WorldWideScience

Sample records for acid prevents lipotoxic

  1. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    International Nuclear Information System (INIS)

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H.

    2006-01-01

    α-Lipoic acid (α-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, α-LA protects against cardiac lipotoxicity, α-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In α-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-γ cofactor-1α mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that α-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity

  2. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  3. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring "1"4C–CO_2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  4. Lipotoxicity: Effects of Dietary Saturated and Transfatty Acids

    Directory of Open Access Journals (Sweden)

    Débora Estadella

    2013-01-01

    Full Text Available The ingestion of excessive amounts of saturated fatty acids (SFAs and transfatty acids (TFAs is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.

  5. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-01-01

    Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  6. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-09

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  7. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    International Nuclear Information System (INIS)

    Park, Jeong Su; Kang, Dong Hoon; Lee, Da Hyun; Bae, Soo Han

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  8. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Lipotoxicity induces hepatic protein inclusions through TBK1-mediated p62/SQSTM1 phosphorylation.

    Science.gov (United States)

    Cho, Chun-Seok; Park, Hwan-Woo; Ho, Allison; Semple, Ian A; Kim, Boyoung; Jang, Insook; Park, Haeli; Reilly, Shannon; Saltiel, Alan R; Lee, Jun Hee

    2017-12-18

    Obesity commonly leads to hepatic steatosis, which often provokes lipotoxic injuries to hepatocytes that cause non-alcoholic steatohepatitis (NASH). NASH in turn is associated with the accumulation of insoluble protein aggregates that are composed of ubiquitinated proteins and ubiquitin adaptor p62/sequestosome 1 (SQSTM1). The formation of p62 inclusions in hepatocytes is the critical marker that distinguishes simple fatty liver from NASH and predicts a poor prognostic outcome for subsequent liver carcinogenesis. However, the molecular mechanism by which lipotoxicity induces protein aggregation is currently unknown. Here we show that upon saturated fatty acid-induced lipotoxicity, Tank-binding protein kinase 1 (TBK1) is activated and phosphorylates p62. The TBK1-mediated p62 phosphorylation is important for lipotoxicity-induced aggregation of ubiquitinated proteins and the formation of large protein inclusions in hepatocytes. In addition, cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), upstream regulators of TBK1, are involved in the lipotoxic activation of TBK1 and subsequent p62 phosphorylation in hepatocytes. Furthermore, TBK1 inhibition prevented formation of the ubiquitin-p62 aggregates, not only in cultured hepatocytes, but also in mouse models of obesity and NASH. These results suggest that lipotoxic activation of TBK1 and subsequent p62 phosphorylation are critical steps in the NASH pathology of protein inclusion accumulation in hepatocytes. This mechanism can provide an explanation for how hypernutrition and obesity promote the development of severe liver pathologies, such as steatohepatitis and liver cancer, by facilitating the formation of p62 inclusions. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  10. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    Science.gov (United States)

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  11. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    Directory of Open Access Journals (Sweden)

    Jie-wei Wang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  12. Stearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Tamaki Iwai

    2016-11-01

    Full Text Available Saturated fatty acid (SFA-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we identified stearoyl-CoA desaturase-1 (SCD1, whose expression level significantly decreased in the kidneys of high-fat diet (HFD-induced diabetic mice, compared with non-diabetic mice. SCD1 is an enzyme that desaturates SFAs, converting them to monounsaturated fatty acids (MUFAs, leading to the formation of neutral lipid droplets. In culture, retrovirus-mediated overexpression of SCD1 or MUFA treatment significantly ameliorated SFA-induced apoptosis in PTECs by enhancing intracellular lipid droplet formation. In contrast, siRNA against SCD1 exacerbated the apoptosis. Both overexpression of SCD1 and MUFA treatment reduced SFA-induced apoptosis via reducing endoplasmic reticulum stress in cultured PTECs. Thus, HFD-induced decrease in renal SCD1 expression may play a pathogenic role in lipotoxicity-induced renal injury, and enhancing SCD1-mediated desaturation of SFA and subsequent formation of neutral lipid droplets may become a promising therapeutic target to reduce SFA-induced lipotoxicity. The present study provides a novel insight into lipotoxicity in the pathogenesis of diabetic nephropathy.

  13. Ceramide-Protein Interactions Modulate Ceramide-Associated Lipotoxic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Stanley M. Walls

    2018-03-01

    Full Text Available Lipotoxic cardiomyopathy (LCM is characterized by abnormal myocardial accumulation of lipids, including ceramide; however, the contribution of ceramide to the etiology of LCM is unclear. Here, we investigated the association of ceramide metabolism and ceramide-interacting proteins (CIPs in LCM in the Drosophila heart model. We find that ceramide feeding or ceramide-elevating genetic manipulations are strongly associated with cardiac dilation and defects in contractility. High ceramide-associated LCM is prevented by inhibiting ceramide synthesis, establishing a robust model of direct ceramide-associated LCM, corroborating previous indirect evidence in mammals. We identified several CIPs from mouse heart and Drosophila extracts, including caspase activator Annexin-X, myosin chaperone Unc-45, and lipogenic enzyme FASN1, and remarkably, their cardiac-specific manipulation can prevent LCM. Collectively, these data suggest that high ceramide-associated lipotoxicity is mediated, in part, through altering caspase activation, sarcomeric maintenance, and lipogenesis, thus providing evidence for conserved mechanisms in LCM pathogenesis in mammals.

  14. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats

    Science.gov (United States)

    Creus, Agustina; Ferreira, María R.; Oliva, María E.; Lombardo, Yolanda B.

    2016-01-01

    This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats. PMID:26828527

  15. Effect of α-linolenic acid on endoplasmic reticulum stress-mediated apoptosis of palmitic acid lipotoxicity in primary rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Dong Lei

    2011-07-01

    Full Text Available Abstract Background Hepatic inflammation and degeneration induced by lipid depositions may be the major cause of nonalcoholic fatty liver disease (NAFLD. In this study, we investigated the effects of saturated and unsaturated fatty acids (FA on apoptosis in primary rat hepatocytes. Methods The primary rat hepatocytes were treated with palmitic acid and/or α-linolenic acid in vitro. The expression of proteins associated with endoplasmic reticulum (ER stress, apoptosis, caspase-3 levels were detected after the treatment. Results The treatment with palmitic acid produced a significant increase in cell death. The unfolded protein response (UPR-associated genes CHOP, GRP78, and GRP94 were induced to higher expression levels by palmitic acid. Co-treatment with α-linolenic acid reversed the apoptotic effect and levels of all three indicators of ER stress exerted by palmitic acid. Tunicamycin, which induces ER stress produced similar effects to those obtained using palmitic acid; its effects were also reversed by α-linolenic acid. Conclusions α-Linolenic acid may provide a useful strategy to avoid the lipotoxicity of dietary palmitic acid and nutrient overload accompanied with obesity and NAFLD.

  16. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Gema Medina-Gomez

    2007-04-01

    Full Text Available Peroxisome proliferator activated receptor gamma 2 (PPARg2 is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/- Lep(ob/Lep(ob (POKO mouse, resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a promoting adipose tissue expansion, (b increasing the lipid-buffering capacity of peripheral organs, and (c facilitating the adaptive proliferative response of beta-cells to insulin resistance.

  17. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-06-01

    The data presented here is related to the research article entitled "Lipid droplets induced by secreted phospholipase A 2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress" by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018) 247-265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG) and phosphatidylcholine (PC) composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3). Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL) and by exogenous addition of secreted phospholipase A 2 (sPLA 2 ) in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress.

  18. Lipidomic data on lipid droplet triglyceride remodelling associated with protection of breast cancer cells from lipotoxic stress

    Directory of Open Access Journals (Sweden)

    Eva Jarc

    2018-06-01

    Full Text Available The data presented here is related to the research article entitled “Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress” by E. Jarc et al., Biochim. Biophys. Acta 1863 (2018 247–265. Elevated uptake of unsaturated fatty acids and lipid droplet accumulation are characteristic of aggressive cancer cells and have been associated with the cellular stress response. The present study provides lipidomic data on the triacylglycerol (TAG and phosphatidylcholine (PC composition of MDA-MB-231 breast cancer cells exposed to docosahexaenoic acid (DHA; 22:6, ω-3. Datasets provide information on the changes in lipid composition induced by depletion of adipose triglyceride lipase (ATGL and by exogenous addition of secreted phospholipase A2 (sPLA2 in DHA-treated cells. The presented alterations in lipid composition, mediated by targeting lipid droplet biogenesis and lipolysis, are associated with protection from lipotoxicity and allow further investigation into the role of lipid droplets in the resistance of cancer cells to lipotoxic stress. Keywords: Lipid droplets, Lipidomics, Adipose triglyceride lipase, Polyunsaturated fatty acid, Cancer, Phospholipase A2

  19. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Directory of Open Access Journals (Sweden)

    Sathish Kumar Natarajan

    2018-01-01

    Full Text Available Acute fatty liver of pregnancy (AFLP, a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD. The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.

  20. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Science.gov (United States)

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  1. Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?

    DEFF Research Database (Denmark)

    Sørensen, Thorkild I A; Virtue, Sam; Vidal-Puig, Antonio

    2010-01-01

    mortality. The lipotoxicity theory implies that the fat stored in droplets of triglycerides in the cells are biologically inert and that the metabolic dysfunctions are primarily due to the increased exposure of the cells to fatty acids. If this is true, it has profound implications for the interpretations...... to avoid excess exposure of the cells to the fatty acids before the metabolic dysfunctions have emerged. In analogy with the glucose tolerance test, a fatty acid tolerance test may be needed to identify individuals who are at a level of risk for developing lipotoxicity induced metabolic dysfunctions...

  2. Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Gema Marín-Royo

    2018-02-01

    Full Text Available Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3 induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day attenuated the increase in cardiac levels of total triglyceride (TG. MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2 to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.

  3. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The critical role of Astragalus polysaccharides for the improvement of PPARα [ correction of PPRAα]-mediated lipotoxicity in diabetic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available BACKGROUND: Obesity-related diabetes mellitus leads to increased myocardial uptake and oxidation of fatty acids, resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that Astragalus polysaccharides (APS administration was sufficient to improve the systemic metabolic disorder and cardiac dysfunction in diabetic models. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the precise role of APS therapy in the pathogenesis of myocardial lipotoxity in diabetes, db/db diabetic mice and myosin heavy chain (MHC- peroxisome proliferator-activated receptor (PPAR α mice were characterized and administrated with or without APS with C57 wide- type mice as normal control. APS treatment strikingly improved the myocyte triacylglyceride accumulation and cardiac dysfunction in both db/db mice and MHC-PPARα mice, with the normalization of energy metabolic derangements in both db/db diabetic hearts and MHC-PPARα hearts. Consistently, the activation of PPARα target genes involved in myocardial fatty acid uptake and oxidation in both db/db diabetic hearts and MHC-PPARα hearts was reciprocally repressed by APS administration, while PPARα-mediated suppression of genes involved in glucose utilization of both diabetic hearts and MHC-PPARα hearts was reversed by treatment with APS. CONCLUSIONS: We conclude that APS therapy could prevent the development of diabetic cardiomyopathy through a mechanism mainly dependent on the cardiac PPARα-mediated regulatory pathways.

  6. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...

  7. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways.

    Science.gov (United States)

    Weiss, Thomas S; Lupke, Madeleine; Ibrahim, Sara; Buechler, Christa; Lorenz, Julia; Ruemmele, Petra; Hofmann, Ute; Melter, Michael; Dayoub, Rania

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.

  8. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways.

    Directory of Open Access Journals (Sweden)

    Thomas S Weiss

    Full Text Available Nonalcoholic fatty liver disease (NAFLD covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH and cirrhosis. Free fatty acids (FFA induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration for FFA induced ER (endoplasmatic reticulum -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa or expressing short form ALR (sfALR, 15kDa were incubated with palmitic acid (PA and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG, mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK, X-box binding protein-1 (XBP1 and proapoptotic transcription factor C/EBP-homologous protein (CHOP, and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.

  9. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice

    Science.gov (United States)

    Zhou, Mei; Learned, R. Marc; Rossi, Stephen J.; DePaoli, Alex M.; Tian, Hui

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent chronic liver disease for which no approved therapies are available. Despite intensive research, the cellular mechanisms that mediate NAFLD pathogenesis and progression are poorly understood. Although obesity, diabetes, insulin resistance, and related metabolic syndrome, all consequences of a Western diet lifestyle, are well‐recognized risk factors for NAFLD development, dysregulated bile acid metabolism is emerging as a novel mechanism contributing to NAFLD pathogenesis. Notably, NAFLD patients exhibit a deficiency in fibroblast growth factor 19 (FGF19), an endocrine hormone in the gut–liver axis that controls de novo bile acid synthesis, lipogenesis, and energy homeostasis. Using a mouse model that reproduces the clinical progression of human NAFLD, including the development of simple steatosis, nonalcoholic steatohepatitis (NASH), and advanced “burnt‐out” NASH with hepatocellular carcinoma, we demonstrate that FGF19 as well as an engineered nontumorigenic FGF19 analogue, M70, ameliorate bile acid toxicity and lipotoxicity to restore liver health. Mass spectrometry‐based lipidomics analysis of livers from mice treated with FGF19 or M70 revealed significant reductions in the levels of toxic lipid species (i.e., diacylglycerols, ceramides and free cholesterol) and an increase in levels of unoxidized cardiolipins, an important component of the inner mitochondrial membrane. Furthermore, treatment with FGF19 or M70 rapidly and profoundly reduced levels of liver enzymes, resolved the histologic features of NASH, and enhanced insulin sensitivity, energy homeostasis, and lipid metabolism. Whereas FGF19 induced hepatocellular carcinoma formation following prolonged exposure in these mice, animals expressing M70 showed no evidence of liver tumorigenesis in this model. Conclusion: We have engineered an FGF19 hormone that is capable of regulating multiple pathways to deliver antisteatotic

  11. PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase

    Directory of Open Access Journals (Sweden)

    Soda Balla Diop

    2015-03-01

    Full Text Available Obesity and metabolic syndrome are associated with an increased risk for lipotoxic cardiomyopathy, which is strongly correlated with excessive accumulation of lipids in the heart. Obesity- and type-2-diabetes-related disorders have been linked to altered expression of the transcriptional cofactor PGC-1α, which regulates the expression of genes involved in energy metabolism. Using Drosophila, we identify PGC-1/spargel (PGC-1/srl as a key antagonist of high-fat diet (HFD-induced lipotoxic cardiomyopathy. We find that HFD-induced lipid accumulation and cardiac dysfunction are mimicked by reduced PGC-1/srl function and reversed by PGC-1/srl overexpression. Moreover, HFD feeding lowers PGC-1/srl expression by elevating TOR signaling and inhibiting expression of the Drosophila adipocyte triglyceride lipase (ATGL (Brummer, both of which function as upstream modulators of PGC-1/srl. The lipogenic transcription factor SREBP also contributes to HFD-induced cardiac lipotoxicity, likely in parallel with PGC-1/srl. These results suggest a regulatory network of key metabolic genes that modulates lipotoxic heart dysfunction.

  12. The Adaptive Endoplasmic Reticulum Stress Response to Lipotoxicity in Progressive Human Nonalcoholic Fatty Liver Disease

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Novák, Petr; Hardwick, R.N.; Flores-Keown, B.; Zhao, F.; Klimecki, W. T.; Cherrington, N.J.

    2014-01-01

    Roč. 137, č. 1 (2014), s. 26-35 ISSN 1096-6080 Institutional support: RVO:60077344 Keywords : nonalcoholic fatty liver disease * lipotoxicity * nonalcoholic steatohepatitis Subject RIV: CE - Biochemistry Impact factor: 3.854, year: 2014

  13. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  14. Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects?

    Science.gov (United States)

    Sørensen, Thorkild I A; Virtue, Sam; Vidal-Puig, Antonio

    2010-03-01

    The risk functions for obesity (defined as the quantitative relation between degree of obesity throughout its range and the risk of health problems) have been used to define 'obesity' as an excess storage of fat in the body to such an extent that it causes health problems leading to increased mortality. The lipotoxicity theory implies that the fat stored in droplets of triglycerides in the cells are biologically inert and that the metabolic dysfunctions are primarily due to the increased exposure of the cells to fatty acids. If this is true, it has profound implications for the interpretations of the multiple epidemiological studies of the risk functions. It is obvious from all these studies that the sizes of the fat depots are risk indicators of health effects in various ways. Paradoxically, the sizes of the fat stores are also indicators of the preceding implementation of the ability of the body to protect itself against the toxic effects of the free fatty acids. The current risk of metabolic dysfunctions appears to be determined by the balance between the rate of loading of the body with fatty acids and the rate of eliminating the fatty acids by either triglyceride storage or oxidation. The progress in the development of the dysfunction then depends on the persistence of the imbalance leading to future cumulative exposure of the cells to the toxic effects of the fatty acids rather than on the current size of the fat depots. This may be considered as a reason for changing the definition of obesity to one based on better estimates of future risks of health problems derived from later metabolic dysfunctions rather than on the past coping with the exposure to the fatty acids by storage as triglycerides. Implementation of such definition would require a test that measures this residual capacity to avoid excess exposure of the cells to the fatty acids before the metabolic dysfunctions have emerged. In analogy with the glucose tolerance test, a fatty acid tolerance

  15. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Stefania Cannito

    Full Text Available Non-Alcoholic Fatty Liver Disease (NAFLD is a major form of chronic liver disease in the general population in relation to its high prevalence among overweight/obese individuals and patients with diabetes type II or metabolic syndrome. NAFLD can progress to steatohepatitis (NASH, fibrosis and cirrhosis and end-stage of liver disease but mechanisms involved are still incompletely characterized. Within the mechanisms proposed to mediate the progression of NAFLD, lipotoxicity is believed to play a major role. In the present study we provide data suggesting that microvesicles (MVs released by fat-laden cells undergoing lipotoxicity can activate NLRP3 inflammasome following internalization by either cells of hepatocellular origin or macrophages. Inflammasome activation involves NF-kB-mediated up-regulation of NLRP3, pro-caspase-1 and pro-Interleukin-1, then inflammasome complex formation and Caspase-1 activation leading finally to an increased release of IL-1β. Since the release of MVs from lipotoxic cells and the activation of NLRP3 inflammasome have been reported to occur in vivo in either clinical or experimental NASH, these data suggest a novel rational link between lipotoxicity and increased inflammatory response.

  16. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome.

    Science.gov (United States)

    Prieur, Xavier; Roszer, Tamás; Ricote, Mercedes

    2010-03-01

    Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFkappaB) and the key roles played by the PPAR and LXR nuclear receptors-lipid sensors that link lipid metabolism and inflammation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  17. Short-term selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shimo, Naoki [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Matsuoka, Taka-aki, E-mail: matsuoka@endmet.med.osaka-u.ac.jp [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Miyatsuka, Takeshi [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunky-ku, Tokyo, 113-8421 (Japan); Takebe, Satomi; Tochino, Yoshihiro; Takahara, Mitsuyoshi [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kaneto, Hideaki [Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki-city, Okayama, 701-0192 (Japan); Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2015-11-27

    Alleviation of hyperglycaemia and hyperlipidemia improves pancreatic β-cell function in type 2 diabetes. However, the underlying molecular mechanisms are still not well clarified. In this study, we aimed to elucidate how the expression alterations of key β-cell factors are altered by the short-term selective alleviation of glucotoxicity or lipotoxicity. We treated db/db mice for one week with empagliflozin and/or bezafibrate to alleviate glucotoxicity and/or liptotoxicity, respectively. The gene expression levels of Pdx1 and Mafa, and their potential targets, insulin 1, Slc2a2, and Glp1r, were higher in the islets of empagliflozin-treated mice, and levels of insulin 2 were higher in mice treated with both reagents, than in untreated mice. Moreover, compared to the pretreatment levels, Mafa and insulin 1 expression increased in empagliflozin-treated mice, and Slc2a2 increased in combination-treated mice. In addition, empagliflozin treatment enhanced β-cell proliferation assessed by Ki-67 immunostaining. Our date clearly demonstrated that the one-week selective alleviation of glucotoxicity led to the better expression levels of the key β-cell factors critical for β-cell function over pretreatment levels, and that the alleviation of lipotoxicity along with glucotoxicity augmented the favorable effects under diabetic conditions. - Highlights: • One-week selective reduction of gluco- and lipo-toxicity in db/db mice was performed. • Selective glucotoxicity reduction increases key pancreatic β-cell factors expression. • Selective glucotoxicity reduction improves β-cell factors over pretreatment levels. • Selective glucotoxicity reduction turns β-cell mass toward increase. • Lipotoxicity reduction has additive effects on glucotoxicity reduction.

  18. Mechanisms of palmitate-induced cell death in human osteoblasts

    Science.gov (United States)

    Gunaratnam, Krishanthi; Vidal, Christopher; Boadle, Ross; Thekkedam, Chris; Duque, Gustavo

    2013-01-01

    Summary Lipotoxicity is an overload of lipids in non-adipose tissues that affects function and induces cell death. Lipotoxicity has been demonstrated in bone cells in vitro using osteoblasts and adipocytes in coculture. In this condition, lipotoxicity was induced by high levels of saturated fatty acids (mostly palmitate) secreted by cultured adipocytes acting in a paracrine manner. In the present study, we aimed to identify the underlying mechanisms of lipotoxicity in human osteoblasts. Palmitate induced autophagy in cultured osteoblasts, which was preceded by the activation of autophagosomes that surround palmitate droplets. Palmitate also induced apoptosis though the activation of the Fas/Jun kinase (JNK) apoptotic pathway. In addition, osteoblasts could be protected from lipotoxicity by inhibiting autophagy with the phosphoinositide kinase inhibitor 3-methyladenine or by inhibiting apoptosis with the JNK inhibitor SP600125. In summary, we have identified two major molecular mechanisms of lipotoxicity in osteoblasts and in doing so we have identified a new potential therapeutic approach to prevent osteoblast dysfunction and death, which are common features of age-related bone loss and osteoporosis. PMID:24285710

  19. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  20. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Konstantinos Drosatos

    2016-08-01

    Full Text Available Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging.

  1. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2015-09-01

    Full Text Available Background/Aims: Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease worldwide. Autophagy is associated with NAFLD. Ghrelin is a gut hormone with various functions including energy metabolism and inflammation inhibition. We investigated the therapeutic effect of ghrelin on NAFLD and its association with autophagy. Methods: C57bl/6 mice were fed a high-fat diet for 8 weeks to induce a model of chronic NAFLD, with ghrelin (10 µg/kg administrated subcutaneously twice weekly from weeks 6 to 8. LO2 cells were pretreated with ghrelin (10-8 M before stimulation with free fatty acid (palmitic and oleic acids; 1 mM. Lipid droplets were identified by hematoxylin and eosin and Red O staining and quantified by triglyceride test kits. LC3I/II, an important biomarker protein of autophagy was detected by western blotting, real-time polymerase chain reaction, immunohistochemistry and immunofluorescence. Tumor necrosis factor (TNF-a and interleukin (IL-6 were detected by ELISA and immunohistochemistry. Nuclear factor (NF-κB p65 was detected by western blotting and immunofluorescence. AMP-activated protein kinase (AMPK and mammalian target of rapamycin (mTOR were detected by western blotting. Results: Ghrelin reduced the triglyceride content in high fat diet (HFD group in vivo and free fatty acid (FFA group in vitro. TNF-a and IL-6 were significantly reduced in the ghrelin-treated mice compared with the control group. Autophagy induction was accompanied with intracellular lipid reduction in ghrelin-treated mice. Ghrelin upregulated autophagy via AMPK/mTOR restoration and inhibited translocation of NF-κB into the nucleus. Conclusions: The results indicate that ghrelin attenuates lipotoxicity by autophagy stimulation and NF-κB inhibition.

  2. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells.

    Science.gov (United States)

    Yeh, Lee-Chuan C; Ford, Jeffery J; Lee, John C; Adamo, Martin L

    2014-07-18

    Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  5. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    International Nuclear Information System (INIS)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-01-01

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects

  6. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity

    NARCIS (Netherlands)

    Bosma, M.; Dapito, D.H.; Drosatos-Tampakaki, Z.; Huiping-Son, N.; Huang, L.S.; Kersten, A.H.; Drosatos, K.; Goldberg, I.J.

    2014-01-01

    We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPAR gamma, ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER

  7. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance.

    Science.gov (United States)

    Ruggles, Kelly V; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S; Marchadier, Dawn; Valasek, Mark A; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B; Repa, Joyce J; Rader, Dan; Sturley, Stephen L

    2014-02-14

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.

  8. A Functional, Genome-wide Evaluation of Liposensitive Yeast Identifies the “ARE2 Required for Viability” (ARV1) Gene Product as a Major Component of Eukaryotic Fatty Acid Resistance*

    Science.gov (United States)

    Ruggles, Kelly V.; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S.; Marchadier, Dawn; Valasek, Mark A.; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B.; Repa, Joyce J.; Rader, Dan; Sturley, Stephen L.

    2014-01-01

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the “ARE2 required for viability” (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease. PMID:24273168

  9. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.

    Science.gov (United States)

    Legchenko, Ekaterina; Chouvarine, Philippe; Borchert, Paul; Fernandez-Gonzalez, Angeles; Snay, Erin; Meier, Martin; Maegel, Lavinia; Mitsialis, S Alex; Rog-Zielinska, Eva A; Kourembanas, Stella; Jonigk, Danny; Hansmann, Georg

    2018-04-25

    Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO ( Cpt1b and Fabp4 ) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases. Copyright

  10. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C., E-mail: cdirusso2@unl.edu

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  11. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    International Nuclear Information System (INIS)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC 50 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC 50 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13 C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata

  12. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy

    Directory of Open Access Journals (Sweden)

    Fuyang Zhang

    2016-11-01

    Full Text Available The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD + BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR, inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA in the HFD + BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  13. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  14. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    Science.gov (United States)

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier

  15. The Cumulus Cell Layer Protects Bovine Maturing Oocyte Against Fatty Acid-Induced Lipotoxicity

    NARCIS (Netherlands)

    Lolicato, Francesca|info:eu-repo/dai/nl/314639586; Brouwers, Jos F.|info:eu-repo/dai/nl/173812694; van de Lest, Chris H.A.|info:eu-repo/dai/nl/146063570; Wubbolts, Richard|info:eu-repo/dai/nl/181688255; Aardema, Hilde|info:eu-repo/dai/nl/304824100; Priore, Paola; Roelen, Bernard A.J.|info:eu-repo/dai/nl/109291859; Helms, J. Bernd|info:eu-repo/dai/nl/080626742; Gadella, Bart M|info:eu-repo/dai/nl/115389873

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report we described the effects of the three predominant fatty acids in follicular fluid

  16. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    Science.gov (United States)

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  17. Obese and anorexic yeasts: experimental models to understand the metabolic syndrome and lipotoxicity.

    Science.gov (United States)

    Kohlwein, Sepp D

    2010-03-01

    Lipotoxicity is the pathological consequence of lipid overflow in non-adipose tissue, mediated through reactive lipid moieties which may even lead to lipid-induced cell death (lipoapoptosis). This derailment of cellular and organismal fat homeostasis is the consequence of obesity due to continued over-feeding, and contributes substantially to the pathogenesis of insulin resistance, type 2 diabetes mellitus and cardiovascular disease, which are all components of the metabolic syndrome. Now, does yeast, a single-celled eukaryote, ever suffer from the metabolic syndrome and what can we potentially learn from studies in this organism about the underlying molecular mechanism that lead to lipid-associated pathologies in human cells? In this review I will summarize the remarkably conserved metabolic and regulatory processes relevant to establishing cellular energy and lipid homeostasis, as well as recent findings that provide detailed insights into the molecular mechanisms underlying fat-induced cellular malfunction and cell death, with potential implications also for mammalian cells. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.

    Science.gov (United States)

    Wang, Qiao; Du, Xiuxiu; Ma, Ke; Shi, Ping; Liu, Wenbin; Sun, Jing; Peng, Min; Huang, Zhiwei

    2018-03-01

    Elongases FEN1/ELO2 and SUR4/ELO3 are important enzymes involved in the elongation of long-chain fatty acids (LCFAs) to very long-chain fatty acids (VLCFAs) in Saccharomyces cerevisiae. The molecular mechanism of the involvement of these elongases in lipotoxicity is unclear. In the present study, we investigated the role of VLCFA elongases in oleic acid-mediated yeast cytotoxicity. The spot test showed that yeast strains with the deletion of ELO2 or ELO3 were strikingly sensitive to oleic acid, while there was no change on the growth of strain with deleted ELO1 which was involved in the elongation of C 14 fatty acid (FA) to C 16 FA. By using GC-MS, the unsaturation index was increased in elo2△ and elo3△ mutants after treatment with oleic acid (OLA). However, the proportion of VLCFAs was increased in response to OLA in the wild-type strain. The growth inhibition of elo2△ and elo3△ could be partially rescued by two commonly used antioxidant agents N-acetyl cysteine (NAC) and Ascorbic acid (VC). The further study showed that exposure to excess OLA led to an increase in the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), and a decline in the quantity of reduced glutathione (GSH) in both the wild type and mutant strains. However, the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were increased in the wild type and elo1△ strains, while they were significantly decreased in the mutants of elo2△ and elo3△ after treated with excess OLA. Thus, oxidative damage mainly contributed to the cell death induced by OLA in ole2△ and ole3△. Taken together, although disruption of ELO2 or ELO3 did not affect the cellular lipid unsaturation, they altered the distribution and propotion of cellular VLCFAs, leading to the cell membrane impairment, which augmented the ability of OLA to permeabilize the plasma membrane. The data suggest that the very long-chain fatty acids elongases ELO2 and ELO3

  19. Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-01-01

    Full Text Available A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.

  20. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  1. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK–mTOR pathway

    Directory of Open Access Journals (Sweden)

    Zhang S

    2018-04-01

    Full Text Available Shaoren Zhang, Yuqing Mao, Xiaoming Fan Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China Background: Nonalcoholic fatty liver disease (NAFLD has been considered the most commonly occurring chronic hepatopathy in the world. Ghrelin o-acyltransferase (GOAT is an acylation enzyme which has an acylated position 3 serine on ghrelin. Recent investigation revealed that activated autophagy could attenuate liver steatosis. The aim of this study was to explore therapeutic roles that inhibit GOAT exerted in NAFLD, and its potential association with autophagy.Materials and methods: Human LO2 cells were pretreated with siRNA-GOAT to induce liver steatosis using free fatty acids (FFAs. A chronic NAFLD model was established by feeding male mice C57bl/6 with high-fat diet (HFD for 56 days with GO-CoA-Tat administrated subcutaneously. Lipid droplets were identified by Oil Red O stains. Body weight (BW of mice was measured every week. Autophagy, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, serum biochemical indicators (glucose [Glu], total cholesterol [TC], triglyceride [TG], aspartate aminotransferase [AST], alanine aminotransferase [ALT] and signaling pathway proteins of phosphorylated AMPK–mTOR were measured.Results: The TG contents of the FFA and HFD groups were decreased by the inhibition of GOAT. Among mice treated with GO-CoA-Tat and siRNA-GOAT, IL-6 and TNF-α concentrations were remarkably decreased. Indicators of liver injury such as ALT and AST were also remarkably decreased among mice treated with GO-CoA-Tat. Likewise, GO-CoA-Tat significantly reduced the BW of mice and serum TG, TC and Glu. Autophagy was induced along with reduced lipids in the cells of the FFA and HFD groups. The inhibition of GOAT upregulated autophagy via AMPK–mTOR restoration.Conclusion: These results indicate that the inhibition of GOAT attenuates lipotoxicity by autophagy stimulation via AMPK–mTOR restoration

  2. Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Steinacher, Daniel; Claudel, Thierry; Trauner, Michael

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.

  3. Folic acid supplement use in the prevention of neural tube defects.

    LENUS (Irish Health Repository)

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  4. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  5. Use of topical tranexamic acid or aminocaproic acid to prevent bleeding after major surgical procedures.

    Science.gov (United States)

    Ipema, Heather J; Tanzi, Maria G

    2012-01-01

    To evaluate the literature describing topical use of tranexamic acid or aminocaproic acid for prevention of postoperative bleeding after major surgical procedures. Literature was retrieved through MEDLINE (1946-September 2011) and International Pharmaceutical Abstracts (1970-September 2011) using the terms tranexamic acid, aminocaproic acid, antifibrinolytic, topical, and surgical. In addition, reference citations from publications identified were reviewed. All identified articles in English were evaluated. Clinical trials, case reports, and meta-analyses describing topical use of tranexamic acid or aminocaproic acid to prevent postoperative bleeding were included. A total of 16 publications in the setting of major surgical procedures were included; the majority of data were for tranexamic acid. For cardiac surgery, 4 trials used solutions containing tranexamic acid (1-2.5 g in 100-250 mL of 0.9% NaCl), and 1 trial assessed a solution containing aminocaproic acid (24 g in 250 mL of 0.9% NaCl). These solutions were poured into the chest cavity before sternotomy closure. For orthopedic procedures, all of the data were for topical irrigation solutions containing tranexamic acid (500 mg-3 g in 50-100 mL of 0.9% NaCl) or for intraarticular injections of tranexamic acid (250 mg to 2 g in 20-50 mL of 0.9% sodium chloride, with or without carbazochrome sodium sulfate). Overall, use of topical tranexamic acid or aminocaproic acid reduced postoperative blood loss; however, few studies reported a significant reduction in the number of packed red blood cell transfusions or units given, intensive care unit stay, or length of hospitalization. Topical application of tranexamic acid and aminocaproic acid to decrease postsurgical bleeding after major surgical procedures is a promising strategy. Further data are needed regarding the safety of this hemostatic approach.

  6. Folic Acid for the Prevention of Neural Tube Defects : US Preventive Services Task Force Recommendation Statement

    NARCIS (Netherlands)

    Calonge, Ned; Petitti, Diana B.; DeWitt, Thomas G.; Dietrich, Allen J.; Gregory, Kimberly D.; Grossman, David; Isham, George; LeFevre, Michael L.; Leipzig, Rosanne M.; Marion, Lucy N.; Melnyk, Bernadette; Moyer, Virginia A.; Ockene, Judith K.; Sawaya, George F.; Schwartz, J. Sanford; Wilt, Timothy

    2009-01-01

    Description: In 1996, the U. S. Preventive Services Task Force (USPSTF) recommended that all women planning or capable of pregnancy take a multivitamin supplement containing folic acid for the prevention of neural tube defects. This recommendation is an update of the 1996 USPSTF recommendation.

  7. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  8. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection?

    Directory of Open Access Journals (Sweden)

    Paulo J. Oliveira

    2012-01-01

    Full Text Available Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.

  9. The importance of γ-linolenic acid in the prevention and treatment

    Directory of Open Access Journals (Sweden)

    Małgorzata Białek

    2015-07-01

    Full Text Available The etiology of diet-related disorders is closely associated with dietary factors. A special role is attributed to intake of fat and fatty acid profile, both quantitative and qualitative. For prevention and treatment of the abovementioned diseases a proper supply of unsaturated fatty acids plays a significant role, because of their particular importance to health. γ-Linolenic acid (GLA, with three double bonds in the carbon chain, also known as all-cis 6,9,12-octadecatrienoic acid, belongs to the n-6 family of fatty acids. It plays biologically important functions in the human body, such as being a substrate for eicosanoids synthesis, involvement in the transport and oxidation of cholesterol, and being one of the components of lipid membrane. Its inadequate dietary intake or impaired formation is the cause of many inflammatory and degenerative diseases. A rich source of this fatty acid is vegetable oils, until recently used mainly in folk medicine. Nowadays, studies conducted both in animal models and in humans suggest its health-promoting properties in the prevention and treatment of atopic dermatitis, cardiovascular diseases, diabetes, cancers and rheumatoid arthritis.

  10. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-06-15

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum.

    Science.gov (United States)

    Pierozan, Paula; Biasibetti-Brendler, Helena; Schmitz, Felipe; Ferreira, Fernanda; Pessoa-Pureur, Regina; Wyse, Angela T S

    2018-06-01

    Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.

  12. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  13. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    LENUS (Irish Health Repository)

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  14. Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels--a preliminary study.

    Science.gov (United States)

    Ram, Jeffrey L; Purohit, Sonal; Newby, Bi-Min Zhang; Cutright, Teresa J

    2012-01-01

    The effectiveness of zosteric acid, a natural antifoulant from the marine seagrass Zostera marina, in preventing the attachment of quagga mussels, a biofouling bivalve, was investigated. Animals were exposed to water containing zosteric acid ranging from 0 to 1000 ppm, and their attachment to the container glass walls was tracked with time. 500 ppm zosteric acid was not effective at detaching animals that had already attached, but was able to prevent the attachment of most unattached animals for two days. The anti-fouling effect increased with higher concentration. Low concentrations (250 ppm and below) were not effective at preventing attachment; however, 1000 ppm zosteric acid prevented attachment of mussels for the first three days of zosteric acid exposure, and only 20% of the mussels were attached by day 4. In contrast, animals in control (no zosteric acid) solutions began to attach within one day. In conclusion, zosteric acid is an effective natural product deterrent of attachment of a biofouling bivalve.

  15. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  16. [Acetylsalicylic acid in primary prevention of cardiovascular events; literature study

    NARCIS (Netherlands)

    Bredie, S.J.H.; Wollersheim, H.C.H.; Verheugt, F.W.A.; Thien, Th.

    2002-01-01

    OBJECTIVE: To evaluate literature data on the use of acetylsalicylic acid (ASA) as a primary prevention measure for cardiovascular events. DESIGN: Literature search. METHOD: Using Medline, all randomised placebo-controlled trials of ASA published between 1985 and 1 May 2001, and which used

  17. Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.

    Science.gov (United States)

    De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico

    2012-01-01

    To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  18. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  19. Molecular mechanisms of lipoapoptosis and metformin protection in GLP-1 secreting cells

    DEFF Research Database (Denmark)

    Kappe, Camilla; Holst, Jens Juul; Zhang, Qimin

    2012-01-01

    Evidence is emerging that elevated serum free fatty acids (hyperlipidemia) contribute to the pathogenesis of type-2-diabetes, and lipotoxicity is observed in many cell types. We recently published data indicating lipotoxic effects of simulated hyperlipidemia also in GLP-1-secreting cells, where...... the antidiabetic drug metformin conferred protection from lipoapoptosis. The aim of the present study was to identify mechanisms involved in mediating lipotoxicity and metformin lipoprotection in GLP-1 secreting cells. These signaling events triggered by simulated hyperlipidemia may underlie reduced GLP-1...... secretion in diabetic subjects, and metformin lipoprotection by metformin could explain elevated plasma GLP-1 levels in diabetic patients on chronic metformin therapy. The present study may thus identify potential molecular targets for increasing endogenous GLP-1 secretion through enhanced viability of GLP...

  20. Fasting plasma triglycerides predict the glycaemic response to treatment of Type 2 diabetes by gastric electrical stimulation. A novel lipotoxicity paradigm

    Science.gov (United States)

    Lebovitz, H E; Ludvik, B; Yaniv, I; Haddad, W; Schwartz, T; Aviv, R

    2013-01-01

    Background Non-stimulatory, meal-mediated electrical stimulation of the stomach (TANTALUS-DIAMOND) improves glycaemic control and causes modest weight loss in patients with Type 2 diabetes who are inadequately controlled on oral anti-diabetic medications. The magnitude of the glycaemic response in clinical studies has been variable. A preliminary analysis of data from patients who had completed 6 months of treatment indicated that the glycaemic response to the electrical stimulation was inversely related to the baseline fasting plasma triglyceride level. Method An analysis of 40 patients who had had detailed longitudinal studies for 12 months. Results Twenty-two patients with fasting plasma triglycerides ≤ 1.7 mmol/l had mean decreases in HbA1c after 3, 6 and 12 months of gastric contraction modulation treatment of −15 ± 2.1 mmol/mol (−1.39 ± 0.20%), −16 ± 2.2 mmol/mol (−1.48 ± 0.20%) and −14 ± 3.0 mmol/mol (−1.31 ± 0.26%), respectively. In contrast, 18 patients with fasting plasma triglyceride > 1.7 mmol/l had mean decreases in HbA1c of −7 ± 1.7 mmol/mol (−0.66 ± 0.16%), −5 ± 1.6 mmol/mol (−0.44 ± 0.18%) and −5 ± 1.7 mmol/mol (−0.42 ± 0.16%), respectively. Pearson's correlation coefficient between fasting plasma triglyceride and decreases in HbA1c at 12 months of treatment was 0.34 (P triglycerides, while it progressively improved in patients with low fasting plasma triglycerides. Patients with low fasting plasma triglycerides had a tendency to lose more weight than those with high fasting plasma triglycerides, but this did not achieve statistical significance. Conclusions The data presented suggest the existance of a triglyceride lipotoxic mechanism that interferes with gastric/neural mediated pathways that can regulate glycaemic control in patients with type 2 diabetes. The data suggest the existence of a triglyceride lipotoxic pathway that interferes with gastric/neural mediated pathways that can regulate glycaemic control

  1. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    Science.gov (United States)

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    Science.gov (United States)

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  3. Application of the novel mill tailings agglomeration technology for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Amaratunga, L.M.

    1994-01-01

    Acid generation and subsequent liberation of heavy metals results from the surface disposal of sulfide mineral bearing mill tailings. Most Canadian base metals such as Ni, Cu, Zn, and Pb, as well as uranium and precious metal milling operations are producers of reactive mill tailings containing the major sulfide gangue minerals such as pyrite, pyrrhotite and arsenopyrites. A novel disposal technology by cold-bond tailings agglomeration process (CBTA) is currently being developed at Laurentian University. This process has been adapted to prevent acid mine drainage from reactive mill tailings. A preliminary study was undertaken to evaluate the application of the concept of agglomeration of reactive mill tailings using various alkaline binders and incorporating suitable chemical additives. The binders and additives are selected for their effectiveness in the prevention or retardation of the initial chemical and biochemical oxidation reactions of sulfide mineral leading to acid generation. Following a cold-bond, cold curing tailings agglomeration process, various types and dosages of chemical binders and their additives were employed. The additives under investigation were lime, sodium lauryl sulfate, potassium phosphate dibasic, sodium chloride and sodium benzoate. Some of these chemicals are well known acid neutralizers and others are inexpensive anionic surfactants, detergents and fertilizers acting as bactericides. Most of these additives have been reported in the literature as effective chemical agents used in the prevention and control of acid mine drainage from sulfide minerals. The paper also presents a leachate study to investigate the acid generation potential from each batch of reactive tailings agglomerates containing various binders and non-toxic additives

  4. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  5. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    Science.gov (United States)

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  6. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    Science.gov (United States)

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  7. Ascorbic acid supplementation partially prevents the delayed reproductive development in juvenile male rats exposed to rosuvastatin since prepuberty.

    Science.gov (United States)

    Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Sanabria, Marciana; Dias, Ana Flávia Mota Gonçalves; Silva, Patrícia Villela E; Martins Junior, Airton da Cunha; Barbosa Junior, Fernando; Kempinas, Wilma De Grava

    2017-10-01

    Dyslipidemias are occurring earlier in the population due to the increase of obesity and bad eating habits. Rosuvastatin inhibits the enzyme HMG-CoA reductase, decreasing total cholesterol. Ascorbic acid is an important antioxidant compound for male reproductive system. This study aimed to evaluate whether ascorbic acid supplementation may prevent the reproductive damage provoked by rosuvastatin administration at prepuberty. Male pups were distributed into six experimental groups that received saline solution 0.9%, 3 or 10mg/kg/day of rosuvastatin, 150mg/day of ascorbic acid, or 150mg/day of ascorbic acid associated with 3 or 10mg/kg/day of rosuvastatin from post-natal day (PND) 23 until PND53. Rosuvastatin-treated groups showed delayed puberty installation, androgen depletion and impairment on testicular and epididymal morphology. Ascorbic acid partially prevented these reproductive damages. In conclusion, rosuvastatin exposure is a probable risk to reproductive development and ascorbic acid supplementation may be useful to prevent the reproductive impairment of rosuvastatin exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Once-yearly zoledronic acid in hip fracture prevention

    Science.gov (United States)

    Demontiero, Oddom; Duque, Gustavo

    2009-01-01

    Osteoporosis is an escalating global problem. Hip fractures, the most catastrophic complication of osteoporosis, continue to cause significant mortality and morbidity despite increasing availability of effective preventative agents. Among these agents, oral bisphosphonates have been the first choice for the treatment and prevention of osteoporotic fractures. However, the use of oral bisphosphonates, especially in the older population, has been limited by their side effects and method of administration thus compromising their persistent use. The resultant low adherence by patients has undermined their full potential and has been associated with an increase in the incidence of fragility fractures. Recently, annual intravenous zoledronic acid (ZOL) has been approved for osteoporosis. Randomized controlled trials have demonstrated ZOL to be safe, have good tolerability and produce significant effect on bone mass and microarchitecture. Adherence has also been shown to be better with ZOL. Furthermore two large trials firmly demonstrated significant anti-osteoporotic effect (∼59% relative risk reduction of hip fractures) and mortality benefit (28% reduction in mortality) of ZOL in older persons with recent hip fractures. In this review, we report the current evidence on the use of ZOL for the prevention of hip fractures in the elderly. We also report the pharmacological characteristics and the advantages and disadvantages of ZOL in this particular group. PMID:19503777

  9. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  10. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  11. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Amezketa, E.; Aragues, R.; Gazol, R. [Gobierno Navarra, Pamplona (Spain). Agricultural Resources Evaluation Center

    2005-06-01

    We evaluated the efficiency of four amendments (sulfuric acid, mined-gypsum, and the by-products coal-gypsum and lacto-gypsum) in crusting prevention of two calcareous nonsodic and sodic soils and in sodic soil reclamation. Treatments for crust prevention consisted of surface-applied amendments at equivalent rates of 5 Mg pure-gypsum ha{sup -1}. Treatments for sodic soil reclamation consisted of surface-applied acid and soil-incorporated gypsums at rates of 1 pure-gypsum requirement. The efficiency of these amendments was evaluated by comparing the final infiltration rates (FIR) of the amended vs. the nonamended soils measured in disturbed-soil columns pounded with low-salinity irrigation water. Electrical conductivity (EC) and Na in the leachates of the sodic soil were measured. In the crusting prevention experiment, FIRs (mm h{sup -1) of the nonsodic soil were 21 (nonamended), 33 to 35 (gypsum materials), and 53 (sulfuric acid), whereas those for the sodic soil were 0 (nonamended), 9 (lacto-gypsum), 15 to 17 (coal- and mined-gypsum), and 21 (sulfuric acid). In the sodic-soil reclamation experiment, FIRs were 0 (nonamended), 8 to 9 (gypsum-materials), and 17 (sulfuric acid) mm h{sup -1}. All amendments were effective in crusting prevention and soil reclamation, but sulfuric acid was the most efficient due to the fastest EC and Na reductions in the leachates. The three gypsum-materials were equally effective in the reclamation process and in the nonsodic soil crusting-prevention, whereas lacto-gypsum was less efficient in the sodic-soil crusting-prevention.

  12. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  13. Ibuprofen-conjugated hyaluronate/polygalacturonic acid hydrogel for the prevention of epidural fibrosis.

    Science.gov (United States)

    Lin, Cheng-Yi; Peng, Hsiu-Hui; Chen, Mei-Hsiu; Sun, Jui-Sheng; Chang, Chih-Ju; Liu, Tse-Ying; Chen, Ming-Hong

    2016-05-01

    The formation of fibrous tissue is part of the natural healing response following a laminectomy. Severe scar tissue adhesion, known as epidural fibrosis, is a common cause of failed back surgery syndrome. In this study, by combining the advantages of drug treatment with a physical barrier, an ibuprofen-conjugated crosslinkable polygalacturonic acid and hyaluronic acid hydrogel was developed for epidural fibrosis prevention. Conjugation was confirmed and measured by 1D(1)H NMR spectroscopy.In vitroanalysis showed that the ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel showed low cytotoxicity. In addition, the conjugated ibuprofen decreased prostaglandin E2production of the lipopolysaccharide-induced RAW264.7 cells. Histological data inin vivostudies indicated that the scar tissue adhesion of laminectomized male adult rats was reduced by the application of our ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel. Its use also reduced the population of giant cells and collagen deposition of scar tissue without inducing extensive cell recruitment. The results of this study therefore suggest that the local delivery of ibuprofenviaa polygalacturonic acid-hyaluronic acid-based hydrogel reduces the possibility of epidural fibrosis. © The Author(s) 2016.

  14. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Science.gov (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  15. Total prevention of folic acid-preventable spina bifida and anencephaly would reduce child mortality in India: Implications in achieving Target 3.2 of the Sustainable Development Goals.

    Science.gov (United States)

    Kancherla, Vijaya; Oakley, Godfrey P

    2018-03-15

    The potential to reduce child mortality by preventing folic acid-preventable spina bifida and anencephaly (FAP SBA) is inadequately appreciated. To quantify possible reduction in FAP SBA-associated child mortality in low- and middle-income countries, we conducted an analysis to demonstrate in India, a country with more than 25 million births and 1.2 million under-five deaths each year, the decrease in neonatal, infant, and under-five mortality that would occur through total prevention of FAP SBA. We estimated the percent reductions in neonatal, infant, and under-five mortality that would have occurred in India in 2015 had all of FAP SBA been prevented. We also estimated the contributions of these reductions toward India's Sustainable Development Goals on child mortality indicators. We considered the overall prevalence of spina bifida and anencephaly in India as 5 per 1,000 live births, of which 90% were preventable with effective folic acid intervention. In the year 2015, folic acid interventions would have prevented about 116,070 cases of FAP SBA and 101,565 under-five deaths associated with FAP SBA. Prevention of FAP SBA would have reduced annually, neonatal, infant, and under-five mortality by 10.2%, 8.9%, and 8.3%, respectively. These reductions would have contributed 18.5% and 17.2% to the reductions in neonatal and under-five mortality, respectively, needed by India to achieve its 2030 Sustainable Developmental Goal Target 3.2 addressing preventable child mortality. Total prevention of FAP SBA clearly has a significant potential for immediate reductions in neonatal, infant, and under-five mortality in India, and similarly other countries. © 2017 Wiley Periodicals, Inc.

  16. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Kinoshita, Manabu; Shinomiya, Nariyoshi; Hiroi, Sadayuki; Sugasawa, Hidekazu; Majima, Takashi; Seki, Shuhji; Matsushita, Yoshitaro; Saitoh, Daizoh

    2010-01-01

    While bone marrow or stem cell transplantation can rescue bone marrow aplasia in patients accidentally exposed to a lethal radiation dose, radiation-induced irreversible gastrointestinal damage (GI syndrome) is fatal. We investigated the effects of ascorbic acid on radiation-induced GI syndrome in mice. Ascorbic acid (150 mg/kg/day) was orally administered to mice for 3 days, and then the mice underwent whole body irradiation (WBI). Bone marrow transplantation (BMT) 24 h after irradiation rescued mice receiving a WBI dose of less than 12 Gy. No mice receiving 14 Gy-WBI survived, because of radiation-induced GI syndrome, even if they received BMT. However, pretreatment with ascorbic acid significantly suppressed radiation-induced DNA damage in the crypt cells and prevented denudation of intestinal mucosa; therefore, ascorbic acid in combination with BMT rescued mice after 14 Gy-WBI. DNA microarray analysis demonstrated that irradiation up-regulated expressions of apoptosis-related genes in the small intestine, including those related to the caspase-9-mediated intrinsic pathway as well as the caspase-8-mediated extrinsic pathway, and down-regulated expressions of these genes in ascorbic acid-pretreated mice. Thus, pretreatment with ascorbic acid may effectively prevent radiation-induced GI syndrome. (author)

  17. Lipotoxicity, β cell dysfunction, and gestational diabetes.

    Science.gov (United States)

    Nolan, Christopher J

    2014-04-01

    Gestational diabetes (GDM) is caused by failure of islet β cells to meet the increased insulin requirements of pregnancy. Recently, Prentice et al. (2014) discovered a 7-fold elevation of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanopropanoic acid (CMPF) in plasma of women with GDM and showed that CMPF directly induces β cell dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Prevention of Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae Using a Fatty Acid-Based Formulation

    Directory of Open Access Journals (Sweden)

    Colin P. Churchward

    2017-07-01

    Full Text Available Ophthalmia neonatorum, also called neonatal conjunctivitis, acquired during delivery can occur in the first 28 days of life. Commonly caused by the bacterial pathogen Neisseria gonorrhoeae, infection can lead to corneal scarring, perforation of the eye, and blindness. One approach that can be taken to prevent the disease is the use of an ophthalmic prophylaxis, which kills the bacteria on the surface of the eye shortly after birth. Current prophylaxes are based on antibiotic ointments. However, N. gonorrhoeae is resistant to many antibiotics and alternative treatments must be developed before the condition becomes untreatable. This study focused on developing a fatty acid-based prophylaxis. For this, 37 fatty acids or fatty acid derivatives were screened in vitro for fast antigonococcal activity. Seven candidates were identified as bactericidal at 1 mM. These seven were subjected to irritation testing using three separate methods: the bovine corneal opacity and permeability (BCOP test; the hen’s egg test—chorioallantoic membrane (HET-CAM; and the red blood cell (RBC lysis assay. The candidates were also tested in artificial tear fluid to determine whether they were effective in this environment. Four of the candidates remained effective. Among these, two lead candidates, monocaprin and myristoleic acid, displayed the best potential as active compounds in the development of a fatty acid-based prophylaxis for prevention of ophthalmia neonatorum.

  19. Preventive and therapeutic effects of tranexamic acid on postpartum bleeding

    Directory of Open Access Journals (Sweden)

    Samaneh Solltani

    2014-12-01

    Full Text Available Postpartum hemorrhage is among the leading causes of maternal mortality throughout the world. Severe blood loss contributes to  the increased blood transfusion risk with its concerned inherent adverse events and therefore increased rate of emergency re-operative interventions such as arterial ligation or hysterectomy. It also can lead to protracted anemia, particularly in low or median income countries. Extended application of antifibrinolytic agents such as tranexamic acid has been customary for long years to stop or reduce blood loss in postpartum period. However, there are not enough reliable evidence to approve the real efficacy of these drugs. In this brief and summary review, we pointed to a few conducted studies. The PubMed was searched for keyword including postpartum hemorrhage, tranexamic acid, cesarean section, vaginal delivery, and blood loss prevention. The articles with language other than English were excluded from our review.  We concluded that more convincing information is needed to determine the precise effects of tranexamic acid, and its benefits against adverse effects.

  20. Effect of Salicylic Acid on Prevention of Chilling Injury of Cherry Tomato (Lycopersicun esculentum cv. Messina(

    Directory of Open Access Journals (Sweden)

    hanifeh seyed hajizadeh

    2018-02-01

    Full Text Available Introduction: Fruits and vegetables play a major role in providing vitamins and minerals that are essential in the metabolism. In addition to providing vitamins and minerals compounds, they are called secondary metabolites. Tomatoes are one of the most vegetables in diets of people around the world. Low temperature stress associated with the production of reactive oxygen species causing damage can occur before or after harvest, farm, transportation, storage and marketing. Today, a greater emphasis is placed on post-harvest storage of agricultural products to increase productivity and make better use of labor resources, worker, energy and money, rather than an increase in production. One of the most promising treatments is the use of salicylic acid for prevention of the frost damage of post-harvest fruits and vegetables with different mechanisms such as increased enzymatic and non-enzymatic antioxidant system activity. Salicylic acid is known as a signal molecule in the induction defense mechanisms in plants. SA is a well-known phenol that can prevent ACO activity that is the direct precursor of ethylene and decreases Reactive Oxygen Species (ROS with increasing enzyme antioxidant activity. Salicylic acid is a natural phenolic compound known as a plant hormone having positive effect on storage life and quality of fruits. This study aimed to investigate the effects of pre- and post-harvest application of salicylic acid on antioxidant properties and quality of tomato and its effect was evaluated on prevention of chilling injury of cherry tomatoes during cold storage. Material and Methods: This research was conducted in a greenhouse of Horticulture Department of University of Maragheh. Treatments were included before harvest at fruit set stage with the control (distilled water and 0.75 mM salicylic acid spraying and after harvest, red ripened fruits were used for treatments control and immersion in 0.75 mM salicylic acid. Then all the treated fruits

  1. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  2. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  3. Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Matsuoka, Yutaka; Nishi, Daisuke; Yonemoto, Naohiro; Hamazaki, Kei; Matsumura, Kenta; Noguchi, Hiroko; Hashimoto, Kenji; Hamazaki, Tomohito

    2013-01-05

    Preclinical and clinical studies suggest that supplementation with omega-3 fatty acids after trauma might reduce subsequent posttraumatic stress disorder (PTSD). To date, we have shown in an open trial that PTSD symptoms in critically injured patients can be reduced by taking omega-3 fatty acids, hypothesized to stimulate hippocampal neurogenesis. The primary aim of the present randomized controlled trial is to examine the efficacy of omega-3 fatty acid supplementation in the secondary prevention of PTSD following accidental injury, as compared with placebo. This paper describes the rationale and protocol of this trial. The Tachikawa Project for Prevention of Posttraumatic Stress Disorder with Polyunsaturated Fatty Acid (TPOP) is a double-blinded, parallel group, randomized controlled trial to assess whether omega-3 fatty acid supplementation can prevent PTSD symptoms among accident-injured patients consecutively admitted to an intensive care unit. We plan to recruit accident-injured patients and follow them prospectively for 12 weeks. Enrolled patients will be randomized to either the omega-3 fatty acid supplement group (1,470 mg docosahexaenoic acid and 147 mg eicosapentaenoic acid daily) or placebo group. Primary outcome is score on the Clinician-Administered PTSD Scale (CAPS). We will need to randomize 140 injured patients to have 90% power to detect a 10-point difference in mean CAPS scores with omega-3 fatty acid supplementation compared with placebo. Secondary measures are diagnosis of PTSD and major depressive disorder, depressive symptoms, physiologic response in the experiment using script-driven imagery and acoustic stimulation, serum brain-derived neurotrophic factor, health-related quality of life, resilience, and aggression. Analyses will be by intent to treat. The trial was initiated on December 13 2008, with 104 subjects randomized by November 30 2012. This study promises to be the first trial to provide a novel prevention strategy for PTSD among

  4. Clofibric and ethacrynic acids prevent experimental pyelonephritis by Escherichia coli in mice.

    Science.gov (United States)

    Balagué, Claudia E; de Ruiz, Clara Silva; Rey, Rosario; de Duffard, Ana María Evangelista; Nader-Macías, María Elena

    2004-11-01

    Interfering Escherichia coli attachment to the urinary tract, using P-fimbriation inhibitors, can prevent pyelonephritis. Clofibric and ethacrynic acids are organic compounds structurally related, but with different pharmacological uses. These agents are potentially active in the urinary tract due to its elimination in an unaltered form by the renal route. This study described a pyelonephritogenic E. coli strain, grown in the presence of sub-inhibitory concentrations of clofibric or ethacrynic acids (0.1 and 1 mM, respectively), which exhibits inhibition of P1 erythrocytes agglutination and a drastic decrease in fimbriation, using electron microscopy and quantitative analyses of superficial proteins (decrease to a 17-25% in comparison with the control). In vivo assays were performed using ascending urinary tract infection in mice. The treatment with therapeutic doses of the drugs, administered 2 days before the bacterial challenge and daily until the end of the experiment (22 days), abolished renal infection after 7-10 days of drug exposure. Within this period clofibric acid did not produce adverse effects on the renal parenchyma. However, ethacrynic acid caused pyelitis and tubular cellular desquamation. These results suggested that clofibric acid might be useful in the short-term prophylaxis of urinary tract infection.

  5. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  6. Relationship between free fatty acid spectrum, blood stasis score, and macroangiopathy in patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    De-Liang Liu

    2018-01-01

    Full Text Available Objective: Our aim was to investigate the correlation between free fatty acid (FFA spectrum, blood stasis (BS score, and macroangiopathy in type 2 diabetic patients with or without BS, as well as the possible relationship between BS and lipotoxicity. Methods: A total of 50 type 2 diabetes (T2D patients with or without BS were enrolled from June to December 2014 in Shenzhen Traditional Chinese Medicine (TCM Hospital, with 25 patients allocated to each of two groups. Basic information, BS score, blood glucose, blood lipids, etc., were measured for each patient. In addition, we tested the levels of interleukin (IL-6, tumor necrosis factor α (TNF-α, and IL-18 with enzyme-linked immunosorbent assay. The macroangiopathy status of patients in the two groups was examined by color ultrasound and all factors related to BS scores were analyzed. Gas chromatography-mass spectrometry was used to explore the difference in the serum FFA spectra between the two different groups. In addition, the relationship between FFA spectra, BS scores, and macroangiopathy was analyzed. Results: BS scores, total cholesterol (TC, total triglyceride (TG, low-density lipoprotein cholesterol, IL-6, TNF-α, IL-18, carotid and femoral artery plaque, carotid intima-media thickness, carotid plaque area, and femoral artery plaque area were all significantly increased in T2D patients with BS syndrome (P < 0.05. A positive correlation was observed between age, duration of diabetes, carotid intima-media thickness, carotid plaque area, femoral artery plaque area, and BS score (P < 0.05. A total of 21 fatty acids were found in the serum, and total FFA (TFFA, saturated fatty acid (SFA, lauric acid (C12:0, palmitic acid (16:0, stearic acid (C18:0, arachidonic acid (C20:4n6, behenic acid (C22:0, and lignoceric acid (C24:0 scores were all found to contribute to the difference between FFA spectrums of the two groups; of the fatty acids, C12:0, C16:0, C18:0, C22:0, TFFA, and SFA positively

  7. Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: Implication for the treatment of postmenopausal bone loss.

    Directory of Open Access Journals (Sweden)

    Donatella Granchi

    Full Text Available The extracellular acidic milieu in bones results in activation of osteoclasts (OC and inhibition of osteoblasts (OB causing a net loss of calcium from the skeleton and the deterioration of bone microarchitecture. Alkalinization through supplementation with potassium citrate (K citrate has been proposed to limit the osteopenia progression, even though its pharmacological activity in bone microenvironment is not well defined. We evaluated if K citrate was able to prevent the adverse effects that acidic milieu induces on bone cells. OC and OB were maintained in neutral (pH 7.4 versus acidic (pH 6.9 culture medium, and treated with different K citrate concentrations. We evaluated the OC differentiation at seven days, by counting of multinucleated cells expressing tartrate-resistant acid phosphatase, and the activity of mature OC at 14 days, by quantifying of collagen degradation. To evaluate the effects on OB, we analyzed proliferation, mineralization, and expression of bone-related genes. We found that the low pH increased OC differentiation and activity and decreased OB function. The osteoclastogenesis was also promoted by RANKL concentrations ineffective at pH 7.4. Non-cytotoxic K citrate concentrations were not sufficient to steadily neutralize the acidic medium, but a inhibited the osteoclastogenesis, the collagen degradation, and the expression of genes involved in RANKL-mediated OC differentiation, b enhanced OB proliferation and alkaline phosphatase expression, whereas it did not affect the in vitro mineralization, and c were effective also in OC cultures resistant to alendronate, i.e. the positive control of osteoclastogenesis inhibition. In conclusion, K citrate prevents the increase in OC activity induced by the acidic microenvironment, and the effect does not depend exclusively on its alkalizing capacity. These data provide the biological basis for the use of K citrate in preventing the osteopenia progression resulting from low

  8. Prevention by lactic acid bacteria of the oxidation of human LDL.

    Science.gov (United States)

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  9. Accumulation of 24S-hydroxycholesterol in neuronal SK-N-BE cells treated with hexacosanoic acid (C26:0): argument in favor of 24S-hydroxycholesterol as a potential biomarker of neurolipotoxicity.

    Science.gov (United States)

    Zarrouk, A; Hammami, M; Moreau, T; Lizard, G

    2015-02-01

    Cholesterol oxide derivatives (oxysterols) are viewed as potential biomarkers of neurodegenerative diseases. 24S-hydroxycholesterol, an oxysterol produced only in brain neurons, is often found for unknown reasons in increased levels in the plasma in patients with neurodegenerative diseases. On human neuronal SK-N-BE cells treated with hexacosanoic acid (C26:0) identified at increased levels in the tissues and plasma of patients with peroxisomal leukodystrophies and Alzheimer's disease, we observed increased level of 24S-hydroxycholesterol associated with C26:0 induced lipotoxicity. This finding reinforces the hypothesis suggesting that 24S-hydroxycholesterol could constitute a biomarker of neurotoxicity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome.

    Science.gov (United States)

    O'Reilly, Michael W; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E; Manolopoulos, Konstantinos N; Allwood, J William; Semple, Robert K; Hebenstreit, Daniel; Dunn, Warwick B; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-09-01

    Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index-matched healthy controls, complemented by in vitro experiments. PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. Copyright © 2017 Endocrine Society

  11. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  12. DOES JASMONIC ACID PREVENT THE GERMINATION

    OpenAIRE

    ÇAVUŞOĞLU, Kürşat

    2009-01-01

    Abstract: Effect of jasmonic acid on seed germination and seedling growth of barley (Hordeum vulgare L. cv. Bülbül 89) was investigated in the present study. Jasmonic acid concentrations less than 1500 µM have not inhibited the seed germination, while 1500 and 2000 µM jasmonic acid levels caused atypical germination. The germination was completely inhibited at 3000 µM level of jasmonic acid. However, the seedling growth clearly slowed down with increasing concentrations of jasmonic acid. Furt...

  13. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  14. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  15. Preventive maintenance basis: Volume 24 -- Battery -- flooded lead-acid (lead-calcium, lead antimony, plante). Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. This document provides a program of preventive maintenance (PM) tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, system engineers, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  16. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

    Directory of Open Access Journals (Sweden)

    Thewarid Berkban

    2015-06-01

    Full Text Available The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day for five weeks. L-NAME induced high systolic blood pressure (SBP and increased heart rate (HR, hindlimb vascular resistance (HVR and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.

  17. Role of n-3 Polyunsaturated Fatty Acids and Exercise in Breast Cancer Prevention: Identifying Common Targets

    Directory of Open Access Journals (Sweden)

    Salma A. Abdelmagid

    2016-01-01

    Full Text Available Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.

  18. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    Science.gov (United States)

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  19. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    International Nuclear Information System (INIS)

    Schmid, Bernhard; Rippmann, Joerg F.; Tadayyon, Moh; Hamilton, Bradford S.

    2005-01-01

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1- 14 C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  20. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis.

    Science.gov (United States)

    Shirkhani, Khojasteh; Teo, Ian; Armstrong-James, Darius; Shaunak, Sunil

    2015-07-01

    Aspergillus species are the major life threatening fungal pathogens in transplant patients. Germination of inhaled fungal spores initiates infection, causes severe pneumonia, and has a mortality of >50%. This is leading to the consideration of pre-exposure prophylaxis to prevent infection. We made a very low MWt amphotericin B-polymethacrylic acid nanoparticle. It was not toxic to lung epithelial cells or monocyte-derived-macrophages in-vitro, or in an in-vivo transplant immuno-suppression mouse model of life threatening invasive aspergillosis. Three days of nebuliser based prophylaxis delivered the nanoparticle effectively to lung and prevented both fungal growth and lung inflammation. Protection from disease was associated with >99% killing of the Aspergillus and a 90% reduction in lung TNF-α; the primary driver of tissue destructive immuno-pathology. This study provides in-vivo proof-of-principle that very small and cost-effective nanoparticles can be made simply, and delivered safely and effectively to lung by the aerosol route to prevent fungal infections. Aspergillus is an opportunistic pathogen, which affects immunocompromised patients. One novel way to help fight against this infection is pre-exposure prophylaxis. The authors here made PMA based anionic hydrogels carrying amphotericin B, with mucoadhesive behavior. They showed that aerosol route of the drug was very effective in protecting against the disease in an in-vivo model and should provide a stepping-stone towards clinical trials in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Sodium Bicarbonate-Ascorbic Acid Combination for Prevention of Contrast-Induced Nephropathy in Chronic Kidney Disease Patients Undergoing Catheterization.

    Science.gov (United States)

    Komiyama, Kota; Ashikaga, Takashi; Inagaki, Dai; Miyabe, Tomonori; Arai, Marina; Yoshida, Kiyotaka; Miyazawa, Satoshi; Nakada, Akihiro; Kawamura, Iwanari; Masuda, Shinichiro; Nagamine, Sho; Hojo, Rintaro; Aoyama, Yuya; Tsuchiyama, Takaaki; Fukamizu, Seiji; Shibui, Takashi; Sakurada, Harumizu

    2017-01-25

    Sodium bicarbonate and ascorbic acid have been proposed to prevent contrast-induced nephropathy (CIN). The present study evaluated the effect of their combined use on CIN incidence.Methods and Results:We prospectively enrolled 429 patients with chronic kidney disease (CKD: baseline estimated glomerular filtration rate <60 mL/min/1.73 m 2 ) prior to elective coronary catheterization. CIN was defined as absolute (≥0.5 mg/dL) or relative (≥25%) increase in serum creatinine within 72 h. In the saline hydration (n=218) and combined sodium bicarbonate+ascorbic acid (n=211) groups, a total of 1,500-2,500 mL 0.9% saline was given before and after the procedure. In addition, the combination group received 20 mEq sodium bicarbonate and 3 g ascorbic acid i.v. before the procedure, followed by 2 g ascorbic acid after the procedure and a further 2 g after 12 h. There were no significant differences between the basic characteristics and contrast volume in the 2 groups. CIN occurred in 19 patients (8.7%) in the saline group, and in 6 patients (2.8%) in the combined treatment group (P=0.008). Combined sodium bicarbonate and ascorbic acid could prevent CIN following catheterization in CKD patients.

  2. Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation.

    Science.gov (United States)

    Chen, Fan; Chen, Dandan; Zhao, Xinmei; Yang, Shuai; Li, Zhe; Sanchis, Daniel; Jin, Liang; Qiang, Xizhe; Wang, Kaiye; Xu, Yitao; Zhang, Yubin; Ye, Junmei

    2017-12-01

    Obesity is associated with metabolic disorder and chronic inflammation that plays a crucial role in cardiovascular diseases. IL-6 is involved in regulating obesity-related lipid metabolism and inflammation. In this study, we sought to determine the role of IL-6 in high-fat diet (HFD)-induced cardiomyopathy and explore the signaling pathway. Female, 5-week-old IL-6 knockout (KO) and littermate mice were fed a normal diet (ND, 10% fat) or HFD (45% fat) for 14 weeks. At the end of treatment, cardiac function was assessed by echocardiography. Adipose tissues and plasma were collected for further measurement. Immunohistology of CD68 was performed to detect inflammation in the heart. Masson's trichrome staining and Oil Red O staining was applied to evaluated cardiac fibrosis and lipid accumulation. Real-time PCR and Western immunoblotting analyses on heart tissue were used to explore the underlying mechanism. IL-6 KO mice displayed increased insulin resistance compared to WT mice at baseline. When fed HFD, IL-6 KO mice showed decreased gains in body weight and fat mass, increased insulin resistance relative to IL-6 KO mice feed ND. Furthermore, IL-6 KO mice developed cardiac dysfunction during HFD-induced obesity. Histological analysis suggested increased lipid accumulation, fibrosis and inflammation without affecting cardiac morphology during HFD treatment in the heart of IL-6 KO mice. Finally, IL-6 deficiency increased the phosphorylation of AMPK and ACC in the heart during HFD-induced obesity. Our results suggest that IL-6 contributes to limit lipid metabolic disorder, cardiac hypertrophy, fibrosis, inflammation and myocardium lipotoxicity during HFD-induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Arctigenin protects against steatosis in WRL68 hepatocytes through activation of phosphoinositide 3-kinase/protein kinase B and AMP-activated protein kinase pathways.

    Science.gov (United States)

    Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei

    2018-04-01

    Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cytosolic lipolysis and lipophagy: two sides of the same coin.

    Science.gov (United States)

    Zechner, Rudolf; Madeo, Frank; Kratky, Dagmar

    2017-11-01

    Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.

  5. n-3 Fatty acids combined with flavan-3-ols prevent steatosis and liver injury in a murine model of NAFLD.

    Science.gov (United States)

    Vauzour, David; Rodriguez-Ramiro, Ildefonso; Rushbrook, Simon; Ipharraguerre, Ignacio R; Bevan, Damon; Davies, Susan; Tejera, Noemi; Mena, Pedro; de Pascual-Teresa, Sonia; Del Rio, Daniele; Gavrilovic, Jelena; Minihane, Anne Marie

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed medication has been approved. Despite its complex patho-physiology, dietary strategies aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of their complementary molecular targets, we aimed to demonstrate that the combination of n-3 LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD. In a high-fat high-fructose (HF/HFr) fed C57Bl/6J mouse model, the independent and interactive impact of n-3 and FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 (FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. While FLAV reduced body (-28-30%), adipose tissue (-45-50%) weights and serum insulin (-22-25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signalling in the intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should aim to demonstrate its efficacy in the prevention and treatment of human NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Estradiol Uses Different Mechanisms in Astrocytes from the Hippocampus of Male and Female Rats to Protect against Damage Induced by Palmitic Acid

    Directory of Open Access Journals (Sweden)

    Laura M. Frago

    2017-10-01

    Full Text Available An excess of saturated fatty acids can be toxic for tissues, including the brain, and this has been associated with the progression of neurodegenerative diseases. Since palmitic acid (PA is a free fatty acid that is abundant in the diet and circulation and can be harmful, we have investigated the effects of this fatty acid on lipotoxicity in hippocampal astrocytes and the mechanism involved. Moreover, as males and females have different susceptibilities to some neurodegenerative diseases, we accessed the responses of astrocytes from both sexes, as well as the possible involvement of estrogens in the protection against fatty acid toxicity. PA increased endoplasmic reticulum stress leading to cell death in astrocytes from both males and females. Estradiol (E2 increased the levels of protective factors, such as Hsp70 and the anti-inflammatory cytokine interleukin-10, in astrocytes from both sexes. In male astrocytes, E2 decreased pJNK, TNFα, and caspase-3 activation. In contrast, in female astrocytes E2 did not affect the activation of JNK or TNFα levels, but decreased apoptotic cell death. Hence, although E2 exerted protective effects against the detrimental effects of PA, the mechanisms involved appear to be different between male and female astrocytes. This sexually dimorphic difference in the protective mechanisms induced by E2 could be involved in the different susceptibilities of males and females to some neurodegenerative processes.

  8. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease*

    Science.gov (United States)

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-01-01

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia (p iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex (p iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. PMID:28087694

  9. Knowledge and periconceptional use of folic acid for the prevention of neural tube defects in ethnic communities in the United Kingdom: systematic review and meta-analysis.

    Science.gov (United States)

    Peake, Jordana N; Copp, Andrew J; Shawe, Jill

    2013-07-01

    It is widely accepted that periconceptional supplementation with folic acid can prevent a significant proportion of neural tube defects (NTDs). The present study evaluated how folic acid knowledge and periconceptional use for NTD prevention varies by ethnicity in the United Kingdom (U.K.). A literature search was conducted to identify studies that included assessment of folic acid knowledge or use in U.K. women of different ethnicities. Only research and referenced sources published after 1991, the year of the landmark Medical Research Council's Vitamin Study, were included. A meta-analysis was performed of studies that assessed preconceptional folic acid use in Caucasians and non-Caucasians. Five studies met the inclusion criteria for assessment of knowledge and/or use of folic acid supplements in U.K. women including non-Caucasians. The available evidence indicates that South Asians specifically have less knowledge and lower periconceptional use of folic acid than Caucasians; one study found that West Indian and African women also had lower folic acid uptake. A synthesis of results from three of the studies, in a meta-analysis, shows that Caucasians are almost three times more likely to take folic acid before conception than non-Caucasians. From the limited evidence available, U.K. women of non-Caucasian ethnicity appear to have less knowledge and a lower uptake of folic acid supplementation than Caucasians during the periconceptional period. Implementing targeted, innovative education campaigns together with a mandatory fortification policy, including the fortification of ethnic minority foods, will be required for maximum prevention of folic acid-preventable NTDs across different ethnic groups. Copyright © 2013 Wiley Periodicals, Inc.

  10. Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids.

    Science.gov (United States)

    Deckelbaum, Richard J; Leaf, Alexander; Mozaffarian, Dariush; Jacobson, Terry A; Harris, William S; Akabas, Sharon R

    2008-06-01

    After the symposium "Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids," faculty who presented at the conference submitted manuscripts relating to their conference topics, and these are presented in this supplement. The content of these manuscripts was reviewed, and 2 conference calls were convened. The objective was to summarize existing evidence, gaps in evidence, and future research needed to strengthen recommendations for specific intakes of n-3 fatty acids for different conditions relating to cardiovascular disease. The following 2 questions were the main items discussed. What are the roles of n-3 fatty acids in primary versus secondary prevention of coronary heart disease? What are the roles of n-3 fatty acids in hypertriglyceridemia, in the metabolic syndrome and type 2 diabetes, and in sudden cardiac death, cardiac arrhythmias, and vulnerable plaque? Each area was summarized by using 2 general categories: 1) current knowledge for which general consensus exists, and 2) recommendations for research and policy. Additional references for these conclusions can be found in the articles included in the supplement.

  11. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  12. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  13. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  14. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-03-03

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia ( p iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex ( p iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects.

    Science.gov (United States)

    Albergamo, Ambrogina; Rigano, Francesca; Purcaro, Giorgia; Mauceri, Angela; Fasulo, Salvatore; Mondello, Luigi

    2016-11-15

    The present work aims to elucidate the free fatty acid (FFA) profile of the mussel Mytilus galloprovincialis caged in an anthropogenically impacted area and in a reference site through an innovative and validated analytical approach for the assessment of biological alterations induced by marine pollution. The FFA pattern is involved in the regulation of different cellular pathways and differs with respect to metabolic stimuli. To this purpose, the lipid fraction of mussels coming from both sampling areas was extracted and the FFA fractions were isolated and purified by a solid phase extraction; then, nano-scale liquid chromatography coupled to electron ionization mass spectrometry (nanoLC-EI-MS) was employed for the characterization of the two samples. A total of 19 and 17 FFAs were reliably identified in the mussels coming from the reference and polluted site, respectively. Significant qualitative and quantitative differences found in saturated, monounsaturated and polyunsaturated species may be exploited as typical pollution biomarkers (e.g. alteration of the fatty acid biosynthetic system and lipotoxicity) and explain adverse and compromising effects (e.g. oxidative stress and inflammatory processes) related to environmental pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Membrane omega-3 Fatty Acid deficiency as a preventable risk factor for comorbid coronary heart disease in major depressive disorder.

    Science.gov (United States)

    McNamara, Robert K

    2009-01-01

    Major depression disorder (MDD) significantly increases the risk for coronary heart disease (CHD) which is a leading cause of mortality in patients with MDD. Moreover, depression is frequently observed in a subset of patients following acute coronary syndrome (ACS) and increases risk for mortality. Here evidence implicating omega-3 (n-3) fatty acid deficiency in the pathoaetiology of CHD and MDD is reviewed, and the hypothesis that n-3 fatty acid deficiency is a preventable risk factor for CHD comorbidity in MDD patients is evaluated. This hypothesis is supported by cross-national and cross-sectional epidemiological surveys finding an inverse correlation between n-3 fatty acid status and prevalence rates of both CHD and MDD, prospective studies finding that lower dietary or membrane EPA+DHA levels increase risk for both MDD and CHD, case-control studies finding that the n-3 fatty acid status of MDD patients places them at high risk for emergent CHD morbidity and mortality, meta-analyses of controlled n-3 fatty acid intervention studies finding significant advantage over placebo for reducing depression symptom severity in MDD patients, and for secondary prevention of cardiac events in CHD patients, findings that n-3 fatty acid status is inversely correlated with other documented CHD risk factors, and patients diagnosed with MDD after ACS exhibit significantly lower n-3 fatty acid status compared with nondepressed ACS patients. This body of evidence provides strong support for future studies to evaluate the effects of increasing dietary n-3 fatty acid status on CHD comorbidity and mortality in MDD patients.

  17. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    J. Thomas

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.

  18. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  19. Should the dose of folic acid be adjusted for Mexican population? The pilot prevention program implemented in Nuevo Leon, Mexico.

    Science.gov (United States)

    Martinez de Villarreal, Laura E

    2017-12-11

    In 1980 Smithells et al. reported that the intake of folic acid (FA) prevents the recurrence of neural tube defects (NTDs) [1]. After this and several other studies were conducted, the intake of 400 micrograms of folic acid per day, at least three months before and three months during pregnancy for prevention of NTD, was proposed [2,3,4]. Other strategies were also developed to increase folate blood levels in woman of childbearing age such as promoting the consumption of folate rich foods and food fortification (flour and most recently rice) [5]. Nevertheless, results have not been as expected due to poor consumption of folic acid supplements [6]. As a result, in the year 2000, a novel strategy was developed in order to increase folate blood levels in Mexican women. The results of the strategy are presented, as well as, a discussion about how to personalize a program for different populations.

  20. Postoperative adhesion prevention in gynecologic surgery with hyaluronic acid.

    Science.gov (United States)

    Carta, G; Cerrone, L; Iovenitti, P

    2004-01-01

    Despite improvements in surgical instrumentation and techniques, adhesions continue to form after most procedures. Peritoneal adhesions develop in 60-90% of women who undergo major gynecological operations. This adhesion formation causes significant postoperative morbidity such as bowel obstruction (65%), infertility (15-20%), and chronic pelvic pain (40%). To demonstrate the efficacy of a hyaluronic acid product (Hyalobarrier Gel) for the prevention of adhesions in gynecological surgery. From October 2000 to July 2002, 18 women from 26 to 41 years old (mean age 33.66) underwent myomectomy via laparotomy as their first abdominal operation. Between August 2001 and May 2003, the patients underwent a second-look laparoscopy (7 women, 38.9%, 15 sites, 42.8%) or a second-look laparotomy (11 women, 61.1%, 20 sites, 57.1%) during which all the 35 sites corresponding to the previous myomectomies were analyzed. During the second-look procedure the presence, localization and severity of adhesions were evaluated using the Operative Laparoscopy Study Group Classification (OLSG) and American Fertility Society Classification (AFSC). All patients underwent a second-look laparoscopy/laparotomy and only five of 18 (27.7%) showed pelvic adhesions in seven sites (20%) of previous myomectomies. No adhesion was found on the previous sites of myomectomies of pedunculated leiomyomas so, excluding those, adhesions were found in seven of 29 sites of myomectomies (24.1%). The present study emphasizes the need for improved treatments to prevent adhesions, as there is no doubt that adhesions represent one of the major causes of female morbidity.

  1. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    Science.gov (United States)

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.

  2. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    Science.gov (United States)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  3. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism.

    Science.gov (United States)

    Yu, Yi-Hao; Ginsberg, Henry N

    2004-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC2.3.1.20), a key enzyme in triglyceride (TG) biosynthesis, not only participates in lipid metabolism but also influences metabolic pathways of other fuel molecules. Changes in the expression and/or activity levels of DGAT may lead to changes in systemic insulin sensitivity and energy homeostasis. The synthetic role of DGAT in adipose tissue, the liver, and the intestine, sites where endogenous levels of DGAT activity and TG synthesis are high, is relatively clear. Less clear is whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs. Future studies with tissue-specific overexpression and/or knockout in these animal models would be expected to shed additional light on these issues.

  4. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, Margreet R.; Hollman, Peter C H; Katan, Martijn B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  5. Cost-effectiveness of denosumab versus zoledronic acid for preventing skeletal-related events in the Czech Republic.

    Science.gov (United States)

    Cristino, Joaquim; Finek, Jíndřich; Jandova, Petra; Kolek, Martin; Pásztor, Bálint; Giannopoulou, Christina; Qian, Yi; Brezina, Tomas; Lothgren, Mickael

    2017-08-01

    This study assessed the cost-effectiveness of the subcutaneous RANKL inhibitor, denosumab, vs the intravenous bisphosphonate, zoledronic acid, for the prevention of skeletal-related events (SREs) in patients with prostate cancer, breast cancer, and other solid tumors (OST) in the Czech Republic. A lifetime Markov model was developed to compare the effects of denosumab and zoledronic acid on costs (including drug costs and administration, patient management, SREs, and adverse events), quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios from a national payer perspective. Different discount rates, time horizons, SRE rates, distributions, and nature (asymptomatic vs all SREs), and the inclusion of treatment discontinuation were considered in scenario analyses. The robustness of the model was tested using deterministic and probabilistic sensitivity analyses. Across tumor types, denosumab was associated with fewer SREs, improved QALYs, and higher total costs over a lifetime. The incremental cost per QALY gained for denosumab vs zoledronic acid was 382,673 CZK for prostate cancer, 408,450 CZK for breast cancer, and 608,133 CZK for OST. Incremental costs per SRE avoided for the same tumor type were 54,007 CZK, 51,765 CZK, and 94,426 CZK, respectively. In scenario analyses, the results remained similar to baseline, when different discount rates and time horizons were considered. At a non-official willingness-to-pay threshold of 1.2 million CZK, the probabilities of denosumab being cost-effective vs zoledronic acid were 0.64, 0.67, and 0.49 for prostate cancer, breast cancer, and OST, respectively. The SRE rates used were obtained from clinical trials; studies suggest rates may be higher in clinical practice. Additional evidence on real-world SRE rates could further improve the accuracy of the modeling. Compared with zoledronic acid, denosumab provides a cost-effective treatment option for the prevention of SREs in patients with prostate cancer

  6. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  7. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    International Nuclear Information System (INIS)

    Gautama, R.S.; Kusuma, G.J.; Lestari, I.; Anggana, R.P.

    2010-01-01

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  8. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  9. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  10. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  11. Exploration of the preventive effect of ursolic acid on retinopathy in diabetic mice and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Ai-Zhong Yu

    2016-01-01

    Objective:To study the preventive effect of ursolic acid on retinopathy in diabetic mice through adjusting insulin sensitivity, glucose transport, angiogenesis and inflammation. Methods:Male C57BL/6 mice were selected as experimental animals and randomly divided into control group (N group), model group (D group) and intervention group (D+UA group), D group and D+UA group established diabetes models through intraperitoneal injection of STZ, D+UA group received intragastric administration of ursolic acid, and then insulin sensitivity, glucose metabolism in retina as well as the expression levels of GLUTs, HIF-1α/VEGF/VEGFR2 pathway and IKKβ/IKBα/NF-κB pathway in retina tissue of three groups were detected. Results:AUC of D group was significantly lower than that of N group, and HOMA-IR, sugar content in retina tissue as well as GLUT-1, GLUT-3, HIF-1α, VEGF, VEGFR2, IKKβ, IKBα, NF-κB, TNF-α, ICAM-1, VCAM-1 and E-selectin levels were significantly higher than those of N group;AUC of D+UA group was significantly higher than that of D group, and HOMA-IR, sugar content in retina tissue as well as GLUT-1, GLUT-3, HIF-1α, VEGF, VEGFR2, IKK毬, IKBα, NF-κB, TNF-α, ICAM-1, VCAM-1 and E-selectin levels were significantly lower than those of D group. Conclusion:Ursolic acid can increase insulin sensitivity, reduce sugar content in retina tissue and inhibit angiogenesis and inflammation degree in retina tissue, and has preventive effect on retinopathy in diabetic mice.

  12. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    Science.gov (United States)

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  13. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?

    Science.gov (United States)

    Brøns, Charlotte; Grunnet, Louise Groth

    2017-02-01

    Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver. © 2017 European Society of Endocrinology.

  14. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways.

    Science.gov (United States)

    Hao, Feng; Kang, Jinsen; Cao, Yajun; Fan, Shengjun; Yang, Haopeng; An, Yu; Pan, Yan; Tie, Lu; Li, Xuejun

    2015-11-01

    Lipotoxicity plays a vital role in development and progression of type 2 diabetes. Prolonged elevation of free fatty acids especially the palmitate leads to pancreatic β-cell dysfunction and apoptosis. Curcumin (diferuloylmethane), a polyphenol from the curry spice turmeric, is considered to be a broadly cytoprotective agent. The present study was designed to determine the protective effect of curcumin on palmitate-induced apoptosis in β-cells and investigate underlying mechanisms. Our results showed that curcumin improved cell viability and enhanced glucose-induced insulin secretory function in MIN6 pancreatic β-cells. Palmitate incubation evoked chromatin condensation, DNA nick end labeling and activation of caspase-3 and -9. Curcumin treatment inhibited palmitate-induced apoptosis, relieved mitochondrial depolarization and up-regulated Bcl-2/Bax ratio. Palmitate induced the generation of reactive oxygen species and inhibited activities of antioxidant enzymes, which could be neutralized by curcumin treatment. Moreover, curcumin could promote rapid phosphorylation of Akt and nuclear exclusion of FoxO1 in MIN6 cells under lipotoxic condition. Phosphatidylinositol 3-kinase and Akt specific inhibitors abolished the anti-lipotoxic effect of curcumin and stimulated FoxO1 nuclear translocation. These findings suggested that curcumin protected MIN6 pancreatic β-Cells against apoptosis through activation of Akt, inhibition of nuclear translocation of FoxO1 and mitochondrial survival pathway.

  15. A influência dos ácidos graxos trans na disfunção da célula endotelial e o possível efeito terapêutico do exercício sobre o tecido endotelial como forma de prevenção ou regressão da aterosclerose Influence of trans fatty acids on endothelial cell dysfunction and possible therapeutic effects of physical activity on endothelial tissue for prevention or regression of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Laureane Nunes Masi

    2009-06-01

    Full Text Available O endotélio atua ativamente na regulação do tônus vascular, sintetizando e liberando substâncias vasoativas. A inflamação e os fatores de risco cardiovasculares alteram a homeostase vascular, levando à disfunção endotelial e possível formação de placas de ateroma. O aumento das concentrações plasmáticas de ácidos graxos livres pode causar lipotoxicidade vascular, disfunção do endotélio e, finalmente, aterosclerose. Dieta rica em lipídeos contendo ácidos graxos trans tem correlação positiva com a progressão de doenças cardiovasculares. Mudanças no estilo de vida, na adoção de dieta balanceada e atividade física são estratégias para a prevenção de doenças cardiovasculares e a reabilitação de pacientes. Nesta revisão, discutimos a influência benéfica do exercício físico em aspectos importantes da disfunção endotelial causados pelos ácidos graxos trans, incluindo evidências recentes e/ou ainda não exploradas. Discutimos também quais seriam os mecanismos envolvidos no comprometimento funcional da célula endotelial frente ao aumento de ácidos graxos trans na circulação.The endothelium actively participates in the regulation of vascular tone through the synthesis and release of vasoactive mediators. Inflammation and cardiovascular risk factors affect vascular homeostasis, causing endothelial dysfunction and atheromatous plaque formation. Increased free fatty acid concentrations may result in vascular lipotoxicity, endothelium dysfunction and, ultimately, atherosclerosis. A lipid-rich diet including trans fatty acids has a positive correlation with the progression of cardiovascular diseases. Lifestyle changes, such as eating a well-balanced diet and participating in regular physical activity, have been proposed to prevent cardiovascular diseases and improve rehabilitation. In this review, we discuss the beneficial effects of regular exercise on important aspects of endothelial dysfunction caused by

  16. Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice.

    Science.gov (United States)

    Wu, Shih-Lu; Chen, Jaw-Chyun; Li, Chia-Cheng; Lo, Hsin-Yi; Ho, Tin-Yun; Hsiang, Chien-Yun

    2009-08-01

    Inflammatory bowel disease (IBD) is chronic inflammatory and relapsing disease of the gut. It has been known that activation of nuclear factor-kappaB (NF-kappaB) and production of proinflammatory cytokines play important roles in the pathogenesis of IBD. In this study, the effect of vanillin (4-hydroxy-3-methoxybenzaldehyde), a potent nuclear factor-kappaB (NF-kappaB) inhibitor, was evaluated in mice with trinitrobenzene sulfonic acid (TNBS)-induced colitis. Oral administration of vanillin improved macroscopic and histological features of TNBS-induced colitis in a dose-dependent manner. Vanillin not only prevented TNBS-induced colitis but also ameliorated the established colitis. By in vivo NF-kappaB bioluminescence imaging, electrophoretic mobility shift assay, and Western blot, we found that vanillin suppressed in vivo NF-kappaB activities through the inhibition of p65 translocation, inhibitor of nuclear factor-kappaB(IkappaB)-alpha phosphorylation, and IkappaB kinase activation. Furthermore, vanillin reduced the expressions of proinflammatory cytokines [interleukin (IL)-1beta, IL-6, interferon-gamma, and tumor necrosis factor-alpha] and stimulated the expression of anti-inflammatory cytokine (IL-4) in colonic tissues. In conclusion, this work identified vanillin as an anti-inflammatory compound with the capacity to prevent and ameliorate TNBS-induced colitis. Due to its safety, vanillin could be a potent candidate for the treatment of IBD.

  17. Role of amino acids and vitamins in prevention of and rapid recovery from fatigue in the officers and soldiers at high altitude

    Directory of Open Access Journals (Sweden)

    Wen HUANG

    2012-01-01

    Full Text Available Objective  To explore the role of amino acids and vitamins in the prevention of and recovery from the fatigue related to military operation in the officers and soldiers at high altitude. Methods  The participants were 100 officers and soldiers, whose Modified Fatigue Rating Scale (MFIS scores were >21 points. The participants were randomly divided into three groups: capsule, placebo, and granules. Amino acids capsule (8 kinds of essential amino acids and 11 kinds of vitamins were contained, placebo, or amino acid-fructose beverage was given to respective group for 14 days continuously. The 3000-m running performance of the officers and soldiers stationed on a plateau was measured on the first and 14th days. The maximal grip strength of the right hand, fist-making times per minute, and the height reaching by the hand after three-step run-up for the same candidate were observed before and after fatigue loading (3000-m running. The blood levels of lactic acid and urea nitrogen of the candidates were measured after fatigue loading on the first and the 14th days. Results  The 3000-m running performance of officers and soldiers in the capsule and granules groups on the 14th day were better than that of the first day (PP>0.05. The difference between the capsule and the granules groups in grip strength, fist-making times per minute, and hand reaching height on the 14th day were obviously lower than that on the first day (PP>0.05. The blood levels of lactic acid and urea nitrogen in the capsule and granules groups on the 14th day were lower than that on the first day (PP>0.05. Conclusions  Amino acids and vitamins preparations can obviously improve the military performance capacity of officers and soldiers stationed on the plateau. Similarly, they can effectively prevent the lowering of jumping ability and grip strength caused by military fatigue. Therefore, amino acids and vitamins preparations play an important role in the prevention of and rapid

  18. In Vivo Short-Term Topical Application of BAY 11-7082 Prevents the Acidic Bile–Induced mRNA and miRNA Oncogenic Phenotypes in Exposed Murine Hypopharyngeal Mucosa

    Directory of Open Access Journals (Sweden)

    Clarence T. Sasaki

    2018-04-01

    Full Text Available PURPOSE: Bile-containing gastroesophageal reflux may promote cancer at extraesophageal sites. Acidic bile can accelerate NF-κB activation and molecular events, linked to premalignant changes in murine hypopharyngeal mucosa (HM. We hypothesize that short-term in vivo topical application of NF-κB inhibitor BAY 11-7082 can prevent acidic bile–induced early preneoplastic molecular events, suggesting its potential role in disease prevention. EXPERIMENTAL DESIGN: We topically exposed HM (C57Bl/6j wild-type to a mixture of bile acids at pH 3.0 with and without BAY 11-7082 3 times/day for 7 days. We used immunofluorescence, Western blotting, immunohistochemistry, quantitative polymerase chain reaction, and polymerase chain reaction microarrays to identify NF-κB activation and its associated oncogenic mRNA and miRNA phenotypes, in murine hypopharyngeal cells in vitro and in murine HM in vivo. RESULTS: Short-term exposure of HM to acidic bile is a potent stimulus accelerating the expression of NF-κB signaling (70 out of 84 genes and oncogenic molecules. Topical application of BAY 11-7082 sufficiently blocks the effect of acidic bile. BAY 11-7082 eliminates NF-κB activation in regenerating basal cells of acidic bile–treated HM and prevents overexpression of molecules central to head and neck cancer, including bcl-2, STAT3, EGFR, TNF-α, and WNT5A. NF-κB inhibitor reverses the upregulated “oncomirs” miR-155 and miR-192 and the downregulated “tumor suppressors” miR-451a and miR-375 phenotypes in HM affected by acidic bile. CONCLUSION: There is novel evidence that acidic bile–induced NF-κB–related oncogenic mRNA and miRNA phenotypes are generated after short-term 7-day mucosal exposure and that topical mucosal application of BAY 11-7082 can prevent the acidic bile–induced molecular alterations associated with unregulated cell growth and proliferation of hypopharyngeal cells.

  19. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  20. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  1. Effect of processing on folic acid fortified Baladi bread and its possible effect on the prevention of colon cancer.

    Science.gov (United States)

    Omar, Rasha M; Ismail, Hanaa M; El-Lateef, Bothyna M Abd; Yousef, Mokhtar I; Gomaa, Naglaa F; Sheta, Manal

    2009-07-01

    This paper studied the possible effect of folic acid in fortified Baladi bread on the prevention of colon cancer development in rats. Wheat flour samples (82% extraction rate) and soy bean flour were analyzed to determine their folic acid contents using the High Performance Liquid Chromatography (HPLC). Unfortified and folic acid fortified Baladi breads were prepared. Samples from each step of bread preparation were analyzed for folic acid concentration. Protein, fat, ash, fibers and carbohydrates percentages were also determined. Rats were divided into five groups, four of them were injected subcutaneously with dimethylhydrazine (DMH). After 15 weeks, the rats were sacrificed for pathological examination. Results showed that the folic acid content in wheat flour (82% extraction rate) was found to be highly significantly lower than that in soybean flour. After baking, folic acid content in all breads was found to decrease significantly. The highest protein and fat contents were found in soybean flour fortified Baladi bread. The colons of rats of groups 3 (fed 5% soy flour fortified Baladi bread) and 5 (fed Baladi bread fortified with 5% soy flour+8 mg folic acid/kg wheat flour) were the mostly affected by DMH injection as premalignant changes were observed.

  2. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  3. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  4. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.

    Science.gov (United States)

    Leaf, Alexander; Albert, Christine M; Josephson, Mark; Steinhaus, David; Kluger, Jeffrey; Kang, Jing X; Cox, Benjamin; Zhang, Hui; Schoenfeld, David

    2005-11-01

    The long-chain n-3 fatty acids in fish have been demonstrated to have antiarrhythmic properties in experimental models and to prevent sudden cardiac death in a randomized trial of post-myocardial infarction patients. Therefore, we hypothesized that these n-3 fatty acids might prevent potentially fatal ventricular arrhythmias in high-risk patients. Four hundred two patients with implanted cardioverter/defibrillators (ICDs) were randomly assigned to double-blind treatment with either a fish oil or an olive oil daily supplement for 12 months. The primary end point, time to first ICD event for ventricular tachycardia or fibrillation (VT or VF) confirmed by stored electrograms or death from any cause, was analyzed by intention to treat. Secondary analyses were performed for "probable" ventricular arrhythmias, "on-treatment" analyses for all subjects who had taken any of their oil supplements, and "on-treatment" analyses only of those subjects who were on treatment for at least 11 months. Compliance with double-blind treatment was similar in the 2 groups; however, the noncompliance rate was high (35% of all enrollees). In the primary analysis, assignment to treatment with the fish oil supplement showed a trend toward a prolonged time to the first ICD event (VT or VF) or of death from any cause (risk reduction of 28%; P=0.057). When therapies for probable episodes of VT or VF were included, the risk reduction became significant at 31%; P=0.033. For those who stayed on protocol for at least 11 months, the antiarrhythmic benefit of fish oil was improved for those with confirmed events (risk reduction of 38%; P=0.034). Although significance was not achieved for the primary end point, this study provides evidence that for individuals at high risk of fatal ventricular arrhythmias, regular daily ingestion of fish oil fatty acids may significantly reduce potentially fatal ventricular arrhythmias.

  5. Ursodeoxycholic acid in patients with ulcerative colitis and primary sclerosing cholangitis for prevention of colon cancer: a meta-analysis.

    Science.gov (United States)

    Ashraf, Imran; Choudhary, Abhishek; Arif, Murtaza; Matteson, Michelle L; Hammad, Hazem T; Puli, Srinivas R; Bechtold, Matthew L

    2012-04-01

    Colon cancer risk is high in patients with ulcerative colitis (UC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid has been shown to have some promise as a chemopreventive agent. A meta-analysis was performed to compare the efficacy of ursodeoxycholic acid in the prevention of colonic neoplasia in patients with UC and PSC. Multiple databases were searched (January 2011). Studies examining the use of ursodeoxycholic acid vs. no ursodeoxycholic acid or placebo in adult patients with UC and PSC were included. Data were extracted in standard forms by two independent reviewers. Meta-analysis for the effect of ursodeoxycholic acid was performed by calculating pooled estimates of adenoma or colon cancer formation by odds ratio (OR) with random effects model. Heterogeneity was assessed by calculating the I (2) measure of inconsistency. RevMan 5 was utilized for statistical analysis. Four studies (n = 281) met the inclusion criteria. The studies were of adequate quality. Ursodeoxycholic acid demonstrated no overall improvement in adenoma (OR 0.53; 95 % CI: 0.19-1.48, p = 0.23) or colon cancer occurrence (OR 0.50; 95 % CI: 0.18-1.43, p = 0.20) as compared to no ursodeoxycholic acid or placebo in patients with UC and PSC. Ursodeoxycholic acid use in patients with UC and PSC does not appear to decrease the risk of adenomas or colon cancer.

  6. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  7. Nutritional approach to preeclampsia prevention.

    Science.gov (United States)

    Achamrah, Najate; Ditisheim, Agnès

    2018-05-01

    Although not fully understood, the physiopathology of preeclampsia is thought to involve an abnormal placentation, diffuse endothelial cell dysfunction and increased systemic inflammation. As micronutrients play a key role in placental endothelial function, oxidative stress and expression of angiogenic factors, periconceptional micronutrient supplementation has been proposed to reduce the risk of preeclampsia. However, recent studies reported conflicting results. Calcium intake (>1 g/day) may reduce the risk of preeclampsia in women with low-calcium diet. Data from recently updated Cochrane reviews did not support routine supplementation of vitamins C, E or D for either the prevention or treatment of preeclampsia. Evidences are also poor to support zinc or folic acid supplementation for preeclampsia prevention. Dark chocolate, flavonoid-rich food, and long-chain polyunsaturated fatty acids might also be candidates for prevention of preeclampsia. Through antioxidant, anti-inflammatory or vasoactive proprieties, micronutrients are good candidates for preeclampsia prevention. Calcium supplementation is recommended to prevent preeclampsia in women with low-calcium intake. Despite positive clinical and in-vitro data, strong evidence to support periconceptional supplementation of other micronutrients for preeclampsia risk-reduction is still lacking. Further studies are also needed to evaluate the benefit of nutritional supplementation such as chocolate and long-chain polyunsaturated fatty acids.

  8. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Karen R Jonscher

    Full Text Available Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.

  9. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  10. Preventive and curative effects of dicaffeoylquinic acid on early pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Liu Tao; Song Liangwen; Dong Junxing; Huang Shanying; Li Yang

    2005-01-01

    Objective: To explore the effect of dicaffeoylquinic acid (IBE5) on prevention and treatment of pulmonary fibrosis induced by bleomycin (BLM) in mice and its mechanism. Methods: Hydroxyproline content determination, imaging analysis, collagen I and III assay, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 7 (MMP-7 ) immunohistochemistry were performed. Results: 1)Hydroxyproline content decreased in fibrotic lung tissue after administration of IBE5(P<0.05). 2)The number of pulmonary alveoli reduced, alveolus interstitium was thickened and collagen deposition and fibrosis were formed in lung tissue of BLM group. The break of pulmonary alveoli and extension of pulmonary fibrosis were decreased by use of IBE5 (P<0.05). 3)A lot of collagen I and III were synthesized in lung interstitium in BLM group and their quantity was reduced in IBE5 group (P<0.05). 4) In BLM group, α-SMA expression increased and located in myofibroblasts in fibrotic area, and MMP7 immunohistochemical signal was located in myofibroblasts also. They were decreased in IBE5 group(P<0.05). Conclusion: IBE5 plays a preventive and curative role in pulmonary fibrosis by inhibition of transformation of fibroblasts towards myofibroblasts and MMP7 expression. (authors)

  11. Cross-linked hyaluronic acid in pressure ulcer prevention.

    Science.gov (United States)

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  12. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    Science.gov (United States)

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Uptake in the pancreatic islets of nicotimamide, nicotinic acid and tryptophan and their ability to prevent streptozotocin diabetes in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tjaelve, H; Wilander, E [Uppsala Univ. (Sweden)

    1976-01-01

    The uptake of the nicotinamide adenine dinucleotide (NAD)-precursors nicotinamide, nicotinic acid and tryptophan in the pancreatic islets of mice was studied by use of autoradio-graphical methods. The ability of these substances to prevent streptozotocin diabetes was studied in the same species. It was found that only nicotinamide was strongly accumulated in the pancreatic islets and nicotinamide was also the only NAD-precursor which protected against the streptozotocin diabetes. Apparently there is a relationship between the ability of the NAD-precursors to be taken up in the pancreatic islets and their ability to prevent streptozotocin diabetes.

  14. Randomized, Prospective Comparison of Ursodeoxycholic Acid for the Prevention of Gallstones after Sleeve Gastrectomy.

    Science.gov (United States)

    Adams, Lindsay B; Chang, Craig; Pope, Janet; Kim, Yeonsoo; Liu, Pei; Yates, Amy

    2016-05-01

    Several studies have examined the role of ursodeoxycholic acid (UDCA) for the prevention of cholelithiasis (gallstones) following rapid weight loss from restrictive diets, vertical band gastroplasty, and Roux-en-Y gastric bypass. However, to date, there have been no prospective, controlled studies examining the role of UDCA for the prevention of gallstones following sleeve gastrectomy (SG). This study was conducted to identify the effectiveness of UDCA for prevention of gallstones after SG. Following SG, eligible patients were randomized to a control group who did not receive UDCA treatment or to a group who were prescribed 300 mg UDCA twice daily for 6 months. Gallbladder ultrasounds were performed preoperatively and at 6 and 12 months postoperatively. Patients with positive findings preoperatively were excluded from the study. Compliance with UDCA was assessed. Between December 2011 and April 2013, 37 patients were randomized to the UDCA treatment arm and 38 patients were randomized to no treatment. At baseline, the two groups were similar. At 6 months, the UDCA group had a statistically significant lower incidence of gallstones (p = 0.032). Analysis revealed no significant difference in gallstones between the two groups at 1 year (p = 0.553 and p = 0.962, respectively). The overall gallstone formation rate was 29.8%. The incidence of gallstones is higher than previously estimated in SG patients. UDCA significantly lowers the gallstone formation rate at 6 months postoperatively.

  15. Zoledronic Acid Injection

    Science.gov (United States)

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  16. Ursodeoxycholic Acid in the Prevention of Gallstone Formation After Bariatric Surgery: an Updated Systematic Review and Meta-analysis.

    Science.gov (United States)

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Svokos, Alexis A; Svokos, Konstantina A; Chatedaki, Christina; Sioka, Eleni; Zacharoulis, Dimitris

    2017-11-01

    We aim to review the available literature on obese patients treated with ursodeoxycholic acid (UDCA) in order to prevent gallstone formation after bariatric surgery. A systematic literature search was performed in PubMed, Cochrane library, and Scopus databases, in accordance with the PRISMA guidelines. Eight studies met the inclusion criteria incorporating 1355 patients. Random-effects meta-analysis showed a lower incidence of gallstone formation in patients taking UDCA. Subgroup analysis reported fewer cases of gallstone disease in the UDCA group in relation to different bariatric procedures, doses of administered UDCA, and time from bariatric surgery. Adverse events were similar in both groups. Fewer patients required cholecystectomy in UDCA group. No deaths were reported. The administration of UDCA after bariatric surgery seems to prevent gallstone formation.

  17. Parenteral safflower oil emulsion (Liposyn 10%): safety and effectiveness in treating or preventing essential fatty acid deficiency in surgical patients.

    Science.gov (United States)

    Bivins, B A; Rapp, R P; Record, K; Meng, H C; Griffen, W O

    1980-01-01

    The safety and effectiveness of a 10% safflower oil emulsion in treating or preventing essential fatty acid deficiency was tested in a prospective study of 15 surgical patients requiring total parenteral nutrition for two to four weeks. Three dosage regimens were evaluated including: Group I: 4% of calories as linoleate daily (five patients), Group II: 4% of calories as linoleate every other day (two patients), and Group III: 8% of calories every other day (eight patients). Patients were monitored for laboratory changes from baseline specifically in those areas where previous fat emulsions have caused serious deviations. No significant changes were noted in hematologic parameters, coagulation studies, cholesterol and triglyceride serum levels. Although there were sporadic mild deviations in liver function changes in several patients, no clinically significant adverse effects could be directly attributed to infusion of the fat emulsion. Three patients had baseline triene/tetraene ratios of 0.4 or greater, indicative of essential fatty/acid deficiency, and these ratios dropped to less than 0.4 within eight days of beginning therapy with the parenteral fat emulsion. The remaining 12 patients maintained a normal triene/tetraene ratio of less than 0.4 throughout the 28 day study period. All three dosage regimens were considered effective for treatment and prevention of essential fatty acid deficiency. Images Fig. 1. Fig. 2. Fig. 3. PMID:6767452

  18. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study.

    Science.gov (United States)

    Bersch-Ferreira, Ângela Cristine; Sampaio, Geni Rodrigues; Gehringer, Marcella Omena; Torres, Elizabeth Aparecida Ferraz da Silva; Ross-Fernandes, Maria Beatriz; da Silva, Jacqueline Tereza; Torreglosa, Camila Ragne; Kovacs, Cristiane; Alves, Renata; Magnoni, Carlos Daniel; Weber, Bernardete; Rogero, Marcelo Macedo

    2018-02-21

    Proinflammatory biomarkers levels are increased among patients with cardiovascular disease, and it is known that both the presence of insulin resistance and diet may influence those levels. However, these associations are not well studied among patients with established cardiovascular disease. Our objective is to compare inflammatory biomarker levels among cardiovascular disease secondary prevention patients with and without insulin resistance, and to evaluate if there is any association between plasma fatty acid levels and inflammatory biomarker levels among them. In this cross-sectional sub-study from the BALANCE Program Trial, we collected data from 359 patients with established cardiovascular disease. Plasma fatty acids and inflammatory biomarkers (interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, high sensitive C-reactive protein (hs-CRP), adiponectin, and tumor necrosis factor (TNF)-alpha) were measured. Biomarkers and plasma fatty acid levels of subjects across insulin resistant and not insulin resistant groups were compared, and general linear models were used to examine the association between plasma fatty acids and inflammatory biomarkers. Subjects with insulin resistance had a higher concentration of hs-CRP (p = 0.002) and IL-6 (p = 0.002) than subjects without insulin resistance. Among subjects without insulin resistance there was a positive association between stearic fatty acid and IL-6 (p = 0.032), and a negative association between alpha-linolenic fatty acid and pro-inflammatory biomarkers (p fatty acids and arachidonic fatty acid and adiponectin (p fatty acids and pro-inflammatory biomarkers (p fatty acids and adiponectin (p fatty acids. Subjects in secondary prevention for cardiovascular disease with insulin resistance have a higher concentration of hs-CRP and IL-6 than individuals without insulin resistance, and these inflammatory biomarkers are positively associated with saturated fatty acids and negatively associated with

  19. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression

    Directory of Open Access Journals (Sweden)

    Francesco Bellanti

    2018-05-01

    Full Text Available The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury.

  20. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  1. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  2. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke

    2017-01-01

    of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression...... antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act...... as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract....

  3. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  4. Phytanic acid-an overlooked bioactive fatty acid in dairy fat?

    DEFF Research Database (Denmark)

    Hellgren, Lars

    2010-01-01

    dissipation in skeletal muscles. Phytanic acid levels in serum are associated with an increased risk of developing prostate cancer, but the available data do not support a general causal link between circulating phytanic acid and prostate cancer risk. However, certain individuals, with specific single......Phytanic acid is a multibranched fatty acid with reported retinoid X receptor (RXR) and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist activity, which have been suggested to have preventive effects on metabolic dysfunctions. Serum level in man is strongly correlated...

  5. The omega-3 fatty acid, eicosapentaenoic acid (EPA, prevents the damaging effects of tumour necrosis factor (TNF-alpha during murine skeletal muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Pearson Stephen

    2008-07-01

    Full Text Available Abstract Background Eicosapentaenoic acid (EPA is a ώ-3 polyunsaturated fatty acid with anti-inflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p p p p p p Conclusion In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury.

  6. Effect of Smoking and Folate Levels on the Efficacy of Folic Acid Therapy in Prevention of Stroke in Hypertensive Men.

    Science.gov (United States)

    Zhou, Ziyi; Li, Jianping; Yu, Yaren; Li, Youbao; Zhang, Yan; Liu, Lishun; Song, Yun; Zhao, Min; Wang, Yu; Tang, Genfu; He, Mingli; Xu, Xiping; Cai, Yefeng; Dong, Qiang; Yin, Delu; Huang, Xiao; Cheng, Xiaoshu; Wang, Binyan; Hou, Fan Fan; Wang, Xiaobin; Qin, Xianhui; Huo, Yong

    2018-01-01

    We aimed to examine whether the efficacy of folic acid therapy in the primary prevention of stroke is jointly affected by smoking status and baseline folate levels in a male population in a post hoc analysis of the CSPPT (China Stroke Primary Prevention Trial). Eligible participants of the CSPPT were randomly assigned to a double-blind daily treatment of a combined enalapril 10-mg and folic acid 0.8-mg tablet or an enalapril 10-mg tablet alone. In total, 8384 male participants of the CSPPT were included in the current analyses. The primary outcome was first stroke. The median treatment duration was 4.5 years. In the enalapril-alone group, the first stroke risk varied by baseline folate levels and smoking status (never versus ever). Specifically, there was an inverse association between folate levels and first stroke in never smokers ( P for linear trend=0.043). However, no such association was found in ever smokers. A test for interaction between baseline folate levels and smoking status on first stroke was significant ( P =0.045). In the total sample, folic acid therapy significantly reduced the risk of first stroke in never smokers with folate deficiency (hazard risk, 0.36; 95% confidence interval, 0.16-0.83) and in ever smokers with normal folate levels (hazard risk, 0.69; 95% confidence interval, 0.48-0.99). Baseline folate levels and smoking status can interactively affect the risk of first stroke. Our data suggest that compared with never smokers, ever smokers may require a higher dosage of folic acid to achieve a greater beneficial effect on stroke. Our findings need to be confirmed by future randomized trials. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00794885. © 2017 American Heart Association, Inc.

  7. Prevention of postcoronary angioplasty restenosis by omega-3 fatty acids: main results of the Esapent for Prevention of Restenosis ITalian Study (ESPRIT).

    Science.gov (United States)

    Maresta, Aleardo; Balduccelli, Marco; Varani, Elisabetta; Marzilli, Mario; Galli, Claudio; Heiman, Franca; Lavezzari, Maurizio; Stragliotto, Eduardo; De Caterina, Raffaele

    2002-06-01

    Previous trials of omega-3 fatty acids (omega-3 FA) for restenosis prevention after percutaneous transluminal coronary angioplasty (PTCA) have yielded conflicting results. We tested the hypothesis that long-term administration of omega-3 FA before PTCA may have significant effects on restenosis. We randomized 339 patients in a double-blind, placebo-controlled study of omega-3 FA (as an ethyl ester preparation given as 6 1-g capsules providing 3 g eicosapentaenoic acid and 2.1 g docosahexaenoic acid/d started 1 month before PTCA and given for 1 month thereafter, then continued at half-dose for 6 months) versus an olive oil placebo. Of these, 257 patients (125 on omega-3 FA, 132 on placebo) well matched for risk factors underwent successful balloon-only PTCA (280 total lesions) and were evaluable at 6 months with repeat angiography. Restenosis was defined at quantitative angiography as a recurrence of >50% diameter stenosis in the dilated vessel (Definition I) and as >50% loss of the short-term gain immediately after PTCA (Definition II). Restenosis rates per vessel were 29.4% and 31.6% in the omega-3 FA group, and 39.6% and 35.4% in the placebo group according to Definitions I (P =.04) and II (P = not significant), respectively. Restenosis rates per patient were 31.2% and 33.6% in the omega-3 FA group, and 40.9% and 37.1% in the placebo group according to Definitions I (P =.05) and II (P = not significant), respectively. With a long treatment before PTCA, omega-3 FA produced a small but significant decrease in the restenosis rate compared with placebo.

  8. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Kirsten Roomp

    Full Text Available Studies on the pathophysiology of type 2 diabetes mellitus (T2DM have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucose-stimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24:1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our

  9. Cardiac metabolism and mechanics are altered by genetic loss of lipoprotein triglyceride lipolysis.

    Science.gov (United States)

    Noh, Hye-Lim; Yamashita, Haruyo; Goldberg, Ira J

    2006-12-01

    Most circulating fatty acids are contained in lipoprotein triglycerides. For the heart to acquire these lipids, they must be broken down into free fatty acids via the enzyme lipoprotein lipase (LpL). Although it has long been known that hearts primarily use esterified fatty acids as fuel, different sources of fatty acids were thought to be interchangeable. By creating mice with neonatal and acute LpL deletion we showed that lipoprotein-derived fatty acids could not be replaced by albumin-associated free fatty acids. Loss of cardiac LpL forces the heart to increase its uptake of glucose, reduce fatty acid oxidation, and eventually leads to cardiac dysfunction. In contrast, cardiomyocyte specific overexpression of an anchored form of LpL leads to excess lipid uptake, induction of fatty acid oxidation genes, and dilated cardiomyopathy. Increasing lipid secretion from the heart or redirecting lipids to adipose tissue can alleviate this lipotoxic situation.

  10. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2017-11-01

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice

    Directory of Open Access Journals (Sweden)

    Han-Sol Park

    2016-04-01

    Full Text Available BackgroundNon-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH, but underlying mechanisms of this prevention are largely unknown.MethodsSeven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day, for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver.ResultsStatin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels.ConclusionStatins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

  12. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    Directory of Open Access Journals (Sweden)

    Emma Fernández-Crespo

    2017-10-01

    Full Text Available Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV and demonstrated the efficacy of hexanoic acid (Hx priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR to MNSV. Our data indicate important roles of salicylic acid (SA, 12-oxo-phytodienoic acid (OPDA, jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  13. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins.

    Science.gov (United States)

    Xu, N; Coulter, K M; Derek Bewley, J

    1990-10-01

    Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10(-5) M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious

  14. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Is intravesical instillation of hyaluronic acid and chondroitin sulfate useful in preventing recurrent bacterial cystitis? A multicenter case control analysis

    OpenAIRE

    Giorgio Gugliotta; Gloria Calagna; Giorgio Adile; Salvatore Polito; Salvatore Saitta; Patrizia Speciale; Stefano Palomba; Antonino Perino; Roberta Granese; Biagio Adile

    2015-01-01

    Objective: Urinary tract infections (UTIs) are common in the female population and, over a lifetime, about half of women have at least one episode of UTI requiring antibiotic therapy. The aim of the current study was to compare two different strategies for preventing recurrent bacterial cystitis: intravesical instillation of hyaluronic acid (HA) plus chondroitin sulfate (CS), and antibiotic prophylaxis with sulfamethoxazole plus trimethoprim. Materials and methods: This was a retrospective...

  16. Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis.

    Science.gov (United States)

    Espeche, M Carolina; Pellegrino, Matías; Frola, Ignacio; Larriestra, Alejandro; Bogni, Cristina; Nader-Macías, M E Fátima

    2012-02-01

    Bovine mastitis produces a wide variety of problems in the dairy farm. The treatment of this disease is based on the use of antibiotics which are not always effective. These drugs are also responsible for the presence of residues in the milk and the increase of antibiotic-resistant strains. Probiotic products were proposed as a valid alternative to antibiotic therapies and are also useful for the prevention of infectious syndromes. With the aim of designing a probiotic product to prevent bovine mastitis, lactic acid bacteria (LAB) were isolated from foremilk samples from different dairy farms in Córdoba-Argentina. One hundred and seventeen LAB were isolated and their beneficial characteristics such as the production of inhibitory substances, surface properties and production of exopolysaccharides (EPS) were assessed. Most of them displayed low degree of hydrophobicity, autoaggregation, EPS negative phenotype and were identified as Enterococcus hirae and Pediococcus pentosaceus. Nine LAB strains inhibited three indicator bacteria. Some isolates were pre-selected and genetically identified according to the results obtained. Antibiotic resistance and virulence factors were studied for the assessment of the safety of the strains. The results obtained were compared to those reported previously from samples obtained in the North-western area of the country and some differences were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject

    Directory of Open Access Journals (Sweden)

    Lynda Frassetto

    2018-04-01

    Full Text Available Modern Western diets, with higher contents of animal compared to fruits and vegetable products, have a greater content of acid precursors vs. base precursors, which results in a net acid load to the body. To prevent inexorable accumulation of acid in the body and progressively increasing degrees of metabolic acidosis, the body has multiple systems to buffer and titrate acid, including bone which contains large quantities of alkaline salts of calcium. Both in vitro and in vivo studies in animals and humans suggest that bone base helps neutralize part of the dietary net acid load. This raises the question of whether decades of eating a high acid diet might contribute to the loss of bone mass in osteoporosis. If this idea is true, then additional alkali ingestion in the form of net base-producing foods or alkalinizing salts could potentially prevent this acid-related loss of bone. Presently, data exists that support both the proponents as well as the opponents of this hypothesis. Recent literature reviews have tended to support either one side or the other. Assuming that the data cited by both sides is correct, we suggest a way to reconcile the discordant findings. This overview will first discuss dietary acids and bases and the idea of changes in acid balance with increasing age, then review the evidence for and against the usefulness of alkali therapy as a treatment for osteoporosis, and finally suggest a way of reconciling these two opposing points of view.

  18. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  19. Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats

    NARCIS (Netherlands)

    Visser, J. T. J.; Bos, N. A.; Harthoorn, L. F.; Stellaard, F.; Beijer-Liefers, S.; Rozing, J.; van Tol, E. A. F.

    Background It remains controversial whether avoidance of dietary diabetogenic triggers, such as cow's milk proteins, can prevent type 1 diabetes in genetically susceptible individuals. Here, different extensive casein hydrolysates (HC) and single amino acid (AA) formulations were tested for their

  20. Passivation of bimetallic catalysts used in water treatment: prevention and reactivation.

    Science.gov (United States)

    Chen, Jianming; Gillham, Robert W; Gui, Lai

    2013-01-01

    With respect to degradation rates and the range in contaminants treated, bimetals such as Ni-Fe or Pd-Fe generally outperform unamended granular iron. However, the catalytic enhancement is generally short-lived, lasting from a few days to months. To take advantage of the significant benefits of bimetals, this study aims at developing an effective method for the rejuvenation of passivated bimetals and alternatively, the prevention of rapid reactivity loss of bimetals. Because the most likely cause of Ni-Fe and Pd-Fe passivation is the deposition of iron oxide films over the catalyst sites, it is hypothesized that removal of the iron oxide films will restore the lost reactivity or avoiding the deposition of iron oxide films will prevent passivation. Two organic ligands (ethylenediaminetetraacetic acid (EDTA), and [s,s]-ethylenediaminedisuccinate acid ([s,s]-EDDS)) and two acids (citric acid and sulphuric acid) were tested as possible chemical reagents for both passivation rejuvenation and prevention. Trichloroethene (TCE) and Ni-Fe were chosen as probes for chlorinated solvents and bimetals respectively. The test was carried out using small glass columns packed with Ni-Fe. TCE solution containing a single reagent at various concentrations was pumped through the Ni-Fe columns with a residence time in the Ni-Fe of about 6.6 min. TCE concentrations in the influent and effluent were measured to evaluate the performance of each chemical reagent. The results show that (i) for passivated Ni-Fe, flushing with a low concentration of acid or ligand solution without mechanical mixing can fully restore the lost reactivity; and (ii) for passivation prevention, adding a small amount of a ligand or an acid to the feed solution can successfully prevent or at least substantially reduce Ni-Fe passivation. All four chemicals tested are effective in both rejuvenation and prevention, but sulphuric acid and citric acid are considered to be the most practical reagents due to their

  1. Prevention of 5-fluorouracil-caused growth inhibition in Sordaria fimicola.

    Science.gov (United States)

    Schoen, H F; Berech, J

    1977-02-01

    Growth (dry weight accumulation) of Sordaria fimicola in standing liquid culture (sucrose-nitrate-salts-vitamins) is inhibited by the presence of 5 muM 5-fluorouracil in the medium. This inhibition is completely prevented by uracil, deoxyuridine, and 5-bromouracil, partly prevented (40 to 90% of growth observed without 5-fluorouracil) by uridine, thymidine, and 5-bromodeoxyuridine, and slightly prevented by trifluorothymine, cytosine, cytidine, deoxycytidine, and 5-methylcytosine (all at 0.5 to 1 mM). Thymidine and thymine riboside were without any apparent effect. Growth is also inhibited by 0.2 mM 6-azauracil, and this inhibition was completely prevented by uracil and uridine, partly prevented by deoxyuridine, 5-bromouracil, cytidine, and 5-methylcytosine, and slightly prevented by thymine, thymidine, 5-bromodeoxyuridine, cytosine, and deoxycytidine. The data suggest that the observed inhibition of growth by 5-fluorouracil is due to inhibition of both ribonucleic acid and deoxyribonucleic acid synthesis. The data also allow inferences concerning pyrimidine interconversions in S. fimicola; i.e., thymine can be anabolized to thymidylic acid without first being demethylated, although demethylation appears to occur also.

  2. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    Science.gov (United States)

    Puttabyatappa, Muraly; Andriessen, Victoria; Mesquitta, Makeda; Zeng, Lixia; Pennathur, Subramaniam; Padmanabhan, Vasantha

    2017-09-01

    Prenatal testosterone (T) excess in sheep leads to peripheral insulin resistance (IR), reduced adipocyte size, and tissue-specific changes, with liver and muscle but not adipose tissue being insulin resistant. To determine the basis for the tissue-specific differences in insulin sensitivity, we assessed changes in negative (inflammation, oxidative stress, and lipotoxicity) and positive mediators (adiponectin and antioxidants) of insulin sensitivity in the liver, muscle, and adipose tissues of control and prenatal T-treated sheep. Because T excess leads to maternal hyperinsulinemia, fetal hyperandrogenism, and functional hyperandrogenism and IR in their female offspring, prenatal and postnatal interventions with antiandrogen, flutamide, and the insulin sensitizer rosiglitazone were used to parse out the contribution of androgenic and metabolic pathways in programming and maintaining these defects. Results showed that (1) peripheral IR in prenatal T-treated female sheep is related to increases in triglycerides and 3-nitrotyrosine, which appear to override the increase in high-molecular-weight adiponectin; (2) liver IR is a function of the increase in oxidative stress (3-nitrotyrosine) and lipotoxicity; (3) muscle IR is related to lipotoxicity; and (4) the insulin-sensitive status of visceral adipose tissue appears to be a function of the increase in antioxidants that likely overrides the increase in proinflammatory cytokines, macrophages, and oxidative stress. Prenatal and postnatal intervention with either antiandrogen or insulin sensitizer had partial effects in preventing or ameliorating the prenatal T-induced changes in mediators of insulin sensitivity, suggesting that both pathways are critical for the programming and maintenance of the prenatal T-induced changes and point to potential involvement of estrogenic pathways. Copyright © 2017 Endocrine Society.

  3. Acid mine drainage prevention, control and treatment technology development for the Stockett/Sand Coulee area. Topical report, March 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    Brown, T.

    1996-01-01

    The project was initiated to assist the State of Montana to develop a methodology to ameliorate acid mine drainage problems associated with the abandoned mines located in the Stockett/Sand Coulee area near Great Falls, Montana. Extremely acidic water is continuously discharging from abandoned coal mines in the Stockett/Sand Coulee area at an estimated rate of greater than 600 acre-feet per year (about 350 to 400 gallons per minute). Due to its extreme acidity, the water is unusable and is contaminating other water supplies. Most of the local alluvial aquifers have been contaminated, and nearly 5% of the private wells that were tested in the area during the mid-1980's showed some degree of contamination. Significant government money has been spent replacing water supplies due to the magnitude of this problem. In addition, millions of dollars have been spent trying to remediate acid mine drainage occurring in this coal field. To date, the techniques used have focused on the management and containment of mine waters, rather than designing technologies that would prevent the formation of acid mine drainage

  4. Is fatty acid composition of human bone marrow significant to bone health?

    Science.gov (United States)

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ascorbic acid prevents nonreceptor specific binding of [3H]-5-hydroxytryptamine to bovine cerebral cortex membranes

    International Nuclear Information System (INIS)

    Hamblin, M.W.; Adriaenssens, P.I.; Ariani, K.; Cawthon, R.M.; Stratford, C.A.; Tan, G.L.; Ciaranello, R.D.

    1987-01-01

    [ 3 H]-5-Hydroxytryptamine ([ 3 H]-5-HT) decomposes rapidly when exposed to air in solution at physiological pH if antioxidants are not present. The decomposition products appear to bind to two saturable sites on brain membranes (apparent Kd values = 1-2 and 100-1000 nM). This binding mimics ''specific'' ligand/receptor binding in that it is inhibited by 10 microM unlabeled 5-HT. This inhibition is not competitive, but rather is due to the prevention of [ 3 H]-5-HT breakdown by excess unlabeled 5-HT. Unlike genuine ligand/receptor binding, the binding of [ 3 H]-5-HT breakdown products is essentially irreversible and does not display a tissue distribution consistent with binding to authentic 5-HT receptors. [ 3 H]-5-HT decomposition can be eliminated by the inclusion of 0.05 to 5 mM ascorbic acid. At these concentrations ascorbic acid is not deleterious to reversible [ 3 H]-5-HT binding. When [ 3 H] 5-HT exposure to air occurs in the presence of brain membranes, the apparent antioxidant activity of brain membranes themselves affords protection against [ 3 H]-5-HT degradation equal to ascorbic acid. This protection is effective below final [ 3 H]-5-HT concentrations of 10 nM. Above 10 nM [ 3 H]-5-HT, addition of ascorbic acid or other antioxidants is necessary to avoid the occurrence of additional low affinity (apparent Kd = 15-2000 nM) binding sites that are specific but nonetheless irreversible. When care is taken to limit [ 3 H]-5-HT oxidation, the only reversible and saturable specific binding sites observed are of the 5-HT1 high affinity (Kd = 1-2 nM) type. Radioligand oxidation artifacts may be involved in previous reports of low affinity (Kd = 15-250 nM) [ 3 H]-5-HT binding sites in brain membrane preparations

  6. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  7. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis

    Science.gov (United States)

    Adeyemi, Oladipupo; Alvarez-Laviada, Anita; Schultz, Francisca; Ibrahim, Effendi; Trauner, Michael; Williamson, Catherine; Glukhov, Alexey V.

    2017-01-01

    Background Increased maternal serum bile acid concentrations in intrahepatic cholestasis of pregnancy (ICP) are associated with fetal cardiac arrhythmias. Ursodeoxycholic acid (UDCA) has been shown to demonstrate anti-arrhythmic properties via preventing ICP-associated cardiac conduction slowing and development of reentrant arrhythmias, although the cellular mechanism is still being elucidated. Methods High-resolution fluorescent optical mapping of electrical activity and electrocardiogram measurements were used to characterize effects of UDCA on one-day-old neonatal and adult female Langendorff-perfused rat hearts. ICP was modelled by perfusion of taurocholic acid (TC, 400μM). Whole-cell calcium currents were recorded from neonatal rat and human fetal cardiomyocytes. Results TC significantly prolonged the PR interval by 11.0±3.5% (P<0.05) and slowed ventricular conduction velocity (CV) by 38.9±5.1% (P<0.05) exclusively in neonatal and not in maternal hearts. A similar CV decline was observed with the selective T-type calcium current (ICa,T) blocker mibefradil 1μM (23.0±6.2%, P<0.05), but not with the L-type calcium current (ICa,L) blocker nifedipine 1μM (6.9±6.6%, NS). The sodium channel blocker lidocaine (30μM) reduced CV by 60.4±4.5% (P<0.05). UDCA co-treatment was protective against CV slowing induced by TC and mibefradil, but not against lidocaine. UDCA prevented the TC-induced reduction in the ICa,T density in both isolated human fetal (−10.2±1.5 versus −5.5±0.9 pA/pF, P<0.05) and neonatal rat ventricular myocytes (−22.3±1.1 versus −9.6±0.8 pA/pF, P<0.0001), whereas UDCA had limited efficacy on the ICa,L. Conclusion Our findings demonstrate that ICa,T plays a significant role in ICP-associated fetal cardiac conduction slowing and arrhythmogenesis, and is an important component of the fetus-specific anti-arrhythmic activity of UDCA. PMID:28934223

  8. Ursodeoxycholic acid prevents ventricular conduction slowing and arrhythmia by restoring T-type calcium current in fetuses during cholestasis.

    Directory of Open Access Journals (Sweden)

    Oladipupo Adeyemi

    Full Text Available Increased maternal serum bile acid concentrations in intrahepatic cholestasis of pregnancy (ICP are associated with fetal cardiac arrhythmias. Ursodeoxycholic acid (UDCA has been shown to demonstrate anti-arrhythmic properties via preventing ICP-associated cardiac conduction slowing and development of reentrant arrhythmias, although the cellular mechanism is still being elucidated.High-resolution fluorescent optical mapping of electrical activity and electrocardiogram measurements were used to characterize effects of UDCA on one-day-old neonatal and adult female Langendorff-perfused rat hearts. ICP was modelled by perfusion of taurocholic acid (TC, 400μM. Whole-cell calcium currents were recorded from neonatal rat and human fetal cardiomyocytes.TC significantly prolonged the PR interval by 11.0±3.5% (P<0.05 and slowed ventricular conduction velocity (CV by 38.9±5.1% (P<0.05 exclusively in neonatal and not in maternal hearts. A similar CV decline was observed with the selective T-type calcium current (ICa,T blocker mibefradil 1μM (23.0±6.2%, P<0.05, but not with the L-type calcium current (ICa,L blocker nifedipine 1μM (6.9±6.6%, NS. The sodium channel blocker lidocaine (30μM reduced CV by 60.4±4.5% (P<0.05. UDCA co-treatment was protective against CV slowing induced by TC and mibefradil, but not against lidocaine. UDCA prevented the TC-induced reduction in the ICa,T density in both isolated human fetal (-10.2±1.5 versus -5.5±0.9 pA/pF, P<0.05 and neonatal rat ventricular myocytes (-22.3±1.1 versus -9.6±0.8 pA/pF, P<0.0001, whereas UDCA had limited efficacy on the ICa,L.Our findings demonstrate that ICa,T plays a significant role in ICP-associated fetal cardiac conduction slowing and arrhythmogenesis, and is an important component of the fetus-specific anti-arrhythmic activity of UDCA.

  9. Placement of acid spoil materials

    Energy Technology Data Exchange (ETDEWEB)

    Pionke, H B; Rogowski, A S

    1982-06-01

    Potentially there are several chemical and hydrologic problems associated with placement of acid spoil materials. The rationale for a deep placement well below the soil surface, and preferably below a water table, is to prevent or minimize oxidation of pyrite to sulfuric acid and associated salts by reducing the supply of oxygen. If, however, substantial sulfuric acid or associated salts are already contained within the spoil because of present or previous mining, handling and reclamation operations (or if large supplies of indigenous salts exist, placement below a water table) may actually increase the rate of acid and salt leaching. Specific placement of acid- and salt-containing spoil should be aimed at preventing contact with percolating water or rising water tables. We recommend placement based on chemical and physical spoil properties that may affect water percolation O/sub 2/ diffusion rates in the profile. Both the deeper placement of acid spoil and coarser particle size can substantially reduce the amount of acid drainage. Placement above the water table with emphasis on percolate control may be better for high sulfate spoils, while placement below the non-fluctuating water table may be better for pyritic spoils.

  10. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through (a) process modifications, (b) use of alternative chemicals and sorbents for residue removal, (c) acid recycling, and (d) judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor, not only for Los Alamos, but for the Nuclear Complex of the future

  11. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through process modifications, use of alternative chemicals and sorbents for residue removal, acid recycling, and judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor , not only for Los Alamos, but for the Nuclear Complex of the future. (author) 12 refs.; 2 figs

  12. Omega 3 fatty acid for the prevention of cognitive decline and dementia

    Directory of Open Access Journals (Sweden)

    Emma Sydenham

    2012-01-01

    Full Text Available BACKGROUND: Evidence from observational studies suggests that diets high in omega-3 long-chain polyunsaturated fatty acids (PUFA may protect people from cognitive decline and dementia. The strength of this potential protective effect has recently been tested in randomized controlled trials. OBJECTIVES: To assess the effects of omega-3 PUFA supplementation for the prevention of dementia and cognitive decline in cognitively healthy older people. METHODS: Search: We searched ALOIS - the Cochrane Dementia and Cognitive Improvement Group's Specialized Register on - 6 April 2012 using the terms: "omega 3", PUFA, "fatty acids", "fatty acid", fish, linseed, eicosapentaenoic, docosahexaenoic. Selection criteria: Randomised controlled trials of an omega-3 PUFA intervention which was provided for a minimum of six months to participants aged 60 years and over who were free from dementia or cognitive impairment at the beginning of the study. Two review authors independently assessed all trials. Data collection and analysis: The review authors sought and extracted data on incident dementia, cognitive function, safety and adherence, either from published reports or by contacting the investigators for original data. Data were extracted by two review authors. We calculated mean difference (MD or standardised mean differences (SMD and 95% confidence intervals (CI on an intention-to-treat basis, and summarized narratively information on safety and adherence. MAIN RESULTS: Information on cognitive function at the start of a study was available on 4080 participants randomised in three trials. Cognitive function data were available on 3536 participants at final follow-up. In two studies participants received gel capsules containing either omega-3 PUFA (the intervention or olive or sunflower oil (placebo for six or 24 months. In one study, participants received margarine spread for 40 months; the margarine for the intervention group contained omega-3 PUFA. Two studies

  13. Omega 3 fatty acid for the prevention of cognitive decline and dementia

    Directory of Open Access Journals (Sweden)

    Emma Sydenham

    Full Text Available BACKGROUND: Evidence from observational studies suggests that diets high in omega-3 long-chain polyunsaturated fatty acids (PUFA may protect people from cognitive decline and dementia. The strength of this potential protective effect has recently been tested in randomized controlled trials. OBJECTIVES: To assess the effects of omega-3 PUFA supplementation for the prevention of dementia and cognitive decline in cognitively healthy older people. METHODS: Search: We searched ALOIS - the Cochrane Dementia and Cognitive Improvement Group's Specialized Register on - 6 April 2012 using the terms: "omega 3", PUFA, "fatty acids", "fatty acid", fish, linseed, eicosapentaenoic, docosahexaenoic. Selection criteria: Randomised controlled trials of an omega-3 PUFA intervention which was provided for a minimum of six months to participants aged 60 years and over who were free from dementia or cognitive impairment at the beginning of the study. Two review authors independently assessed all trials. Data collection and analysis: The review authors sought and extracted data on incident dementia, cognitive function, safety and adherence, either from published reports or by contacting the investigators for original data. Data were extracted by two review authors. We calculated mean difference (MD or standardised mean differences (SMD and 95% confidence intervals (CI on an intention-to-treat basis, and summarized narratively information on safety and adherence. MAIN RESULTS: Information on cognitive function at the start of a study was available on 4080 participants randomised in three trials. Cognitive function data were available on 3536 participants at final follow-up. In two studies participants received gel capsules containing either omega-3 PUFA (the intervention or olive or sunflower oil (placebo for six or 24 months. In one study, participants received margarine spread for 40 months; the margarine for the intervention group contained omega-3 PUFA. Two studies

  14. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  15. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    Science.gov (United States)

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  16. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  17. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  18. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  19. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  20. Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats.

    Science.gov (United States)

    Higa, R; White, V; Martínez, N; Kurtz, M; Capobianco, E; Jawerbaum, A

    2010-04-01

    Aberrant arachidonic acid and nitric oxide (NO) metabolic pathways are involved in diabetic embryopathy. Previous works have found diminished concentrations of PGE(2) and PGI(2) in embryos from diabetic rats, and that PGI(2) is capable of increasing embryonic PGE(2) concentrations through the activation of the nuclear receptor PPARdelta. PPARdelta activators are lipid molecules such as oleic and linoleic acids, present in high concentrations in olive and safflower oils, respectively. The aim of this study was to analyze the capability of dietary supplementation with either 6% olive or 6% safflower oils to regulate PGE(2), PGI(2) and NO concentrations in embryos and deciduas from control and diabetic rats during early organogenesis. Diabetes was induced by a single injection of streptozotocin (55 mg/kg) 1 week before mating. Animals were fed with the oil-supplemented diets from Days 0.5 to 10.5 of gestation. PGI(2) and PGE(2) were measured by EIA and NO through the evaluation of its stable metabolites nitrates-nitrites in 10.5 day embryos and deciduas. We found that the olive and safflower oil-supplemented treatments highly reduced resorption and malformation rates in diabetic animals, and that they were able to prevent maternal diabetes-induced alterations in embryonic and decidual PGI(2) and PGE(2) concentrations. Moreover, these dietary treatments prevented NO overproduction in embryos and deciduas from diabetic rats. These data indicate that in maternal diabetes both the embryo and the decidua benefit from the olive and safflower oil supplementation probably through mechanisms that involve the rescue of aberrant prostaglandin and NO generation and that prevent developmental damage during early organogenesis.

  1. Resveratrol plays important role in protective mechanisms in renal disease - mini-review

    Directory of Open Access Journals (Sweden)

    Guilherme Albertoni

    2015-03-01

    Full Text Available Resveratrol (RESV is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII and endothelin-1 (ET-1, as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.

  2. Fat food for a bad mood. Could we treat and prevent depression in Type 2 diabetes by means of omega-3 polyunsaturated fatty acids?

    DEFF Research Database (Denmark)

    Pouwer, F; Nijpels, G; Beekman, Aartjan T F

    2005-01-01

    that eicosapentaenoic acid is an effective adjunct treatment of depression in diabetes, while docosahexanoic acid is not. Moreover, consumption of omega-3 PUFA reduces the risk of cardiovascular disease and may therefore indirectly decrease depression in Type 2 diabetes, via the reduction of cardiovascular......AIMS: Evidence strongly suggests that depression is a common complication of Type 2 diabetes mellitus. However, there is considerable room to improve the effectiveness of pharmacological antidepressant agents, as in only 50-60% of the depressed subjects with diabetes does pharmacotherapy lead...... to remission of depression. The aim of the present paper was to review whether polyunsaturated fatty acids (PUFA) of the omega-3 family could be used for the prevention and treatment of depression in Type 2 diabetes. METHODS: MEDLINE database and published reference lists were used to identify studies...

  3. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved

  4. Hyaluronate acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-10-01

    Full Text Available Yan Zhang, Qin Liu, Ning Yang, Xuegang Zhang Department of Gynecology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, People’s Republic of China Abstract: Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm, and the medical sodium hyaluronate (MSH group was treated with 1% MSH (0.5 mL. At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99 and the ORC group (1.40±0.97 were significantly lower than those in the control group (3.00±0.82 (P=0.005. Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82 and the ORC group (1.50±1.27 were significantly lower than those in the control group (3.50±0.53 (P=0.001. In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. Keywords: hyaluronic acid, oxidized regenerated cellulose, adhesion formation, adhesion reformation, rat model 

  5. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  6. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  7. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  8. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    Science.gov (United States)

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-11-15

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Prevention of Pre-eclampsia with the Use of Acetylsalicylic Acid and Low-molecular Weight Heparin - Molecular Mechanisms.

    Science.gov (United States)

    Darmochwal-Kolarz, Dorota; Kolarz, Bogdan; Korzeniewski, Michal; Kimber-Trojnar, Zaneta; Patro-Malysza, Jolanta; Mierzynski, Radzisław; Przegalinska-Kałamucka, Monika; Oleszczuk, Jan

    Pre-eclampsia appears to be the main cause for the maternal and fetal morbidity and mortality. Pregnant women with pre-eclampsia are more likely to be threatened with conditions which potentially may be lethal, such as: disseminated intravascular coagulation, cerebral hemorrhage, liver and renal failure. Pregnancy complicated with pre-eclampsia is also associated with a greater risk for iatrogenic prematurity, intrauterine growth retardation, premature abruption of placenta, and even intrauterine fetal death. In the majority of cases the reasons for arterial hypertension among pregnant women remain obscure. For the past decades, there were many abortive attempts in the use of some microelements, vitamins or specific diets, such as polyunsaturated fatty acids, for the prophylaxis of pre-eclampsia. Recently, it has been shown that a prevention of pre-eclampsia with the use of a lowmolecular- weight heparins (LMWHs) and acetylsalicylic acid (ASA) could considerably reduce the frequency of preeclampsia. In this review, we present the studies concerning the applications of LMWHs and aspirin in the prophylaxis of pre-eclampsia and some important data about the mechanisms of anti-inflammatory actions of LMWHs and ASA.

  11. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  12. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice.

    Science.gov (United States)

    Rolla, Simona; Alchera, Elisa; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Cappello, Paola; Mombello, Cristina; Follenzi, Antonia; Novelli, Francesco; Carini, Rita

    2016-02-01

    The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFβ (transforming growth factor β) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection. © 2016 Authors

  13. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline.

    Science.gov (United States)

    Ayabe, Tatsuhiro; Ohya, Rena; Kondo, Keiji; Ano, Yasuhisa

    2018-03-19

    Dementia and cognitive decline have become worldwide public health problems, and it was recently reported that life-style related diseases and obesity are key risk factors in dementia. Iso-α-acids, hop-derived bitter components of beer, have been reported to have various physiological functions via activation of peroxisome proliferator-activated receptor γ. In this report, we demonstrated that daily intake of iso-α-acids suppresses inflammations in the hippocampus and improves cognitive decline induced by high fat diet (HFD). Body weight, epididymal fat weight, and plasma triglyceride levels were increased in HFD-fed mice, and significantly decreased in iso-α-acids supplemented HFD-fed mice. HFD feeding enhances the production of inflammatory cytokines and chemokines, such as TNF-α, which was significantly suppressed by iso-α-acids administration. HFD-induced neuroinflammation caused lipid peroxidation, neuronal loss, and atrophy in hippocampus, and those were not observed in iso-α-acids-treated mice. Furthermore, iso-α-acids intake significantly improved cognitive decline induced by HFD-feeding. Iso-α-acids are food derived components that suppressing both lipid accumulation and brain inflammation, thus iso-α-acids might be beneficial for the risk of dementia increased by obesity and lifestyle-related diseases.

  14. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

    Science.gov (United States)

    Alonso-Ramírez, Ana; Poveda, Jorge; Martín, Ignacio; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2014-10-01

    Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  16. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  17. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.

    Science.gov (United States)

    Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C

    2012-03-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  19. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma.

    Science.gov (United States)

    Kimura, Atsuko; Guo, Xiaoli; Noro, Takahiko; Harada, Chikako; Tanaka, Kohichi; Namekata, Kazuhiko; Harada, Takayuki

    2015-02-19

    Valproic acid (VPA) is widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. It exerts its therapeutic benefits through modulation of multiple mechanisms including regulation of gamma-aminobutyric acid and glutamate neurotransmissions, activation of pro-survival protein kinases and inhibition of histone deacetylase. The evidence for neuroprotective properties associated with VPA is emerging. Herein, we investigated the therapeutic potential of VPA in a mouse model of normal tension glaucoma (NTG). Mice with glutamate/aspartate transporter gene deletion (GLAST KO mice) demonstrate progressive retinal ganglion cell (RGC) loss and optic nerve degeneration without elevated intraocular pressure, and exhibit glaucomatous pathology including glutamate neurotoxicity and oxidative stress in the retina. VPA (300mg/kg) or vehicle (PBS) was administered via intraperitoneal injection in GLAST KO mice daily for 2 weeks from the age of 3 weeks, which coincides with the onset of glaucomatous retinal degeneration. Following completion of the treatment period, the vehicle-treated GLAST KO mouse retina showed significant RGC death. Meanwhile, VPA treatment prevented RGC death and thinning of the inner retinal layer in GLAST KO mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment observed in vehicle-treated GLAST KO mice was ameliorated with VPA treatment, clearly establishing that VPA beneficially affects both histological and functional aspects of the glaucomatous retina. We found that VPA reduces oxidative stress induced in the GLAST KO retina and stimulates the cell survival signalling pathway associated with extracellular-signal-regulated kinases (ERK). This is the first study to report the neuroprotective effects of VPA in an animal model of NTG. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be a novel candidate for treatment of glaucoma. Copyright © 2015 Elsevier

  20. Resveratrol Prevents Cellular and Behavioral Sensory Alterations in the Animal Model of Autism Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    Mellanie Fontes-Dutra

    2018-05-01

    Full Text Available Autism spectrum disorder (ASD is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA during pregnancy. Resveratrol (RSV is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+ neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg from E6.5 to E18.5 and injected with VPA (600 mg/kg in the E12.5. Male pups were analyzed in Nest Seeking (NS behavior and in whisker nuisance task (WNT. At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.

  1. Reprint of: Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2018-04-12

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    Science.gov (United States)

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  3. Acidity-induced watercourse defects and their prevention on the River Sanginjoki; Happamuuden aiheuttamat vesistoehaitat ja niiden torjuntakeinot Sanginjoella

    Energy Technology Data Exchange (ETDEWEB)

    Tertsunen, J.; Martinmaeki, K.; Heikkinen, K. [and others

    2012-11-15

    As the first tributary of the River Oulujoki, the River Sanginjoki is one of the most important recreational areas in the Oulu region. It is also the closest potential reproduction area for salmon and trout using the Merikoski fishway. During flood peaks, occasional low pH values reduce the recreational and ecological value of the River Sanginjoki. The origin of low pH values was located as part of the 'City and Water - Improving the recreational value and ecological restoration of River Sanginjoki -project', during the years 2008-2011. This project involved largescale monitoring of the River Sanginjoki area for pH changes, while methods for preventing and reducing low pH values were tested. Based on the project's results, guidelines were drawn up for controlling problems associated with low pH values. The report also contains general information on the River Sanginjoki and its watershed, the river's ecological state and the development of its water quality. The results demonstrated a connection between low pH values and high discharges, but the lowest pH values were measured during summer and autumn rain floods in particular. A water sample analysis with other information showed that low pH values mainly originate in soil, land use and vegetation. The origin of acid runoff mainly lies in organic acids from peatlands and moss, but local factors such as acid sulphate soils and black shales may also contribute. Due to acidic peatlands, the water of the River Sanginjoki has naturally been slightly acidic, but ditch drainage of peat- and forestland has probably increased this effect. The effect of the restoration and water protection methods used in the project varied. Some methods proved effective and can be suggested for practical use at the Sanginjoki watershed, as well as other watersheds suffering from the same problems. Development of these methods should be continued, to improve their effectiveness and durability. Although defects due to

  4. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    Science.gov (United States)

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  5. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  6. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces.

    Science.gov (United States)

    Yousefi, Behnam; Ghaderi, Shahrooz; Rezapoor-Lactooyi, Alireza; Amiri, Niusha; Verdi, Javad; Shoae-Hassani, Alireza

    2012-07-28

    10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA) effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it's not necessary to put down the oral flora completely.

  7. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models

    Science.gov (United States)

    Zhang, Yan; Liu, Qin; Yang, Ning; Zhang, Xuegang

    2016-01-01

    Postsurgical adhesion formation is the most common complication in abdominal and pelvic surgery. Adhesiolysis is the most commonly applied treatment for adhesion formation but is often followed by adhesion reformation. Therefore, an efficient strategy should be adopted to solve these problems. This study aimed to explore whether hyaluronic acid and oxidized regenerated cellulose (ORC) could prevent adhesion formation and reformation. Thirty female Sprague Dawley rats were randomly divided into three groups (n=10 each) and subjected to different treatments during the first and second surgery. The control group was treated with isotonic sodium chloride, the ORC group was treated with ORC (1.5×1 cm), and the medical sodium hyaluronate (MSH) group was treated with 1% MSH (0.5 mL). At 2 weeks after the first surgery, adhesion scores in the MSH group (1.90±0.99) and the ORC group (1.40±0.97) were significantly lower than those in the control group (3.00±0.82) (P=0.005). Similarly, 2 weeks after the second surgery, adhesion scores in the MSH group (2.00±0.82) and the ORC group (1.50±1.27) were significantly lower than those in the control group (3.50±0.53) (P=0.001). In addition, body weights in the MSH group and the ORC group did not change significantly, whereas the control group showed a consistent decrease in body weight during the experiment. Histological examination revealed that inflammatory infiltration was involved in both adhesion formation and reformation. In conclusion, hyaluronic acid and ORC were both efficient in reducing adhesion formation and reformation in the rat model. PMID:27822014

  8. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

    Science.gov (United States)

    Gladine, Cécile; Newman, John W; Durand, Thierry; Pedersen, Theresa L; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine

    2014-01-01

    The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/-)) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2) = 0.97, p = 0.02), triglyceridemia (R(2) = 0.97, p = 0.01) and cholesterolemia (R(2) = 0.96, pF4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (pF4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.

  9. What California sea lions exposed to domoic acid might teach us about autism: lessons for predictive and preventive medicine.

    Science.gov (United States)

    Lahvis, Garet Paul

    2017-09-01

    Autism spectrum disorder (ASD) shares many biological and behavioral similarities with the deleterious effects of domoic acid (DA) exposure. DA is produced by marine algae and most commonly by species of Pseudo-nitzschia . Humans and marine mammals can be exposed to DA when they consume whole fish or shellfish. The mammalian fetus is highly sensitive to the deleterious effects of DA exposure. Both ASD and exposures to toxic levels of DA feature repetitive behaviors, challenges with social interaction, and seizures. They can also share a commonality in brain anatomy and function, particularly the balance between excitatory and inhibitory mechanisms. The current article is relevant to predictive, preventive, and personalized medicine for three reasons. First, shellfish consumption may be a risk factor for ASD and the regulatory limit for DA should be adjusted to prevent this possibility. Human contributions to increased algal production of DA in coastal waters should be identified and reduced. Second, evaluations of sentinel species wild and free-roaming in the environment, though typically outside the purview of biomedical research, should be much more fully employed to gain insights to risk factors for human disease. To better identify and prevent disease, biomedical researchers should study wild populations. Third, studies of DA exposure highlight the possibility that glutamate additives to processed foods may also have deleterious impacts on human brain development and behavior.

  10. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    Science.gov (United States)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Long-Chain Omega-3 Fatty Acids Supplementation Accelerates Nerve Regeneration and Prevents Neuropathic Pain Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Rafaela V. Silva

    2017-10-01

    Full Text Available Fish oil (FO is the main source of long chain omega-3 polyunsaturated fatty acids (ω-3 PUFAs, which display relevant analgesic and anti-inflammatory properties. Peripheral nerve injury is driven by degeneration, neuroinflammation, and neuronal plasticity which results in neuropathic pain (NP symptoms such as allodynia and hyperalgesia. We tested the preventive effect of an EPA/DHA-concentrate fish oil (CFO on NP development and regenerative features. Swiss mice received daily oral treatment with CFO 4.6 or 2.3 g/kg for 10 days after NP was induced by partial sciatic nerve ligation. Mechanical allodynia and thermal hypernociception were assessed 5 days after injury. CFO 2.3 g/kg significantly prevented mechanical and thermal sensitization, reduced TNF levels in the spinal cord, sciatic MPO activity, and ATF-3 expression on DRG cells. CFO improved Sciatic Functional Index (SFI as well as electrophysiological recordings, corroborating the increased GAP43 expression and total number of myelinated fibers observed in sciatic nerve. No locomotor activity impairment was observed in CFO treated groups. These results point to the regenerative and possibly protective properties of a combined EPA and DHA oral administration after peripheral nerve injury, as well as its anti-neuroinflammatory activity, evidencing ω-3 PUFAs promising therapeutic outcomes for NP treatment.

  12. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

    Science.gov (United States)

    Brown, Chrysothemis C; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; Al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M; Noelle, Randolph J

    2015-03-17

    CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Training for cervical cancer prevention programs in low-resource settings: focus on visual inspection with acetic acid and cryotherapy.

    Science.gov (United States)

    Blumenthal, P D; Lauterbach, M; Sellors, J W; Sankaranarayanan, R

    2005-05-01

    The modern approach to cervical cancer prevention, characterized by use of cytology and multiple visits for diagnosis and treatment, has frequently proven challenging and unworkable in low-resource settings. Because of this, the Alliance for Cervical Cancer Prevention (ACCP) has made it a priority to investigate and assess alternative approaches, particularly the use of visual screening methods, such as visual inspection with acetic acid (VIA) and visual inspection with Lugol's iodine (VILI), for precancer and cancer detection and the use of cryotherapy as a precancer treatment method. As a result of ACCP experience in providing training to nurses and doctors in these techniques, it is now widely agreed that training should be competency based, combining both didactic and hands-on approaches, and should be done in a clinical setting that resembles the service-delivery conditions at the program site. This article reviews ACCP experiences and perceptions about the essentials of training in visual inspection and cryotherapy and presents some lessons learned with regard to training in these techniques in low-resource settings.

  14. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  15. Techniques to correct and prevent acid mine drainage: A review

    OpenAIRE

    Pozo-Antonio, Santiago; Puente-Luna, Iván; Lagüela-López, Susana; Veiga-Ríos, María

    2014-01-01

    Acid mine drainage (AMD) from mining wastes is one of the current environmental problems in the field of mining pollution that requires most action measures. This term describes the drainage generated by natural oxidation of sulfide minerals when they are exposed to the combined action of water and atmospheric oxygen. AMD is characterized by acidic effluents with a high content of sulfate and heavy metal ions in solution, which can contaminate both groundwater and surface water. Minerals resp...

  16. Acid-base properties of a limed pyritic overburden during simulated weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R. [South Dakota State University, Brookings, SD (United States). Plant Science Dept.

    1997-11-01

    Surface-mine reclamation is often hindered by the formation of acid mine soil and acid mine drainage from FeS{sub 2} oxidation. Surface soils containing FeS{sub 2} are often treated with crushed limestone (predominately CaCO{sub 3}) to prevent aid minesoil formation. The main objective of this study was to evaluate the long-term effectiveness of liming pyritic minesoil to prevent the formation of acid minesoil and acid mine drainage. Pyritic minesoils that did not receive lime became acidic very rapidly and produced acidic leachate. Almost all of the FeS{sub 2} in this treatment oxidized during the first 200 d. The addition of lime at a rate of 25% of the theoretical acid-base account (ABA) significantly slowed FeS{sub 2} oxidation, but rapid oxidation ensued after the added lime was neutralized. Treatments receiving a liming rate of 50% ABA or greater remained neutral to alkaline throughout the study. Acid-base values and residual FeS{sub 2}-CO{sub 3} data, however, indicate that the lime was dissolving from the system faster than the FeS{sub 2} was oxidizing, and all the treatments would eventually become acidic. The results indicate that the liming of a pyritic overburden to an ABA of 125% is not a sustainable solution to preventing acid minesoil and acid mine drainage. 25 refs., 6 figs., 3 tabs.

  17. Teratology: from science to birth defects prevention.

    Science.gov (United States)

    Rasmussen, Sonja A; Erickson, J David; Reef, Susan E; Ross, Danielle S

    2009-01-01

    One of the goals of birth defects research is to better understand risk or preventive factors for birth defects so that strategies for prevention can be developed. In this article, we have selected four areas of birth defects research that have led to the development of prevention strategies. These areas include rubella virus as a cause of congenital rubella syndrome, folic acid as a preventive factor for neural tube defects, cytomegalovirus infection as a cause of birth defects and developmental disabilities, and alcohol as a cause of fetal alcohol spectrum disorders. For each of these areas, we review key clinical and research findings that led to the identification of the risk or preventive factor, milestones in the development of prevention strategies, and the progress made thus far toward prevention.

  18. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  19. Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.

    Science.gov (United States)

    Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo

    2018-04-01

    Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.

  20. Role of pancreatic fat in the outcomes of pancreatitis.

    Science.gov (United States)

    Acharya, Chathur; Navina, Sarah; Singh, Vijay P

    2014-01-01

    The role of obesity in relation to various disease processes is being increasingly studied, with reports over the last several years increasingly mentioning its association with worse outcomes in acute disease. Obesity has also gained recognition as a risk factor for severe acute pancreatitis (SAP).The mortality in SAP may be as high as 30% and is usually attributable to multi system organ failure (MSOF) earlier in the disease, and complications of necrotizing pancreatitis later [9-11]. To date there is no specific treatment for acute pancreatitis (AP) and the management is largely expectant and supportive. Obesity in general has also been associated with poor outcomes in sepsis and other pathological states including trauma and burns. With the role of unsaturated fatty acids (UFA) as propagators in SAP having recently come to light and with the recognition of acute lipotoxicity, there is now an opportunity to explore different strategies to reduce the mortality and morbidity in SAP and potentially other disease states associated with such a pathophysiology. In this review we will discuss the role of fat and implications of the consequent acute lipotoxicity on the outcomes of acute pancreatitis in lean and obese states and during acute on chronic pancreatitis. Copyright © 2014 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  1. Efficacy of Supplementation with B Vitamins for Stroke Prevention: A Network Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Dong, Hongli; Pi, Fuhua; Ding, Zan; Chen, Wei; Pang, Shaojie; Dong, Wenya; Zhang, Qingying

    2015-01-01

    Supplementation with B vitamins for stroke prevention has been evaluated over the years, but which combination of B vitamins is optimal for stroke prevention is unclear. We performed a network meta-analysis to assess the impact of different combinations of B vitamins on risk of stroke. A total of 17 trials (86 393 patients) comparing 7 treatment strategies and placebo were included. A network meta-analysis combined all available direct and indirect treatment comparisons to evaluate the efficacy of B vitamin supplementation for all interventions. B vitamin supplementation was associated with reduced risk of stroke and cerebral hemorrhage. The risk of stroke was lower with folic acid plus vitamin B6 as compared with folic acid plus vitamin B12 and was lower with folic acid plus vitamin B6 plus vitamin B12 as compared with placebo or folic acid plus vitamin B12. The treatments ranked in order of efficacy for stroke, from higher to lower, were folic acid plus vitamin B6 > folic acid > folic acid plus vitamin B6 plus vitamin B12 > vitamin B6 plus vitamin B12 > niacin > vitamin B6 > placebo > folic acid plus vitamin B12. B vitamin supplementation was associated with reduced risk of stroke; different B vitamins and their combined treatments had different efficacy on stroke prevention. Folic acid plus vitamin B6 might be the optimal therapy for stroke prevention. Folic acid and vitamin B6 were both valuable for stroke prevention. The efficacy of vitamin B12 remains to be studied.

  2. Efficacy of Supplementation with B Vitamins for Stroke Prevention: A Network Meta-Analysis of Randomized Controlled Trials.

    Directory of Open Access Journals (Sweden)

    Hongli Dong

    Full Text Available Supplementation with B vitamins for stroke prevention has been evaluated over the years, but which combination of B vitamins is optimal for stroke prevention is unclear. We performed a network meta-analysis to assess the impact of different combinations of B vitamins on risk of stroke.A total of 17 trials (86 393 patients comparing 7 treatment strategies and placebo were included. A network meta-analysis combined all available direct and indirect treatment comparisons to evaluate the efficacy of B vitamin supplementation for all interventions.B vitamin supplementation was associated with reduced risk of stroke and cerebral hemorrhage. The risk of stroke was lower with folic acid plus vitamin B6 as compared with folic acid plus vitamin B12 and was lower with folic acid plus vitamin B6 plus vitamin B12 as compared with placebo or folic acid plus vitamin B12. The treatments ranked in order of efficacy for stroke, from higher to lower, were folic acid plus vitamin B6 > folic acid > folic acid plus vitamin B6 plus vitamin B12 > vitamin B6 plus vitamin B12 > niacin > vitamin B6 > placebo > folic acid plus vitamin B12.B vitamin supplementation was associated with reduced risk of stroke; different B vitamins and their combined treatments had different efficacy on stroke prevention. Folic acid plus vitamin B6 might be the optimal therapy for stroke prevention. Folic acid and vitamin B6 were both valuable for stroke prevention. The efficacy of vitamin B12 remains to be studied.

  3. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Alai, Milind; Lin, Wen Jen

    2013-01-01

    The objective of this study was to formulate and evaluate the lansoprazole (LPZ)-loaded microparticles to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease (GERD). The microparticulate delivery system was prepared by solvent evaporation method using Eudragit RS100 as a matrix polymer followed by enteric coated with Eudragit S100 and hydroxypropyl methylcellulose phthalate HP55 using spray drying method. The enteric coated microparticles were stable in gastric pH condition. In vivo pharmacokinetic and pharmacodynamic studies in male Wistar rats demonstrated that enteric coated microparticles sustained release of LPZ and promoted ulcer healing activity. In other words, the microparticulate dosage form provided effective drug concentration for a longer period as compared to conventional extended release dosage form, and showed sufficient anti-acid secretion activity to treat acid related disorders including the enrichment of nocturnal acid breakthrough event based on a once daily administration.

  4. Hydroxy decenoic acid down regulates gtfB and gtfC expression and prevents Streptococcus mutans adherence to the cell surfaces

    Directory of Open Access Journals (Sweden)

    Yousefi Behnam

    2012-07-01

    Full Text Available Abstract Background 10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity, gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental plaque in caries, the proportion of acid producing bacteria (particularly S. mutans, has direct relevance to the pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs especially gtfB and gtfC are important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces. Methods Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell surfaces was evaluated microscopically. Results 500 μg ml-1 of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells. Conclusion Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic approaches to affecting S. mutans could be selective and it’s not necessary to put down the oral flora completely.

  5. Activation of Retinoid X Receptors by Phytanic Acid and Docohexaenoic Acid: Role in the Prevention and Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Tang, Xiao-Han

    2005-01-01

    .... Meanwhile, both phytanic acid and DHA inhibited the growth of Pc-3 and LNCaP cells. Phytanic acid and retinoic acid synergistically inhibited the growth of both of these prostate cancer cell lines...

  6. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    Science.gov (United States)

    Jin, Song [Fort Collins, CO; Fallgren, Paul H [Laramie, WY; Morris, Jeffrey M [Laramie, WY

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  7. Role of chemical carcinogens in epithelial and mesenchymal neoplasms with tumor initiation-promotion protocol and the effect of 13-cis retinoic acid in chemo prevention

    International Nuclear Information System (INIS)

    Bukhari, S.M.H.; Shahzad, S.Q.; Naeem, S.; Qureshi, G.R.; Naveed, I.A.

    2002-01-01

    Objective: To study the effects of chemical carcinogens on epithelial and mesenchymal tumorigenesis with tumor initiation-promotion protocol and the use of 13-cis retinoic acid as a chemo preventive agent. Design: It was an experimental study. Place and Duration of Study: The study was conducted at Postgraduate Medical Institute (PGML) Lahore for 20 weeks. Materials and Methods: Sixty albino rats were divided into six groups of ten of animals each. First group of animals (control) was not given carcinogens and 13-cis retinoic acid in second group DMBA was applied on the dorsal skin in repeated dos of 100 mu g/ml in acetone, twice a weak. In the third group DMBA was given 100 mu g/ml as single dose while TPA was given 10 mu g//ml in acetone, twice a weak after two weeks of DMBA applications. In fourth group only DMBA 100 mu g/ml in acetone was applied as a single dose. In fifth and sixth groups 13-cis retinoic acid was given topically before and after the application of DMBA and TPA. Results: First and fourth groups did not develop any tumor. In second groups 2 animals developed malignant fibrous histiocytoma, 4 squamous cell carcinoma while 1 dysphasia and 1 carcinoma in situ. Third group developed osteoma (3 animals), papilloma (3 animals, squamous cell carcinoma (01) and dysplasia (01). Conclusion: Our results showed that DMBA acts as tumor initiator while TPA as promoter. DMBA also produces tumors itself when given alone in repeated doses. The chemical carcinogens are not only a cause of epithelial carcinogenesis but also responsible for mesenchymal tumorigenesis. 13 cis retinoic acid was equally effective in both stages of tumorigenesis. It also prevents malignant conversion of chemically induced benign tumors. (author)

  8. Temporal and spatial variation in the status of acid rivers and potential prevention methods of AS soil-related leaching in peatland forestry

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.

    2013-06-01

    maintenance drainage in peatland forestry on runoff water quality showed a clear risk of oxidation of sulphidic materials during dry summers. This can be prevented mainly by avoiding too deep drainage. Knowledge of the hydrochemical impacts of acidic load derived from AS soils and drained peatlands is necessary for land use planning and sustainable water management of river basins affected by these soils. (orig.)

  9. [Effects of sucralfate and acid-suppressive drugs on preventing ventilator- associated pneumonia of mechanically ventilated patients: a meta-analysis].

    Science.gov (United States)

    He, Hongli; Hu, Shuling; Chen, Qihong; Liu, Ling; Huang, Yingzi; Yang, Yi; Qiu, Haibo

    2014-01-01

    To evaluate the effect of sucralfate and acid-suppressive drugs on preventing ventilator-associated pneumonia (VAP) in mechanically ventilated patients. All randomized controlled trials (RCTs), which studied the effect of sucralfate and acid-suppressive drugs on the incidence of VAP in mechanically ventilated patients, were searched from PubMed, Embase and the Cochrane Library during January 1966 to March 2013 via manual and computer retrieval. All related data were extracted. Meta analysis was conducted using the statistical software RevMan 5.2 and the quality of the RCTs was strictly evaluated with the methods recommended by the Cochrane Collaboration. A total of 15 RCTs involving 1315 patients in the sucralfate group and 1568 patients in the acid-suppressive drug group were included in this study. The incidence of VAP was significantly reduced in the sucralfate group (RR = 0.81, 95%CI 0.7-0.95, P = 0.008), while no difference was found between the two groups in the incidence of stress-related gastrointestinal bleeding (RR = 0.96, 95%CI 0.59-1.58, P = 0.88). No statistical difference was found in the days on ventilator, duration of ICU stay and ICU mortality in the two groups (all P values > 0.05). In patients with mechanical ventilation, sucralfate could decrease the incidence of VAP, while has no such effect on the stress-related gastrointestinal bleeding, the days on ventilator, duration of ICU stay and ICU mortality.

  10. A randomized, multi-center, clinical trial to assess the efficacy and safety of alginate carboxymethylcellulose hyaluronic acid compared to carboxymethylcellulose hyaluronic acid to prevent postoperative intrauterine adhesion.

    Science.gov (United States)

    Kim, Tak; Ahn, Ki Hoon; Choi, Doo Seok; Hwang, Kyung Joo; Lee, Byoung Ick; Jung, Min Hyung; Kim, Jae Weon; Kim, Jong Hyuk; Cha, Sun Hee; Lee, Ki Hwan; Lee, Kyu Sup; Oh, Sung Tack; Cho, Chi Heum; Rhee, Jeong Ho

    2012-01-01

    To estimate the efficacy of alginate carboxymethylcellulose hyaluronic acid (ACH) gel to prevent intrauterine adhesions after hysteroscopic surgery in comparison with carboxymethylcellulose hyaluronic acid (CH) gel, which is known as an effective adhesion inhibitor. Randomized, multicenter, single-blind, clinical trial (Canadian Task Force classification I). Tertiary university hospital. One hundred eighty-seven patients with a surgically treatable intrauterine lesion (myomas, polyps, septa, intrauterine adhesion, dysfunctional uterine bleeding). Patients were randomized to 2 groups: hysteroscopic surgery plus intrauterine application of ACH or CH. The rate of adhesion formation and the adhesion severity score with type and extent were calculated 4 weeks after surgery. The ACH group had results that were comparable to the CH group in terms of the development of intrauterine adhesions at 4 weeks follow-up. The adhesion severities were not different between the 2 groups. In a subgroup without baseline intrauterine adhesion, the ACH group showed a lower intrauterine adhesion rate than the CH group (p = .016). ACH had a comparable efficacy to CH in terms of the adhesion rate and severity. In the case of no baseline intrauterine adhesion, intrauterine application of ACH after hysteroscopic surgery had a lower rate of intrauterine adhesion than application of CH. Copyright © 2012 AAGL. Published by Elsevier Inc. All rights reserved.

  11. Personnel decontamination and preventive skin care

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2010-01-01

    Skin contamination arises from contact with contaminated aqueous solutions and from transmission of radioactively contaminated dirt particles. As long as the surface of the skin is neither inflamed nor showing any lesions, normally only a limited part of the top layer (epidermis), i.e. the upper layers of the stratum corneum, is contaminated. The intact horny layer has a barrier function protecting against the penetration of chemicals and dirt particles. The horny layer can be damaged by water, solvents, alkaline substances, and acids. In general, it is safe to say that the horny layer acts as a natural barrier to the penetration of liquid and particulate impurities into lower layers of the skin. As long as the horny layer is intact and free from lesions, the risk of incorporation can be considered low. When decontaminating and cleansing the skin, also in daily skin cleansing, care must be taken to prevent the acid protective layer and the horny layer from being compromised. Daily cleansing and cleansing for decontamination must be carried out with a mild, weakly acidic detergent. In addition, prevention should be achieved daily by applying a non-greasy skin lotion to protect the skin. Following a systematic regular regimen in skin cleansing and preventive skin care as well as a specific approach in skin decontamination and cleansing will avoid damage to the skin and remove any contamination incurred. This approach comprises a three-pronged concept, namely skin protection, cleansing and care. (orig.)

  12. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  13. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Amoxicillin and Clavulanic Acid

    Science.gov (United States)

    ... in a class of medications called penicillin-like antibiotics. It works by stopping the growth of bacteria. Clavulanic acid ... It works by preventing bacteria from destroying amoxicillin. Antibiotics will not work for colds, flu, or other viral infections.

  15. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects?

    Science.gov (United States)

    Obeid, Rima; Holzgreve, Wolfgang; Pietrzik, Klaus

    2013-09-01

    Women have higher requirements for folate during pregnancy. An optimal folate status must be achieved before conception and in the first trimester when the neural tube closes. Low maternal folate status is causally related to neural tube defects (NTDs). Many NTDs can be prevented by increasing maternal folate intake in the preconceptional period. Dietary folate is protective, but recommending increasing folate intake is ineffective on a population level particularly during periods of high demands. This is because the recommendations are often not followed or because the bioavailability of food folate is variable. Supplemental folate [folic acid (FA) or 5-methyltetrahydrofolate (5-methylTHF)] can effectively increase folate concentrations to the level that is considered to be protective. FA is a synthetic compound that has no biological functions unless it is reduced to dihydrofolate and tetrahydrofolate. Unmetabolized FA appears in the circulation at doses of >200 μg. Individuals show wide variations in their ability to reduce FA. Carriers of certain polymorphisms in genes related to folate metabolism or absorption can better benefit from 5-methylTHF instead of FA. 5-MethylTHF [also known as (6S)-5-methylTHF] is the predominant natural form that is readily available for transport and metabolism. In contrast to FA, 5-methylTHF has no tolerable upper intake level and does not mask vitamin B12 deficiency. Supplementation of the natural form, 5-methylTHF, is a better alternative to supplementation of FA, especially in countries not applying a fortification program. Supplemental 5-methylTHF can effectively improve folate biomarkers in young women in early pregnancy in order to prevent NTDs.

  16. Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol ...

    African Journals Online (AJOL)

    Oral Metformin-Ascorbic Acid Co-Administration Ameliorates Alcohol-Induced Hepatotoxicity In Rats. ... Nigerian Quarterly Journal of Hospital Medicine ... the present in vivo animal study was to determine whether metformin-ascorbic acid co-administration also prevents alcoholic hepatotoxicity in chronic alcohol exposure.

  17. Cost-effectiveness of periconceptional supplementation of folic acid

    NARCIS (Netherlands)

    Postma, MJ; Londeman, J; Veenstra, M; de Walle, HEK; de Jong-van den Berg, LTW

    Background: Supplementation of folic acid prior to and in the beginning of pregnancy may prevent neural tube defects (NTDs) in newborns - such as spina bifida - and possibly other congenital malformations. Objective. To estimate cost effectiveness of periconceptional supplementation of folk: acid

  18. Omega-6 fatty acid biomarkers and incident type 2 diabetes

    NARCIS (Netherlands)

    Wu, Jason H.Y.; Marklund, Matti; Imamura, Fumiaki; Tintle, Nathan; Ardisson Korat, Andres V.; Goede, de Janette; Zhou, Xia; Yang, Wei Sin; Oliveira Otto, de Marcia C.; Kröger, Janine; Qureshi, Waqas; Virtanen, Jyrki K.; Bassett, Julie K.; Frazier-Wood, Alexis C.; Lankinen, Maria; Murphy, Rachel A.; Rajaobelina, Kalina; Gobbo, Del Liana C.; Forouhi, Nita G.; Luben, Robert; Khaw, Kay Tee; Wareham, Nick; Kalsbeek, Anya; Veenstra, Jenna; Luo, Juhua; Hu, Frank B.; Lin, Hung Ju; Siscovick, David S.; Boeing, Heiner; Chen, Tzu An; Steffen, Brian; Steffen, Lyn M.; Hodge, Allison; Eriksdottir, Gudny; Smith, Albert V.; Gudnason, Vilmunder; Harris, Tamara B.; Brouwer, Ingeborg A.; Berr, Claudine; Helmer, Catherine; Samieri, Cecilia; Laakso, Markku; Tsai, Michael Y.; Giles, Graham G.; Nurmi, Tarja; Wagenknecht, Lynne; Schulze, Matthias B.; Lemaitre, Rozenn N.; Chien, Kuo Liong; Soedamah-Muthu, Sabita S.; Geleijnse, Johanna M.; Sun, Qi; Harris, William S.; Lind, Lars; Ärnlöv, Johan; Riserus, Ulf; Micha, Renata; Mozaffarian, Dariush

    2017-01-01

    Background: The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with

  19. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  20. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    Science.gov (United States)

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  2. Preventing AVF thrombosis: the rationale and design of the Omega-3 fatty acids (Fish Oils and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED study

    Directory of Open Access Journals (Sweden)

    Rosman Johan

    2009-01-01

    Full Text Available Abstract Background Haemodialysis (HD is critically dependent on the availability of adequate access to the systemic circulation, ideally via a native arteriovenous fistula (AVF. The Primary failure rate of an AVF ranges between 20–54%, due to thrombosis or failure of maturation. There remains limited evidence for the use of anti-platelet agents and uncertainty as to choice of agent(s for the prevention of AVF thrombosis. We present the study protocol for a randomised, double-blind, placebo-controlled, clinical trial examining whether the use of the anti-platelet agents, aspirin and omega-3 fatty acids, either alone or in combination, will effectively reduce the risk of early thrombosis in de novo AVF. Methods/Design The study population is adult patients with stage IV or V chronic kidney disease (CKD currently on HD or where HD is planned to start within 6 months in whom a planned upper or lower arm AVF is to be the primary HD access. Using a factorial-design trial, patients will be randomised to aspirin or matching placebo, and also to omega-3 fatty acids or matching placebo, resulting in four treatment groups (aspirin placebo/omega-3 fatty acid placebo, aspirin/omega-3 fatty acid placebo, aspirin placebo/omega-3 fatty acid, aspirin/omega-3 fatty acid. Randomisation will be achieved using a dynamic balancing method over the two stratification factors of study site and upper versus lower arm AVF. The medication will be commenced pre-operatively and continued for 3 months post surgery. The primary outcome is patency of the AVF at three months after randomisation. Secondary outcome measures will include functional patency at six and twelve months, primary patency time, secondary (assisted patency time, and adverse events, particularly bleeding. Discussion This multicentre Australian and New Zealand study has been designed to determine whether the outcome of surgery to create de novo AVF can be improved by the use of aspirin and/or omega-3 fatty

  3. Preventing AVF thrombosis: the rationale and design of the Omega-3 fatty acids (Fish Oils) and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED) study.

    Science.gov (United States)

    Irish, Ashley; Dogra, Gursharan; Mori, Trevor; Beller, Elaine; Heritier, Stephane; Hawley, Carmel; Kerr, Peter; Robertson, Amanda; Rosman, Johan; Paul-Brent, Peta-Anne; Starfield, Melissa; Polkinghorne, Kevan; Cass, Alan

    2009-01-21

    Haemodialysis (HD) is critically dependent on the availability of adequate access to the systemic circulation, ideally via a native arteriovenous fistula (AVF). The Primary failure rate of an AVF ranges between 20-54%, due to thrombosis or failure of maturation. There remains limited evidence for the use of anti-platelet agents and uncertainty as to choice of agent(s) for the prevention of AVF thrombosis. We present the study protocol for a randomised, double-blind, placebo-controlled, clinical trial examining whether the use of the anti-platelet agents, aspirin and omega-3 fatty acids, either alone or in combination, will effectively reduce the risk of early thrombosis in de novo AVF. The study population is adult patients with stage IV or V chronic kidney disease (CKD) currently on HD or where HD is planned to start within 6 months in whom a planned upper or lower arm AVF is to be the primary HD access. Using a factorial-design trial, patients will be randomised to aspirin or matching placebo, and also to omega-3 fatty acids or matching placebo, resulting in four treatment groups (aspirin placebo/omega-3 fatty acid placebo, aspirin/omega-3 fatty acid placebo, aspirin placebo/omega-3 fatty acid, aspirin/omega-3 fatty acid). Randomisation will be achieved using a dynamic balancing method over the two stratification factors of study site and upper versus lower arm AVF. The medication will be commenced pre-operatively and continued for 3 months post surgery. The primary outcome is patency of the AVF at three months after randomisation. Secondary outcome measures will include functional patency at six and twelve months, primary patency time, secondary (assisted) patency time, and adverse events, particularly bleeding. This multicentre Australian and New Zealand study has been designed to determine whether the outcome of surgery to create de novo AVF can be improved by the use of aspirin and/or omega-3 fatty acids. Recently a placebo-controlled trial has shown that

  4. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    Science.gov (United States)

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  5. The modern features of pathogenesis-induced prevention of preeclampsia

    Directory of Open Access Journals (Sweden)

    Konkov D.G.

    2016-03-01

    Full Text Available Purpose — the assessment of clinical effectiveness of preventive therapy in pregnant women with high risk of preeclampsia. Patients and methods. In the comparative study on the effectiveness of preventive therapy were participated 110 pregnant women with decidual vasculopathy and endothelial dysfunction, which had high risk of preeclampsia. We investigated the clinical efficacy for medications that containing 75 mg of acetylsalicylic acid and L-arginine. Results. The results of the study have shown that use of preventive treatment (L-arginine and acetylsalicylic acid from 12 weeks, among pregnant women with high risk of preeclampsia, led to a significant decrease of perinatal loss, reduction of clinical manifestations of preeclampsia, preterm delivery, malformations and malpresentation of the placenta, cases of asphyxia of the newborns, perinatal CNS lesions and intra-ventricular hemorrhage. Conclusions. Clinical effectiveness of preventive treatment (L-arginine and ASA among pregnant women with high risk of preeclampsia was proven. Furthermore it was recognized clinically effective use of 75 mg of ASA from 12 weeks of pregnancy. No side effects of drugs in the study were noted.

  6. Tranexamic Acid versus Placebo to Prevent Blood Transfusion during Radical Cystectomy for Bladder Cancer (TACT): Study Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Breau, Rodney H; Lavallée, Luke T; Cnossen, Sonya; Witiuk, Kelsey; Cagiannos, Ilias; Momoli, Franco; Bryson, Gregory; Kanji, Salmaan; Morash, Christopher; Turgeon, Alexis; Zarychanski, Ryan; Mallick, Ranjeeta; Knoll, Greg; Fergusson, Dean A

    2018-05-02

    Radical cystectomy for bladder cancer is associated with a high risk of needing red blood cell transfusion. Tranexamic acid reduces blood loss during cardiac and orthopedic surgery, but no study has yet evaluated tranexamic acid use during cystectomy. A randomized, double-blind (surgeon-, anesthesiologist-, patient-, data-monitor-blinded), placebo-controlled trial of tranexamic acid during cystectomy was initiated in June 2013. Prior to incision, the intervention arm participants receive a 10 mg/kg loading dose of intravenously administered tranexamic acid, followed by a 5 mg/kg/h maintenance infusion. In the control arm, the patient receives an identical volume of normal saline that is indistinguishable from the intervention. The primary outcome is any blood transfusion from the start of surgery up to 30 days post operative. There are no strict criteria to mandate the transfusion of blood products. The decision to transfuse is entirely at the discretion of the treating physicians who are blinded to patient allocation. Physicians are allowed to utilize all resources to make transfusion decisions, including serum hemoglobin concentration and vital signs. To date, 147 patients of a planned 354 have been randomized to the study. This protocol reviews pertinent data relating to blood transfusion during radical cystectomy, highlighting the need to identify methods for reducing blood loss and preventing transfusion in patients receiving radical cystectomy. It explains the clinical rationale for using tranexamic acid to reduce blood loss during cystectomy, and outlines the study methods of our ongoing randomized controlled trial. Canadian Institute for Health Research (CIHR) Protocol: MOP-342559; ClinicalTrials.gov, ID: NCT01869413. Registered on 5 June 2013.

  7. A novel cost-effectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States.

    Science.gov (United States)

    Philip, Sephy; Chowdhury, Sumita; Nelson, John R; Benjamin Everett, P; Hulme-Lowe, Carolyn K; Schmier, Jordana K

    2016-10-01

    Given the substantial economic and health burden of cardiovascular disease and the residual cardiovascular risk that remains despite statin therapy, adjunctive therapies are needed. The purpose of this model was to estimate the cost-effectiveness of high-purity prescription eicosapentaenoic acid (EPA) omega-3 fatty acid intervention in secondary prevention of cardiovascular diseases in statin-treated patient populations extrapolated to the US. The deterministic model utilized inputs for cardiovascular events, costs, and utilities from published sources. Expert opinion was used when assumptions were required. The model takes the perspective of a US commercial, third-party payer with costs presented in 2014 US dollars. The model extends to 5 years and applies a 3% discount rate to costs and benefits. Sensitivity analyses were conducted to explore the influence of various input parameters on costs and outcomes. Using base case parameters, EPA-plus-statin therapy compared with statin monotherapy resulted in cost savings (total 5-year costs $29,393 vs $30,587 per person, respectively) and improved utilities (average 3.627 vs 3.575, respectively). The results were not sensitive to multiple variations in model inputs and consistently identified EPA-plus-statin therapy to be the economically dominant strategy, with both lower costs and better patient utilities over the modeled 5-year period. The model is only an approximation of reality and does not capture all complexities of a real-world scenario without further inputs from ongoing trials. The model may under-estimate the cost-effectiveness of EPA-plus-statin therapy because it allows only a single event per patient. This novel model suggests that combining EPA with statin therapy for secondary prevention of cardiovascular disease in the US may be a cost-saving and more compelling intervention than statin monotherapy.

  8. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  9. Evidence for biofilm acid neutralization by baking soda.

    Science.gov (United States)

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by

  10. Nucleic acid labeling with [3H]orotic acid and nucleotide profile in rats in protein deprivation, enteral and parenteral essential amino acid administration, and 5-fluorouracil treatment

    International Nuclear Information System (INIS)

    Jakobsson, B.; el Hag, I.A.; Andersson, M.; Christensson, P.I.; Stenram, U.

    1990-01-01

    Rats were fed a 0% casein diet for 1 week, with or without enteral or parenteral administration of essential amino acids, or a 25% casein diet, in one group supplemented with 5-fluorouracil treatment. Ninety minutes before sacrifice the rats were given a tracer of [3H]orotic acid. Incorporation into the acid soluble fraction, RNA, and DNA was determined in liver, small intestine, bone marrow, and kidney. Nucleotide profile was examined in liver and intestine. Protein deficiency caused inter alia a decrease in body weight; a decrease in RNA/DNA ratio and an increase in the specific RNA labeling in liver and kidney; an altered nucleotide profile in the liver; an increase in the nucleotide/DNA and RNA/DNA ratios and a decrease in the specific labeling of the acid soluble fraction, RNA, and DNA in the bone marrow. These changes were prevented to the same extent by giving essential amino acids, either orally or intravenously. The minor changes in intestinal nucleotide profile in protein deprivation were prevented to a slightly larger extent by amino acids orally than parenterally. 5-Fluorouracil treatment gave a decrease in the RNA/DNA ratio in the liver and kidney but an increase in the nucleotide/DNA and RNA/DNA ratios in the bone marrow. Nucleotide profiles were unaltered. The amount of DNA per gram of tissue decreased in bone marrow and increased in kidney. Parenteral administration per se resulted in almost no changes

  11. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    Science.gov (United States)

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  12. Changes over time in muscle fatty acid composition of Malaysian ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Key words: Fatty acid, lipid, muscle, Malaysian mahseer, Tor tambroides. INTRODUCTION. The content of long chain n-3 polyunsaturated fatty acids. (n-3 PUFAs) differentiates fish from the other food products. These fatty acids are important beneficial nutrients for the prevention of human coronary disease,.

  13. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    Science.gov (United States)

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  14. Role of amino acid supplementation in the prevention of necrotizing enterocolitis in preterm neonates - a review of current evidences.

    Science.gov (United States)

    Garg, Bhawan Deep; Kabra, Nandkishor S

    2018-09-01

    Necrotizing enterocolitis (NEC) is one of the most common acute and fatal gastrointestinal emergency in very low birth weight (VLBW) preterm neonates with mortality range from 15 to 30%. NEC is likely due to multifactorial process such as oxidative injury, ischemic necrosis, and over-reactive inflammatory response to intestinal microbes. To evaluate the role of amino acid supplementation for reduction of neonatal NEC in preterm neonates. The literature search was done for various randomized control trial (RCT) by searching the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of Science, Scopus, Index Copernicus, African Index Medicus (AIM), Thomson Reuters (ESCI), Chemical Abstracts Service (CAS) and other database. This review included 15 RCTs that fulfilled inclusion criteria. The total neonates enrolled in these different RCT are 3424 (amino acid group 1711 and control 1713). Almost all participating neonates were of VLBW or extremely low birth weight (ELBW). In two trials, birth weight was between 1500-2000 grams. The intervention was started within first few days after birth and continued up to 30th day of postnatal age in most of the trials. In two trials, intervention was continued up to 120th day of postnatal age. Arginine, glutamine and N-acetyl cysteine (NAC) were used at the dose of 1.5 mol/kg/day (261 mg/kg/day), 0.3 grams/kg/day and 16-32 mg/kg/day, respectively. Role of amino acid in the prevention of neonatal NEC is not exclusively supported by the current evidence. Only three studies were able to show reduction in the incidence of NEC with amino acid supplementation (arginine, glutamine), and the remaining studies did not report any positive effect. Amino acid supplementation was not associated with significant reduction in mortality due to any causes. However, arginine supplementation was associated with significant reduction in mortality due to NEC. Two studies on glutamine were reported significant reduction in

  15. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action.

    Science.gov (United States)

    Baynes, Habtamu Wondifraw; Mideksa, Seifu; Ambachew, Sintayehu

    2018-03-14

    Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.

  16. Studies on the riboflavin, pantothenic acid, nicotinic acid and choline requirements of young Embden geese

    Science.gov (United States)

    Serafin, J.A.

    1981-01-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined.

  17. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  18. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Bharat B. Aggarwal

    2010-10-01

    Full Text Available Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.

  19. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia

    DEFF Research Database (Denmark)

    Bosch, Jackie; Gerstein, Hertzel C; Dagenais, Gilles R

    2012-01-01

    The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown.......The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown....

  20. Conjugated linoleic acid as a potential protective factor in prevention of breast cancer 

    Directory of Open Access Journals (Sweden)

    Agnieszka Białek

    2013-01-01

    Full Text Available Cancers are the second leading cause of deaths in Poland, among both women and men. Breast cancer is the malignancy most frequently diagnosed in women. In 2008 mammary cancer was diagnosed in up to 14 500 patients. It is also the second most common cause of cancer deaths among women in our country. Although the etiology of most cases of this disease is not known, risk factors include a variety of nutritional factors. The amount of fat consumed in the diet and the quantity and quality of fatty acids are especially crucial. Among fatty acids to which great importance in modification of cancer risk is attributed are conjugated linoleic acid. Conjugated linoleic acids (CLA are a group of positional and geometric isomers of linoleic acid, with a conjugated double bond system in the carbon chain. The main natural source of them is milk and dairy products and meat of different species of ruminants, in which cis-9, trans-11 octadecadienoic acid (rumenic acid occurs in the largest quantities, constituting over 90�0of the total pool of CLA. Another important isomer is trans-10, cis-12 octadecadienoic acid, which occurs with rumenic acid in dietary supplements, usually in the ratio 1:1. Surveys conducted show their possible health promoting effects in obesity, atherosclerosis, cardiovascular diseases, osteoporosis, diabetes, insulin resistance, inflammation, and various types of cancer, especially breast cancer. 

  1. Periconceptional folic acid use : Still room to improve

    NARCIS (Netherlands)

    Zetstra-van der Woude, P.A.; de Walle, H.E.; de Jong-van den Berg, L.T.

    BACKGROUND: Folic acid use before and during pregnancy prevents neural tube defects. Since 1995, six surveys have been carried out among pregnant women to measure their knowledge and use of folic acid. The results of the most recent survey in 2009 will be discussed and compared with earlier

  2. Triglycerides in the Human Kidney Cortex: Relationship with Body Size

    Science.gov (United States)

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R.; Rogers, John T.; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis. PMID:25170827

  3. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  4. Global Burden of Neural Tube Defects, Risk Factors, and Prevention

    Directory of Open Access Journals (Sweden)

    Joseph E

    2014-11-01

    Full Text Available Neural tube defects (NTDs, serious birth defects of the brain and spine usually resulting in death or paralysis, affect an estimated 300,000 births each year worldwide. Although the majority of NTDs are preventable with adequate folic acid consumption during the preconception period and throughout the first few weeks of gestation, many populations, in particular those in low and middle resource settings, do not have access to fortified foods or vitamin supplements containing folic acid. Further, accurate birth defects surveillance data, which could help inform mandatory fortification and other NTD prevention initiatives, are lacking in many of these settings. The burden of birth defects in South East Asia is among the highest in the world. Expanding global neural tube defects prevention initiatives can support the achievement of the United Nations Millennium Development Goal 4 to reduce child mortality, a goal which many countries in South East Asia are currently not poised to reach, and the 63rd World Health Assembly Resolution on birth defects. More work is needed to develop and implement mandatory folic acid fortification policies, as well as supplementation programs in countries where the reach of fortification is limited.

  5. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  6. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  7. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose.

    Science.gov (United States)

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-11-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis.

  8. FOOD ALLERGY PREVENTION IN INFANCY

    Directory of Open Access Journals (Sweden)

    S.G. Makarova

    2006-01-01

    Full Text Available The article deals with new data about food tolerance induction among the children, belonging to the high risk groups disposed to atopy. Authors show the role of gut microflora in formation of child immune system, effect of breast feeding on activation of local immune response, growth stimulation of bifid bacteria and lactic acid bacilli. The present work gives the randomized research findings, which confirm the effectiveness of prolonged breast feeding, use of highly or partially hydrolyzed mixtures and timely introduction of supplemental feeding in food allergy prevention.Key words: prevention, food allergy, children, breast feeding, hypo allergic mixtures, milk protein hydrolysates, supplemental feeding, gut microflora, probiotics.

  9. The omega-6/omega-3 fatty acid ratio: health implications

    Directory of Open Access Journals (Sweden)

    Simopoulos Artemis P.

    2010-09-01

    Full Text Available Today, Western diets are characterized by a higher omega-6 and a lower omega-3 fatty acid intake, whereas during the Paleolithic period when human’s genetic profile was established, there was a balance between omega-6 and omega-3 fatty acids. Their balance is an important determinant for brain development and in decreasing the risk for coronary heart disease (CHD, hypertension, cancer, diabetes, arthritis, and other autoimmune and possibly neurodegenerative diseases. Both omega-6 and omega-3 fatty acids influence gene expression. Because of single nucleotide polymorphisms (SNPs in their metabolic pathways, blood levels of omega-6 and omega-3 fatty acids are determined by both endogenous metabolism and dietary intake making the need of balanced dietary intake essential for health and disease prevention. Whether an omega-6/omega-3 ratio of 3:1 to 4:1 could prevent the pathogenesis of many diseases induced by today’s Western diets (AFSSA, 2010, a target of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment, and genetics. A target of omega-6/omega-3 fatty acid ratio of 1:1 to 2:1 appears to be consistent with studies on evolutionary aspects of diet, neurodevelopment and genetics. A balanced ratio of omega-6/omega-3 fatty acids is important for health and in the prevention of CHD and possibly other chronic diseases.

  10. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    International Nuclear Information System (INIS)

    Schick, P.K.; Webster, P.

    1987-01-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with [ 14 C]-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of [ 14 C]-20:4 into total MK phospholipids, 16% and 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of [ 14 C]-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of [ 14 C]-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA

  11. Value of heart-type fatty acid-binding protein (H-FABP) for ...

    African Journals Online (AJOL)

    Key Words: heart-type fatty acid-binding protein, acute coronary syndrome, biomarker. ... is essential to prevent major complications and death. Routinely used biomarkers such ..... fatty acid binding proteins: their function and physiological sig-.

  12. Potential administration of lipoic acid and coenzyme Q against ...

    African Journals Online (AJOL)

    Potential administration of lipoic acid and coenzyme Q against adipogensis: target for weight reduction. ... prevents its accumulation in visceral tissues. Further studies should be carried out to examine the mechanistic signals of these nutrients that helps in weight = management. Keywords: lipolysis, obesity, lipoic acid, Co-Q ...

  13. Contrasting apoptotic responses of conjugated linoleic acid in the liver of obese Zucker rats fed palm oil or ovine fat.

    Science.gov (United States)

    Lopes, Paula A; Martins, Susana V; Viana, Ricardo S J; Ramalho, Rita M; Alfaia, Cristina M; Pinho, Mário S; Jerónimo, Eliana; Bessa, Rui J B; Castro, Matilde F; Rodrigues, Cecília M P; Prates, José A M

    2011-08-01

    We hypothesized that reducing weight properties of conjugated linoleic acid (CLA) are due to adipocyte apoptosis and that CLA differentially modulates the apoptotic responses in hepatic lipotoxicity from rats fed saturated fat diets. Obese Zucker rats were fed atherogenic diets (2%w/w of cholesterol) formulated with high (15%w/w) saturated fat, from vegetable or animal origin, supplemented or not with 1% of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12 CLA isomers for 14 weeks. CLA induced no changes on retroperitoneal fat depot weight, which was in line with similar levels of apoptosis. Interestingly, CLA had a contrasting effect on cell death in the liver according to the dietary fat. CLA increased hepatocyte apoptosis, associated with upregulation of Fas protein in rats fed palm oil, compared to rats receiving palm oil alone. However, rats fed ovine fat alone displayed the highest levels of hepatic cell death, which were decreased in rats fed ovine fat plus CLA. This reducing effect of CLA was related to positively restoring endoplasmic reticulum (ER) ATF-6α, BiP and CHOP protein levels and increasing phosphorylated c-Jun NH(2)-terminal kinase (JNK) and c-Jun, thus suggesting an adaptive response of cell survival. These findings reinforce the role of CLA as regulator of apoptosis in the liver. Moreover, the dietary fat composition is a key factor in activation of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Implementing preventive iron-folic acid supplementation among women of reproductive age in some Western Pacific countries: possibilities and challenges.

    Science.gov (United States)

    Smitasiri, Suttilak; Solon, Florentino S

    2005-12-01

    Lack of effective implementation mechanisms is identified as a major obstacle in the prevention and control of iron-deficiency anemia. This paper discusses experiences gained from implementing iron-folic acid supplementation in the Philippines, Vietnam, and Cambodia. The understanding of contextual elements is proposed as a foundation for planning interventions. Moreover, it is suggested that a social marketing framework should provide a way of thinking about how to influence related behaviors. The application of a social marketing framework applied using a "5 P's" approach: public relations and collaboration, product, price, place, and promotion, is described, as well as enabling factors (possibilities) and inhibiting factors (challenges) of this approach. Although a program to improve iron nutrition among women of reproductive age may not be simple to implement, it is essential to enhancing health, human development, and economic advancement in developing countries.

  15. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Wu Defeng; Cederbaum, Arthur

    2006-01-01

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G -Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  16. Prevention of age-related macular degeneration.

    Science.gov (United States)

    Wong, Ian Yat Hin; Koo, Simon Chi Yan; Chan, Clement Wai Nang

    2011-02-01

    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula.

  17. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  18. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men ...-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men

  19. Folic acid and diseases - supplement it or not?

    Directory of Open Access Journals (Sweden)

    Siaw-Cheok Liew

    2016-02-01

    Full Text Available SUMMARY Introduction: folic acid is a water soluble vitamin, which is synthetically-produced and found in fortified foods and supplements. Folate is found naturally in plants, such as the dark green leafy vegetables. Folate is not synthesizedde novo by humans, therefore the daily requirements are met from the dietary intake of folic acid supplements or food rich in this vitamin. Folate deficiency could lead to numerous common health problems. Hyperhomocysteinemia and the possibility of malignancy developments are the long term consequences of this deficit albeit contradictory findings on these claims. Methods: the articles included in this review focused on recent updated evidence-based reports and meta-analyses on the associations of the serum folate/folic acid and the various diseases found globally. Results: the benefit of folic acid supplementation in the pre-conception period for the prevention of neural tube defects (NTDs was well established and it was suggested that counseling sessions should be given to women with previous pregnancies affected by NTDs. However, supplementation of folic acid and its medicinal effects in the treatment of other diseases were contradictory and unclear. Conclusion: more detailed investigations into the health benefits of folic acid are needed before it could be recommended for supplementation, treatment or prevention of some of the diseases discussed in this review.

  20. Dietary fats and prevention of type 2 diabetes.

    Science.gov (United States)

    Risérus, Ulf; Willett, Walter C; Hu, Frank B

    2009-01-01

    Although type 2 diabetes is determined primarily by lifestyle and genes, dietary composition may affect both its development and complications. Dietary fat is of particular interest because fatty acids influence glucose metabolism by altering cell membrane function, enzyme activity, insulin signaling, and gene expression. This paper focuses on the prevention of type 2 diabetes and summarizes the epidemiologic literature on associations between types of dietary fat and diabetes risk. It also summarizes controlled feeding studies on the effects of dietary fats on metabolic mediators, such as insulin resistance. Taken together, the evidence suggests that replacing saturated fats and trans fatty acids with unsaturated (polyunsaturated and/or monounsaturated) fats has beneficial effects on insulin sensitivity and is likely to reduce risk of type 2 diabetes. Among polyunsaturated fats, linoleic acid from the n-6 series improves insulin sensitivity. On the other hand, long-chain n-3 fatty acids do not appear to improve insulin sensitivity or glucose metabolism. In dietary practice, foods rich in vegetable oils, including non-hydrogenated margarines, nuts, and seeds, should replace foods rich in saturated fats from meats and fat-rich dairy products. Consumption of partially hydrogenated fats should be minimized. Additional controlled, long-term studies are needed to improve our knowledge on the optimal proportion of different types of fats to prevent diabetes.

  1. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several \\'acid-mediated tumour invasion\\' models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results suggest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.

  2. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    Science.gov (United States)

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  3. [Analysis of the fatty acid profile of vegetarian and non-vegetarian diet in the context of some diet-related diseases prevention].

    Science.gov (United States)

    Kornek, Agata; Kucharska, Alicja; Kamela, Katarzyna

    2016-01-01

    Research increasingly provide evidence that vegetarian diet can have a positive impact on health. The aim of this study was to analyze the fatty acid profile of vegetarian and non-vegetarian diet and prove which of them is more optimal in the context of some diet-related diseases prevention. The study involved 83 women (47 vegetarians and 36 non-vegetarians). Estimates of the supply of individual fatty acids in the diet was based on analysis of 3-day dietary records (calculations in a computer program DIETA 5). Found: - in vegan diet significantly lower percentage of energy from SFA than in lactoovovegetarian diet and non-vegetarian diet (5,2% vs 11,2% i 11,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from PUFA than in non-vegetarian diet (9,2% i 7,8% vs 5,0%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from LA than in non-vegetarian diet (6,7% i 5,5% vs 3,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from ALA than in non-vegetarian diet (1,3% i 1,2% vs. 0,8%) - in vegan and lactoovovegetarian diet - significantly lower intake of EPA+DHA than in non-vegetarian diet (0 mg i 15 mg vs 76 mg), - only 25% of non-vegetarian diets fulfilled recommendations on the content of EPA + DHA Conclusions: Vegetarian, particularly vegan, nutrition may promote good balancing of the fatty acids in the diet, except for the long chain polyunsaturated omega-3, which are also deficient in the case of conventional diet.

  4. Vitamines en visvetzuren ter preventie van hart- en vaatziekten: Gezondmakers uit potjes en flesjes T2 = Health from jars and bottles. Vitamins and fish oil fatty acids for prevention of cardiovascular diseases

    NARCIS (Netherlands)

    Severs, A.H.; Bouterse-van Haaren, M.R.T.

    2000-01-01

    A high dietary intake of antioxidants ascorbic acid, tocopherol and beta-carotene and 1 or 2 servings of fish per week is associated with a lower risk of coronary heart diseases, but the 'evidence' for a preventive effect still has not been produced. A raised homocysteine level can be lowered with

  5. Prevention of Preeclampsia: Is it Still a Disappointment?

    Directory of Open Access Journals (Sweden)

    Abeer Eddib

    2009-01-01

    Full Text Available Preeclampsia is a major cause of maternal mortality worldwide, with many preventive strategies tested. In this review we intend to provide a synthesis of available studies of these strategies that have been tested, including systematic reviews. We will not be performing systematic review of the studies here. Of these strategies tested only low dose acetyl salicylic acid (ASA and calcium can be considered helpful for prevention at this time. A recent meta-analysis showed a benefit of low dose ASA for both high (RR 0.75, 95% CI 0.66 to 0.85 and moderate risk groups (RR 0.86, 95% CI 0.79 to 0.95. Therefore, low dose ASA in high risk groups may be useful, with a possible smaller benefit in moderate to low risk women. Another meta-analysis looking at calcium shows benefit for both high and low risk groups with an overall reduction in the risk of preeclampsia (RR 0.48, 95% CI 0.33 to 0.69. As a result, prenatal supplementation of calcium may be beneficial for the prevention of preeclampsia. However, vitamins C and E, zinc, fish oil, and magnesium supplementation have been discounted as potential preventive strategies. Nitric oxide, folic acid, and antithrombotics have not been well studied and there is insufficient data for reliable conclusions to be made. Areas of ongoing research that appear promising in the prevention of preeclampsia include modifiable metabolic factors, angiogenic proteins, angiotensin receptor antibodies, and syncytiotrophoblast microparticles. Strategies targeting these areas may provide opportunities for therapeutic interventions.

  6. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention.

    Science.gov (United States)

    Ma, Qiu-Lan; Teter, Bruce; Ubeda, Oliver J; Morihara, Takashi; Dhoot, Dilsher; Nyby, Michael D; Tuck, Michael L; Frautschy, Sally A; Cole, Greg M

    2007-12-26

    Environmental and genetic factors, notably ApoE4, contribute to the etiology of late-onset Alzheimer's disease (LOAD). Reduced mRNA and protein for an apolipoprotein E (ApoE) receptor family member, SorLA (LR11) has been found in LOAD but not early-onset AD, suggesting that LR11 loss is not secondary to pathology. LR11 is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate beta-amyloid (Abeta). Genetic polymorphisms that reduce LR11 expression are associated with increased AD risk. However these polymorphisms account for only a fraction of cases with LR11 deficits, suggesting involvement of environmental factors. Because lipoprotein receptors are typically lipid-regulated, we postulated that LR11 is regulated by docosahexaenoic acid (DHA), an essential omega-3 fatty acid related to reduced AD risk and reduced Abeta accumulation. In this study, we report that DHA significantly increases LR11 in multiple systems, including primary rat neurons, aged non-Tg mice and an aged DHA-depleted APPsw AD mouse model. DHA also increased LR11 in a human neuronal line. In vivo elevation of LR11 was also observed with dietary fish oil in young rats with insulin resistance, a model for type II diabetes, another AD risk factor. These data argue that DHA induction of LR11 does not require DHA-depleting diets and is not age dependent. Because reduced LR11 is known to increase Abeta production and may be a significant genetic cause of LOAD, our results indicate that DHA increases in SorLA/LR11 levels may play an important role in preventing LOAD.

  7. Assessing Folic Acid Awareness and its Usage for the Prevention of ...

    African Journals Online (AJOL)

    Antenatal and Population health educational strategies and fortification of ... However, these serious birth defects are to a large extent preventable .... This relatively high-rate of awareness among the study population ..... developing economy.

  8. Comparison of antiplatelet regimens in secondary stroke prevention

    DEFF Research Database (Denmark)

    Christiansen, Christine Benn; Pallisgaard, Jannik; Gerds, Thomas Alexander

    2015-01-01

    BACKGROUND: In patients with ischemic stroke of non-cardioembolic origin, acetylsalicylic acid, clopidogrel, or a combination of acetylsalicylic acid and dipyridamole are recommended for the prevention of a recurrent stroke. The purpose of this study was to examine the risk of bleeding or recurrent...... stroke associated with these three treatments. METHODS: Patients who were discharged with first-time ischemic stroke from 2007-2010, with no history of atrial fibrillation were identified from Danish nationwide registries. Hazard ratios (HRs) and 1-year risks of recurrent ischemic stroke and bleeding...... were calculated for each antiplatelet regimen. RESULTS: Among patients discharged after first-time ischemic stroke, 3043 patients were treated with acetylsalicylic acid, 12,295 with a combination of acetylsalicylic acid and dipyridamole, and 3885 with clopidogrel. Adjusted HRs for clopidogrel versus...

  9. Introducing a new disinfectant for U.S. aquaculture - peracetic acid

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  10. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  11. Once-yearly zoledronic acid in the prevention of osteoporotic bone fractures in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Irene Lambrinoudaki

    2008-09-01

    Full Text Available Irene Lambrinoudaki, Sophia Vlachou, Fotini Galapi, Dimitra Papadimitriou, K Papadias2nd Department of Obstetrics and Gynecology, University of Athens, Aretaieio Hospital, GreeceAbstract: Zoledronic acid is a nitrogen-containing, third-generation bisphosphonate that has recently been approved for the treatment of postmenopausal osteoporosis as an annual intravenous infusion. Zoledronic acid is an antiresorptive agent which has a high affinity for mineralized bone and especially for sites of high bone turnover. Zoledronic acid is excreted by the kidney without further metabolism. Zoledronic acid administered as a 5 mg intravenous infusion annually increases bone mineral density in the lumbar spine and femoral neck by 6.7% and 5.1% respectively and reduces the incidence of new vertebral and hip fractures by 70% and 41% respectively in postmenopausal women with osteoporosis. Most common side effects are post-dose fever, flu-like symptoms, myalgia, arthralgia, and headache which usually occur in the first 3 days after infusion and are self-limited. Rare adverse effects include renal dysfunction, hypocalcemia, atrial fibrillation, and osteonecrosis of the jaw.Keywords: zoledronic acid, postmenopausal osteoporosis, bisphosphonate

  12. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions.

    Science.gov (United States)

    Luebeck, E Georg; Moolgavkar, Suresh H; Liu, Amy Y; Boynton, Alanna; Ulrich, Cornelia M

    2008-06-01

    Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.

  13. Pharmacological Correction of the Negative Effect of Acetylsalicylic Acid on the Energy-Generating System

    Directory of Open Access Journals (Sweden)

    Vladimir V. Udut, ScD

    2012-03-01

    Full Text Available The present paper demonstrates the effect of ASA and its combination with SUC on the energy-producing system of rat heart mitochondria as well as an assessment of SUC preventive application effect on ASA pharmacokinetic parameters. Experiments conducted on outbred male albino rats (200-250 g on a model of a xenobiotic load induced by seven days of intragastric injections of acetylsalicylic acid at a dose of 250 mg/kg have shown inhibition of the oxygen consumption rates in the heart mitochondria as well as a limitation of the succinate-dependent substrate oxidation pathways and a decrease in the mitochondria ATP/ADP coefficient. Succinic acid (50 mg/kg for 7 days was injected as a preventive medication to correct the mitochondrial bioenergetics revealed. A comparative research of the pharmacokinetics of acetylsalicylic acid and acetylsalicylic acid against the background of succinic acid performed on the model of rabbits has shown total similarity in the parameters analyzed. This fact demonstrates the possibility of prevention of mitochondrial dysfunction using the intermediate Krebs cycle. SUC as preventive medication promotes the elimination of ASA-induced negative metabolic shifts in the rat heart mitochondria by normalizing the succinate- and NAD-dependent respiration, oxidative phosphorylation, and therefore, it finds good use in the correction of ASA-induced negative side-effects of an energy-generating system

  14. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects.

    Science.gov (United States)

    Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E

    2016-07-01

    The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Glucose intolerance and the amount of visceral adipose tissue contribute to an increase in circulating triglyceride concentrations in Caucasian obese females.

    Science.gov (United States)

    Berings, Margot; Wehlou, Charline; Verrijken, An; Deschepper, Ellen; Mertens, Ilse; Kaufman, Jean-Marc; Van Gaal, Luc F; Ouwens, D Margriet; Ruige, Johannes B

    2012-01-01

    Lipotoxicity is a risk factor for developing obesity-related metabolic complications, including non-alcoholic fatty liver disease, type 2 diabetes (DM2), cardiovascular disease and stroke. Yet, the mechanisms underlying the development of lipotoxicity itself remain poorly understood. Here, we investigated whether glucose intolerance aggravates lipotoxicity by evaluating the association between triglyceride (TG) concentrations and glucose tolerance status in a cross-sectional study on obese Caucasian women at risk for DM2. 913 obese females unknown to have diabetes were recruited (mean age: 41.2 ± SD 12.3; median BMI: 36.2, IQR 32.9-40.2). Visceral (VAT) and subcutaneous abdominal adipose tissue volumes were quantified with computed tomography. Glucose, insulin, and triglyceride concentrations were determined in fasting state and following a 75 gram oral glucose tolerance test. Based on fasting and 2 h post-load glucose levels, 27% of the women had impaired glucose tolerance (IGT), and 8% had newly diagnosed DM2. Fasting TG concentrations were similar between the IGT- and DM2-groups, and increased as compared to women with normal glucose tolerance (NGT). Even when adjusting for age, hip circumference and VAT, fasting TG concentrations remained elevated as compared to NGT. Mixed modelling analysis of post-load responses showed that TG concentrations declined more slowly in the DM2-group as compared to IGT and NGT. However, when adjusting for VAT the difference in decline between the glucose tolerance groups disappeared. Glucose intolerance associates with elevated fasting TG concentrations in obese Caucasian women. We propose that glucose intolerance and increased VAT reduce lipid disposal mechanisms and may accelerate lipotoxicity.

  16. Glucose intolerance and the amount of visceral adipose tissue contribute to an increase in circulating triglyceride concentrations in Caucasian obese females.

    Directory of Open Access Journals (Sweden)

    Margot Berings

    Full Text Available CONTEXT: Lipotoxicity is a risk factor for developing obesity-related metabolic complications, including non-alcoholic fatty liver disease, type 2 diabetes (DM2, cardiovascular disease and stroke. Yet, the mechanisms underlying the development of lipotoxicity itself remain poorly understood. Here, we investigated whether glucose intolerance aggravates lipotoxicity by evaluating the association between triglyceride (TG concentrations and glucose tolerance status in a cross-sectional study on obese Caucasian women at risk for DM2. METHODS: 913 obese females unknown to have diabetes were recruited (mean age: 41.2 ± SD 12.3; median BMI: 36.2, IQR 32.9-40.2. Visceral (VAT and subcutaneous abdominal adipose tissue volumes were quantified with computed tomography. Glucose, insulin, and triglyceride concentrations were determined in fasting state and following a 75 gram oral glucose tolerance test. RESULTS: Based on fasting and 2 h post-load glucose levels, 27% of the women had impaired glucose tolerance (IGT, and 8% had newly diagnosed DM2. Fasting TG concentrations were similar between the IGT- and DM2-groups, and increased as compared to women with normal glucose tolerance (NGT. Even when adjusting for age, hip circumference and VAT, fasting TG concentrations remained elevated as compared to NGT. Mixed modelling analysis of post-load responses showed that TG concentrations declined more slowly in the DM2-group as compared to IGT and NGT. However, when adjusting for VAT the difference in decline between the glucose tolerance groups disappeared. CONCLUSIONS: Glucose intolerance associates with elevated fasting TG concentrations in obese Caucasian women. We propose that glucose intolerance and increased VAT reduce lipid disposal mechanisms and may accelerate lipotoxicity.

  17. Lactic Acid Bacteria in Health and Disease

    African Journals Online (AJOL)

    Prevention of antibiotic associated diarrhoea, reduction in lactose intolerance, production of conjugated linoliec acid ..... Factor (TGF)-β2 in the breast milk of probiotic treated mothers ..... in amacunda than in ghee because heat clarification of.

  18. Palmitic Acid Induces Osteoblastic Differentiation in Vascular Smooth Muscle Cells through ACSL3 and NF-κB, Novel Targets of Eicosapentaenoic Acid

    Science.gov (United States)

    Kageyama, Aiko; Matsui, Hiroki; Ohta, Masahiko; Sambuichi, Keisuke; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2013-01-01

    Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited

  19. Acetylsalicylic acid: Incoming 150 years of the first synthesis

    OpenAIRE

    Mijin Dušan Ž.; Stanković Milena; Petrović Slobodan D.; Blagojević Milorad

    2002-01-01

    Acetylsalicylic acid is one of the most fascinating and versatile drugs known to medicine, as well as one of the oldest. Acetylsalicylic acid is a drug which is safe, with analgetic, antirheumatic, anti-inflammatory antiplatelet and antithrombotic action. It may be applied not only in clinical practice, but also as prevention. The first known use of an acetylsalicylic acid-like preparation can be traced to ancient Greece. In 1853 Charles Gerhardt published the first synthesis of acetylsalicyl...

  20. Preventing neural tube defects in Europe: a missed opportunity.

    Science.gov (United States)

    Busby, Araceli; Abramsky, Lenore; Dolk, Helen; Armstrong, Ben; Addor, Marie-Claude; Anneren, Goran; Armstrong, Nicola; Baguette, Andre; Barisic, Ingeborg; Berghold, Andrea; Bianca, Sebastiano; Braz, Paula; Calzolari, Elisa; Christiansen, Marianne; Cocchi, Guido; Daltveit, Anne Kjersti; De Walle, Hermien; Edwards, Grace; Gatt, Miriam; Gener, Blanca; Gillerot, Yves; Gjergja, Romana; Goujard, Janine; Haeusler, Martin; Latos-Bielenska, Anna; McDonnell, Robert; Neville, Amanda; Olars, Birgitta; Portillo, Isabel; Ritvanen, Annukka; Robert-Gnansia, Elizabeth; Rösch, Christine; Scarano, Gioacchino; Steinbicker, Volker

    2005-01-01

    Each year, more than 4500 pregnancies in the European Union are affected by neural tube defects (NTD). Unambiguous evidence of the effectiveness of periconceptional folic acid in preventing the majority of neural tube defects has been available since 1991. We report on trends in the total prevalence of neural tube defects up to 2002, in the context of a survey in 18 European countries of periconceptional folic acid supplementation (PFAS) policies and their implementation. EUROCAT is a network of population-based registries in Europe collaborating in the epidemiological surveillance of congenital anomalies. Representatives from 18 participating countries provided information about policy, health education campaigns and surveys of PFAS uptake. The yearly total prevalence of neural tube defects including livebirths, stillbirths and terminations of pregnancy was calculated from 1980 to 2002 for 34 registries, with UK and Ireland estimated separately from the rest of Europe. A meta-analysis of changes in NTD total prevalence between 1989-1991 and 2000-2002 according to PFAS policy was undertaken for 24 registries. By 2005, 13 countries had a government recommendation that women planning a pregnancy should take 0.4mg folic acid supplement daily, accompanied in 7 countries by government-led health education initiatives. In the UK and Ireland, countries with PFAS policy, there was a 30% decline in NTD total prevalence (95% CI 16-42%) but it was difficult to distinguish this from the pre-existing strong decline. In other European countries with PFAS policy, there was virtually no decline in NTD total prevalence whether a policy was in place by 1999 (2%, 95% CI 28% reduction to 32% increase) or not (8%, 95% CI 26% reduction to 16% increase). The potential for preventing NTDs by periconceptional folic acid supplementation is still far from being fulfilled in Europe. Only a public health policy including folic acid fortification of staple foods is likely to result in large

  1. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat.

    Science.gov (United States)

    Nakagawa, S; Kawashima, Y; Hirose, A; Kozuka, H

    1994-01-01

    Regulation of the hepatic level of fatty-acid-binding protein (FABP) by hormones and p-chlorophenoxyisobutyric acid (clofibric acid) was studied. The hepatic level of FABP, measured as the oleic acid-binding capacity of the cytosolic FABP fraction, was decreased in streptozotocin-diabetic rats. The level of FABP was markedly increased in adrenalectomized rats, and the elevation was prevented by the administration of dexamethasone. Hypothyroidism decreased the level of FABP and hyperthyroidism increased it. A high correlation between the incorporation of [14C]oleic acid in vivo into hepatic triacylglycerol and the level of FABP was found for normal, diabetic and adrenalectomized rats. The level of FABP was increased by administration of clofibric acid to rats in any altered hormonal states, as was microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, a peroxisome-proliferator-responsive parameter. These results suggest that the hepatic level of FABP is under regulation by multiple hormones and that clofibric acid induces FABP and 1-acyl-GPC acyltransferase by a mechanism which may be distinct from that by which hormones regulate the level of FABP. PMID:8110197

  2. Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Bilesimo, Rafaela; Michels, Monique; Arent, Camila O; Mariot, Edemilson; Dal-Pizzol, Felipe; Scaini, Giselli; Quevedo, João; Streck, Emilio L

    2017-04-01

    Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of

  3. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention.

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; van de Laar, Mart A F J

    2010-01-01

    Objectives: To discuss nonsteroidal anti-inflammatory drugs (NSAIDs), their history, development, mode of action, toxicities, strategies for the prevention of toxicity, and future developments. - Methods: Medline search for articles published up to 2007, using the keywords acetylsalicylic acid,

  4. Consumption of Pt anode in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, N.; Urata, K.; Motohira, N.; Ota, K. [Yokohama National University, Yokohama (Japan)

    1997-12-05

    Consumption of Pt anode was investigated in phosphoric acid of various concentration. In 30-70wt% phosphoric acid, Pt dissolved at the rate of 19{mu}gcm{sup -2}h{sup -1}. On the other hand, in 85 wt% phosphoric acid, the amount increased to 0.91 mgcm{sup -2}h{sup -1} which is ca. 180 and 1800 times as much as in 1M sulfuric acid and 1M alkaline solution, respectively. In the diluted phosphoric acid solution, the Pt surface was covered with Pt oxides during the electrolysis, which would prevent the surface from corrosion. However, in the concentrated phosphoric acid, no such oxide surface was observed. Concentrated phosphoric acid might form stable complex with Pt species, therefore the uncovered bare Pt surface is situated in the serious corrosion condition under the high overvoltage and Pt would dissolve into the solution directly instead of forming the Pt oxides. 11 refs., 9 figs., 1 tab.

  5. [Folic acid in physiology and pathology].

    Science.gov (United States)

    Czeczot, Hanna

    2008-08-13

    This paper presents current knowledge of the biological functions of folic acid, the effects of its deficiency in the organism, as well as the possibilities of its therapeutic use. Folic acid (folate, B9) is a vitamin of special importance in normal cellular functions. Tetrahydrofolate (TH4-folate) is the biologically active form of folic acid. The main role of folic acid in biochemistry is the single-carbon transfer reaction (e.g. transfer of a methyl, methylene, or formyl group). Folic acid is involved in the transformation of certain amino acids as well as in the synthesis of purines and dTMP (2'-deoxythymidine-5'-phosphate) needed for the synthesis of nucleic acid (DNA), required by all rapidly growing cells. In humans, folate deficiency results in serious pathologies, the most important of which are neural tube defects, megablastic anemia, acceleration of the arteriosclerotic process, changes in the central nervous system, and the development of certain types of cancer. To increase the intake of folic acid, preventive actions include dietary education, the main objectives of which are to increase the intake of natural folate in the daily diet, add folic acid to selected dietary products (e.g. fl our, pasta, rice), and encourage supplementation with folic acid-containing pharmaceuticals.

  6. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

    Science.gov (United States)

    Holvoet, Paul; Rull, Anna; García-Heredia, Anabel; López-Sanromà, Sílvia; Geeraert, Benjamine; Joven, Jorge; Camps, Jordi

    2015-03-01

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    Science.gov (United States)

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  8. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoyong Wei

    2012-01-01

    Full Text Available Objective. Effects of Syringic acid (SA extracted from dendrobii on diabetic cataract (DC pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.

  9. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    USMAN PATO

    2005-09-01

    Full Text Available High serum cholesterol levels have been associated with an increased risk for human coronary heart disease. Lowering of serum cholesterol has been suggested to prevent the heart disease. To reduce serum cholesterol levels one may consumed diet supplementat of fermented dairy product such as dadih. Lactic acid bacteria present in dadih may alter serum cholesterol by directly bind to dietary cholesterol and/or deconjugation of bile salts. Acid and bile tolerance, deconjugation of sodium taurocholate, and the cholesterol-binding ability of lactic acid bacteria from dadih were examined. Among ten dadih lactic acid bacteria tested, six strains namely I-11, I-2775, K-5, I-6257, IS-7257, and B-4 could bind cholesterol and deconjugate sodium taurocholate. However, the last four strains were very sensitive to bile. Therefore, Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 those were tolerant to acid and oxgall (bile and deconjugated sodium taurocholate and bound cholesterol could be recommended as probiotic to prevent coronary heart disease.

  10. Omega-3 polyunsaturated fatty acids in the prevention of postoperative complications in colorectal cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xie H

    2016-12-01

    Full Text Available Hai Xie,1 Yan-na Chang2 1Department of Emergency, The First Hospital of Lanzhou University, 2Department of Anesthesiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China Objective: To evaluate systematically the clinical efficacy of omega-3 polyunsaturated fatty acids (PUFAs in the prevention of postoperative complications in colorectal cancer (CRC patients.Materials and methods: Published articles were identified by using search terms in online databases – PubMed, Embase, and the Cochrane Library – up to March 2016. Only randomized controlled trials investigating the efficacy of omega-3 PUFAs in CRC were selected and analyzed through a meta-analysis. Subgroup, sensitivity, and inverted funnel-plot analyses were also conducted. Results: Eleven articles with 694 CRC patients were finally included. Compared with control, omega-3 PUFA-enriched enteral or parenteral nutrition during the perioperative period reduced infectious complications (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.47–0.86; P=0.004, tumor necrosis factor alpha (standard mean difference [SMD] -0.37, 95% CI -0.66 to -0.07; P=0.01, interleukin-6 (SMD -0.36, 95% CI -0.66 to -0.07; P=0.02, and hospital stay (MD -2.09, 95% CI -3.71 to -0.48; P=0.01. No significant difference was found in total complications, surgical site infection, or CD4+:CD8+ cell ratio. Conclusion: Short-term omega-3 PUFA administration was associated with reduced postoperative infectious complications, inflammatory cytokines, and hospital stay after CRC surgery. Due to heterogeneity and relatively small sample size, the optimal timing and route of administration deserve further study. Keywords: omega-3, fatty acids, fish oil, colorectal surgery, meta-analysis 

  11. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+, K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats.

    Science.gov (United States)

    Coste, T; Pierlovisi, M; Leonardi, J; Dufayet, D; Gerbi, A; Lafont, H; Vague, P; Raccah, D

    1999-07-01

    Metabolic and vascular abnormalities are implicated in the pathogenesis of diabetic neuropathy. Two principal metabolic defects are altered lipid metabolism resulting from the impairment of delta-6-desaturase, which converts linoleic acid (LA) into gamma linolenic acid (GLA), and reduced nerve Na+, K+ ATPase activity. This reduction may be caused by a lack of incorporation of (n-6) fatty acids in membrane phospholipids. Because this ubiquitous enzyme maintains the membrane electrical potential and allows repolarization, disturbances in its activity can alter the process of nerve conduction velocity (NCV). We studied the effects of supplementation with GLA (260 mg per day) on NCV, fatty acid phospholipid composition, and Na+, K+ ATPase activity in streptozotocin-diabetic rats. Six groups of 10 rats were studied. Two groups served as controls supplemented with GLA or sunflower oil (GLA free). Two groups with different durations of diabetes were studied: 6 weeks with no supplementation and 12 weeks supplemented with sunflower oil. To test the ability of GLA to prevent or reverse the effects of diabetes, two groups of diabetic rats were supplemented with GLA, one group for 12 weeks and one group for 6 weeks, starting 6 weeks after diabetes induction. Diabetes resulted in a 25% decrease in NCV (P < 0.0001), a 45% decrease in Na+, K+ ATPase activity (P < 0.0001), and an abnormal phospholipid fatty acid composition. GLA restored NCV both in the prevention and reversal studies and partially restored Na+, K+ ATPase activity in the preventive treatment group (P < 0.0001). These effects were accompanied by a modification of phospholipid fatty acid composition in nerve membranes. Overall, the results suggest that membrane fatty acid composition plays a direct role in NCV and confirm the beneficial effect of GLA supplementation in diabetic neuropathy.

  12. A randomized controlled experimental study of the efficacy of platelet-rich plasma and hyaluronic acid for the prevention of adhesion formation in a rat uterine horn model.

    Science.gov (United States)

    Oz, Murat; Cetinkaya, Nilufer; Bas, Sevda; Korkmaz, Elmas; Ozgu, Emre; Terzioglu, Gokay Serdar; Buyukkagnici, Umran; Akbay, Serap; Caydere, Muzaffer; Gungor, Tayfun

    2016-09-01

    Platelet-rich plasma (PRP) has been known to possess an efficacy in tissue regeneration. The aim of this study was to determine the role of PRP on post-operative adhesion formation in an experimental rat study. Thirty Sprague-Dawley rats were randomly divided into control, hyaluronic acid, and PRP treatment groups and operated on for uterine horn adhesion modeling. Blood was collected to produce a PRP with platelet counts of 688 × 10(3)/μL, and 1 ml of either hyaluronic acid gel or PRP was administered over the standard lesions, while the control group received no medication. The evaluation of post-operative adhesions was done on the 30th post-operative day. The location, extent, type, and tenacity of adhesions as well as total adhesion scores, tissue inflammation, fibrosis and transforming growth factor-1beta (TGF-1β) expressions were evaluated. The total adhesion score was significantly lower in the PRP group (3.2 ± 1.5) compared with the hyaluronic acid (5.0 ± 1.3) and control (8.1 ± 1.7) groups. The extent of the adhesions was significantly lower in the PRP group. There was no significant difference in the type and tenacity of adhesions between the hyaluronic acid and the PRP group. The level of inflammation was significantly higher in the control group than the others, while there was no difference between the PRP and hyaluronic acid groups. TGF-1β expression was significantly lesser in the PRP group than the control and hyaluronic acid groups. PRP is more effective than hyaluronic acid treatment in preventing post-operative adhesion formation in an experimental rat uterine horn adhesion model.

  13. PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT MINE HIGHWALLS

    Science.gov (United States)

    Exposed, open pit mine highwalls contribute significantly to the production of acid mine drainage (AMD) thus causing environmental concerns upon closure of an operating mine. Available information on the generation of AMD from open-pit mine highwalls is very limit...

  14. Efficacy of n-3 polyunsaturated fatty acids and feasibility of optimizing preventive strategies in patients at high cardiovascular risk: rationale, design and baseline characteristics of the Rischio and Prevenzione study, a large randomised trial in general practice

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Abstract Background The optimization of preventive strategies in patients at high risk of cardiovascular events and the evaluation of bottlenecks and limitations of transferring current guidelines to the real world of clinical practice are important limiting steps to cardiovascular prevention. Treatment with n-3 polyunsaturated fatty acids improves prognosis after myocardial infarction, but evidence of this benefit is lacking in patients at high cardiovascular risk, but without a history of myocardial infarction. Methods/design Patients were eligible if their general practitioner (GP considered them at high cardiovascular risk because of a cardiovascular disease other than myocardial infarction, or multiple risk factors (at least four major risk factors in non-diabetic patients and one in diabetics. Patients were randomly allocated to treatment with n-3 polyunsaturated fatty acids (1 g daily or placebo in a double-blind study and followed up for five years by their GPs to assess the efficacy of the treatment in preventing cardiovascular mortality (including sudden death and hospitalization for cardiovascular reasons. The secondary, epidemiological, aim of the study is to assess whether it is feasible to adopt current guidelines in everyday clinical practice, with a view to optimizing all the available preventive strategies in people at high cardiovascular risk. A nation-wide network of 860 GPs admitted 12,513 patients to the study between February 2004 and March 2007. The mean age was 64 years and 62% were males. Diabetes mellitus plus one or more cardiovascular risk factors was the main inclusion criterion (47%. About 30% of patients were included because of a history of atherosclerotic cardiovascular disease, 21% for four or more risk factors, and less than 1% for other reasons. Discussion The Rischio and Prevenzione (R&P project provides a feasible model to test the efficacy of n-3 polyunsaturated fatty acid therapy in patients at high

  15. A full-scale porous reactive wall for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Benner, S.G.; Blowes, D.W.; Ptacek, C.J.

    1997-01-01

    The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years

  16. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  17. N-3 fatty acids from fish and markers of cardiac arrhythmia

    NARCIS (Netherlands)

    Geelen, A.

    2004-01-01

    N‑3 fatty acids from fish may protect against heart disease mortality by preventing fatal arrhythmias. The objective of this thesis was to investigate whether this possible antiarrhythmic effect of n-3 fatty acids is supported by short-term effects on electrophysiological markers. We performed two

  18. Ascorbic acid prevents cellular uptake and improves biocompatibility of chitosan nanoparticles.

    Science.gov (United States)

    Elshoky, Hisham A; Salaheldin, Taher A; Ali, Maha A; Gaber, Mohamed H

    2018-04-11

    Chitosan nanoparticles have many applications, such as gene and drug delivery, due to their biocompatibility. Chitosan nanoparticles are currently produced by dissolution in acetic acid that affects the biocompatibility at acidic pH. Here, we synthesized and characterized chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles and investigated their cytotoxic effects, internalization, and distribution in the human colon carcinoma cell line using confocal laser scanning microscopy (CLSM). The CS and AsCS nanoparticles were spherical with average particle sizes of 44±8.4nm and 87±13.6nm, respectively. CS nanoparticles were taken up by the cells and showed dose-dependent cytotoxicity. By contrast, AsCS nanoparticles were not internalized and showed no cytotoxicity. Therefore, AsCS nanoparticles are more biocompatible than CS nanoparticles and may be more suitable for extracellular drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Omega-3 fatty acids and dementia

    Science.gov (United States)

    Cole, Greg M.; Ma, Qiu-Lan; Frautschy, Sally A.

    2014-01-01

    More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. PMID:19523795

  20. The effects of ascorbic acid on diphtheria toxin and intoxicated hela cells

    International Nuclear Information System (INIS)

    Clark, C.E.; Smith, T.J.

    1976-01-01

    Ascorbic acid (vitamin C) prevented diphtheria toxin from inhibiting the incorporation of [U- 14 C]-alanine into trichloroacetic acid precipitable material in HeLa cells. Ascorbic acid did not exhibit an effect on the adenosine diphosphate-ribosylation of amino acyl transferase 2 nor did it separate fragment A from fragment B in ''nicked'' toxin. A non-specific reducing agent, para-methylaminophenol sulfate, exhibited an effect of HeLa cells very similar to the results of ascorbic acid. Citric acid, a tricarboxylic acid, had no effect on HeLa cells. (auth.)

  1. Process of recovering uranium from wet process acid

    International Nuclear Information System (INIS)

    York, W.R.

    1983-01-01

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle uranium recovery process, by washing the organic solvent stream containing entrained H 3 PO 4 from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper. (author)

  2. [Prevention of intrauterine adhesion with auto-crosslinked hyaluronic acid gel: a prospective, randomized, controlled clinical study].

    Science.gov (United States)

    Xiao, Songshu; Wan, Yajun; Zou, Fangjun; Ye, Mingzhu; Deng, Henan; Ma, Jiezhi; Wei, Yingying; Tan, Chen; Xue, Min

    2015-01-01

    To evaluate the efficacy and safety of auto-crosslinked hyaluronic acid (HA) gel for preventing intrauterine adhesion (IUA) after hysteroscopic adhesiolysis. A prospective, randomized, double blinded and controlled clinical trial (level I) was performed. According to American Fertility Society (AFS) scoring system, 120 patients (treatment group: 60 cases, control group: 60 cases) with moderate to severe IUA were enrolled. Upon completion of adhesiolysis, a Foley balloon catheter was first introduced into the uterine cavity and then 3 ml of auto-crosslinked HA gel for patients in the treatment group; patients in the control group, however, only received Foley balloon catheter. Second-look hysteroscopic examination was performed to all patients at 3 months postoperatively for evaluation of IUA. Primary endpoint was the reduction rate of IUA at 3 months after surgery. The secondary endpoints include total AFS score, score of each individual AFS category. At 3 months after surgery, auto-crosslinked HA gel resulted in significantly higher effective rate for reduction of adhesion, the effective rate were 76% (42/55) and 48% (27/56) respectively (P = 0.000 9); the total AFS score of treatment group was 2.1 ± 1.1, and significantly lower than that of control group (3.7 ± 2.5, P = 0.000 8). Application of auto-crosslinked HA gel after surgery significantly enhanced the improvement for each individual patient with regard to their adhesive type and menstrual pattern (P = 0.037 8, P = 0.000 4). The treatment group had significantly lower proportion of patients with moderate to severe adhesive stages than that of control group [13% (7/55) versus 38% (21/56), P = 0.000 6]. No adverse events and complications were observed. Auto-crosslinked HA gel coule be able to reduce IUA, decrease adhesion severity, and improve menopause postoperatively. This absorbable auto-crosslinked HA gel is proposed as a barrier for preventing IUA after intrauterine procedures.

  3. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    combinations of hurdles, which could prevent the development or survival of Salmonella spp. in foods. The fact that moderately low temperatures (10 degrees C) markedly decrease the acid resistance and increase the growth pH boundary of S. typhimurium suggests the convenience to control the temperature during food processing as a strategy to prevent the growth and survival of this pathogenic microorganism.

  4. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  5. Role of ursodeoxycholic acid in the prevention of gallstone formation after laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Abdallah, Emad; Emile, Sameh Hany; Elfeki, Hossam; Fikry, Mohamed; Abdelshafy, Mahmoud; Elshobaky, Ayman; Elgendy, Hesham; Thabet, Waleed; Youssef, Mohamed; Elghadban, Hosam; Lotfy, Ahmed

    2017-07-01

    Postoperative cholelithiasis (CL) is a latent complication of bariatric surgery. The aim of this study was to evaluate the role of ursodeoxycholic acid (UDCA) in the prevention of CL after laparoscopic sleeve gastrectomy (LSG). This was a retrospective analysis of the prospectively collected data of patients with morbid obesity who underwent LSG. Patients were subdivided into two groups: Group I, which did not receive prophylactic treatment with UCDA after LSG; and Group II, which received UCDA therapy for 6 months after LSG. Patients' characteristics, operation duration, weight loss data, and incidence of CL at 6 and 12 months postoperatively were collected. A total of 406 patients (124 males, 282 females) with a mean age of 32.1 ± 9.4 years were included. The mean baseline body mass index (BMI) was 50.1 ± 8.3 kg/m 2 . Group I comprised 159 patients, and Group II comprised 247 patients. The two groups showed comparable demographics, % excess weight loss (EWL), and decrease in BMI at 6 and 12 months after LSG. Eight patients (5%) developed CL in Group I, whereas no patients in Group II did (P = 0.0005). Preoperative dyslipidemia and rapid loss of excess weight within the first 3 months after LSG were the risk factors that significantly predicted CL postoperatively. The use of UCDA effectively reduced the incidence of CL after LSG in patients with morbid obesity. Dyslipidemia and rapid EWL in the first 3 months after LSG significantly predisposed patients to postoperative CL.

  6. Topical Hyaluronic Acid vs. Standard of Care for the Prevention of Radiation Dermatitis After Adjuvant Radiotherapy for Breast Cancer: Single-Blind Randomized Phase III Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Pinnix, Chelsea; Perkins, George H.; Strom, Eric A.; Tereffe, Welela; Woodward, Wendy; Oh, Julia L.; Arriaga, Lisa [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Munsell, Mark F. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kelly, Patrick; Hoffman, Karen E.; Smith, Benjamin D.; Buchholz, Thomas A. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yu, T. Kuan, E-mail: tkyu@houstonprecisioncc.com [Houston Precision Cancer Center, Houston, TX (United States)

    2012-07-15

    Purpose: To determine the efficacy of an emulsion containing hyaluronic acid to reduce the development of {>=}Grade 2 radiation dermatitis after adjuvant breast radiation compared with best supportive care. Methods and Materials: Women with breast cancer who had undergone lumpectomy and were to receive whole-breast radiotherapy to 50 Gy with a 10- to 16-Gy surgical bed boost were enrolled in a prospective randomized trial to compare the effectiveness of a hyaluronic acid-based gel (RadiaPlex) and a petrolatum-based gel (Aquaphor) for preventing the development of dermatitis. Each patient was randomly assigned to use hyaluronic acid gel on the medial half or the lateral half of the irradiated breast and to use the control gel on the other half. Dermatitis was graded weekly according to the Common Terminology Criteria v3.0 by the treating physician, who was blinded as to which gel was used on which area of the breast. The primary endpoint was development of {>=}Grade 2 dermatitis. Results: The study closed early on the basis of a recommendation from the Data and Safety Monitoring Board after 74 of the planned 92 patients were enrolled. Breast skin treated with the hyaluronic acid gel developed a significantly higher rate of {>=}Grade 2 dermatitis than did skin treated with petrolatum gel: 61.5% (40/65) vs. 47.7% (31/65) (p = 0.027). Only 1ne patient developed Grade 3 dermatitis using either gel. A higher proportion of patients had worse dermatitis in the breast segment treated with hyaluronic acid gel than in that treated with petrolatum gel at the end of radiotherapy (42% vs. 14%, p = 0.003). Conclusion: We found no benefit from the use of a topical hyaluronic acid-based gel for reducing the development of {>=}Grade 2 dermatitis after adjuvant radiotherapy for breast cancer. Additional studies are needed to determine the efficacy of hyaluronic acid-based gel in controlling radiation dermatitis symptoms after they develop.

  7. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abodishish, H.A.; Ritchey, R.W.

    1982-01-01

    Precipitation of Fe 3 HN 4 H 8 (PO 4 ) 6 is prevented in the second cycle extractor, in a two cycle uranium recovery process, by washing ammonia laden organic solvent stream, from the second cycle stripper, with first cycle raffinate iron stream containing phosphoric acid, prior to passing the solvent stream into the second cycle extractor. (author)

  8. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  9. Is intravesical instillation of hyaluronic acid and chondroitin sulfate useful in preventing recurrent bacterial cystitis? A multicenter case control analysis.

    Science.gov (United States)

    Gugliotta, Giorgio; Calagna, Gloria; Adile, Giorgio; Polito, Salvatore; Saitta, Salvatore; Speciale, Patrizia; Palomba, Stefano; Perino, Antonino; Granese, Roberta; Adile, Biagio

    2015-10-01

    Urinary tract infections (UTIs) are common in the female population and, over a lifetime, about half of women have at least one episode of UTI requiring antibiotic therapy. The aim of the current study was to compare two different strategies for preventing recurrent bacterial cystitis: intravesical instillation of hyaluronic acid (HA) plus chondroitin sulfate (CS), and antibiotic prophylaxis with sulfamethoxazole plus trimethoprim. This was a retrospective review of two different cohorts of women affected by recurrent bacterial cystitis. Cases (experimental group) were women who received intravesical instillations of a sterile solution of high concentration of HA + CS in 50 mL water with calcium chloride every week during the 1(st) month and then once monthly for 4 months. The control group included women who received traditional therapy for recurrent cystitis based on daily antibiotic prophylaxis using sulfamethoxazole 200 mg plus trimethoprim 40 mg for 6 weeks. Ninety-eight and 76 patients were treated with experimental and control treatments, respectively. At 12 months after treatment, 69 and 109 UTIs were detected in the experimental and control groups, respectively. The proportion of patients free from UTIs was significantly higher in the experimental than in the control group (36.7% vs. 21.0%; p = 0.03). Experimental treatment was well tolerated and none of the patients stopped it. The intravesical instillation of HA + CS is more effective than long-term antibiotic prophylaxis for preventing recurrent bacterial cystitis. Copyright © 2015. Published by Elsevier B.V.

  10. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  11. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice.

    Science.gov (United States)

    Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O

    2016-03-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.

  12. High Protein Intake Does Not Prevent Low Plasma Levels of Conditionally Essential Amino Acids in Very Preterm Infants Receiving Parenteral Nutrition.

    Science.gov (United States)

    Morgan, Colin; Burgess, Laura

    2017-03-01

    We have shown that increasing protein intake using a standardized, concentrated, added macronutrients parenteral (SCAMP) nutrition regimen improves head growth in very preterm infants (VPIs) compared with a control parenteral nutrition (PN) regimen. VPIs are at risk of conditionally essential amino acid (CEAA) deficiencies because of current neonatal PN amino acid (AA) formulations. We hypothesized that the SCAMP regimen would prevent low plasma levels of CEAAs. To compare the plasma AA profiles at approximately day 9 of life in VPIs receiving SCAMP vs a control PN regimen. VPIs (parenteral and enteral protein, energy, and individual AA intake and the first plasma AA profile. Plasma profiles of the 20 individual protogenic AA levels were measured using ion exchange chromatography. Plasma AA profiles were obtained at median (interquartile range [IQR]) age of 9 (8-10) days in both SCAMP (n = 59) and control (n = 67) groups after randomizing 150 VPIs. Median (IQR) plasma levels of individual essential AAs were higher than the reference population mean (RPM) in both groups, especially for threonine. SCAMP infants had higher plasma levels of essential AAs than did the controls. Median (IQR) plasma levels of glutamine, arginine, and cysteine (CEAAs) were lower than the RPM in both groups. Plasma AA levels in PN-dependent VPIs indicate there is an imbalance in essential and CEAA provision in neonatal PN AA formulations that is not improved by increasing protein intake.

  13. Prevention methods for pest control and their use in Poland.

    Science.gov (United States)

    Matyjaszczyk, Ewa

    2015-04-01

    Prevention methods can still be a cost-effective and efficient tool for pest control. Rational use of prevention methods is a feasible way to reduce dependency on chemical protection in agriculture. Costs, workload and farmers' awareness are key issues, however. In Poland, crop rotation is used as a method for pest control only to a limited extent owing to the high share of cereals in the crop structure. The choice of resistant varieties is satisfactory, but farmers should make use of qualified seed material more often. Liming is recommended on the majority of farms on account of widespread soil acidity. Favourable aspects as regards the prevention of pest development are biodiversity and the popularity of prevention cultivation techniques. © 2014 Society of Chemical Industry.

  14. Transcutaneous application of oil and prevention of essential fatty acid deficiency in preterm infants.

    Science.gov (United States)

    Lee, E J; Gibson, R A; Simmer, K

    1993-01-01

    The topical application of vegetable oil was assessed as an alternative means of providing essential fatty acids (EFA) to parentally fed preterm infants who were not receiving lipid. Three infant pairs ranging in gestational age from 26-32 weeks were studied. Safflower oil or safflower oil esters (1 g linoleic acid/kg/day) were applied to available areas daily. All infants rapidly developed biochemical EFA deficiency. The plasma fatty acid profiles were similar in infants with or without topical oil, and all returned to normal once parenteral lipid was introduced. We found no evidence to suggest that the transdermal route is of use in the nutritional management of preterm infants. PMID:8439192

  15. Alternative to Nitric Acid Passivation Project Overview

    Science.gov (United States)

    Lewis, Pattie L.

    2013-01-01

    The standard practice for protection of stainless steel is a process called passivation. This procedure results in the formation of a metal oxide layer to prevent corrosion. Typical passivation procedures call for the use of nitric acid which exhibits excellent corrosion performance; however, there are a number of environmental, worker safety, and operational issues associated with its use. The longtime military specification for the passivation of stainless steel was cancelled in favor of newer specifications which allow for the use of citric acid in place of nitric acid. Citric acid offers a variety of benefits that include increased safety for personnel, reduced environmental impact, and reduced operational costs. There have been few studies, however, to determine whether citric acid is an acceptable alternative for NASA and DoD. This paper details activities to date including development of the joint test plan, on-going and planned testing, and preliminary results.

  16. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    Science.gov (United States)

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  17. Promotora de salud: promoting folic acid use among Hispanic women.

    Science.gov (United States)

    deRosset, Leslie; Mullenix, Amy; Flores, Alina; Mattia-Dewey, Daniel; Mai, Cara T

    2014-06-01

    The U.S. Public Health Service recommends that all women in the United States capable of becoming pregnant consume 400 μg of folic acid daily to reduce their risk of having a pregnancy affected by a neural tube defect (NTD). However, disparities exist in the consumption of folic acid, with Hispanic women having lower rates of folic acid consumption than non-Hispanic white women. A community-based feasibility study was designed to assess the utility of the promotora de salud model to promote consumption of multivitamins containing folic acid for the prevention of NTDs among Spanish-speaking Hispanic women in North Carolina. The study consisted of an educational intervention given by a promotora (a lay, community health worker), with data collection occurring at baseline and four months post-intervention to measure changes in knowledge and behavior. Overall, 52% (n=303) of participants completed all components of the study. Self-reported daily multivitamin consumption increased from 24% at baseline to 71% four months post-intervention. During the same time frame, awareness of folic acid increased from 78% to 98% and knowledge of the role of folic acid in the prevention of birth defects increased from 82% to 92%. The results of this study indicate that the promotora de salud model may be effective in reaching a subpopulation of women with the folic acid message. Additional studies with larger population sizes are warranted to validate these findings.

  18. Serum Uric Acid Levels in Oral Cancer Patients Seen at Tertiary ...

    African Journals Online (AJOL)

    Introduction: Toxicity by oxygen radicals has been considered as an important cause of cancer. It is proposed that the antioxidant properties of uric acid may act to prevent formation of oxygen radicals and thereby protect against carcinogenesis. This study aims to assess the role of uric acid in the aetiology of oral cancer.

  19. Conjugated linolenic acids (CLnA, super CLA – natural sources and biological activity

    Directory of Open Access Journals (Sweden)

    Agnieszka Białek

    2014-11-01

    Full Text Available Polyunsaturated fatty acids (PUFA have a wide range of biological activity. Among them conjugated fatty acids are of great interest. Conjugated linoleic acids (CLA, which exert a multidirectional health-benefiting influence, and conjugated linolenic acids (CLnA, super CLA are examples of this group of fatty acids. CLnA are a group of positional and geometric isomers of octadecatrienoic acid (C18:3, which possess double bonds at positions 9, 11, 13 or 8, 10, 12 of their chain. Some vegetable oils are rich sources of CLnA, e.g. bitter melon oil (from Momordica charantia seeds and pomegranate oil (from Punica granatum seeds. The aim of this paper was to present information concerning natural sources and health-promoting activities of conjugated linolenic acids.The presented data reveal that conjugated linolenic acids may be very useful in prevention and treatment of many diseases, especially diabetes, arteriosclerosis , obesity and cancers (mammary, prostate and colon cancer. Among many potential mechanisms of their action, the fact that some CLnA are converted by oxidoreductases into CLA is very important. It seems to be very reasonable to conduct research concerning the possibility of CLnA use in prevention of many diseases.

  20. Preventing neural tube defects in Europe : A missed opportunity

    NARCIS (Netherlands)

    Busby, A; Armstrong, B; Dolk, H; Armstrong, N; Haeusler, M; Berghold, A; Gillerot, Y; Baguette, A; Gjerga, R; Barisic, [No Value; Christiansen, M; Goujard, J; Steinbicker, [No Value; Rosch, C; McDonnell, R; Scarano, G; Calzolari, E; Neville, A; Cocchi, G; Bianca, S; Gatt, M; De Walle, H; Braz, P; Latos-Bielenska, A; Gener, B; Portillor, [No Value; Addor, MC; Abramsky, L; Ritvanen, A; Robert-Gnansia, E; Daltveit, AK; Aneren, G; Olars, B; Edwards, G

    2005-01-01

    Each year, more than 4500 pregnancies in the European Union are affected by neural tube defects (NTD). Unambiguous evidence of the effectiveness of peri conceptional folic acid in preventing the majority of neural tube defects has been available since 1991. We report on trends in the total

  1. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists.

    Science.gov (United States)

    Kim, Esther S; Isoda, Fumiko; Kurland, Irwin; Mobbs, Charles V

    2013-09-01

    A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.

  2. Pathogenesis of Nonsteroidal Anti-Inflammatory Drug Gastropathy: Clues to Preventative Therapy

    Directory of Open Access Journals (Sweden)

    Salim MA Bastaki

    1999-01-01

    Full Text Available Gastric ulceration and bleeding are major impediments to the chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs. The development of effective therapies for prevention of these adverse effects requires better understanding of their pathogenesis. Several features of NSAIDs contribute to the development of damage in the stomach, including the topical irritant effects of these drugs on the epithelium, impairment of the barrier properties of the mucosa, suppression of gastric prostaglandin synthesis, reduction of gastric mucosal blood flow and interference with the repair of superficial injury. The presence of acid in the lumen of the stomach also contributes to the pathogenesis of NSAID-induced ulcers and bleeding in a number of ways. Acid impairs the restitution process, interferes with hemostasis and can inactivate several growth factors that are important in mucosal integrity and repair. Profound suppression of gastric acid secretion has been shown to be effective in preventing NSAID-induced ulceration. There is a strong possibility that new NSAIDs entering the market will have greatly reduced toxicity in the gastrointestinal tract.

  3. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  4. Preventing transfusion-associated graft-versus-host disease: state of the art

    Directory of Open Access Journals (Sweden)

    Fast LD

    2015-01-01

    Full Text Available Loren D Fast Division of Hematology/Oncology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, RI, USA Abstract: The transfer of pathogens and the induction of immune responses are deleterious consequences that can result from the transfusion of blood products. Transfusion-associated graft-versus-host disease (TA-GVHD, the most severe immune consequence, occurs when recipient immune responses are incapable of effectively eliminating donor leukocytes, permitting unabated responses of the donor T lymphocytes. Currently, prevention of TA-GVHD is routinely accomplished by exposing blood products to γ-irradiation in order to prevent donor T cell proliferation. Alternative protocols are being developed to meet the challenges associated with the use of γ-irradiation. Use of pathogen reduction protocols, which interfere with nucleic acid replication by modifying nucleic acids, are increasing. Comparison of pathogen reduction protocols with γ-irradiation have found that both protocols are equally effective in preventing T lymphocyte proliferation and GVHD responses when testing in both in vitro and in vivo models. The potential use of pathogen reduction protocols to treat whole blood prior to separation into its components could provide a cost-effective method for preventing TA-GVHD in the future. Keywords: blood transfusion, GVHD, pathogen reduction, irradiation

  5. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA; C22:6 n-3).

    Science.gov (United States)

    Zarrouk, Amira; Nury, Thomas; Samadi, Mohammad; O'Callaghan, Yvonne; Hammami, Mohamed; O'Brien, Nora M; Lizard, Gérard; Mackrill, John J

    2015-07-01

    Some oxysterols are associated with neurodegenerative diseases. Their lipotoxicity is characterized by an oxidative stress and induction of apoptosis. To evaluate the capacity of these molecules to trigger cellular modifications involved in neurodegeneration, human neuronal cells SK-N-BE were treated with 7-ketocholesterol, 7α- and 7β-hydroxycholesterol, 6α- and 6β-hydroxycholesterol, 4α- and 4β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol (50-100μM, 24h) without or with docosahexaenoic acid (50μM). The effects of these compounds on mitochondrial activity, cell growth, production of reactive oxygen species (ROS) and superoxide anions (O2(-)), catalase and superoxide dismutase activities were determined. The ability of the oxysterols to induce increases in Ca(2+) was measured after 10min and 24h of treatment using fura-2 videomicroscopy and Von Kossa staining, respectively. Cholesterol, 7-ketocholesterol, 7β-hydroxycholesterol, and 24(S)-hydroxycholesterol (100μM) induced mitochondrial dysfunction, cell growth inhibition, ROS overproduction and cell death. A slight increase in the percentage of cells with condensed and/or fragmented nuclei, characteristic of apoptotic cells, was detected. With 27-hydroxycholesterol, a marked increase of O2(-) was observed. Increases in intracellular Ca(2+) were only found with 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol. Pre-treatment with docosahexaenoic acid showed some protective effects depending on the oxysterol considered. According to the present data, 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol could favor neurodegeneration by their abilities to induce mitochondrial dysfunctions, oxidative stress and/or cell death associated or not with increases in cytosolic calcium levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Unesterified docosahexaenoic acid is protective in neuroinflammation

    Science.gov (United States)

    Orr, Sarah K; Palumbo, Sara; Bosetti, Francesca; Mount, Howard T; Kang, Jing X; E, Carol; Greenwood; Ma, David WL; Serhan, Charles N; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 PUFA modulation in transgenic and wildtype mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Further, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LCMS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute icv infusion of 17S-hydroperoxydocosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. PMID:23919613

  7. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    Science.gov (United States)

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  8. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  9. Adipose tissue and sustainable development: a connection that needs protection

    Directory of Open Access Journals (Sweden)

    Angelo eTremblay

    2015-05-01

    Full Text Available Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants (POPs. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health and well-being or global ecological protection.

  10. Preventing Excessive Blood Loss During Percutaneous Nephrolithotomy by Using Tranexamic Acid: A Double Blinded Prospective Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Adnan Siddiq

    2017-12-01

    Full Text Available Objective: Percutaneous nephrolithotomy (PCNL is most frequently performed procedure for renal stones 2 cm and larger. Perioperative hemorrhage being most common complication, warrants as important predicting factor of adverse outcomes. Prevention with inexpensive and safe drug like tranexamic acid (TA would ultimately turn out to be cornerstone for establishing future guidelines. Aim of this study is to evaluate whether TA is efficacious in preventing blood loss during PCNL. Materials and Methods: Ethical review board approval taken. Sample size calculation yielded 240 patients, comprising 120 in each group. Group A receiving TA and group B receiving placebo. Age, gender, body mass index (BMI, stone size, volume and location, preoperative blood count, creatinine, urine analysis, coagulation profile and necessary radiological investigations done. Randomization through lottery method. Both patient and investigator were blinded. Hemoglobin (Hb and hematocrit (Hct levels done at 24 hours postoperatively and fall in values recorded. Results: Both groups were equal in characteristics like age, gender, BMI, stone size, volume and location (p>0.05. Operative variables like calyx punctured, position of puncture and operative time were also found to be similar in both groups. Median change in Hb in placebo group was 1.6 interquartile range (IQR 4, while in TA group was 1.3 (IQR 7.8 (p=0.001. Similarly, median change in Hct level in placebo group was 3.6 (IQR 11.8 and in TA group was 2.4 (IQR 13 (p<0.001. Sixteen patients were transfused after surgery; 12 (75% belonged to placebo group while 4 (25% belonged to TA group (p=0.038. Hospital stay was not significantly different in both groups (p=0.177 with median of 4.0 and IQR of 0 in both groups. Conclusion: TA during PCNL reduces blood loss and minimizes blood transfusion rate.

  11. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    NARCIS (Netherlands)

    Ginneken, van V.J.T.; Helsper, J.P.F.G.; Visser, de W.; Keulen, van H.; Brandenburg, W.A.

    2011-01-01

    Background - In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods - The fatty acid (FA) composition in lipids from seven sea

  12. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    Science.gov (United States)

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  13. Tranexamic acid for the prevention and management of orthopedic surgical hemorrhage: current evidence

    Science.gov (United States)

    Kim, Christopher; Park, Sam Si-Hyeong; Davey, J Roderick

    2015-01-01

    Total joint arthroplasty can be associated with major blood loss and require subsequent blood transfusions for postoperative anemia. Measures to effectively and safely decrease blood loss and reduce the need for blood transfusions would help improve patient safety and lower health care costs. A possible pharmacological option to reduce surgical blood loss in total joint arthroplasty is the use of tranexamic acid. Abundant literature has shown that intravenous and/or topical administration of tranexamic acid is effective in reducing blood loss and blood transfusions, with no increased risk of venous thromboembolic events or other complications. PMID:26345147

  14. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  15. Rubber acid damage in fire hoses

    Energy Technology Data Exchange (ETDEWEB)

    Thaysen, A C; Bunker, H J; Adams, M E

    1945-03-17

    Hose failure observed in rubber-lined fire hoses may be due to sulfuric acid formed from sulfur present in hoses when they are not properly dried. Microorganisms were observed in numerous samples of hose liquid and as a result of the experiments which were carried it was concluded that: the production of rubber acid in hose is due to the activity of sulfur-oxidizing bacteria of the Thiobacterium thiooxidans group. Such acid will invariably be formed when the hoses are stored with the linings wet, when the responsible bacteria are present and when the free sulfur content of the hoses exceeds 0.1 precent. The alternative of preventing the introduction of the causal bacteria does not appear practical since the water used in fire-fighting in the London district is taken from static supplies.

  16. OMEGA-3 FATTY ACIDS AND AGE-RELATED DISEASES: REALITIES AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2015-01-01

    Full Text Available Efficacy of omega-3 fatty acids in cardiology is so high that in many countries omega-3 fatty acids are included into the treatment protocols for patients with cardiovascular diseases. This therapeutic class slows down oxidative stress and chronic inflammation processes, thereby providing a significant contribution to the complex treatment of hypertension. Besides, omega-3 fatty acids slow down the aging process and prevent the development of age-related diseases affecting the rate of telomere shortening.

  17. Mine waters: Acidic to circumneutral

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  18. Compliance with iron-folic acid (IFA) therapy among pregnant ...

    African Journals Online (AJOL)

    EB

    Background: Anaemia is highly prevalent among pregnant women and iron ... Methodology: This study included 190 pregnant women seeking ante-natal care in tertiary health centres in the Mangalore ..... preventive oral iron or iron+folic acid.

  19. Bovine mastitis prevention: humoral and cellular response of dairy cows inoculated with lactic acid bacteria at the dry-off period.

    Science.gov (United States)

    Pellegrino, M; Berardo, N; Giraudo, J; Nader-Macías, M E F; Bogni, C

    2017-08-24

    The use of lactic acid bacteria (LAB) in animal feed, constitute an alternative tool for bovine mastitis prevention. Previously, two LAB strains were isolated from bovine milk and selected for their probiotics properties. So far, immune response of inoculating LAB in bovine udders at dry-off period has not been investigated. The immunoglobulin isotype levels and memory cell proliferation in blood and milk of animals inoculated with Lactobacillus lactis subsp. lactis CRL1655 and Lactobacillus perolens CRL1724 at dry-off period was studied. Ten animals were inoculated intramammarily with 10 6 cells of each LAB (IG) and 2 animals used as control (NIG). Milk and blood samples were taken before inoculation and 1, 2, 4, 6, 12 and 24 h and 7 and 14 days after inoculation. Somatic cell count (SCC) in milk, the presence of bovine mastitis pathogens, the levels of antibodies and lymphocyte proliferation were determined. In the IG, the SCC was bovine mastitis pathogens after 24-48 h of incubation. In general, LAB inoculation increased the amount of IgG isotypes in blood and milk, and these antibodies were able to recognise Staphylococcus aureus epitopes. Lymphocytes proliferation was significantly higher in the IG at all time points assayed, following LAB or S. aureus stimulation. The lymphocytes of animals inoculated with LAB do not react in vitro to the presence of S. aureus antigen.. The results showed that probiotic microorganisms could be a natural and effective alternative in the prevention of bovine mastitis at dry-off period and act as immunomodulatory stimulating local and systemic defence lines.

  20. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet.

    Science.gov (United States)

    Hennebelle, Marie; Roy, Maggie; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Fortier, Mélanie; Bouzier-Sore, Anne-Karine; Gallis, Jean-Louis; Beauvieux, Marie-Christine; Cunnane, Stephen C

    2015-03-01

    The aim of this study was to evaluate the effects of long-term energy restriction (ER) on plasma, liver, and skeletal muscle metabolite profiles in aging rats fed a Western-style diet. Three groups of male Sprague-Dawley rats were studied. Group 1 consisted of 2 mo old rats fed ad libitum; group 2 were 19 mo old rats also fed ad libitum; and group 3 were 19 mo old rats subjected to 40% ER for the last 11.5 mo. To imitate a Western-style diet, all rats were given a high-sucrose, very low ω-3 polyunsaturated fatty acid (PUFA) diet. High-resolution magic angle spinning-(1)H nuclear magnetic resonance spectroscopy was used for hepatic and skeletal muscle metabolite determination, and fatty acid profiles were measured by capillary gas chromatography on plasma, liver, and skeletal muscle. ER coupled with a Western-style diet did not prevent age-induced insulin resistance or the increase in triacylglycerol content in plasma and skeletal muscle associated with aging. However, in the liver, ER did prevent steatosis and increased the percent of saturated and monounsaturated fatty acids relative to ω-6 and ω-3 PUFA. Although steatosis was reduced, the beneficial effects of ER on systemic insulin resistance and plasma and skeletal muscle metabolites observed elsewhere with a balanced diet seem to be compromised by high-sucrose and low ω-3 PUFA intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mediterranean diet, folic acid, and neural tube defects.

    Science.gov (United States)

    Fischer, Maximilian; Stronati, Mauro; Lanari, Marcello

    2017-08-17

    The Mediterranean diet has been for a very long time the basis of food habits all over the countries of the Mediterranean basin, originally founded on rural models and low consumption of meat products and high-fat/high-processed foods. However, in the modern era, the traditional Mediterranean diet pattern is now progressively eroding due to the widespread dissemination of the Western-type economy, life-style, technology-driven culture, as well as the globalisation of food production, availability and consumption, with consequent homogenisation of food culture and behaviours. This transition process may affect many situations, including pregnancy and offspring's health. The problem of the diet during pregnancy and the proper intake of nutrients are nowadays a very current topic, arousing much debate. The Mediterranean dietary pattern, in particular, has been associated with the highest risk reduction of major congenital anomalies, like the heterogeneous class of neural tube defects (NTDs). NTDs constitute a major health burden (0.5-2/1000 pregnancies worldwide) and still remain a preventable cause of still birth, neonatal and infant death, or significant lifelong disabilities. Many studies support the finding that appropriate folate levels during pregnancy may confer protection against these diseases. In 1991 one randomised controlled trial (RCT) demonstrated for the first time that periconceptional supplementation of folic acid is able to prevent the recurrence of NTDs, finding confirmed by many other subsequent studies. Anyway, the high rate of unplanned/unintended pregnancies and births and other issues hindering the achievement of adequate folate levels in women in childbearing age, induced the US government and many other countries to institute mandatory food fortification with folic acid. The actual strategy adopted by European Countries (including Italy) suggests that women take 0,4 mg folic acid/die before conception. The main question is which intervention

  2. Acetylsalicylic acid: Incoming 150 years of the first synthesis

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2002-01-01

    Full Text Available Acetylsalicylic acid is one of the most fascinating and versatile drugs known to medicine, as well as one of the oldest. Acetylsalicylic acid is a drug which is safe, with analgetic, antirheumatic, anti-inflammatory antiplatelet and antithrombotic action. It may be applied not only in clinical practice, but also as prevention. The first known use of an acetylsalicylic acid-like preparation can be traced to ancient Greece. In 1853 Charles Gerhardt published the first synthesis of acetylsalicylic acid. Felix Hoffmann, a chemist for Friedrich Bayer, a German dye company obtained a patent on acetylsalicylic acid some 40 years later. Bayer coined the name Aspirin for the new product. The 20 in century was the century in which many researchers in many companies tried to improve the synthesis of acetylsalicylic acid not only in terms of yield but also purity. This paper describes the history, use, mechanism of action, synthesis and production as well as the purification and stability of acetylsalicylic acid.

  3. The introduction of peracetic acid as a new disinfectant for U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  4. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    Directory of Open Access Journals (Sweden)

    María del Carmen Martinez

    2015-01-01

    Full Text Available The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA, dehydrocholic (DHA, chenodeoxycholic, or ursodeoxycholic (URSO. The administration of Gris alone increased the activities of glutathione reductase (GRed, superoxide dismutase (SOD, alkaline phosphatase (AP, gamma glutamyl transpeptidase (GGT, and glutathione-S-transferase (GST, as well as total porphyrins, glutathione (GSH, and cytochrome P450 (CYP levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  5. Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: the Nutritional AMD Treatment 2 study.

    Science.gov (United States)

    Souied, Eric H; Delcourt, Cécile; Querques, Giuseppe; Bassols, Ana; Merle, Bénédicte; Zourdani, Alain; Smith, Theodore; Benlian, Pascale

    2013-08-01

    To evaluate the efficacy of docosahexaenoic acid (DHA)-enriched oral supplementation in preventing exudative age-related macular degeneration (AMD). The Nutritional AMD Treatment 2 study was a randomized, placebo-controlled, double-blind, parallel, comparative study. Two hundred sixty-three patients 55 years of age or older and younger than 85 years with early lesions of age-related maculopathy and visual acuity better than 0.4 logarithm of minimum angle of resolution units in the study eye and neovascular AMD in the fellow eye. Patients were assigned randomly to receive either 840 mg/day DHA and 270 mg/day eicosapentaenoic acid (EPA) from fish oil capsules or the placebo (olive oil capsules) for 3 years. The primary outcome measure was time to occurrence of choroidal neovascularization (CNV) in the study eye. Secondary outcome measures in the study eye were: incidence of CNV developing in patients, changes in visual acuity, occurrence and progression of drusen, and changes in EPA plus DHA level in red blood cell membrane (RBCM). Time to occurrence and incidence of CNV in the study eye were not significantly different between the DHA group (19.5±10.9 months and 28.4%, respectively) and the placebo group (18.7±10.6 months and 25.6%, respectively). In the DHA group, EPA plus DHA levels increased significantly in RBCM (+70%; P<0.001), suggesting that DHA easily penetrated cells, but this occurred unexpectedly also in the placebo group (+9%; P = 0.007). In the DHA-allocated group, patients steadily achieving the highest tertile of EPA plus DHA levels in RBCM had significantly lower risk (-68%; P = 0.047; hazard ratio, 0.32; 95% confidence interval, 0.10-0.99) of CNV developing over 3 years. No marked changes from baseline in best-corrected visual acuity, drusen progression, or geographic atrophy in the study eye were observed throughout the study in either group. In patients with unilateral exudative AMD, 3 years of oral DHA-enriched supplementation had the same

  6. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    Science.gov (United States)

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  7. Dietary intake and food sources of fatty acids in Australian adolescents.

    Science.gov (United States)

    O'Sullivan, Therese A; Ambrosini, Gina; Beilin, Lawrie J; Mori, Trevor A; Oddy, Wendy H

    2011-02-01

    Dietary fat consumed during childhood and adolescence may be related to the development of cardiovascular and other chronic diseases in adulthood; however, there is a lack of information on specific fatty acid intakes and food sources in these populations. Our study aimed to assess fatty acid intakes in Australian adolescents, compare intakes with national guidelines, and identify major food sources of fatty acids. Dietary intake was assessed using measured 3-d records in 822 adolescents aged 13-15 y participating in The Western Australian Pregnancy Cohort (Raine) Study, Australia. Mean daily total fat intakes were 90 ± 25 g for boys and 73 ± 20 g for girls, with saturated fat contributing 14% of total energy intake. Mean contribution to daily energy intake for linoleic, alpha-linolenic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids were 3.0%, 0.40%, 0.02%, 0.01%, and 0.04%, respectively, for boys, and 3.3%, 0.42%, 0.02%, 0.01%, and 0.05% for girls. To meet guidelines for chronic disease prevention, consumption of long-chain omega-3 fatty acids in this population may need to increase up to three-fold and the proportion of saturated fat decrease by one-third. Girls were more likely to achieve the guidelines. Major food sources were dairy products for total fat, saturated fat and alpha-linolenic acid, margarines for linoleic acid, and fish for long-chain omega-3 fatty acids. Results suggest that for this population, a higher dietary intake of long-chain omega-3 fatty acids, particularly for boys, and lower proportion of saturated fat is required to meet recommendations for prevention of chronic disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    Science.gov (United States)

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  9. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Prevention of Cervical Cancer in Africa: A Daunting Task ...

    African Journals Online (AJOL)

    Africa has a high estimated incidence of cervical cancer, thus requiring the development of an effective prevention strategy. Cytology-based screening is beyond the capacity of many African countries, hence the need for alternatives. Visual inspection of the cervix after application of 3–5% acetic acid (VIA) is a promising ...

  11. Marine microalgae used as food supplements and their implication in preventing cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Mimouni Virginie

    2015-07-01

    Full Text Available Marine microalgae are photosynthetic microorganisms producing numerous bioactive molecules of interest for health and disease care such as lipids rich in omega-3 fatty acids -as eicosapentaenoic acid (EPA, 20:5 n-3 and docosahexaenoic acid (DHA, 22:6 n-3- and carotenoids (e.g., β-carotene, fucoxanthin, astaxanthin. It has already been shown that these molecules, individually used, are benefic in the prevention of diseases such as those associated with the cardiovascular risks, but also in some carcinomas. When these molecules are combined, synergistic effects may be observed. Microalgae, as a dietary supplement, can be used to study these synergistic effects in animal models in which dyslipidemia can be induced by a nutrition treatment. Different marine microalgae of interest are studied in this context to determine their potential effect as an alternative source to marine omega-3 rich fish oils, actually widely used for human health. Actually, the pharmaceutical and nutrition industries are developing health research programs involving microalgae, trying to limit the dramatic reduction of fish stocks and the associated pollution in the marine environment. The aim of this review is threefold: (1 to present research on lipids, particularly long chain polyunsaturated fatty acids, as components of marine microalgae used as food supplements; (2 to present the health benefits of some microalgae or their extracts, in particular in the prevention of cardiovascular diseases and (3 to highlight the role of Odontella aurita, a marine microalga rich in EPA used as food supplement with the aim of preventing cardiovascular diseases.

  12. Lipid peroxidation in radiation pneumonitis in mouse lung and its preventation

    International Nuclear Information System (INIS)

    Kodama, Akihisa; Tsujino, Kayoko; Kono, Michio

    1998-01-01

    Lipid peroxidation of the lung in irradiated C57BL6J mice was analyzed by gas chromatography. Among six major fatty acids in the mouse lung tissue, the amounts of two unsaturated fatty acids, arachidonic acid and DHA reduced one day after irradiation, and then recovered up to the level of in the control group four weeks after irradiation. In contrast, the amounts of stearic and palmitic acid did not change significantly. The mice fed with vitamin E-enriched food showed no significant changes of fatty acids which were compatible with pathophysiological findings 4 weeks after irradiation. Reduction of both arachidonic acid and DHA following lipid peroxidation in lung tissue, was assumed to play an important role in development of radiation pneumonitis. Vitamin E seems to enable to prevent or reduce the occurrence and progression of radiation pneumonitis, but as a radical scavenger, it may also weaken the anti-tumor growth effect of low linear energy transfer (LET) irradiation as photon. (author)

  13. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid

    Science.gov (United States)

    Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.

    2013-01-01

    In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330

  14. An assessment of mine legacies and how to prevent them

    DEFF Research Database (Denmark)

    Pacheco Cueva, Vladimir

    in eastern El Salvador, compared the country’s mine closure legislation against world’s best practice standards and provided strategies for awareness, prevention and remediation. The most damaging legacy to the environment is that of Acid Mine Drainage (AMD) contamination of the local river. The impact...

  15. Folic acid levels in some food staples in Ireland are on the decline: implications for passive folic acid intakes?

    Science.gov (United States)

    Kelly, F; Gibney, E R; Boilson, A; Staines, A; Sweeney, M R

    2016-06-01

    Neural tube defects are largely preventable by the maternal periconceptual consumption of folic acid. The aim of this study was to examine the levels of synthetic folic acid in foods and the range of food stuffs with added folic acid available to consumers in Ireland at the current time. Three audits of fortified foods available in supermarkets in the Republic of Ireland were conducted. Researchers visited supermarkets and obtained folic acid levels from nutrition labels in 2004, 2008 and 2013/4. Levels were compared using MS Excel. The profile of foods fortified with folic acid in 2013/4 has changed since 2004. The percentage of foods fortified with folic acid has decreased as has the level of added folic acid in some food staples, such as fat/dairy spreads. Bread, milk and spreads no longer contain as much folic acid as previously (2004 and 2008). This may contribute to a decrease in folate intake and therefore may contribute to an increase in NTD rates. Research on current blood concentrations of folate status markers is now warranted. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    Science.gov (United States)

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  17. A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels

    Directory of Open Access Journals (Sweden)

    Clemens von Schacky

    2006-09-01

    Full Text Available Clemens von SchackyMedizinische Klinik and Poliklinik Innenstadt, University of Munich, Munich, GermanyAbstract: The two marine omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, prevalent in fish and fish oils, have been investigated as a strategy towards prophylaxis of atherosclerosis. While the results with fish and fish oils have been not as clear cut, the data generated with the purified ethyl ester forms of these two fatty acids are consistent. Although slight differences in biological activity exist between EPA and DHA, both exert a number of positive actions against atherosclerosis and its complications. EPA and DHA as ethyl esters inhibit platelet aggregability, and reduce serum triglycerides, while leaving other serum lipids essentially unaltered. Glucose metabolism has been studied extensively, and no adverse effects were seen. Pro-atherogenic cytokines are reduced, as are markers of endothelial activation. Endothelial function is improved, vascular occlusion is reduced, and the course of coronary atherosclerosis is mitigated. Heart rate is reduced, and heart rate variability is increased by EPA and DHA. An antiarrhythmic effect can be demonstrated on the supraventricular and the ventricular level. More importantly, two large studies showed reductions in clinical endpoints like sudden cardiac death or major adverse cardiac events. As a consequence, relevant cardiac societies recommend using 1 g/day of EPA and DHA for cardiovascular prevention, after a myocardial infarction and for prevention of sudden cardiac death.Keywords: sudden cardiac death, major adverse cardiac events, cardiovascular prevention, eicosapentaenoic acid, docosahexaenoic acid

  18. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.

    Science.gov (United States)

    Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy

    2017-08-01

    Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.

  19. Kynurenic acid prevented social recognition deficits induced by MK-801 in rats

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 805-808 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * kynurenic acid * MK-801 Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  20. [Role of the vitamin factor in preventing phenol poisoning].

    Science.gov (United States)

    Skvortsova, R I; Pozniakovskiĭ, V M; Agarkova, I A

    1981-01-01

    Experiments on rats were made to examine the effect of vitamin B1, pantothenic and ascorbic acids on the acetylation system and some characteristics of protein metabolism under chronic exposure to phenol. Inhibition of phenol vapours led to inhibition of the acetylation on the 105th day of the experiment, to accumulation of pyruvic acid by the blood and diurnal urine, to elevation of cholesterol content in the blood serum. The total content of protein and protein fractions in the blood serum remained unchanged. Additional vitaminization of the animals with thiamine (150 micrograms), calcium pantothenate (650 micrograms) or with their mixture containing ascorbic acid (2 mg) resulted in normalization of the test characteristics of carbohydrate and fat metabolism. The data obtained and the clinical trials carried out by the authors suggest introduction of the physiological doses of thiamine, calcium pantothenate and ascorbic acid into the diet of the workers in order to prevent phenol poisonings more effectively.

  1. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Science.gov (United States)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  2. 3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17α-ethynyl-estradiol-induced cholestasis in rats

    International Nuclear Information System (INIS)

    Clerici, Carlo; Castellani, Danilo; Asciutti, Stefania; Pellicciari, Roberto; Setchell, Kenneth D.R.; O'Connell, Nancy C.; Sadeghpour, Bahman; Camaioni, Emidio; Fiorucci, Stefano; Renga, Barbara; Nardi, Elisabetta; Sabatino, Giuseppe; Clementi, Mattia; Giuliano, Vittorio; Baldoni, Monia; Orlandi, Stefano; Mazzocchi, Alessandro; Morelli, Antonio; Morelli, Olivia

    2006-01-01

    3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), the 7α-fluorine analog of hyodeoxycholic acid (HDCA), was synthesized to improve bioavailability and stability of ursodeoxycholic acid (UDCA). Acute rat biliary fistula and chronic cholestasis induced by 17α-ethynyl-estradiol (17EE) models were used to study and compare the effects of UPF-680 (dose range 0.6-6.0 μmol/kg min) with UDCA on bile flow, biliary bicarbonate (HCO 3 - ), lipid output, biliary bile acid composition, hepatic enzymes and organic anion pumps. In acute infusion, UPF-680 increased bile flow in a dose-related manner, by up to 40.9%. Biliary HCO 3 - output was similarly increased. Changes were observed in phospholipid secretion only at the highest doses. Treatment with UDCA and UPF-680 reversed chronic cholestasis induced by 17EE; in this model, UDCA had no effect on bile flow in contrast to UPF-680, which significantly increased bile flow. With acute administration of UPF-680, the biliary bile acid pool became enriched with unconjugated and conjugated UPF-680 (71.7%) at the expense of endogenous cholic acid and muricholic isomers. With chronic administration of UPF-680 or UDCA, the main biliary bile acids were tauro conjugates, but modification of biliary bile acid pool was greater with UPF-680. UPF-680 increased the mRNA for cytochrome P450 7A1 (CYP7A1) and cytochrome P450 8B (CYP8B). Both UDCA and UPF-680 increased the mRNA for Na + taurocholate co-transporting polypeptide (NCTP). In conclusion, UPF-680 prevented 17EE-induced cholestasis and enriched the biliary bile acid pool with less detergent and cytotoxic bile acids. This novel fluorinated bile acid may have potential in the treatment of cholestatic liver disease

  3. [The research of 10-hydroxy-2-decenoic acid on experiment hyperlipoidemic rat].

    Science.gov (United States)

    Xu, Donghui; Mei, Xueting; Xu, Shibo

    2002-05-01

    To study the pharmacological effect of 10-hydroxy-2-decenoic acid(10-HDA) in experiment hyperlipoidemic rat. Preventive and therapeutic effects of 10-HDA were tested on hyperlioidemic rat model induced by high fat food. 10-HDA could reduce the content of TC, TG and beta-lioprotein, raise the content of HDL, which showed 10-HDA had preventive and therapeutic effects on hyperlipoidemic rat. 10-HDA was functional factor of preventive and therapeutic effects of royal jelly on hyperlipoidemia.

  4. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice.

    Science.gov (United States)

    Mathers, A R; Carey, C D; Killeen, M E; Diaz-Perez, J A; Salvatore, S R; Schopfer, F J; Freeman, B A; Falo, L D

    2017-04-01

    Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO 2 -FAs), such as nitro oleic acid (OA-NO 2 ) and nitro linoleic acid (LNO 2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO 2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO 2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. We evaluated the effect of OA-NO 2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. We found that subcutaneous (SC) OA-NO 2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO 2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO 2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO 2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. Overall, these results support the development of OA-NO 2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of conjugated linoleic acid (CLA) and canola oil on the ...

    African Journals Online (AJOL)

    Dietary conjugated linoleic acid (CLA) causes adverse effects on quality of eggs by modifying the fatty acid composition of the yolk. Supplementing oils prevent CLA-induced changes, but cause a decrease in the level of egg CLA. The objective of the study was to investigate the incorporation of CLA into the egg and its effect ...

  6. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    Science.gov (United States)

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, pursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  7. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    Science.gov (United States)

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  8. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  9. The potential contribution of dietary factors to breast cancer prevention.

    Science.gov (United States)

    Shapira, Niva

    2017-09-01

    Breast cancer (BC), the leading cancer in women, is increasing in prevalence worldwide, concurrent with western metabolic epidemics, that is, obesity, metabolic syndrome, and diabetes, and shares major risk factors with these diseases. The corresponding potential for nutritional contributions toward BC prevention is reviewed and related to critical stages in the life cycle and their implications for carcinogenic and pathometabolic trajectories. BC initiation potentially involves diet-related pro-oxidative, inflammatory, and procarcinogenic processes, that interact through combined lipid/fatty acid peroxidation, estrogen metabolism, and related DNA-adduct/depurination/mutation formation. The pathometabolic trajectory is affected by high estrogen, insulin, and growth factor cascades and resultant accelerated proliferation/progression. Anthropometric risk factors - high birth weight, adult tallness, adiposity/BMI, and weight gain - are often reflective of these trends. A sex-based nutritional approach targets women's specific risk in western obesogenic environments, associated with increasing fatness, estrogen metabolism, n-6 : n-3 polyunsaturated fatty acid ratio, and n-6 polyunsaturated fatty acid conversion to proinflammatory/carcinogenic eicosanoids, and effects of timing of life events, for example, ages at menarche, full-term pregnancy, and menopause. Recent large-scale studies have confirmed the effectiveness of the evidence-based recommendations against BC risk, emphasizing low-energy density diets, highly nutritious plant-based regimes, physical activity, and body/abdominal adiposity management. Better understanding of dietary inter-relationships with BC, as applied to food intake, selection, combination, and processing/preparation, and recommended patterns, for example, Mediterranean, DASH, plant-based, low energy density, and low glycemic load, with high nutrient/phytonutrient density, would increase public motivation and authoritative support for early

  10. Uridine prevents fenofibrate-induced fatty liver.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD and acyl-CoA oxidase 1 (ACOX1, and induces excessive accumulation of long chain fatty acids (LCFA and very long chain fatty acids (VLCFA. Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.

  11. Uric Acid Levels in Normotensive Children of Hypertensive Parents.

    Science.gov (United States)

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P pressure were significantly higher in control children aged >10 years (P children with more pronounced difference after age 10 of years (P pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension.

  12. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  13. Peracetic acid: the long road to introduction of this disinfectant into U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It has replaced chlorine in some ...

  14. Nitro-Oleic Acid Prevents Hypoxia- and Asymmetric Dimethylarginine-Induced Pulmonary Endothelial Dysfunction

    Czech Academy of Sciences Publication Activity Database

    Koudelka, Adolf; Ambrožová, Gabriela; Klinke, A.; Fidlerová, Táňa; Martíšková, Hana; Kuchta, R.; Rudolph, T.K.; Kadlec, J.; Kuchtová, Z.; Woodcock, S.R.; Freeman, B.A.; Kubala, Lukáš; Pekarová, Michaela

    2016-01-01

    Roč. 30, č. 6 (2016), s. 579-586 ISSN 0920-3206 R&D Projects: GA ČR GP13-40824P; GA MŠk(CZ) LD15069 Institutional support: RVO:68081707 Keywords : fatty acids * arterial - hypertension * oxide synthase * murine model Subject RIV: BO - Biophysics Impact factor: 2.820, year: 2016

  15. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Directory of Open Access Journals (Sweden)

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  16. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Science.gov (United States)

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUCglucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes. PMID:22224046

  17. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  18. Maternal amino acid supplementation for intrauterine growth restriction

    Science.gov (United States)

    Brown, Laura D; Green, Alice S; Limesand, Sean W; Rozance, Paul J

    2011-01-01

    Maternal dietary protein supplementation to improve fetal growth has been considered as an option to prevent or treat intrauterine growth restriction. However, in contrast to balanced dietary supplementation, adverse perinatal outcomes in pregnant women who received high amounts of dietary protein supplementation have been observed. The responsible mechanisms for these adverse outcomes are unknown. This review will discuss relevant human and animal data to provide the background necessary for the development of explanatory hypotheses and ultimately for the development therapeutic interventions during pregnancy to improve fetal growth. Relevant aspects of fetal amino acid metabolism during normal pregnancy and those pregnancies affected by IUGR will be discussed. In addition, data from animal experiments which have attempted to determine mechanisms to explain the adverse responses identified in the human trials will be presented. Finally, we will suggest new avenues for investigation into how amino acid supplementation might be used safely to treat and/or prevent IUGR. PMID:21196387

  19. Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex.

    Science.gov (United States)

    Cancelier, Kizzy; Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Arent, Camila O; Mariot, Edemilson; Kist, Luiza W; Bogo, Maurício R; Quevedo, João; Scaini, Giselli; Streck, Emilio L

    2017-08-01

    Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.

  20. The Role of Immunonutrients in the Prevention of Necrotizing Enterocolitis in Preterm Very Low Birth Weight Infants

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2015-08-01

    Full Text Available Necrotizing enterocolitis (NEC is a critical intestinal emergency condition, which mainly occurs in preterm very low birth weight (PVLBW infants. Despite remarkable advances in the care of PVLBW infants, with considerable improvement of the survival rate in recent decades, the incidence of NEC and NEC-related mortality have not declined accordingly. The fast progression from nonspecific signs to extensive necrosis also makes primary prevention the first priority. Recently, increasing evidence has indicated the important role of several nutrients in primary prevention of NEC. Therefore, the aim of this review is to summarize some potential immunomodulatory nutrients in the prevention of NEC, including bovine colostrum, probiotics, prebiotics (e.g., human milk oligosaccharides, long chain polyunsaturated fatty acids, and amino acids (glutamine, cysteine and N-acetylcysteine, l-arginine and l-citrulline. Based on current research evidence, probiotics are the most documented effective method to prevent NEC, while others still require further investigation in animal studies and clinical randomized controlled trials.

  1. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  2. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  3. A review of minodronic acid hydrate for the treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Tanishima S

    2013-02-01

    Full Text Available Shinji Tanishima, Yasuo MorioDepartment of Orthopedic Surgery, Misasa Onsen Hospital, Misasa, Tottori, JapanAbstract: Minodronic acid hydrate was the first bisphosphonate developed and approved for osteoporosis treatment in Japan. With regard to inhibition of bone resorption, minodronic acid hydrate is 1000 times more effective than etidronic acid and 10–100 times more effective than alendronic acid. Clinical trials conducted to date have focused on postmenopausal female patients suffering from primary osteoporosis. In these trials, 1 mg of oral minodronic acid hydrate was administrated once daily, and a significant increase was observed in lumbar-spine and hip-joint bone density 1–2 years after administration. All markers of bone metabolism urinary collagen type 1 cross-linked N-telopeptide, urinary free deoxypyridinoline, serum bone alkaline phosphatase, and serum osteocalcin were decreased. The incidence rate of new vertebral and nonvertebral fractures was also decreased. Therefore, effectiveness in fracture prevention was confirmed. A form of minodronic acid (50 mg requiring once-monthly administration has been developed and is currently being used clinically. A comparative study between this new formulation and once-daily minodronic acid (1 mg showed no significant differences between the two formulations in terms of improvement rates in lumbar-spine and hip-joint bone density, changes in bone metabolism markers, or incidence of side effects. This indicates the noninferiority of the monthly formulation. Side effects such as osteonecrosis of the jaw or atypical femoral fractures were not reported with other bisphosphonates, although it is believed that these side effects may emerge as future studies continue to be conducted. On the basis of studies conducted to date, minodronic acid hydrate is considered effective for improving bone density and preventing fractures. We anticipate further investigations in the future

  4. Preventing intraperitoneal adhesions with ethyl pyruvate and hyaluronic acid/carboxymethylcellulose: a comparative study in an experimental model.

    Science.gov (United States)

    Caglayan, E Kıyak; Caglayan, K; Erdogan, N; Cinar, H; Güngör, B

    2014-10-01

    To compare the effectiveness of ethyl pyruvate (EP) with that of hyaluronic acid+carboxymethyl cellulose (Seprafilm) for the prevention of intraperitoneal adhesions. Seprafilm has been shown to be effective in many experimental and clinical studies. Thirty rats were divided into three groups at random, and uterine horn abrasion was performed by laparotomy. One group received no treatment (control group), one group received a single intraperitoneal dose of EP 50mg/kg (EP group), and a 2×1-cm patch of Seprafilm was applied in the third group (Seprafilm group). All rats were killed 14 days after surgery. Macroscopic and histopathological evaluation were performed by a surgeon and a pathologist who were blinded to group allocation. Histopathologically, inflammation, fibroblastic activity, foreign body reaction, collagen proliferation, vascular proliferation, Masson-Trichrome score, matrix metalloproteinase-2 score and vascular endothelial growth factor score were studied. Median macroscopic intraperitoneal adhesion scores for the control, EP and Seprafilm groups were 2.8, 1.2 and 1.1, respectively. Multiple comparisons between groups showed a significant difference (p0.05). After histopathological evaluation, significant differences in all parameters were found between the groups (p0.0167). In comparison with the untreated control group, EP and Seprafilm were found to reduce the formation of intraperitoneal adhesions. No significant difference was found between EP and Seprafilm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. [Statins and ASS for primary prevention of cardiovascular and cerebrovascular disease].

    Science.gov (United States)

    Goltz, L; Bodechtel, U; Siepmann, T

    2014-02-01

    Whereas statins and acetylsalicylic acid (ASA) are considered gold standard for secondary prevention following myocardial infarction or atherotrombotic stroke, there are inconsistent data on the use of these drugs for primary prevention in patients with increased cardiovascular risk. Some meta-analyses indicated that the use of statins and ASA for primary prevention of cardiovascular disease can reduce the risk of cardiovascular events such as ischemic stroke or myocardial infarction. However, the effects of primary prevention with statins and ASA on mortality varied in the data included in these meta-analyses. Therefore the guidelines of the German College of General Practitioners and Family Physicians recommend primary prevention with statins and ASA only in those patients who have a 10-year risk of cardiovascular events which exceeds 20 %. Divergently, primary prevention with ASA is not recommended by the European Society of Cardiology. Observational studies suggested that treatment success of primary prevention with statins and ASA depends on various factors such as adherence to medication and prescription behavior of physicians. This review summarizes the current literature on primary prevention of cardiovascular events with ASA and statins. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Acid mine drainage: mining and water pollution issues in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The importance of protecting water quality and some of the problems associated with mineral development are described. Negative impacts of mining operations such as sedimentation, water disturbances, and water pollution from waste rock and tailings are considered. Mining wastes, types of water pollution from mining, the legacy of acid mine drainage, predicting acid mine drainage, preventing and mitigating acid mine drainage, examples from the past, and cyanide heap-leaching are discussed. The real costs of mining at the Telkwa open pit coal mine are assessed. British Columbia mines that are known for or are potentially acid generating are shown on a map. 32 refs., 10 figs.

  7. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    Science.gov (United States)

    Leikin-Frenkel, Alicia I

    2016-03-23

    The role of ω3 alpha linolenic acid (ALA) in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring.

  8. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  9. Bolivian health providers' attitudes toward alternative technologies for cervical cancer prevention: a focus on visual inspection with acetic acid and cryotherapy.

    Science.gov (United States)

    Stormo, Analía Romina; Altamirano, Victor Conde; Pérez-Castells, Macarena; Espey, David; Padilla, Haydee; Panameño, Karen; Soria, Milton; Santos, Carlos; Saraiya, Mona; Luciani, Silvana

    2012-08-01

    Little is known about health providers' attitudes toward visual inspection with acetic acid (VIA) and cryotherapy in the prevention of cervical cancer, as most research in Latin America and the Caribbean (LAC) has examined attitudes of the general population. This study describes attitudes of Bolivian health professionals toward new technologies for cervical cancer prevention, focusing on VIA and cryotherapy. Between February 2011 and March 2012, we surveyed 7 nurses and 35 physicians who participated in 5-day workshops on VIA and cryotherapy conducted in Bolivia. Multiple choice and open-ended questions were used to assess participants' acceptability of these procedures and the feasibility of their implementation in the context of perceived barriers for the early detection of cervical cancer in this country. Most believed that cultural factors represent the main barrier for the early detection of cervical cancer (70%), although all stated that VIA and cryotherapy would be accepted by women, citing the advantages of VIA over cytology for this belief. Most also believed their colleagues would accept VIA and cryotherapy (71%) and that VIA should replace Pap testing (61%), reiterating the advantages of VIA for these beliefs. Those who believed the contrary expressed a general resistance to change associated with an already existing cytology program and national norms prioritizing Pap testing. Most participants had favorable attitudes toward VIA and cryotherapy; however, a sizable minority cited challenges to their adoption by colleagues and believed VIA should not replace cytology. This report can inform the development of strategies to expand the use of alternative cervical cancer screening methods in LAC and Bolivia.

  10. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1994-01-01

    When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect....

  11. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart.

    Science.gov (United States)

    Gharib, Mohamed; Tao, Huan; Fungwe, Thomas V; Hajri, Tahar

    2016-01-01

    Obesity is often associated with a state of oxidative stress and increased lipid deposition in the heart. More importantly, obesity increases lipid influx into the heart and induces excessive production of reactive oxygen species (ROS) leading to cell toxicity and metabolic dysfunction. Cluster differentiating 36 (CD36) protein is highly expressed in the heart and regulates lipid utilization but its role in obesity-associated oxidative stress is still not clear. The aim of this study was to determine the impact of CD36 deficiency on cardiac steatosis, oxidative stress and lipotoxicity associated with obesity. Studies were conducted in control (Lean), obese leptin-deficient (Lepob/ob) and leptin-CD36 double null (Lepob/obCD36-/-) mice. Compared to lean mice, cardiac steatosis, and fatty acid (FA) uptake and oxidation were increased in Lepob/ob mice, while glucose uptake and oxidation was reduced. Moreover, insulin resistance, oxidative stress markers and NADPH oxidase-dependent ROS production were markedly enhanced. This was associated with the induction of NADPH oxidase expression, and increased membrane-associated p47phox, p67phox and protein kinase C. Silencing CD36 in Lepob/ob mice prevented cardiac steatosis, increased insulin sensitivity and glucose utilization, but reduced FA uptake and oxidation. Moreover, CD36 deficiency reduced NADPH oxidase activity and decreased NADPH oxidase-dependent ROS production. In isolated cardiomyocytes, CD36 deficiency reduced palmitate-induced ROS production and normalized NADPH oxidase activity. CD36 deficiency prevented obesity-associated cardiac steatosis and insulin resistance, and reduced NADPH oxidase-dependent ROS production. The study demonstrates that CD36 regulates NADPH oxidase activity and mediates FA-induced oxidative stress.

  12. Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide

    International Nuclear Information System (INIS)

    Gensler, H.L.

    1997-01-01

    Ultraviolet (UV) B irradiation leads to a potent immunosuppression of the capacity to reject syngeneic, antigenic tumors. If this immunosuppression is critical for the development of most skin tumors, then its prevention should result in prevention of photocarcinogenesis. We previously showed a correlation between the inhibition of photoimmunosuppression and prevention of photocarcinogenesis by dl-alpha-tocopherol, tannic acid, or alpha-difluoro methylornithine. The current study was designed to determine whether topical nicotinamide, the active form of vitamin B-3, or niacin, prevents immunosuppression and skin cancer in UV-irradiated mice. In a passive transfer assay for immunosuppression, splenocytes from UV-irradiated mice enhanced the growth of antigenic tumor challenges in recipient mice. Treatment of the UV-irradiated mice with 40 micromoles of nicotinamide twice weekly starting two weeks before UV irradiation and throughout the experiment prevented this immunosuppresion. UVB irradiation consisted of five weekly 30-minute exposures to banks of six FS40 Westinghouse fluorescent sunlamps. Mice received approximatety 6.2 x 10(5) J/m(2) in the passive transfer assays and 1.09 x 10(6) J/m(2) in the photocarcinogenesis studies. Application of nicotinamide to UV-irradiated mice reduced skin tumor incidence from 75% to 42.5% (p = 0.016, Cox proportional hazards analysis). Thus topical nicotinamide prevented the immunosuppression and skin tumor induction by UVB irradiation

  13. Dual Effects of Alpha-Hydroxy Acids on the Skin

    Directory of Open Access Journals (Sweden)

    Sheau-Chung Tang

    2018-04-01

    Full Text Available AHAs are organic acids with one hydroxyl group attached to the alpha position of the acid. AHAs including glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid are often used extensively in cosmetic formulations. AHAs have been used as superficial peeling agents as well as to ameliorate the appearance of keratoses and acne in dermatology. However, caution should be exercised in relation to certain adverse reactions among patients using products with AHAs, including swelling, burning, and pruritus. Whether AHAs enhance or decrease photo damage of the skin remains unclear, compelling us to ask the question, is AHA a friend or a foe of the skin? The aim of this manuscript is to review the various biological effects and mechanisms of AHAs on human keratinocytes and in an animal model. We conclude that whether AHA is a friend or foe of human skin depends on its concentration. These mechanisms of AHAs are currently well understood, aiding the development of novel approaches for the prevention of UV-induced skin damage.

  14. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work?

    NARCIS (Netherlands)

    Kromhout, D.; Yasuda, S.; Geleijnse, J.M.; Shimokawa, H.

    2012-01-01

    Omega-3 fatty acids, which are found abundantly in fish oil, exert pleiotropic cardiometabolic effects with a diverse range of actions. The results of previous studies raised a lot of interest in the role of fish oil and omega-3 fatty acids in primary and secondary prevention of cardiovascular

  15. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2016-04-01

    Full Text Available The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO, from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g. olive oil, corn oil could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.. Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  16. Eicosapentaenoic and docosahexaenoic acids enriched polyunsaturated fatty acids from the coastal marine fish of Bay of Bengal and their therapeutic value.

    Science.gov (United States)

    Bera, Rabindranath; Dhara, Tushar K; Bhadra, Ranjan; Majumder, Gopal C; Sen, Parimal C

    2010-12-01

    Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) enriched polyunsaturated fatty acids (PUFA) significantly present in marine fish oil emerge as preventive agents for combating many health problems specially in chronic or metabolic disorders. The fish in the coastal area of Bay of Bengal has remained unexplored with respect to EPA/DHA enriched PUFA content in its oils, although it may be a potential source in harnessing the health benefit. In this study, seven varieties of the coastal fish were analysed for the content of EPA/DHA. The one locally known as lotte, (Harpadon nehereus) though has low content of total lipids, was found to have high EPA/DHA in its oil. The phospholipids rich fraction was extracted from the total fish oil. The EPA/DHA enriched PUFA was isolated to investigate the potential use for health benefits. EPA/DHA is found to act as protective agent against mercury poisoning studied in cell culture as well as in animal mode. It is found to be highly preventive in diabetes. The lotte is available in the coastal area of Bay of Bengal adjoining West Bengal, India in large scale and it is the first report showing EPA/DHA enriched PUFA in these fish oil that can be availed to harness in important health benefits.

  17. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  18. Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats

    Directory of Open Access Journals (Sweden)

    Takamatsu Kiyoharu

    2010-07-01

    Full Text Available Abstract Background Dietary 1(3-behenoyl-2,3(1-dioleoyl-rac-glycerol (BOO has been reported to inhibit pancreatic lipase activity in vitro and suppress postprandial hypertriacylglycerolemia in humans. In the present study, the anti-obesity activities of BOO and its inhibitory effects on lymphatic triacylglycerol (TAG absorption were investigated in rats. Methods In Experiment 1, rats were fed either BOO or soybean oil (SO diet for 6 weeks. In the BOO diet, 20% of SO was replaced with an experimental oil rich in BOO. In Experiments 2 and 3, rats cannulated in the thoracic duct were administered an emulsions containing trioleoylglycerol (OOO or an oil mixture (OOO:BOO, 9:1. Tri[1-14C]oleoylglycerol (14C-OOO was added to the emulsions administered in Experiment 3. Results No observable differences were detected in food intake or body weight gain between the BOO and SO groups in Experiment 1. Plasma and liver TAG concentrations and visceral fat weights were significantly lower in the BOO group than in the SO group. The apparent absorption rate of fat was significantly lower in the BOO group than in the SO group. In Experiment 2, the lymphatic recovery of oleic and behenic acids was significantly lower at 5 and 6 h after BOO administration than after OOO administration. In Experiment 3, the lymphatic recovery of 14C-OOO was significantly lower at 5 and 6 h after BOO administration than after OOO administration. Conclusions These results suggest that BOO prevents deposition of visceral fat and hepatic TAG by lowering and delaying intestinal absorption of TAG.

  19. Use of a lactic acid plus lactoserum intimate liquid soap for external hygiene in the prevention of bacterial vaginosis recurrence after metronidazole oral treatment.

    Science.gov (United States)

    Bahamondes, M Valeria; Portugal, Priscila Mendes; Brolazo, Eliane Melo; Simões, José Antônio; Bahamondes, Luis

    2011-01-01

    To determine the recurrence of bacterial vaginosis (BV) after the use of a lactic acid plus lactoserum liquid soap starting immediately after the treatment with oral metronidazole and the quality of life of the participants. A total of 123 women with diagnosis of BV with at least three of the following criteria: 1) homogeneous vaginal discharge without inflammation of the vagina or vulva; 2) vaginal pH ≥ 4.5; 3) positive Whiff test; and 4) "clue cells" in more than 20% of the epithelial cells in the vagina. A Nugent score ≥ 4 in the vaginal bacterioscopy was also used. After BV diagnosis, metronidazole 500 mg was administered orally bid during 7 days. Patients cured of BV were then instructed to use 7.5 to 10 mL of a lactic acid plus lactoserum liquid soap once-a-day for hygiene of the external genital region. Three subsequent control visits after starting the hygiene treatment (30, 60, and 90 days; ± 5 days) were scheduled. A questionnaire was applied in the form of visual analogue scale (VAS) in all the visits regarding: 1) level of comfort at the genital region; 2) malodorous external genitalia; 3) comfort in sexual intercourse; 4) satisfaction with intimate hygiene; and 5) self-esteem. Ninety two (74.8%) women initiated the use of a lactic acid plus lactoserum liquid soap at visit 1. At visit 2, 3, and 4 there were 84, 62 and 42 women available for evaluation, respectively. The rate of recurrence of BV was 19.0%, 24.2% and 7.1%, respectively in the three visits and vaginal candidiasis was observed in five treated women. Quality of life was evaluated in the 42 women who completed the four visits schedule and there were significant improvement in the five domains assessed. A lactic acid plus lactoserum liquid soap for external intimate hygiene may be an option for the prevention of BV recurrence after treatment and cure with oral metronidazole.

  20. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  1. Justifying the "Folate trap" in folic acid fortification programs.

    Science.gov (United States)

    Mahajan, Niraj N; Mahajan, Kshitija N; Soni, Rajani N; Gaikwad, Nilima L

    2007-01-01

    Many countries have now adopted fortification, where folic acid is added to flour and intended to benefit all with rise in blood folate level. During many transformations of folate from one form to another, a proportion is accidentally converted to N(5)-methyl-THF, an inactive metabolite, the so-called "folate trap". Consideration should be given to including B(12) as well as folic acid in any program of supplementation or food fortification to prevent NTDs. This is especially applicable to developing countries like India where the majority of women are vegetarians and have borderline levels of vitamin B(12). Administration of [6S]-5-MTHF is more effective than is folic acid supplementation at improving folate status. Therefore, we urge to reconsider the "folate trap" in folic acid fortification programs.

  2. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  3. Metabolic mechanisms behind the type 2 diabetes susceptible phenotype in low birth weight individuals

    DEFF Research Database (Denmark)

    Ribel-Madsen, Amalie

    Background and aims: Low birth weight (LBW) individuals have an increased risk of developing insulin resistance and type 2 diabetes compared with normal birth weight (NBW) individuals. Accordingly, young, healthy, LBW men of the study population examined in the present plasma metabolome studies...... show impaired hepatic insulin sensitivity and, in contrast to NBW men, develop impaired peripheral insulin sensitivity in response to a 5-day high-fat overfeeding. However, the metabolic mechanisms behind the type 2 diabetes susceptible phenotype in LBW individuals are not clear. Our primary aim...... available for lipogenesis, including the synthesis of lipotoxic lipids such as ceramides and diacylglycerols that impair insulin signalling. In the second study, we demonstrated that LBW men had higher plasma alanine, proline, methionine, citrulline, and total amino acid levels after the HFHC diet compared...

  4. Knowledge of folic acid and counseling practices among Ohio community pharmacists

    Directory of Open Access Journals (Sweden)

    Rodrigues CR

    2012-09-01

    Full Text Available Objective: To determine knowledge of folic acid use for neural tube defect (NTD prevention and counseling practices among community pharmacists registered in Ohio.Methods: A cross-sectional study was performed on a random sample (n=500 of community pharmacists registered with the Ohio Board of Pharmacy and practicing in Ohio. A survey previously used by researchers to assess folic acid knowledge and practices among samples of other healthcare provider groups in the United States was adapted with permission for this study. The final tool consisted of 28 questions evaluating the knowledge, counseling practices, and demographics of respondents. The cover letter did not reveal the emphasis on folic acid, and surveys were completed anonymously. The university institutional review board deemed the study exempt.Results: Of the 122 pharmacists who completed the survey, 116 (95.1% knew that folic acid prevents some birth defects. Twenty-eight (22.9% responded that they “always” or “usually” discuss multivitamins with women of childbearing potential, and 19 (15.6% responded that they “always” or “usually” discuss folic acid supplements. Some gaps in knowledge specific to folic acid were revealed. While 63.1% of pharmacists selected the recommended dose of folic acid intake for most women of childbearing potential, 13.1% could identify the dose recommended for women who have had a previous NTD-affected pregnancy. Respondents identified continuing education programs, pharmacy journals/magazines, and the Internet as preferred avenues to obtain additional information about folic acid and NTD.Conclusion: This study represents the first systematic evaluation of folic acid knowledge and counseling practices among a sample of pharmacists in the United States. As highly accessible healthcare professionals, community pharmacists can fulfill a vital public health role by counseling women of childbearing potential about folic acid intake. Educational

  5. The molecular basis of acid insensitivity in the African naked mole-rat.

    Science.gov (United States)

    Smith, Ewan St John; Omerbašić, Damir; Lechner, Stefan G; Anirudhan, Gireesh; Lapatsina, Liudmila; Lewin, Gary R

    2011-12-16

    Acid evokes pain by exciting nociceptors; the acid sensors are proton-gated ion channels that depolarize neurons. The naked mole-rat (Heterocephalus glaber) is exceptional in its acid insensitivity, but acid sensors (acid-sensing ion channels and the transient receptor potential vanilloid-1 ion channel) in naked mole-rat nociceptors are similar to those in other vertebrates. Acid inhibition of voltage-gated sodium currents is more profound in naked mole-rat nociceptors than in mouse nociceptors, however, which effectively prevents acid-induced action potential initiation. We describe a species-specific variant of the nociceptor sodium channel Na(V)1.7, which is potently blocked by protons and can account for acid insensitivity in this species. Thus, evolutionary pressure has selected for an Na(V)1.7 gene variant that tips the balance from proton-induced excitation to inhibition of action potential initiation to abolish acid nociception.

  6. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Henritzi, Sandra; Fischer, Manuel; Grininger, Martin; Oreb, Mislav; Boles, Eckhard

    2018-01-01

    The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. The previously engineered short-chain acyl-CoA producing yeast Fas1 R1834K /Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L -1 in a 72-h fermentation. The additional accumulation of 90 mg L -1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L -1 . However, in growth tests concentrations even lower than 50.0 mg L -1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to

  7. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    Science.gov (United States)

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  8. Pore Characteristics and Hydrothermal Stability of Mesoporous Silica: Role of Oleic Acid

    Directory of Open Access Journals (Sweden)

    Junhyun Choi

    2014-01-01

    Full Text Available Silicate mesoporous materials were synthesized with nonionic surfactant and their surfaces were modified by oleic acid adsorption. Infrared spectrometer, nitrogen adsorption-desorption isotherm, scanning electron microscopy, and thermogravimetric analyses were used to investigate the structure of oleic acid modified mesoporous material. The effects of heat treatment at various temperatures on oleic acid modified materials were also studied. Oleic acids on silica surfaces were found to be bonded chemically and/or physically and be capable of enduring up to 180°C. The adsorbed oleic acid improved the hydrothermal stability of mesoporous silica and assisted mesopore structure to grow more in hydrothermal treatment process by preventing the approach of water.

  9. (N-3) fatty acids do not affect electrocardiographic characteristics of healthy men and women

    NARCIS (Netherlands)

    Geelen, A.; Brouwer, I.A.; Zock, P.L.; Kors, J.A.; Swenne, C.A.; Katan, M.B.; Schouten, E.G.

    2002-01-01

    (n-3) Fatty acids may reduce the risk of sudden death by preventing life-threatening cardiac arrhythmia. A standard electrocardiogram (ECG) may be used to detect clues as to the mechanism by which (n-3) fatty acids affect the electrophysiology of the heart. An earlier study showed that (n-3) fatty

  10. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: A comparative in-vitro study

    Directory of Open Access Journals (Sweden)

    Vineet Mehta

    2017-06-01

    Full Text Available Neuropathy is the least understood and most devastating complication associated with diabetes. Diabetic neuropathy develops in patients despite of regular therapy, indicating that marketed drugs has minimal effect on pathways leading to the development and progression of these complications. Present study was aimed to evaluate natural compounds for their ability to interfere with pathways leading to the development of diabetes mediated neurological complications and compare their efficacy with marketed anti-diabetic drugs. Anti-diabetic potential of ascorbic acid, gallic acid, quercetin, ellagic acid, cinnamic acid, caffeine and piperine was predicted by evaluating in-silico interaction energy (kcal/mol of these compounds with insulin receptor, peroxisome proliferator-activated receptor gamma-γ and dipeptidyl peptidase-4 proteins. Ascorbic acid, gallic acid, quercetin and ellagic acid showed excellent in-vitro antioxidant activity in DPPH radical scavenging and inhibition of lipid peroxidation assay, which was 1.5–3 folds better than the marketed drugs. Quercetin, gallic acid, cinnamic acid, piperine and caffeine efficiently prevented H2O2 induced genotoxicity, which commercial drugs failed to prevent. Further, quercetin, ellagic acid, caffeine and ascorbic acid were 3–4.7 folds better than marketed drugs in inhibiting α-amylase activity. Herbal molecules and rosiglitazone showed comparable results for glucose uptake, which may be attributed to enhanced GLUT4 translocation into primary neuronal culture under hyperglycemic conditions. In conclusion, currently available marketed anti-diabetic drugs have minimal effect on the pathways leading to diabetic neuropathy and supplementing diabetic therapeutics with quercetin, ascorbic acid, caffeine and ellagic acid may be better suited to counter diabetic neuropathy through inhibiting oxidative stress, genotoxicity and improving neuronal glucose utilization.

  11. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  12. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis.

    Science.gov (United States)

    Saponaro, Chiara; Gaggini, Melania; Carli, Fabrizia; Gastaldelli, Amalia

    2015-11-13

    Excessive accumulation of lipids can lead to lipotoxicity, cell dysfunction and alteration in metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. This is now a recognized risk factor for the development of metabolic disorders, such as obesity, diabetes, fatty liver disease (NAFLD), cardiovascular diseases (CVD) and hepatocellular carcinoma (HCC). The causes for lipotoxicity are not only a high fat diet but also excessive lipolysis, adipogenesis and adipose tissue insulin resistance. The aims of this review are to investigate the subtle balances that underlie lipolytic, lipogenic and oxidative pathways, to evaluate critical points and the complexities of these processes and to better understand which are the metabolic derangements resulting from their imbalance, such as type 2 diabetes and non alcoholic fatty liver disease.

  13. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    Directory of Open Access Journals (Sweden)

    Ali Yildirim

    2015-01-01

    Full Text Available This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P>0.05. Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P10 years (P<0.01. Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P<0.001. Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension.

  14. Pollution prevention in the oil and soap industry: a case study

    International Nuclear Information System (INIS)

    Abou-Elela, S.I.; Zaher, F.

    1998-01-01

    Industrial audit of a complex oil and soap factory has been carried out. The factory produces edible oils, fatty acids, soap, crude, industrial and pharmaceutical glycerin, powdered detergents, animal fodder, sodium and potassium silicates, sodium hypochlorite and hypochloric acid. The audit shows that there were a wide range of pollution prevention opportunities which could be implemented with significant financial advantages for the factory as well as reducing environmental pollution. Cost benefits for the recommended environmental improvements have been estimated. Many of the improvements had short payback periods. (author)

  15. Pollution prevention in the oil and soap industry: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elela, S.I. [National Research Center, Gizza (Egypt). Water Pollution Control Dept.; Zaher, F. [National Research Center, Gizza (Egypt). Fats and Oil Dept.

    1998-12-31

    Industrial audit of a complex oil and soap factory has been carried out. The factory produces edible oils, fatty acids, soap, crude, industrial and pharmaceutical glycerin, powdered detergents, animal fodder, sodium and potassium silicates, sodium hypochlorite and hypochloric acid. The audit shows that there were a wide range of pollution prevention opportunities which could be implemented with significant financial advantages for the factory as well as reducing environmental pollution. Cost benefits for the recommended environmental improvements have been estimated. Many of the improvements had short payback periods. (author)

  16. Bioavailability of ferulic acid is determined by its bioaccessibility

    NARCIS (Netherlands)

    Mateo Anson, N.; Berg, R. van den; Havenaar, R.; Bast, A.; Haenen, G.R.M.M.

    2009-01-01

    Epidemiological studies have linked whole grain consumption to prevention of several chronic diseases. Whole grain is a source of important phytochemicals, such as ferulic acid (FA). FA is the most abundant phenolic and major contributor to the in vitro antioxidant capacity of wheat grain. Several

  17. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program.

    Science.gov (United States)

    Carrero, Juan Jesús; Fonollá, Juristo; Marti, José Luis; Jiménez, Jesús; Boza, Julio J; López-Huertas, Eduardo

    2007-02-01

    Certain nutrients have been shown to be effective in preventing coronary heart disease. We hypothesized that a daily intake of low amounts of a number of these nutrients would exert beneficial effects on risk factors and clinical variables in patients that suffered from myocardial infarction (MI) and were following a cardiac rehabilitation program. Forty male MI patients were randomly allocated into 2 groups. The supplemented group consumed 500 mL/d of a fortified dairy product containing eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, and vitamins A, B-6, D, and E. The control group consumed 500 mL/d of semi-skimmed milk with added vitamins A and D. The patients received supervised exercise training, lifestyle and dietary recommendations, and they were instructed to consume the products in addition to their regular diet. Blood extractions and clinical examinations were performed after 0, 3, 6, 9, and 12 mo. Plasma concentrations of eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, vitamin B-6, and vitamin E increased after supplementation (Preactive protein concentrations decreased in the supplemented group (Pprogram comprising regular exercise and the intake of a combination of dietary nutrients, reduced a variety of risk factors in MI patients, which supports the rationale for nutritional programs in the secondary prevention of coronary heart disease.

  18. Industry experience in promoting weekly iron-folic acid supplementation in the Philippines.

    Science.gov (United States)

    Garcia, Josel; Datol-Barrett, Eva; Dizon, Maynilad

    2005-12-01

    After participating in a pilot project under a government-industry partnership to promote the adoption of weekly iron-folic acid supplementation among women of reproductive age in the Philippines in 1998, United Laboratories (UNILAB), the Philippines' largest private pharmaceutical company, decided in April 2002 to launch a weekly iron-folic acid supplement for pregnant and non-pregnant women under the brand name Femina. The business objective set for the Femina brand was to build the category of preventive iron-folic acid supplements in line with the Philippine Department of Health's advocacy on weekly supplementation as an alternate to daily dosing to reduce the prevalence of anemia in the country. The brand was supported with an integrated mix of traditional advertising media with complementary direct-to-consumer educational programs that aimed to create awareness of iron-deficiency anemia, its causes and effects, and the role of weekly intake of iron-folic acid in preventing the condition. Aggressive marketing support for 1 year was successful in creating awareness among the target women. Significant lessons derived from consumers identified opportunity areas that can be further addressed in developing advocacy programs on weekly iron supplementation implemented on a nationwide scale in the future.

  19. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    , the analytical reproducibility was tested by repeated analysis of plasma aliquots from one individual over four years. The plasma was subjected to acidic deproteinization with an equal volume of 10% meta-phosphoric acid containing 2 mM EDTA and analyzed for ascorbate and dehydroascorbic acid by high-performance...... liquid chromatography with coulometric detection. In a parallel experiment, stability of human plasma samples treated as above and stored at -80°C for five years was tested in a cohort of 131 individuals. No degradation or shift in the equilibrium between ascorbate and dehydroascorbic acid was observed......Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper...

  20. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    Directory of Open Access Journals (Sweden)

    Alicia I. Leikin-Frenkel

    2016-03-01

    Full Text Available The role of ω3 alpha linolenic acid (ALA in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA and eicosapentaenoic (EPA acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring.

  1. Biofilm-forming bacteria with varying tolerance to peracetic acid from a paper machine.

    Science.gov (United States)

    Rasimus, Stiina; Kolari, Marko; Rita, Hannu; Hoornstra, Douwe; Salkinoja-Salonen, Mirja

    2011-09-01

    Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤ 15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.

  2. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  3. Food and nutrition in the prevention of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Izabela Kamila Wojarska

    2018-05-01

    Full Text Available Cardiovascular disease is the most frequent cause of hospitalization (15% and death (46% in Poland, as well as worldwide (31%, by reason of strenuous activity in the field of preventative healthcare in all age groups has to be taken. Preventative nutrition of atherosclerosis predicts mostly intake restriction of food containing: fatty acids, cholesterol, salt, monosaccharides and animal protein, while increasing intake of vitamins, minerals, fiber and antioxidant substances. Eating habits and nutritional status of women who are planning pregnancy have a crucial impact on its course, development of the fetus and children’s health in later years of their life. For all of cardiac patients well balanced diet is advised. In preventative care of Cardiovascular Disease it is advised to apply the diet given by a certified dietician and adjusted to fit patient’s needs. It is to remember, that besides a good diet, an important therapeutic factor of the patients with atherosclerosis is physical activity. Cardiovascular disease is a serious concern in Poland, as well as worldwide. Eating habits are playing a big role in pathogenesis and prevention of atherosclerosis.

  4. Screen-and-Treat Approach to Cervical Cancer Prevention Using Visual Inspection With Acetic Acid and Cryotherapy: Experiences, Perceptions, and Beliefs From Demonstration Projects in Peru, Uganda, and Vietnam

    Science.gov (United States)

    Paul, Proma; Winkler, Jennifer L.; Bartolini, Rosario M.; Penny, Mary E.; Huong, Trinh Thu; Nga, Le Thi; Kumakech, Edward; Mugisha, Emmanuel

    2013-01-01

    Cervical cancer is preventable but continues to cause the deaths of more than 270,000 women worldwide each year, most of them in developing countries where programs to detect and treat precancerous lesions are not affordable or available. Studies have demonstrated that screening by visual inspection of the cervix using acetic acid (VIA) is a simple, affordable, and sensitive test that can identify precancerous changes of the cervix so that treatment such as cryotherapy can be provided. Government partners implemented screening and treatment using VIA and cryotherapy at demonstration sites in Peru, Uganda, and Vietnam. Evaluations were conducted in the three countries to explore the barriers and facilitating factors for the use of services and for incorporation of screen-and-treat programs using VIA and cryotherapy into routine services. Results showed that use of VIA and cryotherapy in these settings is a feasible approach to providing cervical cancer prevention services. Activities that can help ensure successful programs include mobilizing and educating communities, organizing services to meet women's schedules and needs, and strengthening systems to track clients for follow-up. Sustainability also depends on having an adequate number of trained providers and reducing staff turnover. Although some challenges were found across all sites, others varied from country to country, suggesting that careful assessments before beginning new secondary prevention programs will optimize the probability of success. PMID:24217554

  5. Screen-and-treat approach to cervical cancer prevention using visual inspection with acetic acid and cryotherapy: experiences, perceptions, and beliefs from demonstration projects in Peru, Uganda, and Vietnam.

    Science.gov (United States)

    Paul, Proma; Winkler, Jennifer L; Bartolini, Rosario M; Penny, Mary E; Huong, Trinh Thu; Nga, Le Thi; Kumakech, Edward; Mugisha, Emmanuel; Jeronimo, Jose

    2013-01-01

    Cervical cancer is preventable but continues to cause the deaths of more than 270,000 women worldwide each year, most of them in developing countries where programs to detect and treat precancerous lesions are not affordable or available. Studies have demonstrated that screening by visual inspection of the cervix using acetic acid (VIA) is a simple, affordable, and sensitive test that can identify precancerous changes of the cervix so that treatment such as cryotherapy can be provided. Government partners implemented screening and treatment using VIA and cryotherapy at demonstration sites in Peru, Uganda, and Vietnam. Evaluations were conducted in the three countries to explore the barriers and facilitating factors for the use of services and for incorporation of screen-and-treat programs using VIA and cryotherapy into routine services. Results showed that use of VIA and cryotherapy in these settings is a feasible approach to providing cervical cancer prevention services. Activities that can help ensure successful programs include mobilizing and educating communities, organizing services to meet women's schedules and needs, and strengthening systems to track clients for follow-up. Sustainability also depends on having an adequate number of trained providers and reducing staff turnover. Although some challenges were found across all sites, others varied from country to country, suggesting that careful assessments before beginning new secondary prevention programs will optimize the probability of success.

  6. The urban perspectives of acid rain

    International Nuclear Information System (INIS)

    Tonn, B.E.

    1993-01-01

    This report documents discussions held during a workshop an Urban Perspective of Acid Rain. The workshop was sponsored by the Office of the Director, National Acid Precipitation Assessment Program (NAPAP). NAPAP anticipates giving increased emphasis to the benefits in urban areas of emissions reductions. The goal of this informal, exploratory workshop was to serve as a first step towards identifying pollutant monitoring, and research and assessment needs to help answer, from an urban perspective, the two key questions posed to NAPAP by Congress: (1) what are the costs, benefits, and effectiveness of the acid rain control program, and (2) what reductions in deposition, rates are needed in order to prevent adverse effects? The workshop addressed research activities needed to respond to these questions. The discussions focused. sequentially, on data needs, data and model availability, and data and modeling gaps. The discussions concentrated on four areas of effects: human health, materials, urban forests, and visibility

  7. Surface conjugation of poly (dimethyl siloxane) with itaconic acid-based materials for antibacterial effects

    Science.gov (United States)

    Birajdar, Mallinath S.; Cho, Hyunjoo; Seo, Youngmin; Choi, Jonghoon; Park, Hansoo

    2018-04-01

    Poly (dimethyl siloxane) (PDMS) is widely used in various biomedical applications. However, the PDMS surface is known to cause bacterial adhesion and protein absorption issues due to its high hydrophobicity. Therefore, the development of antibacterial and anti-protein products is necessary to prevent these problems. In this study, to improve its antibacterial property and prevent protein adsorption, PDMS surfaces were conjugated with itaconic acid (IA) and poly (itaconic acid) (PIA) via a chemical method. Additionally, IA and PIA were physically blended with PDMS to compare the antibacterial properties of these materials with those of the chemically conjugated PDMS surfaces. The successful synthesis of the PIA polymer structure was confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy. The successful conjugation of IA and PIA on PDMS was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle measurements, and microbicinchoninic acid (BCA) protein assay analyses. The PDMS surfaces functionalized with IA and PIA by the conjugation method better prevented protein adsorption than the bare PDMS. Therefore, these surface-conjugated PDMS can be used in various biomedical applications.

  8. Effect of Rosmarinic acid on sertoli cells apoptosis and serum ...

    African Journals Online (AJOL)

    inflammatory and antimicrobial activities and help to prevent cell damage caused by free radicals. The objective was to study the effect of Rosmarinic acid on sertolli cells apoptosis and serum antioxidant levels in rats after they were exposed to ...

  9. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion.

    Science.gov (United States)

    Balogun, Kayode A; Cheema, Sukhinder K

    2016-01-01

    Obesity is characterized by an increase in fat mass primarily as a result of adipocyte hypertrophy. Diets enriched in omega (n)-3 polyunsaturated fatty acids (PUFA) are suggested to reduce obesity, however, the mechanisms are not well understood. We investigated the effect of n-3 PUFA on adipocyte hypertrophy and the key genes involved in adipocyte hypertrophy. Female C57BL/6 mice were fed semi-purified diets (20 % w/w fat) containing high n-3 PUFA before mating, during pregnancy, and until weaning. Male and female offspring were continued on high n-3 PUFA (10 % w/w), medium n-3 PUFA (4 % w/w), or low n-3 PUFA (2 % w/w) diet for 16 weeks postweaning. Adipocyte area was quantified using microscopy, and gonadal mRNA expression of acyl CoA:diacylglycerol acyltransferase-2 (DGAT-2), fatty acid binding protein-4 (FABP-4) and leptin were measured. The high n-3 PUFA group showed higher levels of total n-3 PUFA in gonadal TAG compared to the medium and low n-3 PUFA groups (P < 0.001). The high n-3 PUFA male group had a lower adipocyte area compared to the medium and low n-3 PUFA group (P < 0.001); however, no difference was observed in females. The high n-3 PUFA male group showed lower mRNA expression of FABP-4, DGAT-2 and leptin compared to the low n-3 PUFA group, with no difference in females. Plasma lipid levels were lower in the high n-3 PUFA group compared to the other groups. Our findings show for the first time that n-3 PUFA prevents adipocyte hypertrophy by downregulating FABP-4, DGAT-2 and leptin; the effects are however sex-specific.

  10. Engineered porous scaffolds for periprosthetic infection prevention

    Energy Technology Data Exchange (ETDEWEB)

    Iviglia, Giorgio, E-mail: giorgio.iviglia@polito.it [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Cassinelli, Clara; Bollati, Daniele [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Baino, Francesco [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Torre, Elisa; Morra, Marco [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Vitale-Brovarone, Chiara [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy)

    2016-11-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  11. Engineered porous scaffolds for periprosthetic infection prevention

    International Nuclear Information System (INIS)

    Iviglia, Giorgio; Cassinelli, Clara; Bollati, Daniele; Baino, Francesco; Torre, Elisa; Morra, Marco; Vitale-Brovarone, Chiara

    2016-01-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  12. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  13. Preconceptional and prenatal supplementary folic acid and multivitamin intake and autism spectrum disorders

    DEFF Research Database (Denmark)

    Virk, Jasveer; Liew, Zeyan; Olsen, Jørn

    2016-01-01

    OBJECTIVE: To evaluate whether early folic acid supplementation during pregnancy prevents diagnosis of autism spectrum disorders in offspring. METHODS: Information on autism spectrum disorder diagnosis was obtained from the National Hospital Register and the Central Psychiatric Register. We...... risk for autism spectrum disorders in offspring of women using folic acid supplements in early pregnancy....... early folate or multivitamin intake for autism spectrum disorder (folic acid-adjusted risk ratio: 1.06, 95% confidence interval: 0.82-1.36; multivitamin-adjusted risk ratio: 1.00, 95% confidence interval: 0.82-1.22), autistic disorder (folic acid-adjusted risk ratio: 1.18, 95% confidence interval: 0...

  14. Postnatal fish oil supplementation in high-risk infants to prevent allergy: randomized controlled trial.

    Science.gov (United States)

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Martino, D; McCarthy, S; Metcalfe, J; Tulic, M K; Mori, T A; Prescott, S L

    2012-10-01

    Relative deficiency of dietary omega 3 polyunsaturated fatty acids (n-3 PUFA) has been implicated in the rising allergy prevalence in Westernized countries. Fish oil supplementation may provide an intervention strategy for primary allergy prevention. The objective of this study was to assess the effect of fish oil n-3 PUFA supplementation from birth to 6 months of age on infant allergic disease. In a double-blind randomized controlled trial, 420 infants at high atopic risk received a daily supplement of fish oil containing 280 mg docosahexaenoic acid and 110 mg eicosapentaenoic acid or a control (olive oil), from birth to age 6 months. PUFA levels were measured in 6-month-old infants' erythrocytes and plasma and their mothers' breast milk. Eczema, food allergy, asthma and sensitization were assessed in 323 infants for whom clinical follow-up was completed at 12 months of age. At 6 months of age, infant docosahexaenoic acid and eicosapentaenoic acid levels were significantly higher (both P acid levels were lower (P = .003) in the fish oil group. Although n-3 PUFA levels at 6 months were associated with lower risk of eczema (P = .033) and recurrent wheeze (P = .027), the association with eczema was not significant after multiple comparisons and there was no effect of the intervention per se on the primary study outcomes. Specifically, between-group comparisons revealed no differences in the occurrence of allergic outcomes including sensitization, eczema, asthma, or food allergy. Postnatal fish oil supplementation improved infant n-3 status but did not prevent childhood allergic disease.

  15. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  16. A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces.

    Science.gov (United States)

    Palumbo, Fabio Salvatore; Bavuso Volpe, Antonella; Cusimano, Maria Grazia; Pitarresi, Giovanna; Giammona, Gaetano; Schillaci, Domenico

    2015-01-15

    A graft copolymer derivative of hyaluronic acid bearing pendant amino and short polymethacrylate portions (HA-EDA-BMP-MANa) has been employed for the production of a pH sensible vancomycin releasing hydrogel and studied in vitro to test its potential anti adhesive property against Staphylococcus aureus colonization. The copolymer obtained through atom transfer radical polymerization bears chargeable (carboxyl and amino groups) portions and it could be formulated as a hydrogel at a concentration of 10%w/v. The HA-EDA-BMP-MANa hydrogels, produced at three different pH values (5, 6 and 7, respectively), were formulated with or without the addition of vancomycin (2%w/v). The vancomycin release profiles were detected and related to the starting hydrogel pH values, demonstrating that the systems were able to sustain the release of drug for more than 48 h. S. aureus adhesion tests were performed on glass culture plates and hydroxyapatite doped titanium surfaces, comparing the performances of HA-EDA-BMP-MANa hydrogel formulations (obtained with and without vancomycin) with similar formulations obtained using unmodified hyaluronic acid. The non fouling property of a selected HA-EDA-BMP-MANa hydrogel (without vancomycin) was also assayed with a BSA adsorption test. We found that the HA-EDA-BMP-MANa hydrogel even without vancomycin prevented bacterial adhesion on investigated surfaces. Copyright © 2014. Published by Elsevier B.V.

  17. New Functions and Potential Applications of Amino Acids.

    Science.gov (United States)

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  18. Bolivian Health Providers’ Attitudes Toward Alternative Technologies for Cervical Cancer Prevention: A Focus on Visual Inspection with Acetic Acid and Cryotherapy

    Science.gov (United States)

    Stormo, Analía Romina; Altamirano, Victor Conde; Pérez-Castells, Macarena; Espey, David; Padilla, Haydee; Panameño, Karen; Soria, Milton; Santos, Carlos; Saraiya, Mona; Luciani, Silvana

    2017-01-01

    Background Little is known about health providers’ attitudes toward visual inspection with acetic acid (VIA) and cryotherapy in the prevention of cervical cancer, as most research in Latin America and the Caribbean (LAC) has examined attitudes of the general population. This study describes attitudes of Bolivian health professionals toward new technologies for cervical cancer prevention, focusing on VIA and cryotherapy. Methods Between February 2011 and March 2012, we surveyed 7 nurses and 35 physicians who participated in 5-day workshops on VIA and cryotherapy conducted in Bolivia. Multiple choice and open-ended questions were used to assess participants’ acceptability of these procedures and the feasibility of their implementation in the context of perceived barriers for the early detection of cervical cancer in this country. Results Most believed that cultural factors represent the main barrier for the early detection of cervical cancer (70%), although all stated that VIA and cryotherapy would be accepted by women, citing the advantages of VIA over cytology for this belief. Most also believed their colleagues would accept VIA and cryotherapy (71%) and that VIA should replace Pap testing (61%), reiterating the advantages of VIA for these beliefs. Those who believed the contrary expressed a general resistance to change associated with an already existing cytology program and national norms prioritizing Pap testing. Conclusions Most participants had favorable attitudes toward VIA and cryotherapy; however, a sizable minority cited challenges to their adoption by colleagues and believed VIA should not replace cytology. This report can inform the development of strategies to expand the use of alternative cervical cancer screening methods in LAC and Bolivia. PMID:22816515

  19. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  20. RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress

    NARCIS (Netherlands)

    van Beilen, Johan; Blohmke, Christoph J.; Folkerts, Hendrik; de Boer, Richard; Zakrzewska, Anna; Kulik, Wim; Vaz, Fred M.; Brul, Stanley; Ter Beek, Alexander

    2016-01-01

    Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM) gene