capacity for tolerating 3HP when compared to the wild-type. We will present physiolo gical characterization, genome re-sequencing, and transcriptome analysis...

  3. Functional expression in frog oocytes of human ρ1 receptors produced in Saccharomyces cerevisiae

    Science.gov (United States)

    Martínez-Martínez, Alejandro; Reyes-Ruiz, Jorge Mauricio; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    The yeast Saccharomyces cerevisiae was engineered to express the ρ1 subunit of the human γ-aminobutyric acid ρ1 (GABAρ1) receptor. RNA that was isolated from several transformed yeast strains produced fully functional GABA receptors in Xenopus oocytes. The GABA currents elicited in the oocytes were fast, nondesensitizing chloride currents; and the order of agonist potency was GABA > β-alanine > glycine. Moreover, the receptors were resistant to bicuculline, strongly antagonized by (1,2,5,6 tetrahydropyridine-4-yl)methylphosphinic acid, and modulated by zinc and lanthanum. Thus, the GABA receptors expressed by the yeast mRNA retained all of the principal characteristics of receptors expressed by cRNA or native retina mRNAs. Western blot assays showed immunoreactivity in yeast plasma membrane preparations, and a ρ1-GFP fusion gene showed mostly intracellular distribution with a faint fluorescence toward the plasma membrane. In situ immunodetection of ρ1 in yeast demonstrated that some receptors reach the plasma membrane. Furthermore, microtransplantation of yeast plasma membranes to frog oocytes resulted in the incorporation of a small number of functional yeast ρ1 receptors into the oocyte plasma membrane. These results show that yeast may be useful to produce complete functional ionotropic receptors suitable for structural analysis. PMID:14704273

  4. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  5. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    2016-12-03

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  6. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  7. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  9. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    Science.gov (United States)

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  10. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid.

    Science.gov (United States)

    Besada-Lombana, Pamela B; Fernandez-Moya, Ruben; Fenster, Jacob; Da Silva, Nancy A

    2017-03-14

    Biorenewable chemicals such as short and medium chain fatty acids enable functional or direct substitution of petroleum-derived building blocks, allowing reduction of anthropogenic greenhouse gases while meeting market needs of high-demand products like aliphatic alcohols and alpha olefins. However, producing these fatty acids in microorganisms can be challenging due to toxicity issues. Octanoic acid (C8) can disrupt the integrity of the cell membrane in yeast, and exogenous supplementation of oleic acid has been shown to help alleviate this. We recently engineered the Saccharomyces cerevisiae enzyme acetyl-CoA carboxylase by replacing serine residue 1157 with alanine to prevent deactivation by phosphorylation. Expression of Acc1(S1157A) in S. cerevisiae resulted in an increase in total fatty acid production, with the largest increase for oleic acid. In this study, we evaluated the effect of this modified lipid profile on C8 toxicity to the yeast. Expression of Acc1(S1157A) in S. cerevisiae BY4741 increased the percentage of oleic acid 3.1-fold and 1.6-fold in the absence and presence of octanoic acid challenge, respectively. Following exposure to 0.9 mM of C8 for 24 h, the engineered yeast had a 10-fold higher cell density relative to the baseline strain. Moreover, overexpressing Acc1(S1157A) allowed survival at C8 concentrations that were lethal for the baseline strain. This marked reduction of toxicity was shown to be due to higher membrane integrity as an 11-fold decrease in leakage of intracellular magnesium was observed. Due to the increase in oleic acid, this approach has the potential to reduce toxicity of other valuable bioproducts such as shorter chain aliphatic acids and alcohols and other membrane stressors. In an initial screen, increased resistance to n-butanol, 2-propanol and hexanoic acid was demonstrated with cell densities 3.2-fold, 1.8-fold, and 29-fold higher than the baseline strain, respectively. This article is protected by copyright. All

  11. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    Science.gov (United States)

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-05-27

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.

  12. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Turner, Timothy L; Zhang, Guo-Chang; Oh, Eun Joong; Subramaniam, Vijay; Adiputra, Andrew; Subramaniam, Vimal; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Park, In; Jin, Yong-Su

    2016-05-01

    Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose. Here, we constructed a recombinant Saccharomyces cerevisiae strain capable of fermenting cellobiose and xylose into lactic acid. Specifically, genes (cdt-1, gh1-1, XYL1, XYL2, XYL3, and ldhA) coding for cellobiose transporter, β-glucosidase, xylose reductase, xylitol dehydrogenase, xylulokinase, and lactate dehydrogenase were integrated into the S. cerevisiae chromosomes. The resulting strain produced lactic acid from cellobiose or xylose with high yields. When fermenting a cellulosic sugar mixture containing 10 g/L glucose, 40 g/L xylose, and 80 g/L cellobiose, the engineered strain produced 83 g/L of lactic acid with a yield of 0.66 g lactic acid/g sugar (66% theoretical maximum). This study demonstrates initial steps toward the feasibility of sustainable production of lactic acid from lignocellulosic sugars by engineered yeast.

  13. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  14. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    Science.gov (United States)

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals.

  15. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.

    Science.gov (United States)

    Lee, Ju Young; Kang, Chang Duk; Lee, Seung Hyun; Park, Young Kyoung; Cho, Kwang Myung

    2015-04-01

    Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals. S. cerevisiae has also been explored as a host for lactic acid production because of its high acid tolerance. Here, we constructed an L-lactic acid-overproducing S. cerevisiae by redirecting cellular metabolic fluxes to the production of L-lactic acid. To this end, we deleted the S. cerevisiae genes encoding pyruvate decarboxylase 1 (PDC1), L-lactate cytochrome-c oxidoreductase (CYB2), and glycerol-3-phosphate dehydrogenase (GPD1), replacing them with a heterologous L-lactate dehydrogenase (LDH) gene. Two new target genes encoding isoenzymes of the external NADH dehydrogenase (NDE1 and NDE2), were also deleted from the genome to re-engineer the intracellular redox balance. The resulting strain was found to produce L-lactic acid more efficiently (32.6% increase in final L-lactic acid titer). When tested in a bioreactor in fed-batch mode, this engineered strain produced 117 g/L of L-lactic acid under low pH conditions. This result demonstrates that the redox balance engineering should be coupled with the metabolic engineering in the construction of L-lactic acid-overproducing S. cerevisiae.

  16. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established.

  17. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.

    Science.gov (United States)

    Abbott, Derek A; Zelle, Rintze M; Pronk, Jack T; van Maris, Antonius J A

    2009-12-01

    To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of organic acids is a promising approach for production of chemical building blocks that can replace their petrochemically derived equivalents. Although Saccharomyces cerevisiae does not naturally produce organic acids in large quantities, its robustness, pH tolerance, simple nutrient requirements and long history as an industrial workhorse make it an excellent candidate biocatalyst for such processes. Genetic engineering, along with evolution and selection, has been successfully used to divert carbon from ethanol, the natural endproduct of S. cerevisiae, to pyruvate. Further engineering, which included expression of heterologous enzymes and transporters, yielded strains capable of producing lactate and malate from pyruvate. Besides these metabolic engineering strategies, this review discusses the impact of transport and energetics as well as the tolerance towards these organic acids. In addition to recent progress in engineering S. cerevisiae for organic acid production, the key limitations and challenges are discussed in the context of sustainable industrial production of organic acids from renewable feedstocks.

  18. Kinetics, dynamics and localization of basic amino acid transporters in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Bianchi, Frans

    2016-01-01

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake and regulation of the cellular levels of amino acids. The focus of my thesis is on the AAP’s responsible for the uptake of basic amino acids. Curiously these AAPs have been reported to

  19. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  20. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  1. Fermentation of xylose to produce ethanol by recombinant Saccharomyces cerevisiae strain containing XYLA and XKS1

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaolin; JIANG Ning; HE Peng; LU Dajun; SHEN An

    2005-01-01

    Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.

  2. New and efficient method using Saccharomyces cerevisiae mutants for identification of siderophores produced by microorganisms.

    Science.gov (United States)

    Park, Yong-Sung; Kim, Ji-Hyun; Chang, Hyo-Ihl; Kim, Seung-Wook; Paik, Hyun-Dong; Kang, Chang-Won; Kim, Tae-Hyoung; Sung, Ha-Chin; Yun, Cheol-Won

    2007-09-01

    The separation and identification of siderophores produced by microorganisms is a time-consuming and an expensive procedure. We have developed a new and efficient method to identify siderophores using well-established Saccharomyces cerevisiae deletion mutants. The Deltafet3,arn strains fail to sustain growth, even when specific siderophores are supplied, and mutants are siderophore-specific: Deltafet3,arn2 for triacetylfusarinine C (TAFC), Deltafet3,arn1,sit1 for ferrichrome (FC), and Deltafet3,sit1 for ferrioxamine B (FOB). The culture broth of Fusarium graminearum was separated by HPLC, and each peak was subjected to a plate assay using S. cerevisiae mutants. We have found that each peak contained specific siderophores produced by F. graminearum, and these coincided with reference siderophores. This method is quite novel because nobody tried this method to identify the siderophores. Furthermore, this method will save time and cost in the identification of siderophores produced by microorganisms.

  3. New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae.

    Science.gov (United States)

    Borrull, Anna; López-Martínez, Gema; Poblet, Montse; Cordero-Otero, Ricardo; Rozès, Nicolas

    2015-05-01

    Octanoic (C8) and decanoic (C10) acids are produced in hypoxic conditions by the yeast Saccharomyces cerevisiae as by-products of its metabolism and are considered fermentation inhibitors in the presence of ethanol at acidic pH. This study aims to broaden our understanding of the physiological limits between toxicity and ester production in yeast cells. To this end, the non-inhibitory concentration (NIC) and maximum inhibitory concentration (MIC) values were first established for C8 and C10 at physiological pH (5.8) without ethanol. The results showed that when these acids were added to culture medium at these values, they tended to accumulate in different cellular fractions of the yeast. While C8 was almost entirely located in the cell wall fraction, C10 was found in the endocellular fraction. Cell fatty acid detoxification was also different; while the esterification of fatty acids was more efficient in the case of C10, the peroxisome was activated regardless of which fatty acid was added. Furthermore, the study of the Pdr12 and Tpo1 transporters that evolved during the detoxification process revealed that C8 was mostly expelled by the Pdr12 carrier, which was related to higher β-oxidative damage in the presence of endocellular C10. C10 is more toxic at lower concentrations than C8. Although they are produced by yeast, the resulting intracellular medium-chain fatty acids (MCFAs) caused a level of toxicity which promoted cell death. However, MCFAs are involved in the production of beverage flavours. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  5. Comparison of Fermentation and Wines Produced by Inoculation of Hanseniaspora vineae and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lleixà, Jessica; Martín, Valentina; Portillo, María Del C; Carrau, Francisco; Beltran, Gemma; Mas, Albert

    2016-01-01

    Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts. In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenyl ethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

  6. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae.

    Science.gov (United States)

    Leber, Christopher; Polson, Brian; Fernandez-Moya, Ruben; Da Silva, Nancy A

    2015-03-01

    The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. β-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae.

  7. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Wu, Xuechang; Zhang, Lijie; Jin, Xinna; Fang, Yahong; Zhang, Ke; Qi, Lei; Zheng, Daoqiong

    2016-07-01

    To improve tolerance to acetic acid that is present in lignocellulosic hydrolysates and affects bioethanol production by Saccharomyces cerevisiae. Saccharomyces cerevisiae strains with improved tolerance to acetic acid were obtained through deletion of the JJJ1 gene. The lag phase of the JJJ1 deletion mutant BYΔJJJ1 was ~16 h shorter than that of the parent strain, BY4741, when the fermentation medium contained 4.5 g acetic acid/l. Additionally, the specific ethanol production rate of BYΔJJJ1 was increased (0.057 g/g h) compared to that of the parent strain (0.051 g/g h). Comparative transcription and physiological analyses revealed higher long chain fatty acid, trehalose, and catalase contents might be critical factors responsible for the acetic acid resistance of JJJ1 knockout strains. JJJ1 deletion improves acetic acid tolerance and ethanol fermentation performance of S. cerevisiae.

  8. Low acid producing solid propellants

    Science.gov (United States)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  9. Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae*

    Science.gov (United States)

    Lazard, Myriam; Dauplais, Marc; Blanquet, Sylvain; Plateau, Pierre

    2015-01-01

    Toxicity of selenomethionine, an organic derivative of selenium widely used as supplement in human diets, was studied in the model organism Saccharomyces cerevisiae. Several DNA repair-deficient strains hypersensitive to selenide displayed wild-type growth rate properties in the presence of selenomethionine indicating that selenide and selenomethionine exert their toxicity via distinct mechanisms. Cytotoxicity of selenomethionine decreased when the extracellular concentration of methionine or S-adenosylmethionine was increased. This protection resulted from competition between the S- and Se-compounds along the downstream metabolic pathways inside the cell. By comparing the sensitivity to selenomethionine of mutants impaired in the sulfur amino acid pathway, we excluded a toxic effect of Se-adenosylmethionine, Se-adenosylhomocysteine, or of any compound in the methionine salvage pathway. Instead, we found that selenomethionine toxicity is mediated by the trans-sulfuration pathway amino acids selenohomocysteine and/or selenocysteine. Involvement of superoxide radicals in selenomethionine toxicity in vivo is suggested by the hypersensitivity of a Δsod1 mutant strain, increased resistance afforded by the superoxide scavenger manganese, and inactivation of aconitase. In parallel, we showed that, in vitro, the complete oxidation of the selenol function of selenocysteine or selenohomocysteine by dioxygen is achieved within a few minutes at neutral pH and produces superoxide radicals. These results establish a link between superoxide production and trans-sulfuration pathway seleno-amino acids and emphasize the importance of the selenol function in the mechanism of organic selenium toxicity. PMID:25745108

  10. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    OpenAIRE

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a ...

  11. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    Directory of Open Access Journals (Sweden)

    Álvaro Silva Lima

    2009-04-01

    Full Text Available Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical. The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES, which was the time when oil was separated. The biosurfactant presented different stabilization properties for vegetable and mineral oil in water solution, despite the highest values of the ES occurring with vegetable oil. The biosurfactant presented smallest ES when compared to commercial surfactants; however, this biosurfactant was not purified.Os tensoativos de origem biológica são amplamente utilizados em diversas aplicações. O microrganismo Saccharomyces lipolytica CCT-0913 possui a habilidade de crescer em 5% (v/v óleo diesel a pH 5,0 e 32ºC e produzir biosurfactante. O caldo fermentado livre de células e produzido por S. lipolytica emulsiona e estabiliza emulsões óleo em água de acordo com uma cinética de primeira ordem. Os resultados mostram que o valor do pH inicial e a temperatura influenciam a estabilidade emulsificante (ES, que é medido pelo tempo que a quantidade de óleo. O biosurfactante apresenta diferentes valores de estabilidade emulsificante para óleos vegetais e minerais em emulsões óleo-água, os maiores valores de ES ocorrem nas emulsões utilizando óleo vegetal. O biosurfactante apresenta valores baixos de ES quando comparado com emulsificantes comerciais, entretanto sem sofrer nenhum processo de purificação.

  12. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  13. Growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and succinic acid: a model

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J.A.B.A.F.; Koellmann, C.J.W.; Dekkers-de Kok, H.E.; Roels, J.A.

    1984-03-01

    Saccharomyces cerevisiae CBS 426 was grown in continuous culture in a defined medium with a mixture of glucose and succinic acid as the carbon source. Growth on succinic acid was possible after long adaptation periods. The flows of glucose, succinic acid, oxygen, carbon dioxide, and biomass to and from the system were measured. It proved necessary to expand our previous model to accommodate the active transport of succinic acid by the cell. The values found for the efficiency of the oxidative phosphorylation (PIO) and the amount of ATP needed for production of biomass from monomers gave the same values as found for substrate mixtures taken up passively. (Refs. 13).

  14. Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem.

    Science.gov (United States)

    Kagkli, Dafni-Maria; Tâche, Roselyne; Cogan, Timothy M; Hill, Colin; Casaregola, Serge; Bonnarme, Pascal

    2006-11-01

    Cheese flavour is the result of complex biochemical transformations attributed to bacteria and yeasts grown on the curd of smear-ripened cheeses. Volatile sulphur compounds (VSCs) are responsible for the characteristic aromatic notes of several cheeses. In the present study, we have assessed the ability of Kluyveromyces lactis, Kluyveromyces marxianus and Saccharomyces cerevisiae strains, which are frequently isolated from smear-ripened cheeses, to grow and deacidify a cheese medium and generate VSCs resulting from L-methionine degradation. The Kluyveromyces strains produced a wider variety and higher amounts of VSCs than the S. cerevisiae ones. We have shown that the pathway is likely to be proceeding differently in these two yeast genera. The VSCs are mainly generated through the degradation of 4-methylthio-oxobutyric acid in the Kluyveromyces strains, in contrast to the S. cerevisiae ones which have higher L-methionine demethiolating activity, resulting in a direct conversion of L-methionine to methanethiol. The deacidification activity which is of major importance in the early stages of cheese-ripening was also compared in S. cerevisiae and Kluyveromyces strains.

  15. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae.

    Science.gov (United States)

    Tiukova, Ievgeniia; Eberhard, Thomas; Passoth, Volkmar

    2014-01-01

    Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man-Rogosa-Sharpe and yeast extract-peptone-dextrose media. Flocs' size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria-yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini-D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae. © 2013 The Authors. Biotechnology and Applied Biochemistry published by Wiley Periodicals, Inc. on behalf of the International Union of Biochemistry and Molecular Biology, Inc.

  16. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

    Science.gov (United States)

    Qu, Na; He, Xiu-ping; Guo, Xue-na; Liu, Nan; Zhang, Bo-run

    2006-02-01

    In the process of beer storage and transportation, off-flavor can be produced for oxidation of beer. Sulphite is important for stabilizing the beer flavor because of its antioxidant activity. However, the low level of sulphite synthesized by the brewing yeast is not enough to stabilize beer flavor. Three enzymes involve sulphite biosynthesis in yeast. One of them, APS kinase (encoded by MET14) plays important role in the process of sulphite formation. In order to construct high sulphite-producing brewing yeast strain for beer production, MET14 gene was cloned and overexpressed in industrial strain of Saccharomyces cerevisiae. Primer 1 (5'-TGTGAATTCCTGTACACCAATGGCTACT-3', EcoR I) and primer 2 (5'-TATAAGCTTGATGA GGTGGATGAAGACG-3', HindIII) were designed according to the MET14 sequence in GenBank. A 1.1kb DNA fragment containing the open reading frame and terminator of MET14 gene was amplified from Saccharomyces cerevisiae YSF-5 by PCR, and inserted into YEp352 to generate recombinant plasmid pMET14. To express MET14 gene properly in S. cerevisiae, the recombinant expression plasmids pPM with URA3 gene as the selection marker and pCPM with URA3 gene and copper resistance gene as the selection marker for yeast transformation were constructed. In plasmid pPM, the PGK1 promoter from plasmid pVC727 was fused with the MET14 gene from pMET14, and the expression cassette was inserted into the plasmid YEp352. The dominant selection marker, copper-resistance gene expression cassette CUP1-MTI was inserted in plasmid pPM to result in pCPM. Restriction enzyme analysis showed that plasmids pPM and pCPM were constructed correctly. The laboratory strain of S. cerevisiae YS58 with ura3, trp1, leu2, his4 auxotroph was transformed with plasmid pPM. Yeast transformants were screened on synthetic minimal medium (SD) containing leucine, histidine and tryptophan. The sulphite production of the transformants carrying pPM was 2 fold of that in the control strain YS58, which showed that the

  17. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    Science.gov (United States)

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  18. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  19. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    Science.gov (United States)

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  20. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    Science.gov (United States)

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  1. Development of Bottom-Fermenting Saccharomyces Strains That Produce High SO2 Levels, Using Integrated Metabolome and Transcriptome Analysis▿

    OpenAIRE

    Yoshida, Satoshi; Imoto, Jun; Minato, Toshiko; Oouchi, Rie; Sugihara, Mao; IMAI, Takeo; Ishiguro, Tatsuji; Mizutani, Satoru; Tomita,Masaru; Soga, Tomoyoshi; Yoshimoto, Hiroyuki

    2008-01-01

    Sulfite plays an important role in beer flavor stability. Although breeding of bottom-fermenting Saccharomyces strains that produce high levels of SO2 is desirable, it is complicated by the fact that undesirable H2S is produced as an intermediate in the same pathway. Here, we report the development of a high-level SO2-producing bottom-fermenting yeast strain by integrated metabolome and transcriptome analysis. This analysis revealed that O-acetylhomoserine (OAH) is the rate-limiting factor fo...

  2. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  3. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  4. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

    Directory of Open Access Journals (Sweden)

    José Manuel Otero

    Full Text Available Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol, and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we

  5. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    Science.gov (United States)

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  6. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    Science.gov (United States)

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for

  7. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Stratford, Malcolm; Nebe-von-Caron, Gerhard; Steels, Hazel; Novodvorska, Michaela; Ueckert, Joerg; Archer, David B

    2013-02-15

    Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle.

    Science.gov (United States)

    Navrátil, Marián; Dömény, Zoltán; Sturdík, Ernest; Smogrovicová, Daniela; Gemeiner, Peter

    2002-04-01

    Production of non-alcoholic beer using Saccharomyces cerevisiae has been studied. Non-recombinant mutant strains with a defect in the synthesis of tricarboxylic-acid-cycle enzymes were used and applied in both free and pectate-immobilized form, using both batch and packed-bed continuous systems. After fermentation, basic parameters of the beer produced by five mutant strains were compared with a standard strain of brewing yeast. Results showed that the beer prepared by mutant yeast cells was characterized by lower levels of total alcohols, with ethanol concentrations between 0.07 and 0.31% (w/w). The organic acids produced, especially lactic acid, in concentrations up to 1.38 g x l(-1) had a strong protective effect on the microbial stability of the final product and thus the usual addition of lactic acid could be omitted. Application of the yeast mutants appears to be a good alternative to the classical methods for the production of non-alcoholic beer.

  9. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.

  10. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    T639I) turned out to be hyporesponsive, i.e., it signals only at high inducer concentration. In accordance with a transporter-like mechanism for Ssy1p function we suggest that the hyper- and hyporesponsive mutant forms differ from the wild-type sensor by being more and less inclined, respectively......The Saccharomyces cerevisiae integral membrane protein Ssy1p functions with Ssy5p and Ptr3p to sense extracellular amino acids. Signal transduction leads to processing and nuclear localization of Stp1p and Stp2p, transcriptional activators of many amino acid transporter genes. Ssy1p is structurally...... related to amino acid permeases, but unable to transport amino acids. We isolated SSY1 mutants that constitutively activate a target promoter. Dose-response analysis showed that the mutants are hyperresponsive, requiring less inducer to give strong signaling than does the wild type. Another mutant (Ssy1p...

  11. Recovery of carboxylic acids produced by fermentation.

    Science.gov (United States)

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  12. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    Science.gov (United States)

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.

  13. Boric Acid Disturbs Cell Wall Synthesis in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2010-01-01

    Full Text Available Boric acid (BA has broad antimicrobial activity that makes it a popular treatment for yeast vaginitis in complementary and alternative medicine. In the model yeast S. cerevisiae, BA disturbs the cytoskeleton at the bud neck and impairs the assembly of the septation apparatus. BA treatment causes cells to form irregular septa and leads to the synthesis of irregular cell wall protuberances that extend far into the cytoplasm. The thick, chitin-rich septa that are formed during BA exposure prevent separation of cells after abscission and cause the formation of cell chains and clumps. As a response to the BA insult, cells signal cell wall stress through the Slt2p pathway and increase chitin synthesis, presumably to repair cell wall damage.

  14. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  15. Aroma Compounds Prevision using Artificial Neural Networks Influence of Newly Indigenous Saccharomyces SPP in White Wine Produced with Vitis Vinifera Cv Siria

    OpenAIRE

    Caldeira,A. Teresa; Martins, M. Rosário; Cabrita,Maria João; Ambrósio, Cristina; Arteiro, José; José NEVES; Vicente, Henrique

    2010-01-01

    Commercial yeasts strains of Saccharomyces cerevisae are frequently used in white wine production as starters in fermentation process, however, these strains can affect the wine characteristics. The aim of this study was to evaluate the effect of three strains of Saccharomyces spp. (var. 1, 2 and 3) on wine aroma compounds produced in microvinification assays. Microvinification assays were carried out with Vitis vinifera cv Síria grapes using the strains in study as starters. Aroma compounds ...

  16. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Eudes, Aymerick; Baidoo, Edward E K; Yang, Fan; Burd, Helcio; Hadi, Masood Z; Collins, F William; Keasling, Jay D; Loqué, Dominique

    2011-02-01

    Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.

  17. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

    DEFF Research Database (Denmark)

    Yu, Tao; Zhou, Yongjin J.; Wenning, Leonie

    2017-01-01

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA......)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C22H46O) by expressing a specific fatty...... acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l-1 in...

  18. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  19. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Yongjin J; Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2014-01-01

    Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.

  20. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    Science.gov (United States)

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.

  1. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Suzuki, Toshihiro; Sugiyama, Minetaka; Wakazono, Kenta; Kaneko, Yoshinobu; Harashima, Satoshi

    2012-04-01

    To gain more insight into adaptation response to lactic-acid stress in yeast, a genome-wide screening for genes whose disruption caused hypersensitivity to 4.0% l-lactic acid (pH 2.8) was performed using the gene deletion collection of Saccharomyces cerevisiae. We identified 107 genes that contributed significantly to the ability of yeast cells to adapt lactic-acid stress. More than 30% of the genes identified in this screening were newly identified to be involved in mechanisms for adaptation response to lactic acid. We found that protein urmylation by Uba4 and N-terminal acetylation by Nat3 were involved in lactic acid adaptation mechanisms. Functional categorization of the genes followed by microscopic analysis revealed that a variety of cellular functions were involved in adaptation response to lactic acid and function associated with vacuolar transport played important roles in adaptation response to lactic acid. We also found that vacuole fragmented immediately upon exposure to lactic- and hydrochloric-acid stress. In addition, our analysis revealed that lactic-acid stress significantly reduced the amount of intracellular amino acids. Amino acid supplementation recovered the adaptation deficiency to lactic acid, suggesting that intracellular amino-acid homeostasis plays important roles in adaptation response to lactic-acid stress. These data suggest that enhancing vacuolar integrity, as well as maintaining intracellular amino-acid homeostasis may be an efficient approach to confer resistance to lactic-acid stress. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Selective approach to efficient ethanol production using adaptation of producer Saccharomyces cerevisiae to hyperosmotic medium

    Directory of Open Access Journals (Sweden)

    Yelena A. Oleinikova

    2017-06-01

    Full Text Available The resistance to ethanol of 18 strains of alcoholic yeast Saccharomyces cerevisiae, including production strains, was studied. It is shown that yeast growth was inhibited by increasing the concentration of ethanol in the medium above 7% (v/v. Successive adaptation of alcohol yeast to gradually increased concentrations of sodium chloride in the medium was carried out. Yeast variants that exceeded production strains in fermentation activity on the medium with 10% (v/v ethanol were received. The use of selected strains will increase the productivity of the process of ethyl alcohol production at the same costs.

  3. [Bacteriocins produced by lactic acid bacteria].

    Science.gov (United States)

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  4. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  5. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production.

  6. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  7. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    Science.gov (United States)

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect.

  8. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  9. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  10. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Science.gov (United States)

    2010-01-01

    Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are

  11. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  12. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    Science.gov (United States)

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  13. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    Science.gov (United States)

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.

  15. Cyanobacteria blooms produce teratogenic retinoic acids.

    Science.gov (United States)

    Wu, Xiaoqin; Jiang, Jieqiong; Wan, Yi; Giesy, John P; Hu, Jianying

    2012-06-12

    Deformed amphibians have been observed in eutrophic habitats, and some clues point to the retinoic acids (RAs) or RA mimics. However, RAs are generally thought of as vertebrate-specific hormones, and there was no evidence that RAs exist in cyanobacteria or algae blooms. By analyzing RAs and their analogs 4-oxo-RAs in natural cyanobacteria blooms and cultures of cyanobacteria and algae, we showed that cyanobacteria blooms could produce RAs, which were powerful animal teratogens. Intracellular RAs and 4-oxo-RAs with concentrations between 0.4 and 4.2 × 10(2) ng/L were detected in all bloom materials, and extracellular concentrations measured in water from Taihu Lake, China, were as great as 2.0 × 10 ng/L, which might pose a risk to wildlife through chronic exposure. Further examination of 39 cyanobacteria and algae species revealed that 32 species could produce RAs and 4-oxo-RAs (1.6-1.4 × 10(3) ng/g dry weight), and the dominant cyanobacteria species in Taihu Lake, Microcystis flos-aquae and Microcystis aeruginosa, produced high amounts of RAs and 4-oxo-RAs with concentrations of 1.4 × 10(3) and 3.7 × 10(2) ng/g dry weight, respectively. Most genera of cyanobacteria that could produce RAs and 4-oxo-RAs, such as Microcystis, Anabaena, and Aphanizomenon, often occur dominantly in blooms. Production of RAs and 4-oxo-RAs by cyanobacteria was associated with species, origin location, and growth stage. These results represent a conclusive demonstration of endogenous production of RAs in freshwater cyanobacteria blooms. The observation of teratogenic RAs in cyanobacteria is evolutionarily and ecologically significant because RAs are vertebrate-specific hormones, and cyanobacteria form extensive and highly visible blooms in many aquatic ecosystems.

  16. Development of bottom-fermenting saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis.

    Science.gov (United States)

    Yoshida, Satoshi; Imoto, Jun; Minato, Toshiko; Oouchi, Rie; Sugihara, Mao; Imai, Takeo; Ishiguro, Tatsuji; Mizutani, Satoru; Tomita, Masaru; Soga, Tomoyoshi; Yoshimoto, Hiroyuki

    2008-05-01

    Sulfite plays an important role in beer flavor stability. Although breeding of bottom-fermenting Saccharomyces strains that produce high levels of SO(2) is desirable, it is complicated by the fact that undesirable H(2)S is produced as an intermediate in the same pathway. Here, we report the development of a high-level SO(2)-producing bottom-fermenting yeast strain by integrated metabolome and transcriptome analysis. This analysis revealed that O-acetylhomoserine (OAH) is the rate-limiting factor for the production of SO(2) and H(2)S. Appropriate genetic modifications were then introduced into a prototype strain to increase metabolic fluxes from aspartate to OAH and from sulfate to SO(2), resulting in high SO(2) and low H(2)S production. Spontaneous mutants of an industrial strain that were resistant to both methionine and threonine analogs were then analyzed for similar metabolic fluxes. One promising mutant produced much higher levels of SO(2) than the parent but produced parental levels of H(2)S.

  17. Linking Genotype and Phenotype of Saccharomyces cerevisiae Strains Reveals Metabolic Engineering Targets and Leads to Triterpene Hyper-Producers

    DEFF Research Database (Denmark)

    Madsen, Karina Marie; Udatha, Gupta D. B. R. K.; Semba, Saori

    2011-01-01

    Background: Metabolic engineering is an attractive approach in order to improve the microbial production of drugs. Triterpenes is a chemically diverse class of compounds and many among them are of interest from a human health perspective. A systematic experimental or computational survey of all...... feasible gene modifications to determine the genotype yielding the optimal triterpene production phenotype is a laborious and time-consuming process. Methodology/Principal Findings: Based on the recent genome-wide sequencing of Saccharomyces cerevisiae CEN. PK 113-7D and its phenotypic differences......-amyrin production. In the case of beta-amyrin formation the triple over-expression construct exhibited a nearly 500% increase over the control strain making our metabolic engineering strategy the most successful design of triterpene microbial producers....

  18. Redundant Systems of Phosphatidic Acid Biosynthesis via Acylation of Glycerol-3-Phosphate or Dihydroxyacetone Phosphate in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Athenstaedt, Karin; Weys, Sabine; Paltauf, Fritz; Daum, Günther

    1999-01-01

    In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611–7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p presen...

  19. IMMOBILIZATION OF Saccharomyces Cerevisiae USING POLY(ACRYLAMIDE) GEL FOR ASYMMETRIC SYNTHESIS OF R(-)-MANDELIC ACID

    Institute of Scientific and Technical Information of China (English)

    LI Zhongqin; GUO Daiping; HUANG Xinghua; YANG Kai; XU Xiaoping

    2006-01-01

    In this paper, the poly(acrylamide) hydrogel used to immobilize saccharomyces cerevisiae for asymmetric synthesis of R(-)-mandelic acid was prepared with free radical ploymerization in deionized water at room temperature under nitrogen atmosphere. The influence of the composition of hydrogel, loading amount of cells and culture conditions on the asymmetric synthesis was investigated. Results show that PAAm hydrogel is a feasible carrier for immobilization of cells which is a potential alternative method to prepare enantiomerically pure R(-)-mandelic acid.

  20. Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacq.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sun, Ruhao; Gao, Lingchao; Yu, Xiaoping; Zheng, Yusheng; Li, Dongdong; Wang, Xinguang

    2016-10-10

    Oil palm (Elaeis guineensis Jacq.) is one of the highest oil-yield crops in the world. A Δ12-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from oil palm and their functions identified. The open reading frames (ORFs) of egFAD2 (GenBank accession: KT023602) consisted of 1176bp and code for 391 amino acids. Their deduced polypeptides showed 75-93% identity to microsomal Δ12-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. RT-PCR experiment indicated that the egFAD2 gene exhibited the highest accumulation in the mesocarp of fruits at 120-140 DAP (i.e. the fourth period of fruit development) and, despite having different expression levels, the other four stages were at significantly lower levels compared with the fourth stage. Plasmid pYES2-egFAD2 was transformed into Saccharomyces cerevisiae strain INVSc1 using lithium acetate method for expression under the induction of galactose. Yeast cells transformed with plasmid constructs containing egFAD12 produced an appreciable amount of linoleic acids (18:2(Δ9,)(12)), not normally present in wild-type yeast cells, indicating that the genes encoded functional Δ12-desaturase enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression.

    Science.gov (United States)

    Jiang, Yide; Vasconcelles, Michael J; Wretzel, Sharon; Light, Anne; Gilooly, Laura; McDaid, Kevin; Oh, Chan-Seok; Martin, Charles E; Goldberg, Mark A

    2002-06-01

    In Saccharomyces cerevisiae, OLE1 encodes a delta9 fatty acid desaturase, an enzyme that plays a critical role in maintaining the correct ratio of saturated to monounsaturated fatty acids in the cell membrane. Previous studies have demonstrated that (i) OLE1 expression is repressed by unsaturated fatty acids (UFAs) and induced by low oxygen tension, (ii) a component of this regulation is mediated through the same low oxygen response element (LORE) in the OLE1 promoter, and (iii) Mga2p is involved in LORE-dependent hypoxic induction of OLE1. We now report that LORE-CYC1 basal promoter-lacZ fusion reporter assays demonstrate that UFAs repress the reporter expression under hypoxic conditions in a dose-dependent manner via LORE. Electrophoretic mobility shift assays show that UFAs repress the hypoxia-induced complex formation with LORE. Studies with a construct encoding a truncated form of Mga2p support the hypothesis that both hypoxia and UFA signals affect the processing of Mga2p and the UFA repression of OLE1 hypoxic induction is mediated through Mga2p. Data from Western blot assays provide evidence that under normoxic conditions, Mga2p processing produces approximately equimolar levels of the membrane-bound and processed forms and is unaffected by UFAs. Hypoxic induction of OLE1, however, is associated with increased processing of the protein, resulting in an approximately fivefold increase in the soluble active form that is counteracted by exposure of the cells to unsaturated fatty acids. Data from this study suggest that the Mga2p-LORE interaction plays an important role in OLE1 expression under both normoxic and hypoxic conditions.

  2. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

    Science.gov (United States)

    Campbell, Alex; Bauchart, Philippe; Gold, Nicholas D; Zhu, Yun; De Luca, Vincenzo; Martin, Vincent J J

    2016-05-20

    The monoterpene indole alkaloids (MIAs) are a valuable family of chemicals that include the anticancer drugs vinblastine and vincristine. These compounds are of global significance-appearing on the World Health Organization's list of model essential medicines-but remain exorbitantly priced due to low in planta levels. Chemical synthesis and genetic manipulation of MIA producing plants such as Catharanthus roseus have so far failed to find a solution to this problem. Synthetic biology holds a potential answer, by building the pathway into more tractable organisms such as Saccharomyces cerevisiae. Recent work has taken the first steps in this direction by producing small amounts of the intermediate strictosidine in yeast. In order to help improve on these titers, we aimed to optimize the early biosynthetic steps of the MIA pathway to the metabolite nepetalactol. We combined a number of strategies to create a base strain producing 11.4 mg/L of the precursor geraniol. We also show production of the critical intermediate 10-hydroxygeraniol and demonstrate nepetalactol production in vitro. Lastly we demonstrate that activity of the iridoid synthase toward the intermediates geraniol and 10-hydroxygeraniol results in the synthesis of the nonproductive intermediates citronellol and 10-hydroxycitronellol. This discovery has serious implications for the reconstruction of the MIA in heterologous organisms.

  3. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

    Science.gov (United States)

    Benjaphokee, Suthee; Hasegawa, Daisuke; Yokota, Daiki; Asvarak, Thipa; Auesukaree, Choowong; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-02-15

    Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  5. Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p.

    Science.gov (United States)

    Pereira Rangel, Luciana; Fritzen, Márcio; Yunes, Rosendo Augusto; Leal, Paulo César; Creczynski-Pasa, Tânia Beatriz; Ferreira-Pereira, Antônio

    2010-05-01

    Overexpression of the Saccharomyces cerevisiae ABC transporter Pdr5p confers resistance to a range of structurally unrelated xenobiotics. This property allows Pdr5p to be used as a target for novel multidrug resistance reversal reagents or chemosensitizers. Herein, we report the effects of gallic acid derivatives with substitutions either on the ester moiety or in the benzene ring on the activity of Pdr5p. Compounds with a longer side chain (8-16 carbons) resulted in greater inhibition of Pdr5p ATPase. Derivatives with side chains of 8-12 carbons that retained hydroxyl groups on the benzene ring extensively inhibited Pdr5p ATPase activity. These compounds almost completely inhibited the efflux of the Pdr5p fluorescent substrate Rhodamine 6G and at 25 muM chemosensitized the Pdr5p-overexpressing strain AD124567 to fluconazole (0.4 mg mL(-1)). Gallic acid derivatives may be a new class of Pdr5p inhibitors.

  6. Effect of Propanoic Acid on Ethanol Fermentation by Saccharomyces cerevisiae in an Ethanol-Methane Coupled Fermentation Process

    Institute of Scientific and Technical Information of China (English)

    张成明; 杜风光; 王欣; 毛忠贵; 孙沛勇; 唐蕾; 张建军

    2012-01-01

    Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was 〈30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was 〉53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.

  7. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.

    Science.gov (United States)

    Tomitaka, Masataka; Taguchi, Hisataka; Matsuoka, Masayoshi; Morimura, Shigeru; Kida, Kenji; Akamatsu, Takashi

    2014-01-01

    We screened an industrial thermotolerant Saccharomyces cerevisiae strain, KF7, as a potent lactic-acid-assimilating yeast. Heterothallic haploid strains KF7-5C and KF7-4B were obtained from the tetrads of the homothallic yeast strain KF7. The inefficient sporulation and poor spore viability of the haploid strains were improved by two strategies. The first strategy was as follows: (i) the KF7-5C was crossed with the laboratory strain SH6710; (ii) the progenies were backcrossed with KF7-5C three times; and (iii) the progenies were inbred three times to maintain a genetic background close to that of KF7. The NAM12 diploid between the cross of the resultant two strains, NAM11-9C and NAM11-13A, showed efficient sporulation and exhibited excellent growth in YPD medium (pH 3.5) at 35°C with 1.4-h generation time, indicating thermotolerance and acid tolerance. The second strategy was successive intrastrain crosses. The resultant two strains, KFG4-6B and KFG4-4B, showed excellent mating capacity. A spontaneous mutant of KFG4-6B, KFG4-6BD, showed a high growth rate with a generation time of 1.1 h in YPD medium (pH 3.0) at 35°C. The KFG4-6BD strain produced ascospores, which were crossed with NAM11-2C and its progeny to produce tetrads. These tetrads were crossed with KFG4-4B to produce NAM26-14A and NAM26-15A. The latter strain had a generation time of 1.6 h at 35°C in pH 2.5, thus exhibiting further thermotolerance and acid tolerance. A progeny from a cross of NAM26-14A and NAM26-15A yielded the strain NAM34-4C, which showed potent lactic acid assimilation and high transformation efficiency, better than those of a standard laboratory strain.

  8. Lactic acid production from Cellobiose and xylose by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step towards a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates co...

  9. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  10. Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase.

    Science.gov (United States)

    Hong, Soo-Jeong; Kim, Hyo Jin; Kim, Jin-Woo; Lee, Dae-Hee; Seo, Jin-Ho

    2015-02-01

    Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.

  11. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    Science.gov (United States)

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (Plactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  12. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gurvitz, Aner; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2008-08-01

    We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Delta cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Delta cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C(4) to C(8)) than was previously thought (>C(12)). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.

  13. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

    Science.gov (United States)

    Teixeira, Paulo Gonçalves; Ferreira, Raphael; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2017-03-15

    In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. We analyzed the metabolite dynamics of a faa1Δ faa4Δ strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of

  14. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  15. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Nancy S. Bae

    2017-04-01

    Full Text Available The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.

  16. Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kleineidam, Anna; Vavassori, Stefano; Wang, Ke; Schweizer, Lilian M; Griac, Peter; Schweizer, Michael

    2009-10-01

    Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding sites of Prs polypeptides. Deletion of one or more of the five PRS genes has far-reaching and unexpected consequences, e.g. impaired cell integrity, temperature-sensitivity and sensitivity to VPA (valproic acid) and LiCl. CTP pools in prs1Delta and prs3Delta are reduced to 12 and 31% of the wild-type respectively, resulting in an imbalance in phospholipid metabolism which may have an impact on the intracellular inositol pool which is affected by the administration of either VPA or LiCl. Overexpression of CTP synthetase in prs1Delta prs3Delta strains partially reverses the VPA-sensitive phenotype. Yeast two-hybrid screening revealed that Prs3 and the yeast orthologue of GSK3 (glycogen synthase kinase 3), Rim11, a serine/threonine kinase involved in several signalling pathways, interact with each other. Furthermore, Prs5, an essential partner of Prs3, which also interacts with GSK3 contains three neighbouring phosphorylation sites, typical of GSK3 activation. These studies on yeast PRPP synthetases bring together and expand the current theories for the mood-stabilizing effects of VPA and LiCl in bipolar disorder.

  17. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  18. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

    Science.gov (United States)

    Yu, Ai-Qun; Juwono, Nina Kurniasih Pratomo; Foo, Jee Loon; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-03-01

    Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.

  19. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose.

  20. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability.

    Science.gov (United States)

    Chen, Yefu; Yang, Xu; Zhang, Shijie; Wang, Xiaoqiong; Guo, Changhui; Guo, Xuewu; Xiao, Dongguang

    2012-01-01

    Sulfur compounds, such as sulfite (SO(2)), hydrogen sulfide (H(2)S), and glutathione (GSH), play different roles in beer flavor stability. SO(2) and GSH have antiaging effects which are helpful to improve the flavor stability of beer, whereas H(2)S is undesirable to beer flavor because of its unpleasant aroma. Here, we report the development of Saccharomyces cerevisiae which produces higher levels of SO(2) and GSH but lower level of H(2)S to improve beer flavor stability by nongenetic engineering approaches. After two rounds of UV mutagenesis coupled with specific plate screening methods, one promising mutant named MV16 was obtained. Compared with the original strain, the SO(2) and GSH production of MV16 in fermenting liquor increased by 31% and 30.2%, respectively, while H(2)S content decreased by 74.9%, and the DPPH radical clearance and the resistance staling value of beer fermented by MV16 increased by 24.6% and 33.0%, respectively. The antioxidizability of the mutant was improved significantly. The strategy adopted in our study could be used to obtain S. cerevisiae of improved antiaging properties, and the mutant would be safe for public use.

  1. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  2. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  3. Biologically produced succinic acid: A new route to chemical intermediates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The national laboratory consortium has undertaken an R&D project with the Michigan Biotechnology Institute (MBI) to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources. The projects near-term goal is to demonstrate an economically competetive process for producing 1,4-butanediol and other derivatives from biologically produced succinic acid without generating a major salt waste. The competitiveness to the petrochemical process must be demonstrated.

  4. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Takabatake, Akiko; Kawazoe, Nozomi; Izawa, Shingo

    2015-03-01

    Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression of YRO2 was induced by acetic acid stress and entering the stationary phase. Fluorescence microscopic analysis revealed that Mrh1 and Yro2 were distributed as small foci in the plasma membrane under acetic acid stress conditions. The null mutants of these genes (mrh1∆, yro2∆, and mrh1∆yro2∆) showed delayed growth and a decrease in the productivity of ethanol in the presence of acetic acid, indicating that Yro2 and Mrh1 are involved in tolerance to acetic acid stress.

  5. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids.

    Science.gov (United States)

    Hazelwood, Lucie A; Walsh, Michael C; Pronk, Jack T; Daran, Jean-Marc

    2010-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop alpha-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-alpha-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-alpha-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-alpha-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-alpha-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-alpha-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-alpha-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-alpha-acids across the plasma membrane. Furthermore, iso-alpha-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators.

  6. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

    Science.gov (United States)

    Wright, Jeremiah; Bellissimi, Eleonora; de Hulster, Erik; Wagner, Andreas; Pronk, Jack T; van Maris, Antonius J A

    2011-05-01

    Acetic acid tolerance of Saccharomyces cerevisiae is crucial for the production of bioethanol and other bulk chemicals from lignocellulosic plant-biomass hydrolysates, especially at a low pH. This study explores two evolutionary engineering strategies for the improvement of acetic acid tolerance of the xylose-fermenting S. cerevisiae RWB218, whose anaerobic growth on xylose at pH 4 is inhibited at acetic acid concentrations >1 g L(-1) : (1) sequential anaerobic, batch cultivation (pH 4) at increasing acetic acid concentrations and (2) prolonged anaerobic continuous cultivation without pH control, in which acidification by ammonium assimilation generates selective pressure for acetic acid tolerance. After c. 400 generations, the sequential-batch and continuous selection cultures grew on xylose at pH≤4 with 6 and 5 g L(-1) acetic acid, respectively. In the continuous cultures, the specific xylose-consumption rate had increased by 75% to 1.7 g xylose g(-1) biomass h(-1) . After storage of samples from both selection experiments at -80 °C and cultivation without acetic acid, they failed to grow on xylose at pH 4 in the presence of 5 g L(-1) acetic acid. Characterization in chemostat cultures with linear acetic acid gradients demonstrated an acetate-inducible acetic acid tolerance in samples from the continuous selection protocol.

  7. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    DEFF Research Database (Denmark)

    Chen, Xiao

    Saccharomyces cerevisiae is widely used in microbial production of chemicals, metabolites and proteins, mainly because genetic manipulation of S. cerevisiae is relatively easy and experiences from its wide application in the existing industrial fermentations directly benefit new S. cerevisiae......-based processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which...

  8. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.

    Science.gov (United States)

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2006-06-01

    The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (Plactic acid at 3% w/v reduced (Pacid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations > or =0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (Pacid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0-5.5 are not as great as that reported thus far using laboratory media.

  9. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A

    1997-01-01

    The yeast Saccharomyces cerevisiae is able to utilize exogenous fatty acids for a variety of cellular processes including beta-oxidation, phospholipid biosynthesis, and protein modification. The molecular mechanisms that govern the uptake of these compounds in S. cerevisiae have not been described....... We report the characterization of FAT1, a gene that encodes a putative membrane-bound long-chain fatty acid transport protein (Fat1p). Fat1p contains 623 amino acid residues that are 33% identical and 54% with similar chemical properties as compared with the fatty acid transport protein FATP...... described in 3T3-L1 adipocytes (Schaffer and Lodish (1994) Cell 79, 427-436), suggesting a similar function. Disruption of FAT1 results in 1) an impaired growth in YPD medium containing 25 microM cerulenin and 500 microM fatty acid (myristate (C14:0), palmitate (C16:0), or oleate (C18:1)); 2) a marked...

  10. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  11. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid.

    Science.gov (United States)

    Saegusa, Shizue; Totsuka, Mamoru; Kaminogawa, Shuichi; Hosoi, Tomohiro

    2004-07-01

    Intestinal epithelial cells (IEC) are important in initiation and regulation of immune responses against numerous foreign substances including food, microorganisms and their metabolites in the intestine. Since the responses of IEC against yeasts have not yet been well understood, we investigated the effects of Candida albicans, Saccharomyces cerevisiae, and their cell wall components on interleukin-8 (IL-8) secretion by the IEC-like Caco-2 cells. Live cells of both yeast species stimulated Caco-2 cells to produce IL-8 only in the presence of butyric acid, which is a metabolite produced by intestinal bacteria. S. cerevisiae zymosan and glucan also enhanced IL-8 secretion. Treatment of Caco-2 cells with butyric acid increased the expression of mRNAs coding for Toll-like receptor 1 (TLR1), TLR6 and dectin-1, which recognize zymosan. C. albicans induced more IL-8 secretion and also decreased transepithelial electrical resistance more rapidly than S. cerevisiae. These results suggest that both yeasts in the intestine stimulate the host's mucosal immune systems by interacting with IEC.

  12. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the object......Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics....... With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for highlevel production of 3HP, we identified the ß-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of ß...

  13. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2015-01-01

    Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the object......Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics....... With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for highlevel production of 3HP, we identified the ß-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of ß...

  14. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Science.gov (United States)

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  15. Lipidomic Profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii Reveals Critical Changes in Lipid Composition in Response to Acetic Acid Stress

    Science.gov (United States)

    Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  16. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Directory of Open Access Journals (Sweden)

    Lina Lindberg

    Full Text Available When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D and Zygosaccharomyces bailii (CBS7555 cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP2C 2.2× and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP2C 2.7×, when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to

  17. Effect of fermentation with Saccharomyces cerevisiae strain PJ69-4 on the phytic acid, raffinose, and stachyose contents of soybean meal

    Science.gov (United States)

    Three experiments were conducted to determine the impact of submerged fermentation procedures using Saccharomyces cerevisiae baker’s yeast strain PJ69-4a on degradation of phytic acid and the raffinosaccharides, raffinose, and stachyose, in soybean meal. The goal of the research was to identify a n...

  18. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex

    DEFF Research Database (Denmark)

    Zou, Zhiying; Tong, Fumin; Færgeman, Nils J.

    2003-01-01

    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions ...

  19. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two olei

  20. Amino acid residues important for substrate specificity of the amino acid permeases Can I p and Gnp I p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Kielland-Brandt, M.C.

    2001-01-01

    Deletion of the general amino acid permease gene GAP1 abolishes uptake of L-citrulline in Saccharomyces cerevisiae, resulting in the inability to grow on L-citrulline as sole nitrogen source. Selection for suppressor mutants that restored growth on L-citrulline led to isolation of 21 mutations...... in the arginine permease gene CAN1. One similar mutation was found in the glutamine-asparagine permease gene GNP1. L-[C-14]citrulline uptake measurements confirmed that suppressor mutations in CAN1 conferred uptake of this amino acid, while none of the mutant permeases had lost the ability to transport L-[C-14......]arginine. Substrate specificity seemed to remain narrow in most cases, and broad substrate specificity was only observed in the cases where mutations affect two proline residues (P148 and P313) that are both conserved in the amino acid-polyamine-choline (APC) transporter superfamily. We found mutations...

  1. Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yo Maruyama

    Full Text Available The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions.

  2. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.

    Science.gov (United States)

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D; Leong, Susanna Su Jan; Chang, Matthew Wook

    2017-01-01

    Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof-of-principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α-dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12-18 free fatty acids to C11-17 aldehydes. Co-expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole-cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232-237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  3. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.

  4. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    Science.gov (United States)

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  5. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  6. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    Science.gov (United States)

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  7. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.

    Science.gov (United States)

    González-Ramos, Daniel; Gorter de Vries, Arthur R; Grijseels, Sietske S; van Berkum, Margo C; Swinnen, Steve; van den Broek, Marcel; Nevoigt, Elke; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-01-01

    Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for

  8. Aceitação e perfil sensorial das cachaças produzidas com Kefir e Saccharomyces cerevisae Acceptance and sensory profile of cachaça produced using Kefir and Saccharomyces cerevisae

    Directory of Open Access Journals (Sweden)

    Anita Saraiva Dornelles

    2009-09-01

    Full Text Available A levedura Saccharomyces cerevisae é o microrganismo mais utilizado industrialmente nas destilarias, mas outros microrganismos também são capazes de produzir etanol utilizando matérias-primas açucaradas como substrato. O objetivo deste trabalho foi determinar o perfil sensorial e a aceitação da aguardente de cana produzida através da fermentação alcoólica com grânulos de Kefir, comparando-a ao produto obtido tradicionalmente. Pelo método de ADQ, 8 provadores treinados avaliaram os seguintes descritores: aroma alcoólico e de cachaça, sabor alcoólico e de cachaça, gosto amargo e ardência. O teste de aceitação foi realizado por 57 consumidores de aguardente, utilizando-se uma escala hedônica estruturada de nove pontos para avaliar a aceitação do aroma e a aceitação global. A cachaça com Kefir apresentou maior intensidade de aroma alcoólico e gosto amargo, obtendo menor aceitação global que a cachaça de levedura. Dessa forma, o produto foi considerado de grande potencial visto que apresentou satisfatório percentual de aprovação entre os consumidores.Saccharomyces cerevisae is the main industrially used yeast to produce sugar cane spirits (cachaça. However, other microorganisms are able to produce ethanol using sugar as substrate. This work aimed at determining the sensory profile of cachaça produced through the alcoholic fermentation with Kefir's granules and its acceptance. The acceptance analysis was performed by 57 consumers using a 9 point structured hedonic scale to evaluate the aroma and the general acceptance of the product. The QDA method, with 8 trained tasters, was used to evaluate the following product descriptors: alcoholic aroma, alcoholic flavor, and burning and bitter taste. The evaluated samples did not presented statistical differences (p < 0.05 among each other regarding the aroma acceptance. However, the cachaça produced using bakery yeast presented higher acceptance scores. On the other hand

  9. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction.

  10. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  11. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  12. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.

    Science.gov (United States)

    Zhang, Jun-Guo; Liu, Xiu-Ying; He, Xiu-Ping; Guo, Xue-Na; Lu, Ying; Zhang, Bo-Run

    2011-02-01

    The FPS1 gene coding for the Fps1p aquaglyceroporin protein of an industrial strain of Saccharomyces cerevisiae was disrupted by inserting CUP1 gene. Wild-type strain, CE25, could only grow on YPD medium containing less than 0.45% (v/v) acetic acid, while recombinant strain T12 with FPS1 disruption could grow on YPD medium with 0.6% (v/v) acetic acid. Under 0.4% (v/v) acetic acid stress (pH 4.26), ethanol production and cell growth rates of T12 were 1.7 ± 0.1 and 0.061 ± 0.003 g/l h, while those of CE25 were 1.2 ± 0.1 and 0.048 ± 0.003 g/l h, respectively. FPS1 gene disruption in an industrial ethanologenic yeast thus increases cell growth and ethanol yield under acetic acid stress, which suggests the potential utility of FPS1 gene disruption for bioethanol production from renewable resources such as lignocelluloses.

  13. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Science.gov (United States)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  14. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains.

    Science.gov (United States)

    Oba, Takahiro; Kusumoto, Kenichi; Kichise, Yuki; Izumoto, Eiji; Nakayama, Shunichi; Tashiro, Kosuke; Kuhara, Satoru; Kitagaki, Hiroshi

    2014-08-01

    Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correlate with malic acid production. To define the underlying biochemical mechanism, we determined the activities of enzymes required for malic acid synthesis and found that pyruvate carboxylase and malate dehydrogenase activities in strains that produce high levels of malic acid were elevated compared with the standard sake strain K901. These results inspired us to hypothesize that decreased mitochondrial membrane potential was responsible for increased malic acid synthesis, and we present data supporting this hypothesis. Thus, the mitochondrial membrane potential of high malic acid producers was lower compared with standard strains. We conclude that mitochondrial membrane potential correlates with malic acid production.

  15. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine.

    Science.gov (United States)

    Gobbi, Mirko; Comitini, Francesca; Domizio, Paola; Romani, Cristina; Lencioni, Livio; Mannazzu, Ilaria; Ciani, Maurizio

    2013-04-01

    In the last few years there is an increasing interest on the use of mixed fermentation of Saccharomyces and non-Saccharomyces wine yeasts for inoculation of wine fermentations to enhance the quality and improve complexity of wines. In the present work Lachancea (Kluyveromyces) thermotolerans and Saccharomyces cerevisiae were evaluated in simultaneous and sequential fermentation with the aim to enhance acidity and improve the quality of wine. In this specific pairing of yeast strains in mixed fermentations (S. cerevisiae EC1118 and L. thermotolerans 101), this non-Saccharomyces yeast showed a high level of competitiveness. Nevertheless the S. cerevisiae strain dominated the fermentation over the spontaneous S. cerevisiae strains also under the industrial fermentation conditions. The different condition tested (modalities of inoculum, temperature of fermentation, different grape juice) influenced the specific interactions and the fermentation behaviour of the co-culture of S. cerevisiae and L. thermotolerans. However, some metabolic behaviours such as pH reduction and enhancement of 2-phenylethanol and glycerol, were shown here under all of the conditions tested. The specific chemical profiles of these wines were confirmed by the sensory analysis test, which expressed these results at the tasting level as significant increases in the spicy notes and in terms of total acidity increases.

  16. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    Science.gov (United States)

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    Science.gov (United States)

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  18. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  19. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR) OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar) Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    OpenAIRE

    M. Supli Effendi

    2002-01-01

    Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of biopro...

  20. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    Science.gov (United States)

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  1. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  2. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  3. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Harashima, S; Hinnebusch, A G

    1986-11-01

    GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.

  4. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets

    Science.gov (United States)

    Yu, Lei; Martínez, Yordan

    2017-01-01

    This research aims to evaluate the effects of dietary supplementation with Saccharomyces cerevisiae cell wall extract (SCCWE) on growth performance, oxidative stress, intestinal morphology, and serum amino acid concentration in weaned piglets. Utilizing a completely randomized design, 40 healthy piglets weaned at 21 d were grouped into 4 experimental treatments with 10 pigs per treatment group. Treatments consisted of a basal diet (T0), a basal diet with a 0.05% SCCWE (T1), a basal diet with a 0.10% SCCWE (T2), and a basal diet with a 0.15% SCCWE (T3). SCCWE supplementation increased the average daily gain and final body weight compared with T0 (P < 0.05). SCCWE in T2 and T3 improved the average daily feed intake and decreased the feed/gain ratio compared with T1 and T2 (P < 0.05). SCCWE decreased serum malondialdehyde (MDA) and increased activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) significantly compared to T0 (P < 0.05). SCCWE increased the concentration of Ile compared to T0 (P < 0.05). Moreover, the concentrations of Leu, Phe, and Arg were higher in T2 and T3 (P < 0.05). These findings indicate beneficial effects of SCCWE supplementation on growth performance, the concentration of some essential amino acids, and alleviation of oxidative stress in weaned piglets.

  5. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    Science.gov (United States)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  6. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Science.gov (United States)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  7. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture

    NARCIS (Netherlands)

    Shah, Mihir V.; Mastrigt, van Oscar; Heijnen, Joseph J.; Gulik, van Walter M.

    2016-01-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the un

  8. Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sandra Mota

    Full Text Available Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation, complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301-306. In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1 mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1 mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity, Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex interplay between transcriptional and post-transcriptional effects.

  9. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    Science.gov (United States)

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. © FEMS 2016.

  10. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  11. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    Science.gov (United States)

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  12. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  13. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, K W; Roon, R J

    1982-11-24

    alpha-Aminoisobutyric acid is actively transported into yeast cells by the general amino acid transport system. The system exhibits a Km for alpha-aminoisobutyric acid of 270 microM, a Vmax of 24 nmol/min per mg cells (dry weight), and a pH optimum of 4.1-4.3. alpha-Aminoisobutyric acid is also transported by a minor system(s) with a Vmax of 1.7 nmol/min per mg cells. Transport occurs against a concentration gradient with the concentration ratio reaching over 1000:1 (in/out). The alpha-aminoisobutyric acid is not significantly metabolized or incorporated into protein after an 18 h incubation. alpha-Aminoisobutyric acid inhibits cell growth when a poor nitrogen source such as proline is provided but not with good nitrogen sources such as NH+4. During nitrogen starvation alpha-aminoisobutyric acid strongly inhibits the synthesis of the nitrogen catabolite repression sensitive enzyme, asparaginase II. Studies with a mutant yeast strain (GDH-CR) suggest that alpha-aminoisobutyric acid inhibition of asparaginase II synthesis occurs because alpha-aminoisobutyric acid is an effective inhibitor of protein synthesis in nitrogen starved cells.

  14. Method to produce furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-04-11

    A process to produce furandicarboxylic acid (FDCA). The process includes the steps of reacting a C6 sugar-containing reactant in a reaction solution comprising a first organic solvent selected from the group consisting of beta-, gamma-, and delta-lactones, hydrofurans, hydropyrans, and combinations thereof, in the presence of an acid catalyst for a time and under conditions wherein at least a portion of the C6 sugar present in the reactant is converted to 5-(hydroxymethyl)furfural (HMF); oxidizing the HMF into FDCA with or without separating the HMF from the reaction solution; and extracting the FDCA by adding an aprotic organic solvent having a dipole moment of about 1.0 D or less to the reaction solution.

  15. Bacteriocins produced by lactic acid bacteria: A review

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  16. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Ullah, A.; Orij, R.; Brul, S.; Smits, G.J.

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids,

  17. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents.

    Science.gov (United States)

    Machado, Manuela D; Soares, Eduardo V; Soares, Helena M V M

    2010-12-15

    The aim of this work was to seek an environmentally friendly process for recycling metals from biomass-sludges generated in the treatment of industrial wastewaters. This work proposes a hybrid process for selective recovery of copper, nickel and zinc from contaminated biomass of Saccharomyces cerevisiae, used in the bioremediation of electroplating effluents. The developed separation scheme comprised five consecutive steps: (1) incineration of the contaminated biomass; (2) microwave acid (HCl) digestion of the ashes; (3) recovery of copper from the acid solution by electrolysis at controlled potential; (4) recycle of nickel, as nickel hydroxide, by alcalinization of the previous solution at pH 14; (5) recovery of zinc, as zinc hydroxide, by adjusting the pH of the previous solution at 10. This integrated approach allowed recovering each metal with high yielder (>99% for all metals) and purity (99.9%, 92% and 99.4% for copper, nickel and zinc, respectively). The purity of the metals recovered allows selling them in the market or being recycled in the electroplating process without waste generation.

  18. Biologically produced succinic acid: A new route to chemical intermediates

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  19. Electrochemical evaluation of the inhibitory effects of acetic acid on Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhenhong; Zhao Jinsheng; Yan Yongjie; Yang Zhengyu

    2006-01-01

    A mediated electrochemical method was proposed for toxic evaluation of acetic acid on S. cerevisiae AS.380, and menadione/ferricyanide was chosen as the mediator system. The variance in electrochemical response in the absence and presence of increasing concentrations of acetic acid were used to indicate the inhibitory effects of weak acid on the yeast. The inhibitory effects of acetic acid on glucose consumption during menadione mediated reduction of ferricyanide were also measured for comparison purpose. The relative limiting current and the glucose consumption were reduced by 64.5 % and 61%, respectively, in the presence of 4g/L acetic acid at pH 4.0. The results showed that the electrochemical method can provide us with an appropriate and convenient tool for cytotoxic evaluation.

  20. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids

    Science.gov (United States)

    Serrazanetti, Diana I.; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale. PMID:26528258

  1. Characterization of fatty acid delta-6 desaturase gene in Nile tilapia and heterogenous expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tanomman, Supamas; Ketudat-Cairns, Mariena; Jangprai, Araya; Boonanuntanasarn, Surintorn

    2013-10-01

    Fatty acid delta-6 desaturase (fads2)-like gene from Nile tilapia (Oreochromis niloticus) was characterized and designated as oni-fads2. The Oni-FADS2 showed the typical structure of microsomal FADS2. The presence of oni-fads2 transcripts in unfertilized eggs demonstrated the maternal role of Nile tilapia in providing the oni-fads2 transcript in their eggs. In addition, the expression of oni-fads2 was detectable in embryos throughout the hatching stage. Real-time reverse transcription-PCR revealed that oni-fads2 was expressed at a high level in all the brain regions, liver, and testis. Recombinant yeast (RY) was generated by transformation of Saccharomyces cerevisiae with the plasmid containing oni-fads2 driven by the Gal1 promoter (pYoni-fads2). The conspicuous expression of RY was detectable by RT-PCR after induction with galactose for 24h. When RY was induced with galactose, it exhibited 39% and 7% of delta-6 desaturase (∆6) activity toward C18:2n6 and C18:3n3, respectively. Additionally, it displayed 4% of delta-5 desaturase (∆5) activity toward C20:3n6, indicating that Oni-FADS2 had ∆5 and ∆6 bifunction.

  2. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences.

  3. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH

    OpenAIRE

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-01-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L−1 acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in t...

  4. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yongjin J. Zhou

    2014-09-01

    Full Text Available Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals.

  5. Saccharomyces boulardii

    Science.gov (United States)

    ... bowel syndrome. Some people use Saccharomyces boulardii for lactose intolerance, urinary tract infections (UTIs), vaginal yeast infections, high ... cholesterol. Lyme disease. Hives. Fever blisters. Canker sores. Lactose intolerance. Other conditions. More evidence is needed to rate ...

  6. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    Directory of Open Access Journals (Sweden)

    Hoda Ebrahimi

    2013-01-01

    Full Text Available Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materials and methods: The samples that were collected from fermentation tanks of alcohol industries were enriched in ZSM medium. To isolate the ethanol producing bacteria, the enriched culture was transferred on RMA agar. Bacterial growth conditions and their effects on ethanol production were optimized based on pH, growth temperature, agitation, fermentation time, initial substrate concentration and carbon and nitrogen sources. In addition, the morphological, physiological and molecular characterizations were investigated for identification of the isolates.Results: Three bacterial isolates ZYM7, ZYM8 and ZYM9 were isolated from fermentation tank. All isolates were able to produce ethanol 5.00, 7.60 and 4.00 gL-1 after 48 hours, respectively. The results demonstrated that all isolates were able to consume most sugars sources specially pentose carbon xylose. The isolate ZYM7 produced 13.00 gL-1 ethanol by consumption of xylose. The results of morphological and physiological characteristics showed that ZYM7 belonged to Lactobacillus sp. and ZYM8 and ZYM9 belonged to Acetobacter sp. Moreover, 16S rRNA sequencing and phylogenetic analyses exhibited that ZYM7 was similar to Lactobacillus rhamnosus with 99% homology and ZYM8 and ZYM9 were similar to Acetobacter pasteurianus with 99 and 98% homology, respectively.Discussion and conclusion: The results showed that that the isolated bacteria were suitable candidates to produce ethanol from raw material enriched with

  7. Developments in lead-acid batteries: a lead producer's perspective

    Science.gov (United States)

    Frost, P. C.

    Rapid progress is being made in many aspects of materials, design and construction for lead-acid batteries. Much of this work has taken place under the auspices of the Advanced Lead-Acid Battery Consortium (ALABC). From the general tone of the literature, it seems likely that several of these developments will be adopted in commercial products, and that there will be cross-fertilization between the emerging electric vehicle (EV) battery technology and the starting, lighting and ignition (SLI) battery. Given the impetus for improvement from several different factors, the development process appears to be accelerating. To those not intimately involved in the battery design and specification process, it is not clear which of the possible developments will make it from the laboratory to general commercial adoption. Some of the possible changes in materials, design and construction could have an impact on the recovery, recycling, smelting and refining of lead-acid batteries. Some of the possible developments are outlined and their possible impact is discussed. It is likely that negative effects may be minimized if battery developments are considered from other perspectives, largely based on the overall life-cycle, as early in the design phase of new products as possible. Three strategies for minimizing undesirable effects are advocated: first, improved communication between car manufacturers, battery manufacturers and lead producers second, use of life-cycle analysis (LCA) to identify and optimize all attributes of the product throughout its life-cycle third, concerted and coordinated action to deal with issues important to the industry once trends are identified.

  8. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Teixeira, Paulo Goncalves; Ferreira, Raphael; Zhou, Yongjin J.

    2017-01-01

    faa4 Delta strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high...... loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. Results: We analyzed the metabolite dynamics of a faa1 Delta...... levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under...

  9. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    OpenAIRE

    Hoda Ebrahimi; Mojtaba Mohseni

    2013-01-01

    Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materi...

  10. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  11. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  13. Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Olsson, Lisbeth; Nielsen, Jens

    2007-01-01

    for determination of how glycolytic flux is distributed across C1 (CO2,g), C2 (ethanol, acetate), and C3 (glycerol, pyruvate) products. For the S. cerevisiae CEN.PK113-7D strain cultivated under carbon-limited, aerobic, well-controlled batch fermentations, the distribution of carbon across biomass, C1, C2, and C3......H significantly minimizing purification and acidification costs associated with organic acid production, and can utilize diverse carbon substrates in chemically defined medium. S. cerevisiae offers the unique advantage of being the most well characterized eukaryotic expression system. Here we describe the use...

  14. Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel δ5-desaturase from Paramecium tetraurelia

    DEFF Research Database (Denmark)

    de Andrade Pereira Tavares, Sabina; Grotkjær, Thomas; Obsen, Thomas;

    2011-01-01

    protozoan Paramecium tetraurelia and from the microalgae Ostreococcus tauri and Ostreococcus lucimarinus were identified via a BLAST search, and their substrate preferences and desaturation efficiencies were assayed in a yeast strain producing the ω6 and ω3 fatty acid substrates for Δ5-desaturation. The Δ5...

  15. New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bach, Benoît; Meudec, Emmanuelle; Lepoutre, Jean-Paul; Rossignol, Tristan; Blondin, Bruno; Dequin, Sylvie; Camarasa, Carole

    2009-07-01

    The gamma-aminobutyrate (GABA) shunt, an alternative route for the conversion of alpha-ketoglutarate to succinate, involves the glutamate decarboxylase Gad1p, the GABA transaminase Uga1p and the succinate semialdehyde dehydrogenase Uga2p. This pathway has been extensively described in plants and animals, but its function in yeast remains unclear. We show that the flux through Gad1p is insignificant during fermentation in rich sugar-containing medium, excluding a role for this pathway in redox homeostasis under anaerobic conditions or sugar stress. However, we found that up to 4 g of exogenous GABA/liter was efficiently consumed by yeast. We studied the fate of this consumed GABA. Most was converted into succinate, with a reaction yield of 0.7 mol/mol. We also showed that a large proportion of GABA was stored within cells, indicating a possible role for this molecule in stress tolerance mechanisms or nitrogen storage. Furthermore, based on enzymatic and metabolic evidence, we identified an alternative route for GABA catabolism, involving the reduction of succinate-semialdehyde into gamma-hydroxybutyric acid and the polymerization of gamma-hydroxybutyric acid to form poly-(3-hydroxybutyric acid-co-4-hydroxybutyric acid). This study provides the first demonstration of a native route for the formation of this polymer in yeast. Our findings shed new light on the GABA pathway and open up new opportunities for industrial applications.

  16. Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough fermentation has a strong impact on dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Rezaei, Mohammad N; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-09-24

    Yeast's role in bread making is primarily the fermentative production of carbon dioxide to leaven the dough. Fermentation also impacts dough matrix rheology, thereby affecting the quality of the end product. Surprisingly, the role of ethanol, the other yeast primary metabolite, has been ill studied in this context. Therefore, this study aims to assess the potential impact of ethanol on yeastless dough extensibility and spread and gluten agglomeration at concentrations at which it is produced in fermenting dough, i.e., up to 60 mmol per 100 g of flour. Reduced dough extensibility and dough spread were observed upon incorporation of ethanol in the dough formula, and were more pronounced for a weak than for a strong flour. Uniaxial and biaxial extension tests showed up to 50% decrease in dough extensibility and a dough strength increase of up to 18% for 60 mmol of ethanol/100 g of flour. Ethanol enhanced gluten agglomeration of a weak flour. Sequential extraction of flour in increasing ethanol concentrations showed that better gluten-solvent interaction is a possible explanation for the changed dough behavior.

  17. Ruminant and industrially produced trans fatty acids

    DEFF Research Database (Denmark)

    Stender, Steen; Astrup, Arne; Dyerberg, Jørn

    2008-01-01

    -TFA in popular foods, the evidence of a more harmful effect on health by IP-TFA than by RP-TFA, and the feasibility of eliminating IP-TFA from foods without side effects for the population, suggest that a selective elimination of IP-TFA from our food is a 'low hanging fruit' in the quest for a more healthy diet......Fatty acids of trans configuration in our food come from two different sources - industrially produced partially hydrogenated fat (IP-TFA) used in frying oils, margarines, spreads, and in bakery products, and ruminant fat in dairy and meat products (RP-TFA). The first source may contain up to 60...... remained stable.In spite of this decrease we have found that in many countries consumption >20 g of IP-TFA in a one-meal menu consisting of some popular foods is possible, even though the average intake of IP-TFA in these countries is low. Subgroups of the populations may therefore, on average, consume >5...

  18. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  19. Characterization of soybean fermented by aflatoxin non-producing Aspergillus oryzae and γ-aminobutyric acid producing Lactobacillus brevis

    National Research Council Canada - National Science Library

    Kim, Nam Yeun; Ji, Geun Eog

    2014-01-01

    .... The aim of the present study was to develop and characterize fermented soybean products with enhanced safety and bioactive compound using aflatoxin non-producing Aspergillus oryzae FMB S46471 and γ-aminobutyric acid (GABA...

  20. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  1. Method of producing an oil including docosahexaenoic acid

    NARCIS (Netherlands)

    Ratledge, C.; Anderson, A.J.; Kanagachandran, K.; Grantham, D.J.; Stephenson, J.C.; Swaaf, de M.E.; Sijtsma, L.

    2005-01-01

    C. cohnii is cultured in a suitable growth medium with acetic acid/acetate as the main carbon source. The acetate is provided, and replenished, by adding acetic acid to the growth medium in response to an increase in pH resulting from the utilisation of acetic acid/acetate by C. cohnii. The C. cohni

  2. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    Science.gov (United States)

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %.

  3. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics

    NARCIS (Netherlands)

    Costenoble, Roeland; Picotti, Paola; Reiter, Lukas; Stallmach, Robert; Heinemann, Matthias; Sauer, Uwe; Aebersold, Ruedi

    2011-01-01

    Decades of biochemical research have identified most of the enzymes that catalyze metabolic reactions in the yeast Saccharomyces cerevisiae. The adaptation of metabolism to changing nutritional conditions, in contrast, is much less well understood. As an important stepping stone toward such understa

  4. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells.

    Science.gov (United States)

    Branco, Patrícia; Viana, Tiago; Albergaria, Helena; Arneborg, Nils

    2015-07-16

    Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 24 h 77.0% of the cells completely lost their pH gradient (∆pH=pHi-pHext). After 24h of exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable cells fell from 1×10(5) to 10 CFU/ml. This means that virtually all cells (99.99%) became unculturable but that a sub-population of 22.3% of the cells remained viable (as determined by PI staining). Besides, pHi results showed that after 24h, 23% of the AMP-treated cells were sub-lethally injured (with 0pH<3). Taken together, these results indicated that this subpopulation was under a viable but non-culturable (VBNC) state, which was further confirmed by recuperation assays. In summary, our study reveals that these AMPs compromise the plasma membrane integrity (and possibly also the vacuole membrane) of H. guilliermondii cells, disturbing the pHi homeostasis and inducing a loss of culturability. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties.

  6. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    Science.gov (United States)

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  7. Pyromellitic acid produced from coal. Kwas piromelitowy z wegla

    Energy Technology Data Exchange (ETDEWEB)

    Salbut, P.D.; Kutkiewicz, K.; Berlozecki, S.

    1986-01-01

    A procedure for pyromellitic acid production from coal in a two-stage process of oxidation and decarboxylation has been presented. As a result of controlled coal oxidation in an alkaline medium, a mixture of sodium or potassium salts of polycarboxylic acids has been obtained. In the second stage of the process, the mixture of these salts has been selectively decarboxylated in a medium of sulphuric acid and sodium or potassium bisulphate. As a result of decarboxylation of mellitic and pentacarboxylic acids occurring among the coal oxidation products, pyromellitic acid and a mixture of benzenedi-, tri- and tetracarboxylic acids have been obtained. The kinetics of the decarboxylation process have been examined. More favourable reaction course has been found in the case of reaction medium containing potassium bisulphate. 1 fig., 6 tabs.

  8. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101.

    Science.gov (United States)

    Cheng, Rubin; Ge, Yuqing; Yang, Bo; Zhong, Xiaoming; Lin, Xiangzhi; Huang, Zhen

    2013-06-01

    Malonyl-CoA:acyl-carrier protein transacylase (MCAT), which transfers the malonyl group from malonyl-CoA to holo-acyl carrier protein (ACP), is a key enzyme in fatty acid biosynthesis. Schizochytrium sp. TIO1101 is a marine protist with high levels of docosahexaenoic acid accumulation. In this study, the putative fabD gene coding MCAT was isolated from Schizochytrium sp. TIO1101. The Schizochytrium MCAT gene (ScTIOfabD) contained an 1176 bp open reading frame encoding a protein of 391 amino acids. The ScTIOfabD gene exhibited high novelty in nucleotide and amino acid sequence. The highest amino acid identity was only 35 % between ScTIOMCAT and the reported MCATs. Further studies demonstrated that ScTIOMCAT could bind malonyl-CoA directly and transfer malonyl group from malonyl-CoA to the ACP domain in vitro. Phylogenetic analysis suggested that ScTIOMCAT was relative close to MCATs of yeast strains. Overexpression of ScTIOMCAT in Saccharomyces cereviseae significantly increased the MCAT activity, without negative effects on the growth rate of the host strain. In addition, ScTIOMCAT generated 16.8 and 62 % increase in biomass and fatty acid accumulation, respectively, and did not alter the profile of fatty acid. Our results indicated that the novel MCAT gene from Schizochytrium sp. TIO1101 was crucial for fatty acid synthesis and had potential applications for genetic modifications of oil-producing species.

  9. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  10. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    Science.gov (United States)

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  11. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.

    Science.gov (United States)

    Sanda, Tomoya; Hasunuma, Tomohisa; Matsuda, Fumio; Kondo, Akihiko

    2011-09-01

    A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.

  12. Methods for producing 3-hydroxypropionic acid and other products

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  13. Method for producing 3-hydroxypropionic acid and other products

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  14. Method for producing 3-hydroxypropionic acid and other products

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  15. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated.

  16. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae

    Science.gov (United States)

    Dong, Yachen; Hu, Jingjin; Fan, Linlin; Chen, Qihe

    2017-01-01

    As a typical harmful inhibitor in cellulosic hydrolyzates, acetic acid not only hinders bioethanol production, but also induces cell death in Saccharomyces cerevisiae. Herein, we conducted both transcriptomic and metabolomic analyses to investigate the global responses under acetic acid stress at different stages. There were 295 up-regulated and 427 down-regulated genes identified at more than two time points during acetic acid treatment (150 mM, pH 3.0). These differentially expressed genes (DEGs) were mainly involved in intracellular homeostasis, central metabolic pathway, transcription regulation, protein folding and stabilization, ubiquitin-dependent protein catabolic process, vesicle-mediated transport, protein synthesis, MAPK signaling pathways, cell cycle, programmed cell death, etc. The interaction network of all identified DEGs was constructed to speculate the potential regulatory genes and dominant pathways in response to acetic acid. The transcriptional changes were confirmed by metabolic profiles and phenotypic analysis. Acetic acid resulted in severe acidification in both cytosol and mitochondria, which was different from the effect of extracellular pH. Additionally, the imbalance of intracellular acetylation was shown to aggravate cell death under this stress. Overall, this work provides a novel and comprehensive understanding of stress responses and programmed cell death induced by acetic acid in yeast. PMID:28209995

  17. [Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c].

    Science.gov (United States)

    Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun

    2015-02-01

    Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.

  18. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Chun-Keng; Bai, Feng-Wu; An, Li-Jia

    2005-09-01

    A combination of three amino acids including 1.0 g/L isoleucine, 0.5 g/L methionine and 2.0 g/L phenylalanine was found to enhance ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. When subjected to 20% (V/V) ethanol for 9 h at 30 degrees C, all cells died whereas 57% remained viable for the cells grown in the presence of the three amino acids. Based on the analysis of protein amino acid composition of plasma membranes and the determination of plasma membrane fluidity by measuring fluorescence anisotropy using diphenylhexatriene as a probe, it was found that the significantly increased ethanol tolerance of cells grown with the three amino acids was due to the incorporation of the supplementary amino acids into the plasma membranes, thus resulting in enhanced ability of the plasma membranes to efficiently counteract the fluidizing effect of ethanol when subjected to ethanol stress. This is the first time to report that plasma membrane fluidity can be influenced by protein amino acid composition of plasma membranes.

  19. Data set for cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization

    Directory of Open Access Journals (Sweden)

    Chengqiang Wang

    2015-09-01

    Full Text Available The efficient uptake is important for the xylose utilization by Saccharomyces cerevisiae. A heterogenous transporter Mgt05196p was cloned from Meyerozyma guilliermondii and expressed in Saccharomyces cerevisiae [1]. This data article contains the transport characteristics of Mgt05196p in S. cerevisiae. The fluorescence of fusion protein Mgt05196p-GFP expressing strain was located on the cell surface demonstrated that the heterogenous transporter Mgt05196p was targeted to the plasma membrane of S. cerevisiae. The expressing of Mgt05196p in the hxt null S. cerevisiae endowed the strain with the glucose and d-xylose absorption capacity, as well as expressing the native d-xylose transporter Gal2p. The transmembrane domains of Mgt05196p were predicted and compared with the XylEp, whose crystal structure was revealed. And then, the homologous modeling of Mgt05196p was built basing on the XylEp to find out the crucial amino acid residues for sugars binding and transport.

  20. Effects of ethanol, octanoic and decanoic acids of fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S. (Nietvoorbij Inst. of Viticulture and Oenology, Stellenbosch (South Africa)); Hofmeyr, J.H.S. (Dept. of Biochemistry and Inst. of Biotechnology, Stellenbosch Univ. (South Africa))

    1993-02-01

    Ethanol, octanoic and decanoic acids are known toxic products of alcoholic fermentation and inhibit yeast functions such as growth and fermentation. pH-stat measurements showed that, in a concentration range up to 20 mg/l, octanoic and decaonoic acids increase the rate of passive H[sup +] influx across the plama membrane of Saccharomyces cerevisiae IGC 3507. Decanoic acid was more active than octanoic acid, which agrees with its higher liposolubility. The fatty acids probably act as H[sup +] carriers, since the magnitude of the effect depended on pH and correlated with the concentration of protonated fatty acids. Esterification of the fatty acids partially abolished the enhancing effect on passive H[sup +] influx. Passive H[sup +] influx showed saturation kinetics with half-maximal activity at 6.6 [mu]M H[sup +] (pH 5.2). Contrary to previous findings, ethanol inhibited H[sup +] influx exponentially up to a concentration of 8% (v/v). At higher concentrations, ethanol reactivated H[sup +] influx; the original rate of H[sup +] uptake was reached at 14% (v/v) ethanol. In the same concentration ranges that affected passive H[sup +] influx, ethanol, octanoic and decanoic acids inhibited the fermentation rate. This inhibitory effect of the fatty acids on fermentation rate depended on liposolubility, pH, and esterification in the same way as that found for their effect on passive H[sup +] influx. Inhibition of fermentation by octanoic and decanoic acids could therefore result from their effect on the rate of passive H[sup +] influx. (orig.).

  1. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Black, P N; Zhao, X D

    2001-01-01

    Exogenous long-chain fatty acids are activated to coenzyme A derivatives prior to metabolic utilization. In the yeast Saccharomyces cerevisiae, the activation of these compounds prior to metabolic utilization proceeds through the fatty acyl-CoA synthetases Faa1p and Faa4p. Faa1p or Faa4p are esse...

  2. Study on the Technology of Fermentation with Acid-resistant Saccharomyces sake A%耐酸性清酒酵母A发酵工艺研究

    Institute of Scientific and Technical Information of China (English)

    蒋军; 吴天祥; 李运华

    2009-01-01

    [目的]为生产优质清酒奠定理论基础.[方法]以优质粳米为原料,在单因素试验的基础上,采用正交试验法研究耐酸性清酒酵母A的发酵规律.[结果]水料比为1~2时,清酒酒精度较高.水料比为0.5时,发酵醪的糖浓度和渗透压较高.水料比为3时,发酵醪的淀粉浓度降低,清酒酒精度低.酒母量为20%时,利于清酒双边发酵,清酒的可溶物含量约为11%.米曲量为30%~50%时,清酒色度低,苦涩味轻.乳酸添加量为8‰~12‰时,发酵结束后米曲中糖化酶的活力约为290 mg/(g·h).乳酸量超过12‰时,酶活力下降比较快,清酒有异杂味感.15 ℃下发酵21 d的清酒酒精度达17.1% (V/V),淀粉利用率为88.1%.[结论]利用耐酸性清酒酵母发酵生产清酒,简化了生产工艺,缩短了发酵时间,提高了原料利用率.%[Objective]The purpose of the study was to lay a theoretical foundation for producing high-quality sake. [Method]With high-quality round shaped rice as raw material, on the basis of single factor experiment, the fermentation law of acid-resistant Saccharomyces sake A was studied through orthogonal experiment. [Result]When the water-material ratio was 1-2, the alcohol degree of sake was higher. When the water-material ratio was 0.5, the sugar concentration and osmotic pressure of fermenting mash were higher. When the water-material ratio was 3, the starch concentration of fermenting mash was decreased and the alcohol degree of sake was low. When the seeding yeast dosage was 20%, it was favorable to the dual fermentation of sake and the soluble content of sake was about 11%. When the rice starter dosage was 30%-50%, the sake had low colority and light bitterness and astringency. When the lactic addition was 8‰-12‰, the activity of Aspergillus oryzae was about 290 mg/g when the fermentation was finished. When the lactic content was higher than 12‰, the enzyme activity was decreased faster and the sake had off-flavors. The

  3. Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols.

    Science.gov (United States)

    Yazawa, Hisashi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Yamaoka, Masakazu; Uemura, Hiroshi

    2011-09-01

    When the cells of Saccharomyces cerevisiae are exposed to high concentration of ethanol, the content of oleic acid (C18:1n-9) increased as the initial concentration of ethanol increased. Based on this observation, we attempted to confer ethanol tolerance to S. cerevisiae by manipulating fatty acid composition of the cells. Rather than altering OLE1 expression [the desaturase making both C16:1n-7 (palmitoleic acid) and C18:1n-9], we introduced elongase genes. Introduction of rat elongase 1 gene (rELO1) into S. cerevisiae gave cis-vaccenic acid (cis-C18:1n-7) by conversion from C16:1n-7, and the increase in this C18:1 fatty acid did not confer ethanol tolerance to the cells. On the other hand, the introduction of rat elongase 2 gene (rELO2), which elongates C16:0 to C18:0, drastically increased C18:1n-9 content, and the cells acquired ethanol tolerance, emphasizing the specific role of C18:1n-9. Furthermore, the transformant of rELO2 also conferred tolerance to n-butanol, n-propanol, and 2-propanol.

  4. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakihama, Yuri; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    The hydrolysis of lignocellulosic biomass liberates sugars, primarily glucose and xylose, which are subsequently converted to ethanol by microbial fermentation. The rapid and efficient fermentation of xylose by recombinant Saccharomyces cerevisiae strains is limited by weak acids generated during biomass pretreatment processes. In particular, acetic acid negatively affects cell growth, xylose fermentation rate, and ethanol production. The ability of S. cerevisiae to efficiently utilize xylose in the presence of acetic acid is an essential requirement for the cost-effective production of ethanol from lignocellulosic hydrolysates. Here, an acetic acid-responsive transcriptional activator, HAA1, was overexpressed in a recombinant xylose-fermenting S. cerevisiae strain to yield BY4741X/HAA1. This strain exhibited improved cell growth and ethanol production from xylose under aerobic and oxygen limited conditions, respectively, in the presence of acetic acid. The HAA1p regulon enhanced transcript levels in BY4741X/HAA1. The disruption of PHO13, a p-nitrophenylphosphatase gene, in BY4741X/HAA1 led to further improvement in both yeast growth and the ability to ferment xylose, indicating that HAA1 overexpression and PHO13 deletion act by different mechanisms to enhance ethanol production.

  5. Producing biodiesel from yellow greases with high free fatty acids

    Directory of Open Access Journals (Sweden)

    Amrani Mahacine

    2007-01-01

    Full Text Available Biodiesel is a diesel replacement fuel that is manufactured from vegetable oils recycled cooking greases and oils or animal fats. Biodiesel offers many advantages because it is renewable, nontoxic, biodegradable, and suitable for sensitive environments. It can also be used in most diesel equipments with no or only minor modifications. These yellow greases contain great quantities of free fatty acids which form soaps in the presence of alkaline catalyst. Pretreatments of the raw material with acid catalysts are necessary to avoid the soap formation. The transesterification of yellow greases is supplemented in the presence of an alkaline catalyst. The greatest production of biodiesel corresponds to molar flows of 4.985 kmol.hr-1 of methyl oleate, and 4.658 kmol.hr-1 of methyl butyrate.

  6. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzym...

  7. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    NARCIS (Netherlands)

    Andersen, M.R.; Salazar, M.P.; Schaap, P.J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-p

  8. Identification of amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution

    DEFF Research Database (Denmark)

    Mortensen, Henrik Dam; Dupont, Kitt; Jespersen, Lene;

    2007-01-01

    . cerevisiae FLO11 wild-type (TBR1) cells had a higher consensus than those from competitive panning with S. cerevisiae flo11¿ mutant (TBR5) cells, suggesting that the wild-type cells interact with the plastic surface in a stronger and more similar way than the mutant cells. Tryptophan and proline were more...... a phage with a hydrophobic peptide containing no tryptophan and only two proline residues. Conclusions: Our results suggest a key role of tryptophan and proline in the hydrophobic interactions between Flo11p on the S. cerevisiae cell surface and the PolySorp surface. Significance and Impact of the Study......Aims: To identify the main amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to the polystyrene surface PolySorp. Methods and Results: Using a combination of phage display and competitive elution revealed that 12-mer peptides of phages from competitive panning with S...

  9. Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and L: -azetidine-2-carboxylic acid in Hansenula polymorpha.

    Science.gov (United States)

    Ishchuk, Olena P; Abbas, Charles A; Sibirny, Andriy A

    2010-02-01

    Hansenula polymorpha is a naturally xylose-fermenting yeast; however, both its ethanol yield from xylose and ethanol resistance have to be improved before this organism can be used for industrial high-temperature simultaneous saccharification and fermentation of lignocellulosic materials. In the current research, we checked if the expression of the Saccharomyces cerevisiae MPR1 gene encoding N-acetyltransferase can increase the ethanol tolerance of H. polymorpha. The S. cerevisiae MPR1 gene was cloned in the H. polymorpha expression vector under the control of the H. polymorpha strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). H. polymorpha recombinant strains harboring 1-3 copies of the S. cerevisiae MPR1 gene showed enhanced tolerance to L: -azetidine-2-carboxylic acid and ethanol. The obtained results suggest that the expression of the S. cerevisiae MPR1 gene in H. polymorpha can be a useful approach in the construction of H. polymorpha strains with improved ethanol resistance.

  10. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  11. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.

    Science.gov (United States)

    Zhang, Ming-Ming; Zhao, Xin-Qing; Cheng, Cheng; Bai, Feng-Wu

    2015-12-01

    To better understand the contribution of zinc-finger proteins to environmental stress tolerance, particularly inhibition from acetic acid, which is a potent inhibitor for cellulosic ethanol production by microbial fermentations, SET5 and PPR1 were overexpressed in Saccharomyces cerevisiae BY4741. With 5 g/L acetic acid addition, engineered strains BY4741/SET5 and BY4741/PPR1 showed improved growth and enhanced ethanol fermentation performance compared to that with the control strain. Similar results were also observed in ethanol production using corn stover hydrolysate. Further studies indicated that SET5 and PPR1 overexpression in S. cerevisiae significantly improved activities of antioxidant enzymes and ATP generation in the presence of acetic acid, and consequently decreased intracellular accumulation of reactive oxygen species (50.9 and 45.7%, respectively). These results revealed the novel functions of SET5 and PPR1 for the improvement of yeast acetic acid tolerance, and also implicated the involvement of these proteins in oxidative stress defense and energy metabolism in S. cerevisiae. This work also demonstrated that overexpression of SET5 and PPR1 would be a feasible strategy to increase cellulosic ethanol production efficiency. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol

    NARCIS (Netherlands)

    Swaaf, de M.E.; Pronk, J.T.; Sijtsma, L.

    2003-01-01

    The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of etha

  13. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids.

    Science.gov (United States)

    Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2016-01-01

    One of the most promising alternatives to petroleum for the production of fuels and chemicals is bio-oil based chemistry. Microbial oils are gaining importance because they can be engineered to accumulate lipids enriched in desired fatty acids. These specific lipids are closer to the commercialized product, therefore reducing pollutants and costly chemical steps. Yarrowia lipolytica is the most widely studied and engineered oleaginous yeast. Different molecular and bioinformatics tools permit systems metabolic engineering strategies in this yeast, which can produce usual and unusual fatty acids. Usual fatty acids, those usually found in triacylglycerol, accumulate through the action of several pathways, such as fatty acid/triacylglycerol synthesis, transport and degradation. Unusual fatty acids are enzymatic modifications of usual fatty acids to produce compounds that are not naturally synthetized in the host. Recently, the metabolic engineering of microorganisms has produced different unusual fatty acids, such as building block ricinoleic acid and nutraceuticals such as conjugated linoleic acid or polyunsaturated fatty acids. Additionally, microbial sources are preferred hosts for the production of fatty acid-derived compounds such as γ-decalactone, hexanal and dicarboxylic acids. The variety of lipids produced by oleaginous microorganisms is expected to rise in the coming years to cope with the increasing demand. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. TREATMENT AND RESOURCE REUSE OF 1,2,4-ACID PRODUCING EFFLUENT WITH MACROPOROUS POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The treatment and resource reuse of 1,2,4-acid producing wastewater by self-mademacroporous adsorption resin ND,A-107 was studied in this paper. Optimum adsorption anddesorption process parameters were acquired by systematically study. The polymeric resin NDA-10 7indicated good adsorption & desorption of 1,2, 4-acid in the wastewater. The removal efficiency of1,2,4-acid, CODer is about 78%, 72% respectively. It is evident that this adsorption process is anefficient treatment method for 1,2,4-acid producing wastewater. At the same time, the accumulationand resource reuse of l,2, 4-acid can be realized in this process.

  15. Sequential Inoculation of Native Non-Saccharomyces and Saccharomyces cerevisiae Strains for Wine Making

    Science.gov (United States)

    Padilla, Beatriz; Zulian, Laura; Ferreres, Àngela; Pastor, Rosa; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2017-01-01

    The use of non-Saccharomyces yeast for wine making is becoming a common trend in many innovative wineries. The application is normally aimed at increasing aromas, glycerol, reducing acidity, and other improvements. This manuscript focuses on the reproduction of the native microbiota from the vineyard in the inoculum. Thus, native selected yeasts (Hanseniaspora uvarum, Metschnikowia pulcherrima, Torulaspora delbrueckii, Starmerella bacillaris species and three different strains of Saccharomyces cerevisiae) were inoculated sequentially, or only S. cerevisiae (three native strains together or one commercial) was used. Inoculations were performed both in laboratory conditions with synthetic must (400 mL) as well as in industrial conditions (2000 kg of grapes) in red winemaking in two different varieties, Grenache and Carignan. The results showed that all the inoculated S. cerevisiae strains were found at the end of the vinifications, and when non-Saccharomyces yeasts were inoculated, they were found in appreciable populations at mid-fermentation. The final wines produced could be clearly differentiated by sensory analysis and were of similar quality, in terms of sensory analysis panelists’ appreciation. PMID:28769887

  16. Oscillations Produced From Acidity Hydrolysis of Triglyceride inEmulsion

    Institute of Scientific and Technical Information of China (English)

    HE, Zhan-Bo; QI, Gang

    2001-01-01

    A new type of oscillating reaction was found from the systematic cesign of the chemical oscillator in water in oil (W/O)emulsions. It is an acidity hydrolysis reaction of long chaintriglyceride in W/O emulsion at 25.0 ± 0. I°C in a bath stirring reactor. During the proeess of reaction, there were periodic and semi-periodic changes lasting more than 10 hoursboth in electrolytic conductivity and electric potential. Microscope also revealed that the emulsion structure changed regularly and puikly. Became of the large differnce in the solubility of the hydrolyzed products, it could be thought, that thediffernt redistribution in the two phases of water and oil induces the regular changes. Marangoni effect of interfacemembrane made oscillation to form. TITne oscillating reactioncan be used to explain the periodic change in the living systemprodrced from coupling between reaction and diffusion.

  17. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    Science.gov (United States)

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  18. Myristic Acid Produces Anxiolytic-Like Effects in Wistar Rats in the Elevated Plus Maze

    Directory of Open Access Journals (Sweden)

    Carlos M. Contreras

    2014-01-01

    Full Text Available A mixture of eight fatty acids (linoleic, palmitic, stearic, myristic, elaidic, lauric, oleic, and palmitoleic acids at similar concentrations identified in human amniotic fluid produces anxiolytic-like effects comparable to diazepam in Wistar rats. However, individual effects of each fatty acid remain unexplored. In Wistar rats, we evaluated the separate action of each fatty acid at the corresponding concentrations previously found in human amniotic fluid on anxiety-like behaviour. Individual effects were compared with vehicle, an artificial mixture of the same eight fatty acids, and a reference anxiolytic drug (diazepam, 2 mg/kg. Myristic acid, the fatty acid mixture, and diazepam increased the time spent in the open arms of the elevated plus maze and reduced the anxiety index compared with vehicle, without altering general locomotor activity. The other fatty acids had no effect on anxiety-like behaviour, but oleic acid reduced locomotor activity. Additionally, myristic acid produced anxiolytic-like effects only when the concentration corresponded to the one identified in human amniotic fluid (30 g/mL but did not alter locomotor activity. We conclude that of the eight fatty acids contained in the fatty acid mixture, only myristic acid produces anxiolytic-like effects when administered individually at a similar concentration detected in human amniotic fluid.

  19. Myristic Acid Produces Anxiolytic-Like Effects in Wistar Rats in the Elevated Plus Maze

    Science.gov (United States)

    García-Ríos, Rosa Isela; Cueto-Escobedo, Jonathan; Guillen-Ruiz, Gabriel; Bernal-Morales, Blandina

    2014-01-01

    A mixture of eight fatty acids (linoleic, palmitic, stearic, myristic, elaidic, lauric, oleic, and palmitoleic acids) at similar concentrations identified in human amniotic fluid produces anxiolytic-like effects comparable to diazepam in Wistar rats. However, individual effects of each fatty acid remain unexplored. In Wistar rats, we evaluated the separate action of each fatty acid at the corresponding concentrations previously found in human amniotic fluid on anxiety-like behaviour. Individual effects were compared with vehicle, an artificial mixture of the same eight fatty acids, and a reference anxiolytic drug (diazepam, 2 mg/kg). Myristic acid, the fatty acid mixture, and diazepam increased the time spent in the open arms of the elevated plus maze and reduced the anxiety index compared with vehicle, without altering general locomotor activity. The other fatty acids had no effect on anxiety-like behaviour, but oleic acid reduced locomotor activity. Additionally, myristic acid produced anxiolytic-like effects only when the concentration corresponded to the one identified in human amniotic fluid (30 𝜇g/mL) but did not alter locomotor activity. We conclude that of the eight fatty acids contained in the fatty acid mixture, only myristic acid produces anxiolytic-like effects when administered individually at a similar concentration detected in human amniotic fluid. PMID:25328885

  20. 产β-胡萝卜素酿酒酵母工程菌的构建%Construction of engineering Saccharomyces cerevisiae producing β-carotene

    Institute of Scientific and Technical Information of China (English)

    高书良; 朱丽; 蒋宇; 戈梅; 杨晟; 陈代杰

    2013-01-01

    以酿酒酵母Saccharomyces cerevisiae BY4742 为宿主菌,利用DNA 组装(DNA assemble)技 术,向宿主菌导入了β-胡萝卜素合成途径,表达了源自Xanthophyllomyces dendrorhous 的CrtE,CrtYB 和CrtI 3 个基因,获得了一株染色体整合型工程菌株HCCB08531,β-胡萝卜素产量达3.68 mg/ g 干重.

  1. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  2. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice.

    Science.gov (United States)

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential.

  3. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena

    2016-01-01

    Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a ti...... method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae.......Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a time...... for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein...

  4. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses.

    Science.gov (United States)

    Inaba, Takuya; Watanabe, Daisuke; Yoshiyama, Yoko; Tanaka, Koichi; Ogawa, Jun; Takagi, Hiroshi; Shimoi, Hitoshi; Shima, Jun

    2013-12-30

    Bacterial contamination is known as a major cause of the reduction in ethanol yield during bioethanol production by Saccharomyces cerevisiae. Acetate is an effective agent for the prevention of bacterial contamination, but it negatively affects the fermentation ability of S. cerevisiae. We have proposed that the combined use of organic acids including acetate and lactate and yeast strains tolerant to organic acids may be effective for the elimination of principally lactic acid bacterial (LAB) contamination. In a previous study employing laboratory S. cerevisiae strains, we showed that overexpression of the HAA1 gene, which encodes a transcriptional activator, could be a useful molecular breeding method for acetate-tolerant yeast strains. In the present study, we constructed a HAA1-overexpressing diploid strain (MATa/α, named ER HAA1-OP) derived from the industrial bioethanol strain Ethanol Red (ER). ER HAA1-OP showed tolerance not only to acetate but also to lactate, and this tolerance was dependent on the increased expression of HAA1 gene. The ethanol production ability of ER HAA1-OP was almost equivalent to that of the parent strain during the bioethanol production process from sugarcane molasses in the absence of acetate. The addition of acetate at 0.5% (w/v, pH 4.5) inhibited the fermentation ability of the parent strain, but such an inhibition was not observed in the ethanol production process using ER HAA1-OP.

  5. Effects of long-term dietary supplementation of monensin or saccharomyces cerevisiae on blood acid-base and productive performance in growing feedlot steers.

    Science.gov (United States)

    Castillo, Cristina; Benedito, José Luis; Méndez, Jesús; García-Partida, Paulino; Vázquez, Patricia; Pereira, Victor; López-Alonso, Marta; Hernández, Joaquín

    2006-01-01

    The aim of this study was to evaluate the effects of two dietary supplements (monensin and a live yeast culture) on acid-base balance in steers maintained in a commercial feedlot system, considering effects over the growing period (14 to 23 weeks of age). A 63-day feedlot study was performed using 42 double-muscled Belgian Blue steers. Steers were allotted randomly to one of the three study groups: (1) control group [no supplementation, C], (2) monensin supplementation [MON] at a concentration of 30 mg/kg (DM basis), and (3) live Saccharomyces cerevisiae strain supplementation [SACC] at a dose of 500 mg/kg (DM basis). Venous blood samples were collected for the measurement of acid-base parameters and L-lactate. Production parameters were also used as a complementary tool for understanding the internal changes associated with supplementation. Our results show that during the study period no statistical differences were observed between supplemented and control steers, although non-supplemented animals tended to gain more efficiently than those fed monensin or yeast. Nevertheless, taking into account blood parameters, these control animals showed a greater risk of acid overload due to a more marked decline in blood buffer levels over time in comparison with supplemented steers although no differences were observed between monensin or yeast supplemented animals. Additionally, significant effect of supplementation was observed in packed cell volume (PCV) values.

  6. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Dietvorst, J.; Karhumaa, Kaisa; Kielland-Brandt, Morten

    2010-01-01

    ) tyrosine ill transmembrane segment 10 of Snf3 abolished sensing of fructose. Neither of these amino :kill changes affected the ability of Snf3 to sense glucose, nor did they permit Snf3 to sense galactose. These data indicate it similarity between it ligand binding site of the sensor Snf3 and binding sites......Snf3 is a plasma membrane protein in Saccharomyces cerevisiae cerevisiae able to sense the presence of glucose. Although the Snf3 protein does not transport sugars, it shares sequence similarity with various glucose transporters from other organisms. we investigated the sugar specificity....../preferences of Snf3. The ability of cells to sense sugars in vivo was monitored by following the degradation of the Mth1 protein, :ill earl., event ill the signal pathway. Our study reveals that Snf3. ill addition to glucose. also senses fructose and mannose, as well as the glucose analogues 2-deoxyglucose, 3-O...

  7. Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin V; Rødkær, Steven Vestergaard

    2012-01-01

    Synthesis, degradation, and metabolism of fatty acids are strictly coordinated to meet the nutritional and energetic needs of cells and organisms. In the absence of exogenous fatty acids, proliferation and growth of the yeast Saccharomyces cerevisiae depends on endogenous synthesis of fatty acids...... identified as being regulated in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By bioinformatic analysis of these phosphorylation events, we have identified the cell cycle kinases Cdc28 and Pho85, the PAK kinase Ste20 as well as the protein kinase Sch9 as central mediators...

  8. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown...... pathways including the protein kinase A and a mitogen-activated protein kinase pathway. Advanced genetic tools and resources have been developed for S. cerevisiae including a deletion mutant-strain collection in a biofilm-forming strain background and GFP-fusion protein collections. Furthermore, S....... cerevisiae biofilm is well applied for confocal laser scanning microscopy and fluorophore tagging of proteins, DNA and RNA. These techniques can be used to uncover the molecular mechanisms for biofilm development, drug resistance and for the study of molecular interactions, cell response to environmental...

  9. A simple plate-assay for the screening of L-malic acid producing microorganisms.

    Science.gov (United States)

    Peleg, Y; Rokem, J S; Goldberg, I

    1990-02-01

    A simple plate-assay has been developed to screen microorganisms for L-malic acid production. Acid producing organisms were identified, after microbial colony growth on media containing glucose or fumaric acid as sole carbons sources, by formation of a dark halo of formazan. The halo was observed when the plate was covered with a soft agar overlay containing NAD(+)-malate dehydrogenase, NAD+, phenazine methosulfate (PMS) and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). The assay developed is simple, specific for L-malic acid and therefore can be used to identify L-malic acid producing filamentous fungi using glucose as carbon source (e.g. Aspergillus strains). The assay is also applicable for screening bacteria with high fumarase activity, able to convert fumaric acid to L-malic acid.

  10. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    Science.gov (United States)

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  11. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Science.gov (United States)

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  12. Screening of Saccharomyces Strains Highly Producing Glutathione and Breeding of Its Ethionine-resistant Mutants%高产谷胱甘肽酵母菌株的筛选及其抗乙硫氨酸诱变研究

    Institute of Scientific and Technical Information of China (English)

    冮洁; 单立峰; 吴耘红; 张鹭

    2008-01-01

    [Objective] The aim of this study was to screen Saccharomyces for glutathione over-production. [Method] Ethionine-resistant mutants were obtained through UV mutagenesis and rational screening. [Result] A high GSH-producing strain HSJB1 was isolated from soil, and the biomass for this strain by flask shaking fermentation was 3.87 g/L while the GSH yield was 91.87 mg/L. According to the morphological, physiological and biochemical characteristics of cells, this strain was primarily identified as Saccharomyces cerevisiae. An ethionine-resistant mutant YBS77 was obtained through UV mutagenesis of the original strain HSJB1, and the biomass for this strain by flask shaking fermentation was 7.60 g dry cell weight/L while the GSH yield was 211.96 mg/L. [Conclusion] The biomass of the mutant obtained by breeding is increased by 96.38% than that of the original strain, and the GSH yield of the mutant obtained by breeding is increased by 130.72% than that from the original strain, which indicates that the breeding method is feasible.

  13. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Collins, Morgan E; Black, Joshua J; Liu, Zhengchang

    2017-07-01

    Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation.IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry. Copyright © 2017 American Society

  14. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids

    NARCIS (Netherlands)

    Hazelwood, L.A.; Walsh, M.C.; Pronk, J.T.; Daran, J.M.

    2009-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop -acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso--acids have hitherto been restricted to lactic acid bacteria.

  15. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids

    NARCIS (Netherlands)

    Hazelwood, L.A.; Walsh, M.C.; Pronk, J.T.; Daran, J.M.

    2009-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop -acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso--acids have hitherto been restricted to lactic acid bacteria.

  16. Fermentative capabilities and volatile compounds produced by Kloeckera/Hanseniaspora and Saccharomyces yeast strains in pure and mixed cultures during Agave tequilana juice fermentation.

    Science.gov (United States)

    González-Robles, Ivonne Wendolyne; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2015-09-01

    The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds.

  17. Volatile fatty acids influence on the structure of microbial communities producing PHAs.

    Science.gov (United States)

    Ciesielski, Slawomir; Przybylek, Grzegorz

    2014-01-01

    Polyhydroxyalkanoates (PHAs) can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3 HB); 4 mL of acetic acid produced 279.8 mg/L 3 HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3 HB and 3 HV (hydroxyvalerate). Ribosomal Intergenic Spacer Analysis (RISA) was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3 HB; Paracoccus denitrificans in the biomass that produced 3 HB-co-3 HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  18. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  19. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  20. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  1. Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene.

    Science.gov (United States)

    Cooper, D G; Zajic, J E; Gracey, D E

    1979-01-01

    The saponifiable carboxylic acids of the extracellular product of Corynebacterium lepus grown on kerosene have been isolated and characterized. About 25% of these acids were a mixture of simple, saturated fatty acids ranging from C13 to C24 and including both even and odd homologues. The distribution of these acids was bimodal, with maxima at C15 and C21. The other 75% of the acids was a mixture of corynomycolic acids [R1--CH(OH)--CH(R2)--COOH] ranging from C28 to C43. The R1 alkyl fragments varied from C16 to C25, and R2 fragments varied from C6 to C14. Both even and odd corynomycolic acid homologues were observed, and the distribution had a single pronounced maximum at C32 and C33. Bacterial utilization of the carboxylic oxidation products of the kerosene substrate is suggested to account for the wide distribution in chain length of these saturated fatty acids and for the observation of both even and odd homologues. PMID:422512

  2. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties.

    Science.gov (United States)

    Nieto-Peñalver, Carlos G; Savino, María J; Bertini, Elisa V; Sánchez, Leandro A; de Figueroa, Lucía I C

    2014-09-01

    Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity.

  3. Genomic Expression Program Involving the Haa1p-Regulon in Saccharomyces cerevisiae Response to Acetic Acid

    Science.gov (United States)

    Becker, Jorg D.; Sá-Correia, Isabel

    2010-01-01

    Abstract The alterations occurring in yeast genomic expression during early response to acetic acid and the involvement of the transcription factor Haa1p in this transcriptional reprogramming are described in this study. Haa1p was found to regulate, directly or indirectly, the transcription of approximately 80% of the acetic acid-activated genes, suggesting that Haa1p is the main player in the control of yeast response to this weak acid. The genes identified in this work as being activated in response to acetic acid in a Haa1p-dependent manner include protein kinases, multidrug resistance transporters, proteins involved in lipid metabolism, in nucleic acid processing, and proteins of unknown function. Among these genes, the expression of SAP30 and HRK1 provided the strongest protective effect toward acetic acid. SAP30 encode a subunit of a histone deacetylase complex and HRK1 encode a protein kinase belonging to a family of protein kinases dedicated to the regulation of plasma membrane transporters activity. The deletion of the HRK1 gene was found to lead to the increase of the accumulation of labeled acetic acid into acid-stressed yeast cells, suggesting that the role of both HAA1 and HRK1 in providing protection against acetic acid is, at least partially, related with their involvement in the reduction of intracellular acetate concentration. PMID:20955010

  4. Gluconic acid: an antifungal agent produced by Pseudomonas species in biological control of take-all.

    Science.gov (United States)

    Kaur, Rajvinder; Macleod, John; Foley, William; Nayudu, Murali

    2006-03-01

    Pseudomonas strain AN5 (Ps. str. AN5), a non-fluorescent Australian bacterial isolate, is an effective biological control (biocontrol) agent of the take-all disease of wheat caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Ps. str. AN5 controls Ggt by producing an antifungal compound which was purified by thin layer and column chromatography, and identified by NMR and mass spectroscopic analysis to be d-gluconic acid. Commercially bought pure gluconic acid strongly inhibited Ggt. Two different transposon mutants of Ps. str. AN5 which had lost take-all biocontrol did not produce d-gluconic acid. Gluconic acid production was restored, along with take-all biocontrol, when one of these transposon mutants was complemented with the corresponding open reading frame from wild-type genomic DNA. Gluconic acid was detected in the rhizosphere of wheat roots treated with the wild-type Ps. str. AN5, but not in untreated wheat or wheat treated with a transposon mutant strain which had lost biocontrol. The antifungal compounds phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol, produced by other Pseudomonads and previously shown to be effective in suppressing the take-all disease, were not detected in Ps. str. AN5 extracts. These results suggest that d-gluconic acid is the most significant antifungal agent produced by Ps. str. AN5 in biocontrol of take-all on wheat roots.

  5. COFFEE BEAN MYCO-CONTAMINANTS AND OXALIC ACID PRODUCING ASPERGILLUS NIGER

    Directory of Open Access Journals (Sweden)

    Mohamed A. Yassin

    2015-03-01

    Full Text Available Coffee bean-contaminating fungi were determined in random samples collected in Riyadh, Kingdom of Saudi Arabia, using the direct plating technique. Forty-five samples were examined and 12 fungal species belonging to 5 genera were isolated. Aspergillus niger was the most widely distributed and most frequently isolated fungus (86.67%. The ability of the predominant fungus, A. niger, to produce oxalic acid was evaluated using high-performance liquid chromatography. About 50% of the tested A. niger isolates produced oxalic acid; the amount produced was in the range of 90–550 ppm of oxalic acid. Because A. niger was the predominant and most widely distributed toxigenic fungus in the examined samples, more efforts should be directed to minimize the risk of oxalic acid contamination of commoditized coffee beans in the Kingdom of Saudi Arabia.

  6. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.

    Science.gov (United States)

    Huang, Qin; Lin, Yuheng; Yan, Yajun

    2013-12-01

    Caffeic acid is a plant-specific phenylpropanoic acid with multiple health-improving effects reported, and its therapeutic derivatives have also been studied throughout the last decade. To meet its market need and achieve high-level production, microbial production of caffeic acid approaches have been developed in metabolically engineered Escherichia coli. In our previous work, we have established the first artificial pathway that realized de novo production of caffeic acid using E. coli endogenous 4-hydroxyphenylacetate 3-hydroxylase (4HP3H). In this work, we exploited the catalytic potential of 4HPA3H in the whole-cell bioconversion study and produced 3.82 g/L (461.12 mg/L/OD) caffeic acid from p-coumaric acid, a direct precursor. We further engineered a phenylalanine over-producer into a tyrosine over-producer and then introduced the artificial pathway. After adjusting the expression strategy and optimizing the inoculants timing, de novo production of caffeic acid reached 766.68 mg/L. Both results from the direct precursor and simple carbon sources represent the highest titers of caffeic acid from microbial production so far.

  7. Design of homo-organic acid producing strains using multi-objective optimization

    DEFF Research Database (Denmark)

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk

    2015-01-01

    acids, while maintaining sufficiently high growth rate and minimizing the secretion of undesired byproducts. Homo-productions of acetic, lactic and succinic acids were targeted as examples. Engineered E. coli strains capable of producing homo-acetic and homo-lactic acids could be developed by taking...... this systems approach for the minimal identification of gene knockout targets. Also, failure to predict effective gene knockout targets for the homo-succinic acid production suggests that the multi-objective optimization is useful in assessing the suitability of a microorganism as a host strain......Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic...

  8. Global mapping of protein phosphorylation events identifies novel signalling hubs mediating fatty acid starvation responses in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin; Rødkær, Steven Vestergaard;

    2011-01-01

    in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By in silico analysis of these phosphorylation events, we have identified the major downstream regulated processes and signalling networks mediating the cellular response to fatty acid starvation. The analysis further...

  9. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  10. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  11. Mathematical models for determining metabolic fluxes through the citric acid and the glyoxylate cycles in Saccharomyces cerevisiae by 13C-NMR spectroscopy.

    Science.gov (United States)

    Tran-Dinh, S; Bouet, F; Huynh, Q T; Herve, M

    1996-12-15

    We propose, first, a practical method for studying the isotopic transformation of glutamate or any other metabolite isotopomers in the citric acid and the glyoxylate cycles; second, two mathematical models, one for evaluating the flux through the citric acid cycle and the other for evaluating the flux through the latter coupled to the glyoxylate cycle in yeast. These models are based on the analysis of 13C-NMR spectra of glutamate obtained from Saccharomyces cerevisiae, NCYC strain, fed with 100% enriched [2-13C]acetate. The population of each glutamate isotopomer, the change in intensity of each multiplet component or the enrichment of any glutamate carbon is expressed by a specific analytical equation from which the flux in the citric acid and the glyoxylate cycles can be deduced. The aerobic metabolism of 100% [2-13C]acetate in acetate-grown S. cerevisiae cells was studied as a function of time using 13C-NMR. 1H-NMR and biochemical techniques. The C1 and C6 doublet and singlet of labeled trehalose increase continuously with time indicating that there is no isotopic transformation between trehalose isotopomers even though the corresponding formation rates are different. By contrast, the glutamate C4 singlet increases then decreases with time. The C4 doublet, which is lower than the singlet for t 90 min. A similar observation was made for the C2 resonance singlet and doublet. In addition, the glutamate C2 multiplet consists of only seven instead of nine peaks as in random labeling. These results agree well with our models and demonstrate that, in the presence of acetate, anaplerotic carbon sources involved in the synthesis of acetyl-CoA are negligible in yeast. The flux in the citric acid cycle was deduced from a plot of the C4 area versus incubation time, while the flux within the glyoxylate cycle was determined from the relative intensity of the glutamate C4 doublet and singlet. The fluxes in the citric acid and the glyoxylate cycles were found to be comparable

  12. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    Science.gov (United States)

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways.

  13. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  14. Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 Native Yeasts from D.O. "Vinos de Madrid".

    Science.gov (United States)

    García, Margarita; Apolinar-Valiente, Rafael; Williams, Pascale; Esteve-Zarzoso, Braulio; Arroyo, Teresa; Crespo, Julia; Doco, Thierry

    2017-08-09

    Polysaccharides and oligosaccharides released into Malvar white wines elaborated through pure, mixed, and sequential cultures with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid" were studied. Both fractions from different white wines were separated by high-resolution size-exclusion chromatography. Glycosyl composition and wine polysaccharide linkages were determined by GC-EI-MS chromatography. Molar-mass distributions were determined by SEC-MALLS, and intrinsic viscosity was determined by differential viscometer. Yeast species and type of inoculation have a significant impact on wine carbohydrate composition and structure. Mannose residues from mannoproteins were significantly predominant in those cultures where T. delbrueckii was present in the fermentation process in comparison with when pure cultures of S. cerevisiae were present in the fermenation process. Galactose residues from polysaccharides rich in arabinose and galactose presented greater values in pure cultures of S. cerevisiae, indicating that S. cerevisiae released fewer mannoproteins than T. delbrueckii. Moreover, we reported structural differences between mannoproteins released by T. delbrueckii CLI 918 and those released by S. cerevisiae CLI 889. These findings help to provide important information about the polysaccharides and oligosaccharides released from the cell walls of Malvar grapes and the carbohydrates released from each yeast species.

  15. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  16. Phoma glomerata D14: An Endophytic Fungus from Salvia miltiorrhiza That Produces Salvianolic Acid C.

    Science.gov (United States)

    Li, Xiuqing; Zhai, Xin; Shu, Zhiheng; Dong, Ruifang; Ming, Qianliang; Qin, Luping; Zheng, Chengjian

    2016-07-01

    In recent years, more and more researches focus on endophytic fungi derived from important medicinal plants, which can produce the same bioactive metabolites as their host plants. Salvia miltiorrhiza Bunge is a traditional medicinal plant with versatile pharmacological effects. But the wild plant resource has been in short supply due to the overcollection for bioactive metabolites. Our study was therefore conducted to isolate endophytic fungi from S. miltiorrhiza and get candidate strains that produce the same bioactive compounds as the plant. As a result, an endophyte that produces salvianolic acid C was obtained and identified as Phoma glomerata D14 based on its morphology and internal transcribed spacer analysis. Salvianolic acid C was found present in both the mycelia and fermentation broth. Our study indicates that the endophytic fungus has significant industrial potential to meet the pharmaceutical demands for salvianolic acid C in a cost-effective, easily accessible, and reproducible way.

  17. Malfunctioning of the Iron–Sulfur Cluster Assembly Machinery in Saccharomyces cerevisiae Produces Oxidative Stress via an Iron-Dependent Mechanism, Causing Dysfunction in Respiratory Complexes

    Science.gov (United States)

    Gomez, Mauricio; Pérez-Gallardo, Rocío V.; Sánchez, Luis A.; Díaz-Pérez, Alma L.; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S.; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain. PMID:25356756

  18. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    OpenAIRE

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by cam...

  19. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    DEFF Research Database (Denmark)

    Hansen, Bjarne Gram; Genee, Hans Jasper; Kaas, Christian Schrøder

    2011-01-01

    BACKGROUND: Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species...

  20. Selection of Anodic Material Used in Electrolytic Process for Producing Hypophosphorous Acid

    Institute of Scientific and Technical Information of China (English)

    Fu Sheng WANG; Bing Kui SONG; Xiao Li HAN; Bao Gui ZHANG

    2004-01-01

    Black lead, Ti-Ru and Ti-PbO2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodialytic cell was studied. The comparison of some factors, such as anodic voltage, product concentration and current efficiency, of black lead, Ti-Ru, and Ti-PbO2 electrodes was conducted. As a result, the Ti-PbO2 electrode is the optimal anode material used, it can be in electrolytic process for producing hypophosphorous acid.

  1. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    Science.gov (United States)

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  2. Evaluation of Acid Producing Potential of Road-cut Rock Slopes

    Science.gov (United States)

    Min, K.; Han, D.

    2006-12-01

    Acid rock drainage (ARD) developed as a result of road construction represents a number of technical, environmental, and social problems. Engineering impacts from ARD, the product of atmospheric oxidation of rock-forming sulfide minerals, including degradation of surface water quality, disintegration of construction materials, and structural damage of buildings, have been documented widely around the world. To characterize the ARD and to evaluate acid producing potential of road-cut rocks, samples of rocks and water were collected from two road-cut sites of shale to phyllite showing such visual indicators of ARD as orange iron precipitates along streambed and rocks. Acid Base Accounting (ABA) test, the most commonly applied static test to evaluate the potential acidity, and X-ray diffraction (XRD) analysis were performed for fifteen rock samples. In terms of NAPP (Net Acid Producing Potential) and NAGpH (pH of Net Acid Generation), seven, four, and four rock samples were classified into a PAF (potentially acid forming) group, a NAF (non-acid forming) group, and an uncertain group, respectively. Water samples with low pH of 4.4, low DO (dissolved oxygen), and high contents of heavy metals and sulfate ion showed the generation of ARD in the studied area, which confirmed the applicability of ABA test to prediction of ARD in road-cut rock slopes. Evaluation of acid producing potential of earth materials should be an essential step in the pre-design stage of construction works especially in the vicinity of mining areas.

  3. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Uranga, Carla C., E-mail: curanga@cicese.edu.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico); Beld, Joris, E-mail: joris.beld@drexelmed.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Mrse, Anthony, E-mail: amrse@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Córdova-Guerrero, Iván, E-mail: icordova@uabc.edu.mx [Universidad Autónoma de Baja California (UABC), Calzada Universidad 14418 Parque Industrial Internacional Tijuana, Tijuana, B.C. 22390 (Mexico); Burkart, Michael D., E-mail: mburkart@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Hernández-Martínez, Rufina, E-mail: ruhernan@cicese.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico)

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  4. Mating type and ploidy effect on the β-glucosidase activity and ethanol-producing performance of Saccharomyces cerevisiae with multiple δ-integrated bgl1 gene.

    Science.gov (United States)

    Wang, Jianjun; Ma, Yuanyuan; Zhang, Kun; Yang, Huajun; Liu, Cheng; Zou, Shaolan; Hong, Jiefang; Zhang, Minhua

    2016-08-10

    In order to investigate the effect of mating type and ploidy on enzymatic activity and fermentation performance in yeast with multiple δ-integrated foreign genes, eight ploidy series strains were constructed. The initial haploid strain BGL-a was shown to contain about 19 copies of the bgl1 gene. In rich media containing 2% (w/v) sugar the specific activities of BGL-aα were lower than those of BGL-aa or BGL-αα, which indicates the existence of mating type effects. While the maximum OD660 decreased with rising ploidy, the biomass yield showed no significant difference between the eight strains and the specific activities (expressed as U/mL or U/mg DCW) showed little to no variation. When cellobiose was used as the carbon source and β-glucosidase substrate, β-glucosidase was expressed more quickly and at higher levels than in glucose-containing media. The maximum specific activitiy values obtained were 19.07U/mL and 19.39U/mL for BGL-αα and BGL-aa, repsectively. The anaerobic biomass and ethanol-producing performance in rich media containing 10% cellobiose showed no significant difference among the eight strains. Their maximal ethanol concentrations and corresponding yields ranged from 40.27 to 43.46g/L and 77.56 to 83.71%, respectively. When the acid- and alkali-pretreated corncob (10% solids content) was used, the diploid BGL-aα fermented the best. When urea was used as the only supplemented nutrient, the ethanol titer and yield were 35.65g/L and 83.69%, respectively, while a control experiment using industrial Angel yeast with exogenous β-glucosidase addition gave values of 37.93g/L and 89.04%. The combined effects of δ-integration of bgl1, ploidy and mating type result in BGL-aa or BGL-αα being the optimal choice for enzyme production and BGL-aα being more suitable for cellulosic ethanol fermentation. These results provide valuable information for future yeast breeding and utilization efforts.

  5. Diversity of Heteropolysaccharide-Producing Lactic Acid Bacterium Strains and Their Biopolymers

    Science.gov (United States)

    Mozzi, Fernanda; Vaningelgem, Frederik; Hébert, Elvira María; Van der Meulen, Roel; Foulquié Moreno, María Remedios; Font de Valdez, Graciela; De Vuyst, Luc

    2006-01-01

    Thirty-one lactic acid bacterial strains from different species were evaluated for exopolysaccharide (EPS) production in milk. Thermophilic strains produced more EPS than mesophilic ones, but EPS yields were generally low. Ropiness or capsular polysaccharide formation was strain dependent. Six strains produced high-molecular-mass EPS. Polymers were classified into nine groups on the basis of their monomer composition. EPS from Enterococcus strains were isolated and characterized. PMID:16751563

  6. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    Science.gov (United States)

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  7. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing; LIU Qing; WU ZhiFang; WANG ZongYi; GOU KeMian

    2009-01-01

    Fatty acid desaturase-2 (FAD2)introduces a double bond in position △12 in oleic acid (18:1)to form linoleic acid (18:2 n-6)in higher plants and microbes.A new transgenic expression cassette,containing CMV promoter/fad2 cDNA/SV40 polyA,was constructedto produce transgenic mice.Among 63 healthy offspring,10 founders (15.9%)integrated the cotton fad2 transgene into their genomes,as demonstrated by PCR and Southern blotting analysis.All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography.One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05)in transgenic muscles compared to their nontransgenic littermates.Moreover,it exhibited an 87% and a 9% increase (P<0.05)in arachidonic acid (20:4 n-6)in muscles and liver,compared to their nontransgenic littermates.The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  8. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  9. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    Science.gov (United States)

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.

    Science.gov (United States)

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse; Khoomrung, Sakda; Brown, Stephen; Berry, Alan; Nielsen, Jens

    2014-04-01

    Malic acid is a C₄ dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C₄ dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103a-68, was presented which overexpressed pyruvate carboxylase, malate dehydrogenase, and a malic acid transporter. In this work, we report a detailed characterization of this strain including detailed rates and yields under malic acid production conditions. Furthermore, transcript levels of the genes of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))⁻¹ h⁻¹ and with a yield of 1.49 mol mol⁻¹. Intracellular fluxes were obtained using ¹³C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able to efficiently metabolize pentoses and hexoses to produce malic acid at high titers, rates, and yields.

  11. Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem?

    Science.gov (United States)

    Larsen, Thomas; Wooller, Matthew J; Fogel, Marilyn L; O'Brien, Diane M

    2012-07-15

    The relative contribution of carbon from terrestrial vs. marine primary producers to mangrove-based food webs can be challenging to resolve with bulk carbon isotope ratios (δ(13)C). In this study we explore whether patterns of δ(13)C values among amino acids (AAs) can provide an additional tool for resolving terrestrial and marine origins of carbon. Amino acid carbon isotope ratios (δ(13)C(AA)) were measured for several terrestrial and marine primary producers in a mangrove ecosystem at Spanish Lookout Caye (SLC), Belize, using gas chromatography-combustion-isotope ratio mass spectrometry. The δ(13)C values of essential amino acids (δ(13)C(EAA)) were measured to determine whether they could be used to differentiate terrestrial and marine producers using linear discriminant analysis. Marine and terrestrial producers had distinct patterns of δ(13)C(EAA) values in addition to their differences in bulk δ(13)C values. Microbial mat samples and consumers (Crassostrea rhizophorae, Aratus pisonii, Littoraria sp., Lutjanus griseus) were most similar to marine producers. Patterns of δ(13)C(EAA) values for terrestrial producers were very similar to those described for other terrestrial plants. The findings suggest that δ(13)C(EAA) values may provide another tool for estimating the contribution of terrestrial and marine sources to detrital foodwebs. Preliminary analyses of consumers indicate significant use of aquatic resources, consistent with other studies of mangrove foodwebs. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  13. Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hodges, Amelia J; Gloss, Lisa M; Wyrick, John J

    2017-07-01

    The essential histone chaperone FACT plays a critical role in DNA replication, repair, and transcription, primarily by binding to histone H2A-H2B dimers and regulating their assembly into nucleosomes. While FACT histone chaperone activity has been extensively studied, the exact nature of the H2A and H2B residues important for FACT binding remains controversial. In this study, we characterized the functions of residues in the histone H2A and H2B acidic patch, which is important for binding many chromatin-associated factors. We found that mutations in essential acidic patch residues cause a defect in histone occupancy in yeast, even though most of these histone mutants are expressed normally in yeast and form stable nucleosomes in vitro Instead, we show that two acidic patch residues, H2B L109 and H2A E57, are important for histone binding to FACT in vivo We systematically screened mutants in other H2A and H2B residues previously suspected to be important for FACT binding and confirmed the importance of H2B M62 using an in-vivo FACT-binding assay. Furthermore, we show that, like deletion mutants in FACT subunits, an H2A E57 and H2B M62 double mutant is lethal in yeast. In summary, we show that residues in the nucleosome acidic patch promote histone occupancy and are important for FACT binding to H2A-H2B dimers in yeast. Copyright © 2017 by the Genetics Society of America.

  14. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    Science.gov (United States)

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  15. Glucansucrases from lactic acid bacteria which produce water-insoluble polysaccharides from sucrose

    Science.gov (United States)

    Dextrans and related glucans produced from sucrose by lactic acid bacteria have been studied for many years and are used in numerous commercial applications and products. Most of these glucans are water-soluble, except for a few notable exceptions from cariogenic Streptococcus spp. and a very small ...

  16. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923).

    Science.gov (United States)

    Wasels, François; Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-03-03

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain.

  17. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923)

    OpenAIRE

    2016-01-01

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain.

  18. Draft Genome Sequence of Sorghum Grain Mold Fungus Epicoccum sorghinum, a Producer of Tenuazonic Acid

    Science.gov (United States)

    Oliveira, Rodrigo C.; Davenport, Karen W.; Hovde, Blake; Silva, Danielle; Chain, Patrick S. G.; Correa, Benedito

    2017-01-01

    ABSTRACT The facultative plant pathogen Epicoccum sorghinum is associated with grain mold of sorghum and produces the mycotoxin tenuazonic acid. This fungus can have serious economic impact on sorghum production. Here, we report the draft genome sequence of E. sorghinum (USPMTOX48). PMID:28126937

  19. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor.

    Science.gov (United States)

    Li, Jiao; Li, Jianxin; Wang, Hong; Cheng, Bowen; He, Benqiao; Yan, Feng; Yang, Yang; Guo, Wenshan; Ngo, Huu Hao

    2013-05-18

    An electrocatalytic membrane reactor assembled using a nano-MnO2 loading microporous Ti membrane as an anode and a tubular stainless steel as a cathode was used to oxidize n-propanol to produce propionic acid. The high efficiency and selectivity obtained is related to the synergistic effect between the reaction and separation in the reactor.

  20. Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads.

    Science.gov (United States)

    Ua-Arak, Tharalinee; Jakob, Frank; Vogel, Rudi F

    2017-08-01

    Buckwheat sourdoughs supplemented with molasses as natural sucrose source were fermented with levan-producing Gluconobacter (G.) albidus TMW 2.1191 and Kozakia (K.) baliensis NBRC 16680. Cell growth, concomitant levan and low-molecular-weight metabolite production were monitored. Sourdough breads were prepared with different sourdoughs from both strains (24, 30 and 48 h fermentation, respectively) and analyzed with respect to bread volume, crumb hardness and sensory characteristics. During fermentation, levan, acetic and gluconic acids were increasingly produced, while spontaneously co-growing lactic acid bacteria additionally formed acetic and lactic acids. Sourdoughs from both strains obtained upon 24 h of fermentation significantly improved the bread sensory and quality, including higher specific volume as well as lower crumb hardness. Buckwheat doughs containing isolated levan, with similar molecular size and mass compared to in situ produced levan in the sourdough at 48 h, verified the positive effect of levan on bread quality. However, the positive effects of levan were masked to a certain extent by the impact from the natural acidification during fermentations. While levan-producing acetic acid bacteria are a promising alternative for the development of clean-label gluten-free breads without the need of additives, an appropriate balance between acidification and levan production (amount and structure) must be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Science.gov (United States)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  2. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Science.gov (United States)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  3. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Science.gov (United States)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  4. Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications

    DEFF Research Database (Denmark)

    Guillaumie, Fanny; Furrer, Pascal; Felt-Baeyens, Olivia

    2010-01-01

    This work presents a comparative study of various hyaluronic acids (HA) produced by fermentation of either Bacillus subtilis or Streptococcus towards the selection of an optimal molecular weight (MW) HA for the preparation of topical ophthalmic formulations. The influence of HA MW on water bindin...

  5. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  6. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Czarnotta, Eik; Dianat, Mariam; Korf, Marcel

    2017-01-01

    from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into S. cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling....../L and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate...

  7. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Science.gov (United States)

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  8. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  9. Engineering and systems level analysis of Saccharomyces cerevisiae for production of 3 hydroxypropionic acid via malonyl CoA reductase dependent pathway

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Schneider, Konstantin;

    2016-01-01

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3...

  10. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    Science.gov (United States)

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  11. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  12. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaric

  13. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaric

  14. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaric

  15. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaric

  16. Novel Simplified and Rapid Method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Ashwini Tilay

    2012-01-01

    Full Text Available Bacterial production of polyunsaturated fatty acids (PUFAs is a potential biotechnological approach for production of valuable nutraceuticals. Reliable method for screening of number of strains within short period of time is great need. Here, we report a novel simplified method for screening and isolation of PUFA-producing bacteria by direct visualization using the H2O2-plate assay. The oxidative stability of PUFAs in growing bacteria towards added H2O2 is a distinguishing characteristic between the PUFAs producers (no zone of inhibition and non-PUFAs producers (zone of inhibition by direct visualization. The confirmation of assay results was performed by injecting fatty acid methyl esters (FAMEs produced by selected marine bacteria to Gas Chromatography-Mass Spectrometry (GCMS. To date, this assay is the most effective, inexpensive, and specific method for bacteria producing PUFAs and shows drastically reduction in the number of samples thus saves the time, effort, and cost of screening and isolating strains of bacterial PUFAs producers.

  17. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission.

    Science.gov (United States)

    Binfaré, Ricardo W; Rosa, Angelo O; Lobato, Kelly R; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2009-04-30

    Ascorbic acid is highly concentrated in the brain, being considered as a neuromodulator. This study investigated the effect of ascorbic acid in the tail suspension test (TST) and in the forced swimming test (FST) in mice and the contribution of the monoaminergic system to its antidepressant-like effect. Moreover, the effects of fluoxetine, imipramine and bupropion in combination with ascorbic acid in the TST were investigated. Ascorbic acid (0.1-10 mg/kg, i.p., 1-10 mg/kg p.o. or 0.1 nmol/mice i.c.v.) produced an antidepressant-like effect in the TST, but not in the FST, without altering the locomotor activity. The effect of ascorbic acid (0.1 mg/kg, i.p.) in the TST was prevented by i.p. pre-treatment with NAN-190 (0.5 mg/kg), ketanserin (5 mg/kg), MDL72222 (0.1 mg/kg), prazosin (62.5 microg/kg), yohimbine (1 mg/kg), propranolol (2 mg/kg), haloperidol (0.2 mg/kg), sulpiride (50 mg/kg), but not with SCH23390 (0.05 mg/kg, s.c.). Additionally, ascorbic acid (1 mg/kg, p.o.) potentiated the effect of subeffective doses (p.o. route) of fluoxetine (1 mg/kg), imipramine (0.1 mg/kg), or bupropion (1 mg/kg) in the TST. The combined treatment of ascorbic acid with antidepressants produced no alteration in the locomotion in the open-field test. In conclusion, our results show that administration of ascorbic acid produces an antidepressant-like effect in TST, which is dependent on its interaction with the monoaminergic system. Moreover, ascorbic acid caused a synergistic antidepressant-like effect with conventional antidepressants. Therefore, the present findings warrant further studies to evaluate the therapeutical relevance of ascorbic acid for the treatment of depression and as a co-adjuvant treatment with antidepressants.

  18. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    Science.gov (United States)

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects.

  19. Is it possible to produce succinic acid at a low pH?

    Science.gov (United States)

    Yuzbashev, Tigran V; Yuzbasheva, Evgeniya Y; Laptev, Ivan A; Sobolevskaya, Tatiana I; Vybornaya, Tatiana V; Larina, Anna S; Gvilava, Ilia T; Antonova, Svetlana V; Sineoky, Sergey P

    2011-01-01

    Bio-based succinate is still a matter of special emphasis in biotechnology and adjacent research areas. The vast majority of natural and engineered producers are bacterial strains that accumulate succinate under anaerobic conditions. Recently, we succeeded in obtaining an aerobic yeast strain capable of producing succinic acid at low pH. Herein, we discuss some difficulties and advantages of microbial pathways producing "succinic acid" rather than "succinate." It was concluded that the peculiar properties of the constructed yeast strain could be clarified in view of a distorted energy balance. There is evidence that in an acidic environment, the majority of the cellular energy available as ATP will be spent for proton and anion efflux. The decreased ATP:ADP ratio could essentially reduce the growth rate or even completely inhibit growth. In the same way, the preference of this elaborated strain for certain carbon sources could be explained in terms of energy balance. Nevertheless, the opportunity to exclude alkali and mineral acid waste from microbial succinate production seems environmentally friendly and cost-effective.

  20. COMPARATIVE ANALYSIS OF OXALIC ACID PRODUCED FROM RICE HUSK AND PADDY

    Directory of Open Access Journals (Sweden)

    P.I. Oghome

    2012-09-01

    Full Text Available In this research work, comparative analysis of Oxalic acid produced from Rice husk and Paddy was carried out in order to ascertain which waste sample produced a better yield. Nitric acid oxidation of carbohydrates was the method adopted in the production. The variable ratios of HNO3:H2SO4 used were 80:20, 70:30, 60:40, and 50:50. The variable ratio of 60:40 gave the maximum yield and at a maximum temperature of 75oC. Rice husk sample gave a percentage yield of 53.2, 64.4, 81.0, and 53.3 at temperatures of 55 oC, 65 oC, 75 oC, and 85 oC respectively. In the case of paddy a percentage yield of 53.1, 64.0, 79.9, and 52.8 at temperatures of 55 oC, 65 oC, 75 oC, and 85 oC were obtained respectively. The plots between yield and temperature at different variable ratios illustrate the dependence of yield on temperature, which was similar to a parabolic relationship and the peak value (yield was at 75 oC above which it decreased. The properties of oxalic acid from both sources were very close and compared favourably with literature. In comparing the yield, oxalic acid produced from Rice husk gave higher yield than that from Paddy.

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  3. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....

  4. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  5. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...

  6. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    OpenAIRE

    Muriel eAldunate; Daniela eSrbinovski; Anna C Hearps; Latham, Catherine F.; Paul A Ramsland; Raffi eGugasyan; Cone, Richard A.; Gilda eTachedjian

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis...

  7. Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Gong, Yangmin; Wan, Xia; Jiang, Mulan; Hu, Chuanjiong; Hu, Hanhua; Huang, Fenghong

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.

  8. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    Science.gov (United States)

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  9. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kathleen S. Rein

    2008-05-01

    Full Text Available Okadaic acid (OA and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  10. 高产酿酒酵母SCY6生长与发酵条件的优化%Optimization of Growth and Fermentation Conditions for High Ethanol-Producing Saccharomyces cerevisiae Strain SCY6

    Institute of Scientific and Technical Information of China (English)

    顾华祥; 宋晨; 李迅

    2012-01-01

    采用高产酿酒酵母(Saccharomyces cerevisiae)SCY6发酵葡萄糖产乙醇,设计单因素试验考察该酵母菌株适宜的生长条件,采用正交试验优化酵母发酵产乙醇的条件.结果表明,该酵母菌株的最适生长温度和pH分别为28℃、5.0,培养基中葡萄糖质量分数为15%时其生长状态较好.正交试验结果表明,最适合该酿酒酵母发酵产乙醇的条件为玉米浆和(NH4)2SO4作为氮源,用量分别为20 g/L和2 g/L,接种量为4%,pH 5.0.在此条件下进行发酵,发酵液中乙醇体积分数可达7.77%,葡萄糖转化率达83.82%.%The high ethanol-producing Saccharomyces cerevisiae strain SCY6 was used to ferment glucose to ethanol. Single factor tests were conducted to optimize the cultivation conditions; while orthogonal design was adopted to optimize ethanol fermentation conditions. The results showed that the optimum temperature and pH for yeast growth was 28℃ and 5.0, respectively. The yeast grew well when mass ratio of glucose in YPD medium was 15%. The result of orthogonal test showed that the optimal ethanol fermentation conditions were, 2 g/L (NH4)2SO4 and 20g/L corn syrup as N source; inoculation dose, 4% volume fraction; and pH 5.0. The yield of ethanol reached 7.77%; and the conversion rate of glucose was 83.82% under these conditions.

  11. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    DEFF Research Database (Denmark)

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia;

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolite...... the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals.......Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites...... of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway...

  12. NREL Creates New Pathways for Producing Biofuels and Acids from Cyanobacteria (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-10-01

    Cyanobacteria use photosynthesis to convert carbon dioxide into glycogen, a carbohydrate that is stored in the cells as an energy source. However, researchers at the National Renewable Energy Laboratory (NREL) have discovered that this photosynthesis can be redirected to produce lipids and valuable organic acids. The research could yield a new source of biofuels, because the lipids can potentially be extracted from the bacteria and converted into biodiesel.

  13. Repeated Oral Administration of Oleanolic Acid Produces Cholestatic Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yasha Xu

    2013-03-01

    Full Text Available Oleanolic acid (OA is a triterpenoid and a fantastic molecule with many beneficial effects. However, high-doses and long-term use can produce adverse effects. This study aimed to characterize the hepatotoxic potential of OA. Mice were given OA at doses of 100–3,000 µmol/kg (45–1,350 mg/kg, po for 10 days, and the hepatotoxicity was determined by serum biochemistry, histopathology, and toxicity-related gene expression via real-time RT-PCR. Animal body weight loss was evident at OA doses of 1,000 µmol/kg and above. Serum alanine aminotransferase activities were increased in a dose-dependent manner, indicative of hepatotoxicity. Serum total bilirubin concentrations were increased, indicative of cholestasis. OA administration produced dose-dependent pathological lesions to the liver, including inflammation, hepatocellular apoptosis, necrosis, and feathery degeneration indicative of cholestasis. These lesions were evident at OA doses of 500 µmol/kg and above. Real-time RT-PCR revealed that OA produced dose-dependent increases in acute phase proteins (MT-1, Ho-1, Nrf2 and Nqo1, decreases in bile acid synthesis genes (Cyp7a1 and Cyp8b1, and decreases in liver bile acid transporters (Ntcp, Bsep, Oatp1a1, Oatp1b2, and Ostβ. Thus, the clinical use of OA and OA-type triterpenoids should balance the beneficial effects and toxicity potentials.

  14. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation.

    Science.gov (United States)

    Cordente, Antonio G; Cordero-Bueso, Gustavo; Pretorius, Isak S; Curtin, Christopher D

    2013-02-01

    Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications.

  15. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  16. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Konstantinos Papadimitriou

    2013-02-01

    Full Text Available In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17% producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.

  17. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough.

    Science.gov (United States)

    Galle, Sandra; Schwab, Clarissa; Arendt, Elke K; Gänzle, Michael G

    2011-05-01

    Hydrocolloids improve the volume, texture, and shelf life of bread. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) during sourdough fermentation can replace hydrocolloids. It was the aim of this study to determine whether heteropolysaccharides (HePS) synthesized intracellularly from sugar nucleotides by glycosyltransferases are produced in wheat and gluten-free sorghum sourdough at effective levels. The HePS-producing strains Lactobacillus casei FUA3185, L. casei FUA3186, and Lactobacillus buchneri FUA3154 were used; Weissella cibaria 10M producing no EPS in the absence of sucrose served as control strain. Cell suspensions of L. buchneri in MRS showed the highest viscosity at low shear rate. Glycosyltransferase genes responsible of HePS formation in LAB were expressed in sorghum and wheat sourdough. However, only HePS produced by L. buchneri influenced the rheological properties of sorghum sourdoughs but not of wheat sourdoughs. Sorghum sourdough fermented with L. buchneri exhibited a low |G*| compared to the control, indicating a decrease in resistance to deformation. An increase in tan δ indicated decreased elasticity. The use of LAB producing HePS expands the diversity of EPS and increases the variety of cultures for use in baking.

  18. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters of...

  19. Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification

    Directory of Open Access Journals (Sweden)

    Yi-Wei Lin

    2012-07-01

    Full Text Available A supercritical methanol transesterification method was applied to produce biodiesel from the high-acid oil of soybean soapstock. The fuel properties of biodiesel produced with various molar ratios of methanol to raw oil were analyzed and compared in this experimental study. Oleic acid (C18:1, linoleic acid (C18:2, and palmitic acid (C16:0 were the three main compounds in the high-acid oil-biodiesel. The saturated fatty acid content of the high-acid oil increased significantly due to the supercritical-methanol transesterification reaction. The fuel characteristics of the resulting high-acid oil, including the specific gravity and kinematic viscosity, were also greatly improved. The saturated fatty acid content of the biodiesel produced from the high-acid oil was higher than that of biodiesel from waste cooking oil produced by the subcritical transesterification using a strongly alkaline catalyst. The high-acid oil-biodiesel that was produced with a molar ratio of methanol to raw oil of 42 had the best fuel properties, including a higher distillation temperature and cetane index and a lower kinematic viscosity and water content, among the biodiesels with different molar ratios.

  20. Determination of boron in produced water using the carminic acid assay.

    Science.gov (United States)

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1 g L(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30 min reaction time at ambient temperature (20 °C to 23 °C). Absorption values were best measured at 610 nm and 630 nm and baseline corrected at 865 nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods.

  1. Tandem mass spectrometry of poly(methacrylic Acid) oligomers produced by negative mode electrospray ionization.

    Science.gov (United States)

    Giordanengo, Rémi; Viel, Stéphane; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-01-01

    Dissociation of small poly(methyl acrylic acid) (PMAA) anions produced by electrospray was characterized by tandem mass spectrometry. Upon collisional activation, singly, and doubly deprotonated PMAA oligomers were shown to fragment via two major reactions, dehydration and decarboxylation. The elimination of a water molecule would occur between two consecutive acid groups in a charged-remote mechanism, giving rise to cyclic anhydrides, and was shown to proceed as many times as pairs of neutral pendant groups were available. As a result, the number of dehydration steps, together with the abundance of the fragment ions produced after the release of all water molecules, revealed the polymerization degree of the molecule in the particular case of doubly charged oligomers. For singly deprotonated molecules, the exact number of MAA units could be reached from the number of carbon dioxide molecules successively eliminated from the fully dehydrated precursor ions. In contrast to dehydration, decarboxylation reactions would proceed via a charge-induced mechanism. The proposed dissociation mechanisms are consistent with results commonly reported in thermal degradation studies of poly(acrylic acid) resins and were supported by accurate mass measurements. These fragmentation rules were successfully applied to characterize a polymeric impurity detected in the tested PMAA sample.

  2. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L. Millsp].

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Five fungal endophytes (K4, K5, K6, K9, K14 producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid were isolated from the roots of pigeon pea [Cajanus cajan (L. Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  3. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp].

    Science.gov (United States)

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  4. High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative.

    Science.gov (United States)

    Papadimitriou, Minas N B; Resende, Catarina; Kuchler, Karl; Brul, Stanley

    2007-01-25

    Sorbic acid is a commonly used food preservative against yeast and fungal food spoilage. Understanding its effect on the molecular physiology of yeast cells will allow the food industry to develop knowledge-based strategies to make more optimal use of its preservative action. Here we show that the yeast membrane protein Pdr12, previously shown to be prominently involved in sorbic acid resistance development in laboratory strains, was strongly induced by the presence of sorbic acid in the culture medium in Saccharomyces strains isolated from spoiled foods. Induction of Pdr12 expression was seen both under laboratory conditions and upon growth in a commercial soft drink. Induction was rapid and maintained for the duration of the stress. No Pdr12-like protein induction was seen in Zygosaccharomyces bailii or Zygosaccharomyces lentus, two well-known beverages spoilage organisms. Finally, unexpectedly, our studies showed for the first time that pre-inducing Pdr12p to maximal levels by subjecting cells to a mild sorbic acid stress did not lead to cells with an acquired resistance. Neither more rapid growth in the presence of the acid nor growth at higher sorbic acid concentrations at a given environmental pH was observed. Thus we have shown that while important in resistance development against sorbic acid, by itself induction of the pump is not sufficient to acquire resistance to the preservative.

  5. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.

    Science.gov (United States)

    Wan, Chun; Zhang, Mingming; Fang, Qing; Xiong, Liang; Zhao, Xinqing; Hasunuma, Tomohisa; Bai, Fengwu; Kondo, Akihiko

    2015-02-01

    The mechanisms of how zinc protects the cells against acetic acid toxicity and acts as an antioxidant are still not clear. Here we present results of the metabolic profiling of the eukaryotic model yeast species Saccharomyces cerevisiae subjected to long term high concentration acetic acid stress treatment in the presence and absence of zinc supplementation. Zinc addition decreased the release of reactive oxygen species (ROS) in the presence of chronic acetic acid stress. The dynamic changes in the accumulation of intermediates in central carbon metabolism were observed, and higher contents of intracellular alanine, valine and serine were observed by zinc supplementation. The most significant change was observed in alanine content, which is 3.51-fold of that of the control culture in cells in the stationary phase. Subsequently, it was found that 0.5 g L(-1) alanine addition resulted in faster glucose consumption in the presence of 5 g L(-1) acetic acid, and apparently decreased ROS accumulation in zinc-supplemented cells. This indicates that alanine exerted its antioxidant effect at least partially through the detoxification of acetic acid. In addition, intracellular glutathione (GSH) accumulation was enhanced by zinc addition, which is related to the protection of yeast cells from the oxidative injury caused by acetic acid. Our studies revealed for the first time that zinc modulates cellular amino acid metabolism and redox balance, especially biosynthesis of alanine and glutathione to exert its antioxidant effect.

  6. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wu; Jiacheng Yan; Xiaojun Ji; Xin Zhang; Jingsheng Shang; Lina Sun; Lujing Ren; He Huang

    2015-01-01

    Mortierel a alpina has been considered as the most effective producer of arachidonic acid (ARA)-rich oil. It was found that several methods could improve the percentage of ARA in total lipids successful y, as they activated the desaturation system on the endoplasmic reticulum. Additionally, in M. alpina the ARA exists in several forms, such as triacylglycerol (TAG), and diacylglycerol (DAG). These forms are caused by different acyltransferases and they determine the nutrient value of the microbial oil. However, few works revealed de-tailed fatty acid distribution among lipid classes, which to some extent impeded the accurate regulation in ARA accumulation. Herein, this paper gives information on the accumulation process of main lipid classes and the changes of fatty acid composition in these lipids during ARA accumulation period in M. alpina. The result dem-onstrates that TAG was the dominant component of the total lipids, and it is the main form for ARA storage. The ARA enrichment stage occurred during 168–192 h when the amount of total lipids maintained steady. Further analysis indicated that the newly formed ARA-TAG might come from the incorporation and modification of sat-urated and monounsaturated fatty acids in other lipid classes. This work could be helpful for further optimization of ARA-rich TAG production.

  7. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system.

    Science.gov (United States)

    Lee, Pyung-Cheon; Lee, Sang-Yup; Chang, Ho-Nam

    2008-07-01

    Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens was anaerobically carried out using an internal membrane filter module in order to examine the physiological response of A. succiniciproducens to a high-cell-density environment. The optimal growth of A. succiniciproducens and its enhanced succinic acid productivity were observed under CO2-rich conditions, established by adding NaHCO3 and Na2CO3, in the cell recycled system. A. succiniciproducens grew up to 6.50 g-DCW/l, the highest cell concentration obtained so far, in cell recycled cultures. The cells did not change their morphology, which is known to be easily changed in unfavorable or stress environments. The maximum productivity of succinic acid was about 3.3 g/l/h, which is 3.3 times higher than those obtained in batch cultures. These results can serve as a guide for designing highly efficient cell recycled systems for succinic acid at a commercial level.

  8. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    Directory of Open Access Journals (Sweden)

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-03-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by camel milk. A variety of food can be preserved by lactic acid fermentation, so starter culture was prepared from strains which were isolated from camel milk. Camel and buffalo's milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and can coagulate the milk in less lime. Camel milk cheese was prepared and compared with buffalo's milk cheese. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  9. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  10. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  11. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    Science.gov (United States)

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  12. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica.

    Science.gov (United States)

    Serrato, Rodrigo V; Sassaki, Guilherme L; Gorin, Philip A J; Cruz, Leonardo M; Pedrosa, Fábio O; Choudhury, Biswa; Carlson, Russell W; Iacomini, Marcello

    2008-09-05

    An acidic exopolysaccharide (EPS) produced by the diazotrophic bacterium Burkholderia tropica, strain Ppe8, was isolated from the culture supernatant of bacteria grown in a synthetic liquid medium containing mannitol and glutamate. Monosaccharide composition showed Rha, Glc and GlcA in a 2.0:2.0:1.0 molar ratio, respectively. Further structural characterization was performed by a combination of NMR, mass spectrometry and chemical methods. Partial acid hydrolysis of EPS provided a mixture of acidic oligosaccharides that were characterized by ESI-MS, giving rise to ions with m/z 193 (GlcA-H)(-), 339 (GlcA,Rha-H)(-), 501 (GlcA,Rha,Glc-H)(-), 647 (GlcA,Rha2,Glc,-H)(-), 809 (GlcA,Rha2,Glc2,-H)(-) and 851 (GlcA,Rha2,Glc2,OAc-H)(-). Carboxyreduced EPS (EPS-CR) had Glc and Rha in a 3:2 ratio, present as d- and l-enantiomers, respectively. Methylation and NMR analysis of EPS and EPS-CR showed a main chain containing 2,4-di-O-Rhap, 3-O-Rhap and 4-O-Glcp. A GlcA side chain unit was found in the acidic EPS, substituting O-4 of α-l-Rhap units. This was observed as a non-reducing end unit of glucopyranose in the EPS-CR. Acetyl esters occured at O-2 of β-l-Rhap units. From the combined results herein, we determined the structure of the exocellular polysaccharide produced by B. tropica, Ppe8, as being a pentasaccharide repeating unit as shown.

  13. Comparative amino acid sequence analysis of hemolysins produced by Vibrio hollisae and Vibrio parahaemolyticus.

    OpenAIRE

    Yoh, M; Honda, T.; Miwatani, T; Tsunasawa, S; Sakiyama, F

    1989-01-01

    Vibrio hollisae produces a hemolysin (Vh-rTDH) that is related to the thermostable direct hemolysin of Vibrio parahaemolyticus (Vp-TDH). Although both hemolysins are essentially similar biologically and immunologically, they differ markedly in heat stability; Vp-TDH is heat stable, whereas Vh-rTDH is heat labile. To elucidate the relationships between their characteristics and molecular structures, we analyzed the amino acid sequence of Vh-rTDH and compared it with that of Vp-TDH. Vh-rTDH con...

  14. Neonatal striatal grafts prevent lethal syndrome produced by bilateral intrastriatal injection of kainic acid.

    Science.gov (United States)

    Tulipan, N; Huang, S; Whetsell, W O; Allen, G S

    1986-07-02

    It is reported that unilateral grafts of neonatal striatal tissue protect the recipient from the lethal aphagia and adipsia produced by bilateral intrastriatal injection of 10 nmol of kainic acid in rats. It is shown that neither adult striatum nor neonatal tissue from other sites have the same lifesaving effect and that the salutary effect of the graft is dependent upon graft survival. Grafts from a histoincompatible donor are apparently rejected, leading to the death of the recipient. Cyclosporine inhibits rejection thereby enabling recipient survival. It is postulated that the graft exerts a neurohumoral influence that protects the striatum from the toxic effect of kainate.

  15. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties....... Furthermore, the potential antioxidative effect of adding lactoferrin, propyl gallate or EDTA to the mayonnaise with SL was also investigated. Mayonnaise based on SL oxidized faster than mayonnaise based on RL or SO. The reduced oxidative stability in the SL mayonnaise could not be ascribed to a single factor...... gallate and lactoferrin did not exert any antioxidative effect in the SL mayonnaise...

  16. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    Science.gov (United States)

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  17. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.

    Science.gov (United States)

    Ishida, Nobuhiro; Saitoh, Satoshi; Tokuhiro, Kenro; Nagamori, Eiji; Matsuyama, Takashi; Kitamoto, Katsuhiko; Takahashi, Haruo

    2005-04-01

    We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2microm plasmid-based vectors and two genome-integrated strains.

  18. 酿酒酵母对弱有机酸胁迫的应激机制研究进展%Research progress on weak organic acid stress mechanism of Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    刘兴艳; 贾博; 赵芳; 王成; 李静援; 战吉宬; 黄卫东

    2013-01-01

    Yeast Saccharomyces cerevisiae is the main microorganism in the production of liquor,but fermentation environment is always disadvantageous to its growth.It is always exposed to several stress conditions including low pH stress resulting from weak organic acid.Yeast cells have developed a common response to environmental adverse conditions,but there are some differences among different stress.Researches on weak organic acid stress mechanism of Saccharomyces cerevisiae in recent years are reviewed in this paper,including gene expression,transcript expression and protein expression.ATP binding cassette transporter Pdrl2 and its transcription factor Warlp,HOG-MAPK pathway,FPS1 aquaglyceroporin,plasma membrane H+-ATPase,superoxide dismutase (SOD),catalase(CAT) and interaction of weak acid stress with other stress are all discussed.We hope it could provide certain reference for better research on weak acid stress mechanism of Saccharomyces cerevisiae.%酿酒酵母是生产酒类产品的主要微生物,而生产中的发酵环境对酿酒酵母来说是一种不利的生长代谢环境,存在多种胁迫因素,其中就包括弱有机酸引起的低pH胁迫.酿酒酵母应对胁迫环境,有自身一套完备的适应机制,不同胁迫应对机制既有相同之处亦有不同之处.本文概括了近年来酿酒酵母对弱有机酸应激机制的研究热点,主要从弱有机酸胁迫的基因表达、转录表达以及蛋白质表达3个水平进行阐述,涉及ATP结合区转运子Pdrl2及其转录因子Warlp,HOG-MAPK途径,水通道蛋白Fpslp,质膜H+-ATP酶,SOD,CAT,以及弱有机酸与其他胁迫的交互作用,旨在为更好地研究酿酒酵母的弱有机酸应激机制提供一定的参考.

  19. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.

  20. Novel extremely acidic lipases produced from Bacillus species using oil substrates.

    Science.gov (United States)

    Saranya, P; Kumari, H Sukanya; Jothieswari, M; Rao, B Prasad; Sekaran, G

    2014-01-01

    The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy.

  1. Implications for global climate change from microbially-produced acid mine drainage

    Science.gov (United States)

    Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Microbial catalysis of sulphur cycling in acid mine drainage (AMD) environments is well known but the reaction pathways are poorly characterised. These reaction pathways involve both acid-consuming and acid- generating steps, with important consequences for overall AMD production as well as sulphur and carbon global biogeochemical cycles. Mining-associated sulphuric acid has been implicated in climate change through the weathering of carbonate minerals resulting in the release of 29 Tg C/year as carbon dioxide. Understanding of microbial AMD generation is based predominantly on studies of Acidithiobacillus ferrooxidans despite the knowledge that other environmentally common strains of bacteria are also active sulphur oxidizers and that microbial consortia are likely very important in environmental processes. Using an integrated experimental approach including geochemical experimentation, scanning transmission X-ray microscopy (STXM) and fluorescent in situ hybridization (FISH), we document a novel syntrophic sulphur metabolism involving two common mine bacteria: autotrophic sulphur oxidizing Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with significant implications for both AMD mitigation and AMD carbon flux modelling. The two bacterial strains are specifically spatially segregated within a macrostructure of extracellular polymeric substance (EPS) that provides the necessary microgeochemical conditions for coupled sulphur oxidation and reduction reactions. STXM results identify multiple sulphur oxidation states associated with the pods, indicating that they are the sites of active sulphur disproportionation and recycling. Recent laboratory experimentation using type culture strains of the bacteria involved in pod-formation suggesting that this phenomenon is likely to be widespread in environments

  2. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  3. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms.

    Science.gov (United States)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-05-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and "ropy" products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed.

  4. Isolation of Human Intestinal Bacteria Capable of Producing the Bioactive Metabolite Isourolithin A from Ellagic Acid

    Directory of Open Access Journals (Sweden)

    María V. Selma

    2017-08-01

    Full Text Available Urolithins are intestinal microbial metabolites produced from ellagitannin- and ellagic acid-containing foods such as walnuts, strawberries, and pomegranates. These metabolites, better absorbed than their precursors, can contribute significantly to the beneficial properties attributed to the polyphenols ellagitannins and ellagic acid (EA. However, both the ability of producing the final metabolites in this catabolism (urolithins A, B and isourolithin A and the health benefits associated with ellagitannin consumption differ considerably among individuals depending on their gut microbiota composition. Three human urolithin metabotypes have been previously described, i.e., metabotype 0 (urolithin non-producers, metabotype A (production of urolithin A as unique final urolithin and metabotype B (urolithin B and/or isourolithin A are produced besides urolithin A. Although production of some intermediary urolithins has been recently attributed to intestinal species from Eggerthellaceae family named Gordonibacter urolithinfaciens and Gordonibacter pamelaeae, the identification of the microorganisms responsible for the complete transformation of EA into the final urolithins, especially those related to metabotype B, are still unknown. In the present research we illustrate the isolation of urolithin-producing strains from human feces of a healthy adult and their ability to transform EA into different urolithin metabolites, including isourolithin A. The isolates belong to a new genus from Eggerthellaceae family. EA transformation and urolithin production arisen during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-DAD-MS analyses demonstrated the sequential appearance of 3,8,9,10-tetrahydroxy-urolithin (urolithin M6, 3,8,9-trihydroxy-urolithin (urolithin C and 3,9-dihydroxy-urolithin (isourolithin A while 3,8-dihydroxy-urolithin (urolithin A and 3-hydroxy-urolithin (urolithin B were not detected. For the first time

  5. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    Science.gov (United States)

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  6. Visualization of sialic acid produced on bacterial cell surfaces by lectin staining.

    Science.gov (United States)

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Wariishi, Hiroyuki; Yamamoto, Takeshi

    2010-01-01

    Oligosaccharides containing N-acetylneuraminic acid on the cell surface of some pathogenic bacteria are important for host-microbe interactions. N-acetylneuraminic acid (Neu5Ac) plays a major role in the pathogenicity of bacterial pathogens. For example, cell surface sialyloligosaccharide moieties of the human pathogen Haemophilus influenzae are involved in virulence and adhesion to host cells. In this study, we have established a method of visualizing Neu5Ac linked to a glycoconjugate on the bacterial cell surface based on lectin staining. Photobacterium damselae strain JT0160, known to produce a-2,6-sialyltransferase, was revealed to possess Neu5Ac by HPLC. Using the strain, a strong Sambucus sieboldiana lectin-binding signal was detected. The bacteria producing α-2,6-sialyltransferases could be divided into two groups: those with a lot of α-2,6-linked Neu5Ac on the cell surface and those with a little. In the present study, we developed a useful method for evaluating the relationship between Neu5Ac expression on the cell surface and the degree of virulence of marine bacteria.

  7. Methane reacts with heteropolyacids chemisorbed on silica to produce acetic acid under soft conditions

    KAUST Repository

    Sun, Miao

    2013-01-16

    Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H 4SiW12O40, H3PW12O 40, H4SiMo12O40, and H 3PMo12O40 activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane. © 2012 American Chemical Society.

  8. Production, optimization and probiotic characterization of potential lactic acid bacteria producing siderophores

    Directory of Open Access Journals (Sweden)

    Smita H. Panda

    2017-02-01

    Full Text Available The aim of the study was to characterize the probiotic qualities and siderophore production of Enterococcus and Bacillus isolates for possible application for iron nutrition in human and animals strains were selectively isolated from different dairy sources and infant faecal matter. Isolates SB10, JC13 and IFM22 were found to produce maximum siderophore ranging from 65–90% at an optimum pH 7, incubation period of 96 h, agitation speed of 150 rpm and inoculum volume of 15%. SB10 and JC13 were found to show high homology with Enterococcus spp. and IFM22 with Bacillus spp., using partial 16S rRNA sequencing and biochemical characterization. All the three isolates produced hydroxymate type of siderophores under iron stressed conditions and screened for probiotic characters as per WHO guidelines. Strains have shown excellent tolerance to acid, bile salt, sodium chloride and phenol. They were non-haemolytic in nature and exhibited high hydrophobicity and autoaggregation. Our isolates proved to be potent probiotic strains due to their survival under highly acidic conditions and higher tolerance to bile salt. In addition, its colonization efficiency was proved by exhibiting high autoaggregation and hydrophobicity.

  9. Effect of Saccharomyces cerevisiae of different generationon the organic acids metabolism%不同代数酿酒酵母对有机酸代谢的影响

    Institute of Scientific and Technical Information of China (English)

    张利; 成建国; 张善飞; 王硕; 董亮; 赵长新

    2012-01-01

    The fermentation broth of different generation saccharomyces cerevisiae were compared by high performance liquid chromatography and found that six kinds of organic acids in different algebraic Saccharomyces cerevisiae had significant differences and regularity.After several experiments to prove:the yeast had higher activity within five generations,the amount of organic production was more harmonious,to give the pure taste of wine.%实验通过高效液相色谱法(HPLC)对酵母发酵液中6种有机酸测定分析,发现不同代数酵母发酵液中6种有机酸有明显的差异性和规律性。经过多次实验证明:五代以内的酵母活性较高,产有机酸的量较为规律、稳定,能够赋予酒类纯正的口感。

  10. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  11. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  12. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  13. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    Science.gov (United States)

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  14. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    Science.gov (United States)

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  15. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi....

  16. Water Kefir grain as a source of potent dextran producing lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Davidović Slađana Z.

    2015-01-01

    Full Text Available Water kefir is abeverage fermented by a microbial consortium captured in kefir grains. The kefir grains matrix is composed of polysaccharide, primarily dextran, whichis produced by members of the microbial consortium. In this study, we have isolated lactic acid bacteria (LAB from non-commercial water kefir grains (from Belgrade, Serbia and screened for dextran production. Among twelve Lisolates threeproduced slime colonies on modified MRS (mMRS agar containing sucrose instead of glucoseand were presumed to produce dextran. Three LABwere identified based on morphological, physiological and biochemical characteristics and 16S rRNA sequencing as Leuconostoc mesenteroides(strains T1 and T3 and Lactobacillus hilgardii (strain T5. The isolated strains were able to synthesize a substantial amount of dextran in mMRS broth containing 5% sucrose. Maximal yields (11.56, 18.00 and 18.46 g/l were obtained after 16h, 20h and 32h for T1, T3 and T5, respectively. Optimal temperature for dextran production was 23oC for two Leuconostoc mesenteroides strains and 30oC for Lactobacillus hilgardii strain. The produced dextrans were identified based on paper chromatography while the main structure characteristics of purified dextranwere observed by FT-IR spectroscopy. Our study shows that water kefir grains are a natural source of potent dextranproducing LAB. [Projekat Ministarstva nauke Republike Srbije, br. TR 31035

  17. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    Science.gov (United States)

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  18. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Science.gov (United States)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  19. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii

    NARCIS (Netherlands)

    Swaaf, de M.E.; Sijtsma, L.; Pronk, J.T.

    2003-01-01

    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cult

  20. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii

    NARCIS (Netherlands)

    Swaaf, de M.E.; Sijtsma, L.; Pronk, J.T.

    2003-01-01

    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cult

  1. Kinetics of Acid Blue 1 Adsorption from Aqueous Solution by Carbonaceous Substrate Produced from Biotic Precursor

    Institute of Scientific and Technical Information of China (English)

    FAZLULLAH,Khan Bangash; SULTAN,Alam; IRSHAD,Ahmad

    2007-01-01

    Adsorption of acid blue 1 from aqueous solution onto carbonaceous substrate produced from the wood of Paulownia tomentosa was investigated. The samples characterized by FTIR, SEM, EDS and XRD techniques, indicated that the surface functional groups like carboxyl, lactones or phenols and ethers have disappeared at high activation temperature (800 ℃) and as a result porous structure was developed that has a positive effect on the adsorption capacity. Bangham and parabolic diffusion models were applied to the kinetic adsorption data, which show that the adsorption of acid blue 1 was a diffusion controlled process. The reaction rate increased with the increase in temperatures of both the adsorption and activation. Thermodynamic parameters like △E≠, △H≠, △S≠ and △G≠ were calculated from the kinetic data. The negative values of △S≠ reflected the decrease in the disorder of the system at the solid-solution interface during adsorption. Gibbs free energy (△G≠), representing the driving force for the affinity of dye for the carbon surface, increased with the increase in sample activation and the adsorption temperatures.

  2. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    Science.gov (United States)

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  3. Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp.

    Science.gov (United States)

    Karthik, Narayanan; Binod, Parameswaran; Pandey, Ashok

    2015-01-01

    An extremely acidic extracellular chitinase produced by a Streptomyces sp. was purified 12.44-fold by ammonium sulphate precipitation, ion-exchange chromatography and gel-permeation chromatography and further characterised. The molecular mass of the enzyme was estimated to be about 40 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 2 and 6, and 50 °C respectively. The enzyme showed high stability in the acidic pH range of 2-6 and temperature stability of up to 50 °C. Additionally, the effect of some cations and other chemical compounds on the chitinase activity was studied. The activity of the enzyme was considerably retained under salinity conditions of up to 3%. The Km and Vmax values of the enzyme were determined to be 6.74 mg mL(-1) and 61.3 U mg(-1) respectively using colloidal chitin. This enzyme exhibited antifungal activity against phytopathogens revealing a potential biocontrol application in agriculture.

  4. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    Science.gov (United States)

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  5. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    Directory of Open Access Journals (Sweden)

    Amanda Araújo Souza

    Full Text Available Acid phosphatases (ACPases are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  6. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation.

  7. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    Science.gov (United States)

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL.

  8. Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora.

    Science.gov (United States)

    Toda, Takahiro; Ohi, Kanna; Kudo, Toshiyuki; Yoshida, Tomoyuki; Ikarashi, Nobutomo; Ito, Kiyomi; Sugiyama, Kiyoshi

    2009-01-01

    Ciprofloxacin (CPX), a new quinolone antibiotic, is reported to reduce CYP3A expression in the liver when administered to rats. The present study investigates whether the reduction in intestinal flora is involved in this reduction of CYP3A. While hepatic Cyp3a11 expression and triazolam metabolic activity were significantly reduced by CPX treatment of SPF mice, no significant changes were seen by CPX treatment of germ-free (GF) mice. Lithocholic acid (LCA)-producing bacteria in the feces as well as hepatic level of taurine conjugate of LCA were significantly reduced in CPX-treated SPF mice. Cyp3a11 expression in GF mice was significantly elevated when treated with LCA, known as an activator of fernesoid X receptor and pregnane X receptor. These results indicate that antibiotics such as CPX, having antimicrobial spectrums against LCA-producing bacteria, possibly cause decrease in LCA in the liver, resulting in lower CYP3A expression. The intestinal flora is reported to be altered also by stress, disease and age etc. The findings of the present study suggest that these changes in intestinal flora may modify CYP expression and contribute to individual differences in pharmacokinetics.

  9. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    Science.gov (United States)

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  10. Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food.

    Science.gov (United States)

    Kavitake, Digambar; Devi, Palanisamy Bruntha; Singh, Sanjay Pratap; Shetty, Prathapkumar Halady

    2016-05-01

    An exopolysaccharide (EPS) producing strain PUFSTM055 isolated from Idli batter (an Indian traditional cereal-legume based fermented food) was identified as Weissella confusa KR780676. The strain was shown to produce 17.2g/L (dry weight) of EPS in 2% sucrose supplemented MRS broth and the EPS was characterized. HPTLC analysis confirmed the presence of galactose monomers, indicating the homopolysaccharide nature of EPS. Fourier-transform infrared spectroscopy and nuclear magnetic resonance analysis revealed that the EPS was found to be a novel linear galactan containing α-(1→6)-linked galactose units. Scanning electron microscopy of the EPS revealed the presence of porous and spongy starch-like granules. Topographical examination of EPS by atomic force microscopy revealed that the EPS formed densely packed mesh-like structure with irregular spherical lumps. The EPS also showed high thermal stability with a degradation temperature of 287.5 °C and melting point at 274.65 °C. EPS was semi-crystalline with crystallinity index of 0.23 and showed 100% water solubility index. These characteristics of the EPS would make it a promising hydrocolloid for food industries as bio-thickeners, stabilizers and also as an encapsulating material for delivery of food bioactive compounds. This is the first study reporting the galactan compose of the EPS from lactic acid bacteria.

  11. Antibacterial Activity of Selected Standard Strains of Lactic Acid Bacteria Producing Bacteriocins – Pilot Study

    Directory of Open Access Journals (Sweden)

    Malgorzata Bodaszewska-Lubas

    2012-10-01

    Full Text Available  Introduction:In this paper, an attempt was made to evaluate the antibacterial potential of standard strains of lactic acid bacteria (LAB producing bacteriocins of various classes, thus demonstrating various mechanisms of cell membrane damages against the Streptococcus agalactiae strains (Group B Streptococcus, GBS, depending on surface polysaccharides and surface alpha-like protein genes.Materials/Methods:Antimicrobial property of the strains of L. plantarum C 11, L. sakei DSMZ 6333, and L. lactis ATCC 11454 producing bacteriocins: JK and EF plantaricins, sakacin and nisin, respectively, against the GBS strains was evaluated. The chosen to the study GBS strains were represented by serotypes Ia, Ib, II, III, V and they had bca, epsilon, rib, alp2 or alp3 alpha-like protein genes. The experiment was conducted by means of suspension culture and the bacteria count was determined using the serial dilution method.Results:A great ability of L. plantarum C 11 strain was proven to inhibit the GBS growth. The strain of L. sakei DSMZ 6333 did not demonstrate any ability to inhibit the growth of GBS, whereas L. lactis ATCC 11454 inhibited the growth of S. agalactiae indicator strains to a minor extent. Statistically significant differences were demonstrated between the GBS strains representing various serotypes against the antimicrobial activity of model LAB strains. The least sensitive to the activity of bacteriocins were the strains representing serotypes Ib and III, whereas the strains representing serotype II were the most sensitive. The sensitivity of the GBS strains to the antimicrobial activity of LAB was not dependent on alpha-like protein genes.Discussion:Among the LAB standard strains producing bacteriocins, the strongest antimicrobial property was observed in the strain of L. plantarum C 11. Because of the generally known and verified strong antagonistic property of the strains of L. plantarum species against indicator bacteria, it is necessary

  12. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed.

  13. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    Science.gov (United States)

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2015-10-23

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol.

    Science.gov (United States)

    García-Fraile, Paula; Silva, Luís R; Sánchez-Márquez, Salud; Velázquez, Encarna; Rivas, Raúl

    2013-08-15

    The production of organic acids from several yeasts isolated from mature plums on media containing glycerol as carbon source was analysed by HPLC-UV. The yeasts isolated were identified by sequencing the 5.8S internal transcribed spacer as Pichia fermentans, Wickerhamomyces anomalus and Candida oleophila. The organic acid profiles of these strains comprise acetic, citric, succinic and malic acids that qualitatively and quantitatively vary between different species as well as among strains from the same species. The production from glycerol of succinic, acetic, citric, malic and oxalic acids from C. oleophila and W. anomalus, and that of succinic, oxalic and acetic acids by P. fermentans is reported for the first time in this work, as is the production of oxalic acid from glycerol in yeasts. Our results also showed that mature fruits can be a good source of new yeasts able to metabolise glycerol, producing different organic acids with industrial and biotechnological interest.

  15. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  16. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C; Latham, Catherine F; Ramsland, Paul A; Gugasyan, Raffi; Cone, Richard A; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  17. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  18. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Muriel eAldunate

    2015-06-01

    Full Text Available Lactic acid and short chain fatty acids (SCFAs produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV, a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV or dysbiosis (BV, their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  19. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread

    Science.gov (United States)

    Black, Brenna A.; Zannini, Emanuele; Curtis, Jonathan M.

    2013-01-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C18:1 fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter−1. Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter−1. L. hammesii accumulated the monohydroxy C18:1 fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter−1 (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread. PMID:23315734

  20. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    Science.gov (United States)

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  1. KINETIKA FERMENTASI ASAM ASETAT (VINEGAR OLEH BAKTERI Acetobacter aceti B 127 DARI ETANOL HASIL FERMENTASI LIMBAH CAIR PULP KAKAO [Kinetics of Acetic Acid (Vinegar Fermentation By Acetobacter aceti B127 from Ethanol Produced by Fermentation of Liquid Waste of Cacao Pulp

    Directory of Open Access Journals (Sweden)

    M. Supli Effendi

    2002-08-01

    Full Text Available Acetic acid concentration is one of vinegar’s quality parameter. Acetic acid concentration in vinegar is influenced by the activity of acetic acid bacteria. This research studied the kinetics of anaerobic fermentation of liquid waste of cacao pulp by Saccharomyces cerevisiae R60 to produce ethanol and the kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127. The kinetics of acetic acid fermentation from ethanol by Acetobacter aceti B127 can be used as a basic of bioprocess design for aerobic fermentation in general and acetic acid fermentation from ethanol by Acetobacter aceti B127 in particular. Fermentation medium used was liquid waste of cocoa pulp with sugar content of 12.85%, and the addition of sucrosa and urea. The parameter observed was growth of Saccharomyces cerevisiae R60 and Acetobacter aceti B127, and chemical analysis including concentration of ethanol, total sugar and acetic acid, content. The research result showed that the  value was 0.048 hour-1, Y P was 0.676, Qp value was 0.033 hour-, and KLa value was 0.344, QO2.Cx value was 0.125 (mgO2L-1jam-1, Y X was s O2 0.378 (x 108selmL-1g-1¬¬O2, and dCT was 0.150 mgL-1hour-1. Concentration of acetic acid in the product was 4.24% or 42.4 gL-1

  2. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    Science.gov (United States)

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  3. The interactions between humic acids and Pluronic F127 produce nanoparticles useful for pharmaceutical applications

    Science.gov (United States)

    de Melo, Bruna Alice Gomes; Motta, Fernanda Lopes; Santana, Maria Helena Andrade

    2015-10-01

    Humic acids (HAs) are macromolecules composed of a large variety of functional groups including phenols and carboxylic acids, which have anti-inflammatory and antioxidant properties. HAs are completely soluble in aqueous medium in alkaline conditions only. At neutral pH, the protonation of the OH/OOH groups causes the formation of micelle-like structures containing a hydrophobic core. Pluronic F127 (PF127) is a nonionic and non-toxic block copolymer with surfactant properties, which are able to interact with HAs through hydrophobic interactions. In this work, these interactions were studied to determine the potential of HA-PF127 structures for pharmaceutical applications. The HAs used was composed of phenol (15.92 %), carboxylic (13.70 %), and other aromatic groups as characterized by 13C NMR, GC-MS, and FTIR. Initially, the HA-PF127 interactions were identified by a fivefold decrease in the CMC of PF127. The effects of the HA:PF127 molar ratio were studied by adding naturally occurring HAs to PF127 dispersions under mechanical stirring. The highest ratios, 1:8 and 1:80, favored the formation of submicellar aggregates of approximately 100 nm and zeta potentials of -28.37 and -30.23 mV, respectively. HA-PF127 structures were spherical, with a polydispersity of approximately 0.43. These results show that the interactions between HAs and PF127 produce stable nanoparticles. These nanoparticles may be used as a carrier for hydrophobic bioactives and as an antioxidant or anti-inflammatory agent. To the best of our knowledge, this work is the first attempt to develop HA-PF127 nanoparticles.

  4. The interactions between humic acids and Pluronic F127 produce nanoparticles useful for pharmaceutical applications

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Bruna Alice Gomes de; Motta, Fernanda Lopes; Santana, Maria Helena Andrade, E-mail: mariahelena.santana@gmail.com [University of Campinas, Development of Biotechnological Processes Laboratory, School of Chemical Engineering (Brazil)

    2015-10-15

    Humic acids (HAs) are macromolecules composed of a large variety of functional groups including phenols and carboxylic acids, which have anti-inflammatory and antioxidant properties. HAs are completely soluble in aqueous medium in alkaline conditions only. At neutral pH, the protonation of the OH/OOH groups causes the formation of micelle-like structures containing a hydrophobic core. Pluronic F127 (PF127) is a nonionic and non-toxic block copolymer with surfactant properties, which are able to interact with HAs through hydrophobic interactions. In this work, these interactions were studied to determine the potential of HA–PF127 structures for pharmaceutical applications. The HAs used was composed of phenol (15.92 %), carboxylic (13.70 %), and other aromatic groups as characterized by {sup 13}C NMR, GC–MS, and FTIR. Initially, the HA–PF127 interactions were identified by a fivefold decrease in the CMC of PF127. The effects of the HA:PF127 molar ratio were studied by adding naturally occurring HAs to PF127 dispersions under mechanical stirring. The highest ratios, 1:8 and 1:80, favored the formation of submicellar aggregates of approximately 100 nm and zeta potentials of −28.37 and −30.23 mV, respectively. HA–PF127 structures were spherical, with a polydispersity of approximately 0.43. These results show that the interactions between HAs and PF127 produce stable nanoparticles. These nanoparticles may be used as a carrier for hydrophobic bioactives and as an antioxidant or anti-inflammatory agent. To the best of our knowledge, this work is the first attempt to develop HA–PF127 nanoparticles.

  5. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    Science.gov (United States)

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  6. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling.

    Science.gov (United States)

    Paganelli, Alejandra; Gnazzo, Victoria; Acosta, Helena; López, Silvia L; Carrasco, Andrés E

    2010-10-18

    The broad spectrum herbicide glyphosate is widely used in agriculture worldwide. There has been ongoing controversy regarding the possible adverse effects of glyphosate on the environment and on human health. Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development. Xenopus laevis embryos were incubated with 1/5000 dilutions of a commercial GBH. The treated embryos were highly abnormal with marked alterations in cephalic and neural crest development and shortening of the anterior-posterior (A-P) axis. Alterations on neural crest markers were later correlated with deformities in the cranial cartilages at tadpole stages. Embryos injected with pure glyphosate showed very similar phenotypes. Moreover, GBH produced similar effects in chicken embryos, showing a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly. This suggests that glyphosate itself was responsible for the phenotypes observed, rather than a surfactant or other component of the commercial formulation. A reporter gene assay revealed that GBH treatment increased endogenous retinoic acid (RA) activity in Xenopus embryos and cotreatment with a RA antagonist rescued the teratogenic effects of the GBH. Therefore, we conclude that the phenotypes produced by GBH are mainly a consequence of the increase of endogenous retinoid activity. This is consistent with the decrease of Sonic hedgehog (Shh) signaling from the embryonic dorsal midline, with the inhibition of otx2 expression and with the disruption of cephalic neural crest development. The direct effect of glyphosate on early mechanisms of morphogenesis in vertebrate embryos opens concerns about the clinical findings from human offspring in populations exposed to GBH in agricultural fields.

  7. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.

  8. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Science.gov (United States)

    Pethybridge, Heidi R; Parrish, Christopher C; Morrongiello, John; Young, Jock W; Farley, Jessica H; Gunasekera, Rasanthi M; Nichols, Peter D

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  9. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  10. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  11. In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria.

    Science.gov (United States)

    Motwalli, Olaa; Essack, Magbubah; Jankovic, Boris R; Ji, Boyang; Liu, Xinyao; Ansari, Hifzur Rahman; Hoehndorf, Robert; Gao, Xin; Arold, Stefan T; Mineta, Katsuhiko; Archer, John A C; Gojobori, Takashi; Mijakovic, Ivan; Bajic, Vladimir B

    2017-01-05

    Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. To our knowledge FFASC is the first

  12. In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria

    KAUST Repository

    Motwalli, Olaa Amin

    2017-01-05

    Background Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. Results Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. Conclusion To

  13. Characterization of short chain fatty acid microcapsules produced by spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Maria Ines [Programa de Pos-Graduacao em Ciencia de Alimentos, Instituto de Quimica, Centro de Tecnologia, Bloco A, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao, Rio de Janeiro (RJ), 21910-900 (Brazil); Andrade, Leonardo R. [Departamento de Histologia e Embriologia, Instituto de Ciencias Biomedicas, CCS, UFRJ, Ilha do Fundao, Rio de Janeiro (RJ), 21941-590 (Brazil); Farina, Marcos [Departamento de Histologia e Embriologia, Instituto de Ciencias Biomedicas, CCS, UFRJ, Ilha do Fundao, Rio de Janeiro (RJ), 21941-590 (Brazil); Rocha-Leao, Maria Helena M. [Programa de Pos-Graduacao em Ciencia de Alimentos, Instituto de Quimica, Centro de Tecnologia, Bloco A, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao, Rio de Janeiro (RJ), 21910-900 (Brazil) and Departamento de Engenharia Bioquimica, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundao, Rio de Janeiro (RJ) 21910-900 (Brazil)]. E-mail: mhrl@eq.ufrj.br

    2004-11-01

    Microcapsules containing short chain fatty acids (SCFA) were produced by spray drying technique using different proportions of gum arabic and maltodextrin as wall materials. Proportions of 5% and 10% of gum arabic and maltodextrin isolated, and a mixture of 5% of maltodextrin and 5% of gum arabic were added to samples of fermented permeate containing SCFA, and spray dried. The microstructure of microcapsules was studied by scanning electron microscopy (SEM) and the size distribution was obtained by laser diffraction. SEM observations showed that the microcapsules structures were affected by type and proportion of wall material tested. Most of the microcapsules containing gum arabic as wall material had surface dents or invaginations. Microcapsules containing maltodextrin were spherical with few surface dents and some of them had pores. The larger microcapsule sizes were observed in those containing maltodextrin. Our results show that microstructure and size of microcapsules are affected by type and proportion of biomaterial used. The samples containing 5% of maltodextrin and the mixture of 5% of gum arabic with 5% of maltodextrin presented smooth surfaces and homogenous size distributions. The corresponding microcapsules are considered optimal to food industrial uses due to the flowability property. Besides, these capsules were found to present a homogenous distribution of diameters, which may give a homogenous flavor distribution to the food products.

  14. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids

    Directory of Open Access Journals (Sweden)

    Isabel Baeza

    2012-12-01

    Full Text Available Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.

  15. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    Science.gov (United States)

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  16. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  17. Screening for Glucosyltransferase gene (gtf from exopolysaccahride producing lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Donna M. Ariestanti

    2008-04-01

    Full Text Available Glucosyltransferase (GTF is an enzyme involved in exopolysaccharide (EPS polymer synthesis in microbes. One example of EPS that has been used in pharmaceutical and medical application is dextran. Dextran has been used in conjugated-drug delivery system as matrix. As a group of microbes producing EPS, lactic acid bacteria (LAB have been well reported carrying sucrase genes glucosyltransferase (gtf, as well as fructosyltransferases (ftf. In an attempt to search for novel gtf genes as the aim of this study, LAB collection isolated from local sources yielded from previous study were screened performing PCR using degenerate primers DegFor and DegRev. An approximately 660 base pairs (bp amplicons were obtained by using genomic DNAs of those LAB isolates as templates with conserved region of gtf genes catalytic domain as target. Two out of 20 LAB strains were yielded no amplicon as observed on agarose gel, while one strain exhibited non-specific amplicon DNA bands with sizes other than 660 bp. The two negative ones were isolated from soil obtained from dairy product waste field and from waste of soy sauce from previous study, while the latter was isolated from waste of soy sauce.

  18. Pyrenophoric acid, a phytotoxic sesquiterpenoid penta-2,4-dienoic acid produced by a potential mycoherbicide, Pyrenophora semeniperda.

    Science.gov (United States)

    Masi, Marco; Meyer, Susan; Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio

    2014-04-25

    A new phytotoxic sesquiterpenoid penta-2,4-dienoic acid, named pyrenophoric acid, was isolated from solid wheat seed culture of Pyrenophora semeniperda, a fungal pathogen proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum) and other annual bromes. These bromes are serious weeds in winter cereals and also on temperate semiarid rangelands. Pyrenophoric acid was characterized as (2Z,4E)-5-[(7S,9S,10R,12R)-3,4-dihydroxy-2,2,6-trimethylcyclohexyl)]-3-methylpenta-2,4-dienoic acid by spectroscopic and chemical methods. The relative stereochemistry of pyrenophoric acid was assigned using 1H,1H couplings and NOESY experiments, while its absolute configuration was determined by applying the advanced Mosher's method. Pyrenophoric acid is structurally quite closely related to the plant growth regulator abscisic acid. When bioassayed in a cheatgrass coleoptile elongation test at 10(-3) M, pyrenophoric acid showed strong phytotoxicity, reducing coleoptile elongation by 51% relative to the control. In a mixture at 10(-4) M, its negative effect on coleoptile elongation was additive with that of cytochalasin B, another phytotoxic compound found in the wheat seed culture extract of this fungus, demonstrating that the extract toxicity observed in earlier studies was due to the combined action of multiple phytotoxic compounds.

  19. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae.

    Science.gov (United States)

    Azzolini, Michela; Tosi, Emanuele; Lorenzini, Marilinda; Finato, Fabio; Zapparoli, Giacomo

    2015-02-01

    Although the positive role of non-Saccharomyces yeasts on the overall quality of wine is encouraging research into their oenological potential, current knowledge on the topic is still far from satisfactory. This work analyzes the contribution of starter cultures of Torulaspora delbrueckii, inoculated sequentially with Saccharomyces cerevisiae (multi-starter fermentation), on the fermentation and aromas of two different white style wines, i.e., dry and sweet wines. Chemical analysis of Soave and Chardonnay wines (dry wines) showed that multi-starter fermentation greatly affected the content of several important volatile compounds, including 2-phenylethanol, isoamyl acetate, fatty acid esters, C4-C10 fatty acids and vinylphenols. Moreover, strain-specific contributions have been shown by testing two different T. delbrueckii strains. Evidence of the positive impact of T. delbrueckii activity on wine quality was also demonstrated in Vino Santo, a sweet wine. Due to its low production of acetic acid, this non-Saccharomyces yeast is recommended for the fermentation of high sugar grapes. T. delbrueckii also influenced the content of different variety of chemical groups, including lactones. From a sensory perspective, all wines produced by multi-starter fermentation have greater aromatic intensity and complexity than wines resulting from a monoculture fermentation. These results emphasize the potential of employing T. delbrueckii, in association with S. cerevisiae, for the production of white wines of different styles with improved and enhanced flavour.

  20. Comparison of the boronic acid disk potentiation test and cefepime-clavulanic acid method for the detection of ESBL among AmpC-producing Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    R M Shoorashetty

    2011-01-01

    Full Text Available Purpose: Extended spectrum β-lactamase (ESBL and AmpC β-lactamase are important mechanisms of betalactam resistance among Enterobacteriaceae . The ESBL confirmation test described by Clinical Laboratory Standards Institute (CLSI is in routine use. This method fails to detect ESBL in the presence of AmpC. Therefore, we compared two different ESBL detection methods against the CLSI confirmatory test. Materials and Methods: A total 200 consecutive clinical isolates of Enterobacteriaceae from various clinical samples were tested for ESBL production using (i CLSI described phenotypic confirmatory test (PCT, (ii boronic acid disk potentiation test and (iii cefepime-CA disk potentiation method. AmpC confirmation was done by a modified three-dimensional test. Results: Among total 200 Enterobacteriaceae isolates, 82 were only ESBL producers, 12 were only AmpC producers, 55 were combined ESBL and AmpC producers, 14 were inducible AmpC producers and 37 isolates did not harboured any enzymes. The CLSI described PCT detected ESBL-producing organisms correctly but failed to detect 36.3% of ESBLs among combined enzyme producers. The boronic acid disk potentiation test reliably detected all ESBL, AmpC, and combined enzyme producers correctly. The cefepime-CA method detected all ESBLs correctly but another method of AmpC detection has to be adopted. Conclusion: The use of boronic acid in disk diffusion testing along with the CLSI described PCT enhances ESBL detection in the presence of AmpC betalactamases.

  1. Pyrenophoric acids B and C, two new phytotoxic sesquiterpenoids produced by Pyrenophora semeniperda

    Science.gov (United States)

    Marco Masi; Susan Meyer; Alessio Cimmino; Suzette Clement; Beth Black; Antonio Evidente

    2014-01-01

    Two new phytotoxic sesquiterpenoid acids, named pyrenophoric acids B and C, were isolated together with the related pyrenophoric and abscisic acids from solid Bromus tectorum (cheatgrass) seed culture of the seed pathogen Pyrenophora semeniperda. This fungus has been proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum), a Eurasian annual grass...

  2. BIOCHEMICAL CHARACTERISTICS OF LACTIC ACID PRODUCING BACTERIA AND PREPARATION OF CAMEL MILK CHEESE BY USING STARTER CULTURE

    OpenAIRE

    T. Ahmed and R. Kanwal

    2004-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the milk on specific media and pure culture was obtained by sub-culturing. Purification of culture was confirmed by Gram’s staining and identified by different biochemical tests. Camel milk contained lactic acid producing bacteria like Streptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus. L. acidophilus grew more rapidly in camel milk than others as its growth was supported by camel milk...

  3. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  4. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

    Science.gov (United States)

    Chen, Binbin; Lee, Dong-Yup; Chang, Matthew Wook

    2015-09-01

    Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.

  5. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.

    Science.gov (United States)

    Soe, Cho Z; Codd, Rachel

    2014-04-18

    To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical

  6. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    Science.gov (United States)

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  7. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.

    Science.gov (United States)

    Uhde, Andreas; Youn, Jung-Won; Maeda, Tomoya; Clermont, Lina; Matano, Christian; Krämer, Reinhard; Wendisch, Volker F; Seibold, Gerd M; Marin, Kay

    2013-02-01

    Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS(Glc) transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid L-lysine and the diamine putrescine from glucosamine was demonstrated.

  8. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana.

    Science.gov (United States)

    Kpikpi, Elmer Nayra; Thorsen, Line; Glover, Richard; Dzogbefia, Victoria Pearl; Jespersen, Lene

    2014-06-16

    Kantong is a condiment produced in Ghana by the spontaneous fermentation of kapok tree (Ceiba pentandra) seeds with cassava flour as an additive. Fermentation is over a 48h period followed by a drying and a kneading process. Although lactic acid bacteria (LAB) have previously been identified other micro-organisms may also be involved in the fermentation process. In this study we examined the occurrence of aerobic endospore-forming bacteria (AEB) in raw materials, during fermentation and in the final product at 2 production sites in Northern Ghana. Total aerobic mesophilic bacterial counts increased from 5.4±0.1log10CFU/g in the raw materials to 8.9±0.1log10CFU/g in the final products, with the AEB accounting for between 23% and 80% of the total aerobic mesophilic (TAM) counts. A total of 196 AEB were identified at a species/subspecies level by the use of phenotypic tests and genotypic methods including M13-PCR typing, 16S rRNA and gyrA gene sequencing. Bacillus subtilis subsp. subtilis (63% of the AEB), Bacillus safensis (26% of the AEB) and Bacillus amyloliquefaciens subsp. plantarum/Bacillus methylotrophicus (9% of the AEB) were the predominant Bacillus species during fermentation and in the final products. B. amyloliquefaciens/B. methylotrophicus originated from cassava flour, B. safensis from seeds and cassava flour, while the origin of B. subtilis was less clear. Brevibacillus agri and Peanibacillus spp. occurred sporadically. Further investigations are required to elucidate the role of AEB occurring in high numbers, in the fermentation of Kantong.

  9. Rekayasa Glukosa Dari Tandan Kosong Kelapa Sawit Melalui Proses Fermentasi Dengan Saccharomyces cerevisiae Menjadi Bioetanol

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2013-06-01

    Full Text Available This research aims to study the performance of Saccharomyces cerevisiae in glucose engineering into bioethanol. Glucose comes from palm oil empty fruit bunches that had been pretreated by delignification and fermentation. Glucose solution result from hydrolysis for each treatment of 500 ml was fermented with Saccharomyces cerevisiae (2, 4, 6 and 8 g, fermentation time (4, 6, 8 and 10 days. Result of fermentation was distilled at 75°C ± 5°C for 60 minutes. Bioethanol produced were tested including: specific gravity by using picnometer and acidity was tested by volumetric methods. The analysis showed that the best bioethanol produced in this experiment, followed by laboratory tests obtained from the interaction between treatments for time of hydrolysis by Aspergillus niger for 6 days, with 4 grams of Saccharomyces cerevisiae fermentation for 6 days. Based on the test results of bioethanol obtained density 0.9873 g/cm3, percentage of bioethanol 9.2889% (v/v and acid number value 1.820 mg/L.ABSTRAKPenelitian ini bertujuan untuk mempelajarai kinerja Saccharomyces cerevisiae  merekayasa glukosa menjadi bioetanol. Glukosa berasal dari tandan kosong kelapa sawit yang telah dilakukan pretreatment dengan cara delignifikasi dan fermentasi. Larutan glukosa hasil hidrolisis untuk masing-masing perlakuan sebanyak 500 mL difermentasi dengan S. cerevisiae (2; 4; 6 dan 8 g, waktu fermentasi (4; 6; 8 dan 10 hari. Hasil fermentasi didestilasi pada suhu 75oC ± 5oC selama 60 menit. Bioetanol yang dihasilkan diuji yang meliputi : berat jenis dengan mengunakan piknometer dan keasaman diuji dengan metode volumetri. Hasil analisis menunjukkan bioetanol yang terbaik berdasarkan hasil percobaan yang dilanjutkan dengan uji laboratorium didapatkan dari interaksi antar perlakuan untuk waktu hidrolisis dengan Aspergilus niger selama 6 hari, fermentasi dengan 4 gram Saccharomyces cerevisiae selama 6 hari. Berdasarkan hasil uji bioetanol untuk berat jenis 0,9873 g/cm3

  10. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products.

    Science.gov (United States)

    Kelly, W J; Asmundson, R V; Huang, C M

    1996-12-01

    Lactic acid bacteria isolated from a range of foods sold in ready-to-eat form were screened for bacteriocin production. Twenty-two bacteriocin-producing cultures were isolated from 14 of the 41 foods sampled. Bacteriocin-producing isolates from meat, fish and dairy products were Lactobacillus and Leuconostoc species typically found associated with these products. Most of these isolates gave only a narrow inhibitory spectrum although two showed activity against Listeria monocytogenes. Fruit and vegetable products gave a broader range of organisms but most of the bacteriocin-producing cultures were found to be strains of Lactococcus. Several lactococci produced a nisin-like activity, and showed a broad inhibitory spectrum against the indicator strains tested. The ease with which bacteriocin-producing strains could be isolated implies that they are already being safely consumed in food, and highlights the potential for using bacteriocin-producing cultures for biopreservation, especially in association with minimally processed products.

  11. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.

    Science.gov (United States)

    Bahaloo-Horeh, Nazanin; Mousavi, Seyyed Mohammad

    2017-02-01

    In the present study, spent medium bioleaching method was performed using organic acids produced by Aspergillus niger to dissolve Ni, Co, Mn, Li, Cu and Al from spent lithium-ion batteries (LIBs). Response surface methodology was used to investigate the effects and interactions between the effective factors of sucrose concentration, initial pH, and inoculum size to optimize organic acid production. Maximum citric acid, malic acid, and gluconic acid concentrations of 26,478, 1832.53 and 8433.76ppm, respectively, and a minimum oxalic acid concentration of 305.558ppm were obtained under optimal conditions of 116.90 (gl(-1)) sucrose concentration, 3.45% (vv(-1)) inoculum size, and a pH value of 5.44. Biogenically-produced organic acids are used for leaching of spent LIBs at different pulp densities. The highest metal recovery of 100% Cu, 100% Li, 77% Mn, and 75% Al occurred at 2% (wv(-1)) pulp density; 64% Co and 54% Ni recovery occurred at 1% (wv(-1)) pulp density. The bioleaching of metals from spent LIBs can decrease the environmental impact of this waste. The results of this study suggest that the process can be used for large scale industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  13. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  14. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    Science.gov (United States)

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  15. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  16. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production.

    Science.gov (United States)

    Zhu, Jia-Qing; Li, Xia; Qin, Lei; Li, Wen-Chao; Li, Hui-Ze; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-10-01

    Co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae was developed for bioethanol production from undetoxified pretreated biomass in simultaneously saccharification and co-fermentation (SSCF) process. Glucose accumulation during late fermentation phase in SSCF using xylose-utilizing strain can be eliminated by the introduction of inhibitor-tolerant strain. Effect of different ratios of two strains was investigated and xylose-utilizing strain to inhibitor-tolerant strain ratio of 10:1 (w/w) showed the best xylose consumption and the highest ethanol yield. Inoculating of xylose-utilizing strain at the later stage of SSCF (24-48h) exhibited lower ethanol yield than inoculating at early stage (the beginning 0-12h), probably due to the reduced enzymatic efficiency caused by the unconsumed xylose and oligomeric sugars. Co-culture SSCF increased ethanol concentration by 21.2% and 41.0% comparing to SSCF using individual inhibitor-tolerant and xylose-utilizing strain (increased from 48.5 and 41.7g/L to 58.8g/L), respectively, which suggest this co-culture system was very promising.

  17. Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase.

    Science.gov (United States)

    But, Andrada; Le Nôtre, Jérôme; Scott, Elinor L; Wever, Ron; Sanders, Johan P M

    2012-07-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative decarboxylation can be applied to mixtures of amino acids obtained from plant waste streams, leading to easily separable nitriles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. KRAFT MILL BIOREFINERY TO PRODUCE ACETIC ACID AND ETHANOL: TECHNICAL ECONOMIC ANALYSIS

    OpenAIRE

    Haibo Mao; Joseph M. Genco; Adriaan van Heiningen; Hemant Pendse

    2010-01-01

    The “near neutral hemicellulose extraction process” involves extraction of hemicellulose using green liquor prior to kraft pulping. Ancillary unit operations include hydrolysis of the extracted carbohydrates using sulfuric acid, removal of extracted lignin, liquid-liquid extraction of acetic acid, liming followed by separation of gypsum, fermentation of C5 and C6 sugars, and upgrading the acetic acid and ethanol products by distillation. The process described here is a variant of the “near n...

  19. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Hector, Ronald E; Panavas, Tadas; Sterner, David E; Qureshi, Nasib; Bischoff, Kenneth M; Bang, Sookie S; Mertens, Jeffrey A; Johnson, Eric T; Li, Xin-Liang; Jackson, John S; Caughey, Robert J; Riedmuller, Steven B; Bartolett, Scott; Liu, Siqing; Rich, Joseph O; Farrelly, Philip J; Butt, Tauseef R; Labaer, Joshua; Cotta, Michael A

    2008-09-01

    New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost-effectiveness of the process. Spider venom is one of many potential sources of novel insect-specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin-1 from the wolf spider were produced in high throughput using an automated integrated plasmid-based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin-1 open reading frames (ORF) in a novel small ubiquitin-like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so-called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin alpha-helix to interact with insect cell membranes or to increase its pore-forming ability, leading to cell lysis. The toxin peptides have potential as value-added coproducts to increase the cost-effectiveness of fuel ethanol bioproduction.

  20. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae.

    Science.gov (United States)

    Dai, Chunhua; Xiong, Feng; He, Ronghai; Zhang, Weiwei; Ma, Haile

    2017-05-01

    Effects of low-intensity ultrasound (at different frequency, treatment time and power) on Saccharomyces cerevisiae in different growth phase were evaluated by the biomass in the paper. In addition, the cell membrane permeability and ethanol tolerance of sonicated Saccharomyces cerevisiae were also researched. The results revealed that the biomass of Saccharomyces cerevisiae increased by 127.03% under the optimum ultrasonic conditions such as frequency 28kHz, power 140W/L and ultrasonic time 1h when Saccharomyces cerevisiae cultured to the latent anaphase. And the membrane permeability of Saccharomyces cerevisiae in latent anaphase enhanced by ultrasound, resulting in the augment of extracellular protein, nucleic acid and fructose-1,6-diphosphate (FDP) contents. In addition, sonication could accelerate the damage of high concentration alcohol to Saccharomyces cerevisiae although the ethanol tolerance of Saccharomyces cerevisiae was not affected significantly by ultrasound. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike;

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...

  2. Lactobacilli reduce cell cytotoxicity caused by Streptococcus pyogenes by producing lactic acid that degrades the toxic component lipoteichoic acid.

    Science.gov (United States)

    Maudsdotter, Lisa; Jonsson, Hans; Roos, Stefan; Jonsson, Ann-Beth

    2011-04-01

    Lactobacilli are known to prevent colonization by many pathogens; nevertheless, the mechanisms of their protective effect are largely unknown. In this work, we investigated the role of lactobacilli during infection of epithelial cells with group A streptococci (GAS). GAS cause a variety of illnesses ranging from noninvasive disease to more severe invasive infections, such as necrotizing fasciitis and toxic shock-like syndrome. Invasion of deeper tissues is facilitated by GAS-induced apoptosis and cell death. We found that lactobacilli inhibit GAS-induced host cell cytotoxicity and shedding of the complement regulator CD46. Further, survival assays demonstrated that lactic acid secreted by lactobacilli is highly bactericidal toward GAS. In addition, lactic acid treatment of GAS, but not heat killing, prior to infection abolishes the cytotoxic effects against human cells. Since lipoteichoic acid (LTA) of GAS is heat resistant and cytotoxic, we explored the effects of lactic acid on LTA. By applying such an approach, we demonstrate that lactic acid reduces epithelial cell damage caused by GAS by degrading both secreted and cell-bound LTA. Taken together, our experiments reveal a mechanism by which lactobacilli prevent pathogen-induced host cell damage.

  3. Optimization culture medium of Saccharomyces cerevisiae B5 with high ability of producing carbonyl reductase using response surface methodology%响应面法优化高选择性羰基还原酶产生菌Saccharomyces cerevisiae B5的培养基组成

    Institute of Scientific and Technical Information of China (English)

    欧志敏; 杨根生; 王鸿; 林德君

    2008-01-01

    借助于SAS软件,采用部分因子实验设计(FFD)和响应面分析法(RSM),对能够产生高选择性羰基还原酶的菌株Saccharomyces cerevisiae B5进行发酵培养基的优化.部分因子实验设计结果表明葡萄糖、硫酸铵、硫酸镁及磷酸氢二钾为影响Saccharomyces cerevisiae B5产生高选择性羰基还原酶的四个显著性因素.通过响应面分析法,得到最优发酵培养基组成为:葡萄糖29.7 g/L,酵母粉3 g/L,硫酸铵4.784 g/L,无水硫酸镁0.267 2 g/L,K2HPO4·3H2O 1.026 g/L,KH2PO41g/L.在优化的培养基条件下,羰基还原酶活力最高可达1 498.2 U/g.

  4. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  5. Xylanases, Cellulases, and Acid Protease Produced by Stenocarpella maydis Grown in Solid-state and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Edna María Hernández-Domínguez

    2014-03-01

    Full Text Available Activity levels of extracellular hydrolytic enzymes produced by Stenocarpella maydis, a fungal pathogen of maize, have so far not been reported. Production of xylanase, cellulase, and acid protease by this ascomycete using different culture media in solid-state and submerged fermentation was studied. In solid-state fermentation, polyurethane foam was used as an inert support, and corncob, corn leaves, and broken corn were used as biodegradable supports. The highest xylanase activity was produced in the medium with xylan in both fermentation systems, reaching 18,020 U/L and 19,266 U/L for submerged and solid-state fermentation, respectively. Cellulase production was observed only in the culture medium with carboxymethylcellulose, obtaining values of 7,872 U/L in submerged fermentation and 9,439 U/L in solid-state fermentation. The acid protease was produced only in minimal medium with glucose in acidic pH, reaching the highest levels of activity in SSF (806 U/L. The corncob was the best biodegradable support for the production of xylanases and acid protease. Two isoenzymes of xylanase and cellulase were observed in both fermentation systems, and three isoenzymes of xylanase were produced on the biodegradable supports.

  6. Gelation properties of spent duck meat surimi-like material produced using acid-alkaline solubilization methods.

    Science.gov (United States)

    Nurkhoeriyati, T; Huda, N; Ahmad, R

    2011-01-01

    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P gelation and color properties of spent duck and possibly applied for other high fat raw material.

  7. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells

    NARCIS (Netherlands)

    Bakdash, G.; Vogelpoel, L.T.; Capel, T.M. van; Kapsenberg, M.L.; Jong, E.C. de

    2015-01-01

    The vitamin A metabolite all-trans retinoic acid (RA) is an important determinant of intestinal immunity. RA primes dendritic cells (DCs) to express CD103 and produce RA themselves, which induces the gut-homing receptors alpha4beta7 and CCR9 on T cells and amplifies transforming growth factor (TGF)-

  8. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    Science.gov (United States)

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

  10. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat

    2017-01-01

    -CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the.9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2 g/L fatty alcohols in shake flasks, and 6.0 g/L in fed-batch fermentation, corresponding......Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2......% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four...

  11. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative

  12. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  13. Complete Genome Sequence of Streptomyces clavuligerus F613-1, an Industrial Producer of Clavulanic Acid.

    Science.gov (United States)

    Cao, Guangxiang; Zhong, Chuanqing; Zong, Gongli; Fu, Jiafang; Liu, Zhong; Zhang, Guimin; Qin, Ronghuo

    2016-01-01

    Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid.

  14. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  15. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse

    2014-01-01

    Malic acid is a C4 dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C4 dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk...... of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))−1 h−1 and with a yield of 1.49 mol mol−1. Intracellular fluxes were obtained using...

  16. A new alternative to produce gibberellic acid by solid state fermentation

    Directory of Open Access Journals (Sweden)

    Cristine Rodrigues

    2009-11-01

    Full Text Available Gibberellic acid (GA3 is an important hormone, which controls plant's growth and development. Solid State Fermentation (SSF allows the use of agro-industrial residues reducing the production costs. The screening of strains (four of Gibberella fujikuoroi and one of Fusarium moniliforme and substrates (citric pulp, soy bran, sugarcane bagasse, soy husk, cassava bagasse and coffee husk and inoculum preparation study were conducted in order to evaluate the best conditions to produce GA3 by SSF. Fermentation assays were carried out in erlenmeyers flasks at 29°C, with initial moisture of 75-80%. Different medium for inoculum production were tested in relation to cells viability and GA3 production by SSF. F. moniliforme LPB 03 and citric pulp were chosen for GA3 production. The best medium for inoculum production was citric pulp extract supplemented with sucrose. GA3 production by SSF reached 5.9 g /kg of dry CP after 3 days of fermentation.O ácido giberélico (GA3 é um importante hormônio vegetal. A fermentação no estado sólido (FES utiliza resíduos agro-industriais reduzindo os custos de produção. Neste trabalho a seleção de cepas (quatro de Gibberella fujikuoroi e uma de Fusarium moniliforme e substratos (polpa cítrica, casca de soja, bagaço de cana, farelo de soja, bagaço de mandioca e casca de café e o estudo da preparação do inóculo foram conduzidos para otimizar as condições de produção de GA3 por FES. Os ensaios foram realizados em frascos de erlenmeyer a 29°C, com umidade inicial de 75-80%. Diferentes meios para a produção do inóculo foram testados em relação à viabilidade das células e produção de GA3 por FES. F. moniliforme LPB03 e polpa cítrica foram escolhidos. O melhor meio para a produção de inóculo foi o extrato de polpa cítrica. A produção por FES alcançou 5.8 g de GA3/kg de polpa cítrica após 3 dias de fermentação.

  17. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20 omega-3 fatty acids (EFA measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST and chlorophyll-a (Chla, and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  18. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation.

    Science.gov (United States)

    Zheng, W; Lim, A L; Powers-Lee, S G

    1997-08-15

    Carbamoyl-phosphate synthetases (CPSases) utilize two molecules of ATP at two homologous domains, B and C, with ATP(B) used to form the enzyme-bound intermediate carboxy-phosphate and ATP(C) used to phosphorylate the carbamate intermediate. To further define the role of one CPSase peptide suggested by affinity labeling studies to be near the ATP(B) site, we have carried out site-directed mutagenic analysis of peptide 234-242 of the Saccharomyces cerevisiae arginine-specific CPSase. Mutants E234A, E234D, E236A, E236D and E238A were unable to complement the CPSase-deficient yeast strain LPL26 whereas mutants Y237A, E238D, R241K, R241E and R241P supported LPL26 growth as well as wild-type CPSase. Kinetic analysis of E234A and Y237A indicated impaired utilization of ATP(B) but not of ATP(C). D242A, a temperature-sensitive mutant, retained no detectable activity when assayed in vitro. These findings, together with the affinity labeling data and primary sequence analysis, strongly suggest that the yeast CPSase peptide 234-242 is located at the ATP(B) site and that some of its residues are important for functioning of the enzyme. D242 appears to occupy a critical structural position and E234, E236 and E238 appear to be critical for function, with the spatial arrangement of the carboxyl side chain also critical for E234 and E236.

  19. Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483.

    Science.gov (United States)

    Bolat, Irina; Romagnoli, Gabriele; Zhu, Feibai; Pronk, Jack T; Daran, Jean-Marc

    2013-09-01

    The hybrid genomes of Saccharomyces pastorianus consist of subgenomes similar to those of S. cerevisiae and S. eubayanus, and impact of the genome structure on flavour production and its regulation is poorly understood. This study focuses on ARO10, a 2-oxo-acid decarboxylase involved in production of higher alcohols. In S. pastorianus CBS1483, four ARO10 copies were identified, three resembled S. cerevisiae ARO10 and one S. eubayanus ARO10. Substrate specificities of lager strain (Lg)ScAro10 and LgSeubAro10 were compared by individually expressing them in a pdc1Δ-pdc5Δ-pdc6Δ-aro10Δ-thi3Δ S. cerevisiae strain. Both isoenzymes catalysed decarboxylation of the 2-oxo-acids derived from branched-chain, sulphur-containing amino acids and preferably phenylpyruvate. Expression of both alleles was induced by phenylalanine, however in contrast to the S. cerevisiae strain, the two genes were not induced by leucine. Additionally, LgSeubARO10 showed higher basal expression levels during growth with ammonia. ARO80, which encodes ARO10 transcriptional activator, is located on CHRIV and counts three Sc-like and one Seub-like copies. Deletion of LgSeubARO80 did not affect LgSeubARO10 phenylalanine induction, revealing 'trans' regulation across the subgenomes. ARO10 transcript levels showed a poor correlation with decarboxylase activities. These results provide insights into flavour formation in S. pastorianus and illustrate the complexity of functional characterization in aneuploid strains.

  20. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    Science.gov (United States)

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions.

  1. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  2. Trans- and cis-urocanic acid, biogenic amine and amino acid contents in ikan pekasam (fermented fish) produced from Javanese carp (Puntius gonionotus) and black tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Ezzat, M A; Zare, D; Karim, R; Ghazali, H M

    2015-04-01

    Ikan pekasam is a fermented fish product produced in Malaysia and is usually made from freshwater fish with ground roasted uncooked rice as the main source of carbohydrate. In this study, the amino acid, biogenic amine, and trans- and cis-urocanic acid (UCA) contents of fifteen commercial samples of Ikan pekasam made from Javanese carp and black tilapia, that had undergone either natural or acid-assisted fermentation, were quantified. The latter includes either tamarind (Tamarindus indica) pulp or dried slices of Garcinia atroviridis fruit in the fermentation process. Results showed that there are no significant differences in most of the biogenic amines including histamine, while there are significant differences in total UCA content, and trans- and cis-UCA contents between the two samples. Differences in the amino acid contents were largely fish-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten

    2017-01-01

    : a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy...

  4. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  5. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    Science.gov (United States)

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  6. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific

    Directory of Open Access Journals (Sweden)

    Chunxiao eWang

    2016-04-01

    Full Text Available The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine or glutamine were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  7. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    Science.gov (United States)

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  8. Microbial quality, physicochemical characteristics and fatty acid composition of a traditional butter produced from cows milk in East Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Idoui, T.; Benhamada, N.; Leghouchi, E.

    2010-07-01

    This is the first report describing microbiological, physicochemical properties and fatty acid composition of a traditional butter produced from cows milk in East of Algeria. Five butter samples were prepared in the laboratory according to the traditional method used by people in the Jijel areas (Eastern Algeria). Our results show the presence of lactic acid and psychrotrophic bacteria as well as yeasts, while staphylococci or lipolytic bacteria were not detected. Important differences were found in chemical values among butter samples. The pH values ranged from pH4.64 and pH5.53. Moisture and impurities exceeded 17.5% and 9.19% respectively. The values for acid index, peroxide index, saponification index and iodine index ranged from: 23.56-31.35mg KOH/g, 1.6-4 meq/kg, 140.25- 228.60 mg KOH/g and 35.35-53.69 mgI/100g respectively. Finally, the fatty acid composition showed that palmitic acid and oleic acid were the major saturated and unsaturated fatty acids. (Author) 20 refs.

  9. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    Science.gov (United States)

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  10. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Science.gov (United States)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  11. Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models

    National Research Council Canada - National Science Library

    Crowley, Sarah; Mahony, Jennifer; van Sinderen, Douwe

    2013-01-01

    A large-scale screen of some 7,000 presumptive lactic acid bacteria (LAB), isolated from animal, human, or plant origin, identified 1,149 isolates with inhibitory activity against the food-spoilage mould Penicillium expansum...

  12. In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork.

    Science.gov (United States)

    Pilasombut, Komkhae; Rumjuankiat, Kittaporn; Ngamyeesoon, Nualphan; Duy, Le Nguyen Doan

    2015-01-01

    The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

  13. Isolation, molecular characterization and screening of indigenous lactobacilli for their abilities to produce bioactive conjugated linoleic acid (CLA).

    Science.gov (United States)

    Dahiya, Dinesh Kumar; Puniya, Anil Kumar

    2017-03-01

    Ingestion of conjugated linoleic acid poised many health benefits; however, amount of CLA one can get through generalized diet in is inadequate in exerting the desired benefits. Therefore, presence of CLA producing lactobacilli in dairy fermented foods has a tremendous potential to increase the CLA content. Therefore, present study was focused to isolate and characterize CLA producing lactobacilli from different dairy products and human faeces. Arguably, 283 lactobacilli were isolated from various sources and tested for CLA production. Fifty-seven CLA producing (≥20 µg/ml) lactobacilli were selected from screening in de Man, Rogosa and Sharpe (MRS) broth and reconstituted with skim milk (SM), supplemented with 0.5 mg/ml of linoleic acid. Positive strains were classified into-L. plantarum (44%), L. gasseri (30%), L. fermentum (21%) and L. salivarius (5%) species. Nineteen most efficient strains (CLA ≥25 µg/ml) were further assessed in SM for CLA production. Total 08 strains produced significantly higher CLA in SM than MRS and also produced cis 9, trans 11, trans 10, cis 12 and trans 9, trans 11 isomers. Overall, L. plantarum HIF15 was reported as the best producer of CLA and other 08 lactobacilli may be utilized for the formulation of CLA-enriched functional foods to support these bacteria to synthesize CLA in the human gut.

  14. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    Science.gov (United States)

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  15. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    Directory of Open Access Journals (Sweden)

    Ja Yeong Jang

    Full Text Available Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS. Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10% and oxalic acid-WP8 (ai 8%, were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate. These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  16. Effect of purified β-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs.

    Science.gov (United States)

    Sweeney, T; Collins, C B; Reilly, P; Pierce, K M; Ryan, M; O'Doherty, J V

    2012-10-01

    β-Glucans have been identified as natural biomolecules with immunomodulatory activity. The first objective of the present study was to compare the effects of purified β-glucans derived from Laminaria digitata, L. hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations and intestinal volatile fatty acid (VFA) production. The second aim was to compare the gene expression profiles of the markers of pro- and anti-inflammation in both unchallenged and lipopolysaccharide (LPS)-challenged ileal and colonic tissues. β-Glucans were included at 250 mg/kg in the diets. The β-glucans derived from L. hyperborea, L. digitata and S. cerevisiae all reduced the Enterobacteriaceae population (P0·05) in the ileum and colon. There was a significant interaction between gastrointestinal region and β-glucan source in the expression of cytokine markers, IL-1α (yeast sources reduce Enterobacteriaceae counts and pro-inflammatory markers in the colon, though the mechanisms of action may be different between the soluble and insoluble fibre sources.

  17. Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions.

    Science.gov (United States)

    Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin

    2017-08-01

    In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.

  18. Endogenously produced n-3 fatty acids protect against ovariectomy induced bone loss in fat-1 transgenic mice.

    Science.gov (United States)

    Banu, Jameela; Bhattacharya, Arunabh; Rahman, Mizanur; Kang, J X; Fernandes, Gabriel

    2010-11-01

    Aging is associated with bone loss, leading to increased risk of fractures. Recently, there is growing interest in identifying nutritional supplements that can prevent bone loss with minimum side effects. There is increasing evidence for the beneficial effects of n-3 fatty acids in the prevention of bone loss. A transgenic mouse model (fat-1) that produces n-3 fatty acids endogenously and its wild type counterpart were used in this study to determine the effects of endogenously produced n-3 fatty acids on serum bone turnover markers, long bones, and lumbar vertebrae. Serum alkaline phosphatase and P1NP levels decreased significantly in wild type mice after ovariectomy. No significant changes were seen in osteocalcin. Cancellous and cortical bone mass were higher in the femur of fat-1 mice. In wild type mice, there was significant loss of bone after ovariectomy in the distal femur, femoral neck, proximal tibia, and fourth lumbar vertebra. However, in fat-1 mice, there was no, or significantly less, bone lost after ovariectomy in all the sites studied. We conclude that endogenously produced n-3 fatty acids can attenuate ovariectomy induced bone loss in the different bone sites studied, mainly as a consequence of decreased bone resorption at the endosteal surface.

  19. Research on some factors influencing acid and exopolysaccharide produced by dairy propionibacterium strains isolated from traditional homemade Turkish cheeses.

    Science.gov (United States)

    Darilmaz, Derya Onal; Gumustekin, Yesim

    2012-05-01

    In this study, a total of 32 isolated strains and 5 reference strains of dairy propionibacteria were analyzed for acid and exopolysaccharide (EPS) production in skim milk and yeast extract-lactate broth (YEL) media in order to investigate the physiological background and preservative role of acid and EPS. The effects of final culture pH and optical density on acid and EPS production were also determined. On average, all strains produced more acid and reached lower final pH values in skim milk than in YEL medium. While the correlations obtained between the acid produced by propionibacterium strains and their final culture pH in skim milk medium were significant (P preservative in the food industry for replacement or reduction of the increasing use of chemical additives. The EPS production by propionibacterium strains during growth in YEL medium was 72 to 168 mg/liter, while in skim milk it was 94 to 359 mg/liter. The monomer compositions of the EPSs formed by the six selected dairy propionibacteria strains were analyzed. The EPSs may have applications as food grade additives and viscosity-stabilizing agents.

  20. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.

    Science.gov (United States)

    Athalye, Sneha K; Garcia, Rafael A; Wen, Zhiyou

    2009-04-01

    Crude glycerol is a major byproduct for the biodiesel industry. Producing value-added products through microbial fermentation on crude glycerol provides opportunities to utilize a large quantity of this byproduct. The objective of this study is to explore the potential of using crude glycerol for producing eicosapentaenoic acid (EPA, 20:5 n-3) by the fungus Pythium irregulare . When P. irregulare was grown in medium containing 30 g/L crude glycerol and 10 g/L yeast extract, EPA yield and productivity reached 90 mg/L and 14.9 mg/L x day, respectively. Adding pure vegetable oils (flaxseed oil and soybean oil) to the culture greatly enhanced the biomass and the EPA production. This enhancement was due to the oil absorption by the fungal cells and elongation of shorter chain fatty acids (e.g., linoleic acid and alpha-linolenic acid) into longer chain fatty acid (e.g., EPA). The major impurities contained in crude glycerol, soap and methanol, were inhibitory to fungal growth. Soap can be precipitated from the liquid medium through pH adjustment, whereas methanol can be evaporated from the medium during autoclaving. The glycerol-derived fungal biomass contained about 15% lipid, 36% protein, and 40% carbohydrate, with 9% ash. In addition to EPA, the fungal biomass was also rich in the essential amino acids lysine, arginine, and leucine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that aluminum, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, silicon, sodium, sulfur, and zinc were present in the biomass, whereas no heavy metals (such as mercury and lead) were detected. The results show that it is feasible to use crude glycerol for producing fungal biomass that can serve as EPA-fortified food or feed.

  1. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana.

    Science.gov (United States)

    d'Ippolito, Giuliana; Dipasquale, Laura; Fontana, Angelo

    2014-09-01

    The heterotrophic bacterium Thermotoga neapolitana produces hydrogen by fermentation of sugars. Under capnophilic (carbon dioxide requiring) conditions, the process is preferentially associated with the production of lactic acid, which, as shown herein, is synthesized by reductive carboxylation of acetyl coenzyme A. The enzymatic coupling is dependent on the carbon dioxide stimulated activity of heterotetrameric pyruvate:ferredoxin oxidoreductase. Under the same culture conditions, T. neapolitana also operates the unfavorable synthesis of lactic acid from an exogenous acetate supply. This process, which requires carbon dioxide (or carbonate) and an unknown electron donor, allows for the conversion of carbon dioxide into added-value chemicals without biomass deconstruction.

  2. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Science.gov (United States)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  3. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    OpenAIRE

    Capusoni, C.; Arioli, S.; Zambelli, P.; Moktaduzzaman, M.; Mora, D. de; Compagno, C.

    2016-01-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid und...

  4. Application of hydrothermally produced TiO{sub 2} nanotubes in photocatalytic esterification of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manique, Márcia Cardoso, E-mail: marciamanique@yahoo.com.br; Silva, Aline Posteral; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2016-04-15

    Highlights: • A hydrothermal method was employed to synthesize TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes were studied for photocatalytic esterification of oleic acid. • Optimum conditions were obtained at a concentration of 15% (w/w) and a molar ratio 3:1 (methanol:oleic acid). • The greater number of hydroxyl groups may have contributed to a low yield of ester versus P25. - Abstract: This study investigated the use of TiO{sub 2} nanotubes (TNTs) as photocatalysts in the esterification of fatty acids for biodiesel production. The TNTs were synthesized via a hydrothermal route and evaluated for their crystallinity, morphology, surface area and photocatalytic activity compared with a TiO{sub 2} P25 standard. Optimum photocatalytic conditions were obtained using a 15% concentration of catalyst (w/w) and a 3:1 molar ratio of methanol to oleic acid. The highest yield of methyl oleate obtained was 86.0% when P25 was used as a photocatalyst. The lowest band gap energy was obtained with the TNT sample synthesized at 110 °C for 48 h (E{sub g} = 3.08 eV), which also exhibited the highest rate of oleic acid esterification (59.3%) among all the investigated TNTs. We also observed that, in addition to the band gap, other factors such as the crystalline phase of the TNTs and their surface area were important in photocatalytic performance.

  5. p-Aminoacetophenonic Acids Produced by a Mangrove Endophyte Streptomyces sp. (strain HK10552

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    2010-04-01

    Full Text Available Four new p-aminoacetophenonic acids, named (2E-11-(4′-aminophenyl-5,9-dihydroxy-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (1, 9-(4′-aminophenyl-3,7-dihydroxy-2,4,6-trimethyl-9-oxo-nonoic acid(2, (2E-11-(4′-aminophenyl-5,9-O-cyclo-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (3 and 9-(4′-aminophenyl-3,7-O-cyclo-2,4,6-trimethyl-9-oxo-nonoic