WorldWideScience

Sample records for acid prevents dendritic

  1. The mucosal factors retinoic acid and TGF-B induce phenotypically and functionally distinct dendritic cell types

    NARCIS (Netherlands)

    Hartog, den C.G.; Altena, van S.E.C.; Savelkoul, H.F.J.; Neerven, van R.J.J.

    2013-01-01

    Non-inflammatory dendritic cell (DC) subsets play an essential role in preventing massive inflammation in mucosal tissues. We investigated whether mucosa-related factors, namely retinoic acid (RA) and transforming growth factor-ß (TGF-ß1), can induce such DC types. DCs were differentiated from

  2. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  3. DMPD: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18641647 Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune dise... (.csml) Show Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases....iral infection andautoimmune diseases. Authors Gilliet M, Cao W, Liu YJ. Publication Nat Rev Immunol. 2008 A

  4. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  5. DMPD: The role of viral nucleic acid recognition in dendritic cells for innate andadaptive antiviral immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086372 The role of viral nucleic acid recognition in dendritic cells for innate a...1-14. Epub 2007 Nov 9. (.png) (.svg) (.html) (.csml) Show The role of viral nucleic acid recognition in dend...e role of viral nucleic acid recognition in dendritic cells for innate andadaptive antiviral immunity. Autho

  6. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    Science.gov (United States)

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  7. Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells

    NARCIS (Netherlands)

    Niers, L. E. M.; Hoekstra, M. O.; Timmerman, H. M.; van Uden, N. O.; de Graaf, P. M. A.; Smits, H. H.; Kimpen, J. L. L.; Rijkers, G. T.

    2007-01-01

    Modification of intestinal microbiota early in life by administration of probiotic bacteria may be a potential approach to prevent allergic disease. To select probiotic bacteria for in vivo purposes, we investigated the capacity of probiotic bacteria to interact with neonatal dendritic cells (DC)

  8. Ursolic acid isolated from Uncaria rhynchophylla activates human dendritic cells via TLR2 and/or TLR4 and induces the production of IFN-gamma by CD4+ naïve T cells.

    Science.gov (United States)

    Jung, Tae-Young; Pham, Thanh Nhan Nguyen; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2010-09-25

    Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro. Dendritic cells harvested on day 8 were examined using functional assay. The expression levels of CD1a, CD80, CD83, CD86, HLA-DR and CCR7 on Ursolic acid-primed dendritic cells was slightly enhanced. Ursolic acid dose-dependently enhanced the T cell stimulatory capacity in an allogeneic mixed lymphocyte reaction, as measured by T cell proliferation. The production of IL-12p70 induced by Ursolic acid-primed dendritic cells was inhibited by the anti-Toll-like receptor-2 (TLR2) mAb and anti-TLR4 mAb. Moreover, Ursolic acid-primed dendritic cells expressed levels of mRNA coding for both TLR2 and TLR4. The majority of cells produced considerable interferon-gamma (IFN-gamma), but also small amounts of interleukin (IL-4)-4. Ursolic acid-primed dendritic cells have an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that Ursolic acid modulates human dendritic cells function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR2 and/or TLR4, and may be used on dendritic cells-based vaccines for cancer immunotherapy. 2010 Elsevier B.V. All rights reserved.

  9. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  10. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  11. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  12. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid

    International Nuclear Information System (INIS)

    Xia Yue; Liu Jun; Huang Wei; Li Zelin

    2012-01-01

    Highlights: ► A smooth Au surface was rebuilt into clean dendrite via square wave potential pulses. ► It was performed in blank H 2 SO 4 solution without Au(III) species and other additives. ► Dendritic Au provided certain advantage for dispersing Pt due to its unique structure. ► Pt-decorated dendritic Au demonstrated high activity for the HCOOH electrooxidation. - Abstract: We report here the fabrication of clean dendritic gold (DG) directly on a smooth Au electrode via square wave potential pulses (SWPPs) in a blank H 2 SO 4 solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H 2 SO 4 concentration on the construction of DG were systematically investigated. A possible mechanism was proposed to explain the growth of DG. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the prepared DG electrode functioned as a scaffold to support electrodeposited Pt clusters, producing Pt-decorated DG (Pt-DG) electrodes. The electrocatalytic properties of Pt-DG electrodes with various Pt loadings were examined for the oxidation of formic acid. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-decorated smooth gold (Pt-SG) and on Pt-decorated gold nanoparticles because there were more defect sites like steps and edges on the DG surface. Ensemble effect, as well as electronic effect, accounts for the improved electrocatalytic activity of low Pt loading Pt-DG.

  13. Role of fatty-acid synthesis in dendritic cell generation and function.

    Science.gov (United States)

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  14. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  15. Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor.

    Science.gov (United States)

    Willart, M A M; van Nimwegen, M; Grefhorst, A; Hammad, H; Moons, L; Hoogsteden, H C; Lambrecht, B N; Kleinjan, A

    2012-12-01

    Ursodeoxycholic acid (UDCA) is the only known beneficial bile acid with immunomodulatory properties. Ursodeoxycholic acid prevents eosinophilic degranulation and reduces eosinophil counts in primary biliary cirrhosis. It is unknown whether UDCA would also modulate eosinophilic inflammation outside the gastrointestinal (GI) tract, such as eosinophilic airway inflammation seen in asthma. The working mechanism for its immunomodulatory effect is unknown. The immunosuppressive features of UDCA were studied in vivo, in mice, in an ovalbumin (OVA)-driven eosinophilic airway inflammation model. To study the mechanism of action of UDCA, we analyzed the effect of UDCA on eosinophils, T cells, and dendritic cell (DCs). DC function was studied in greater detail, focussing on migration and T-cell stimulatory strength in vivo and interaction with T cells in vitro as measured by time-lapse image analysis. Finally, we studied the capacity of UDCA to influence DC/T cell interaction. Ursodeoxycholic acid treatment of OVA-sensitized mice prior to OVA aerosol challenge significantly reduced eosinophilic airway inflammation compared with control animals. DCs expressed the farnesoid X receptor for UDCA. Ursodeoxycholic acid strongly promoted interleukin (IL)-12 production and enhanced the migration in DCs. The time of interaction between DCs and T cells was sharply reduced in vitro by UDCA treatment of the DCs resulting in a remarkable T-cell cytokine production. Ursodeoxycholic acid-treated DCs have less capacity than saline-treated DCs to induce eosinophilic inflammation in vivo in Balb/c mice. Ursodeoxycholic acid has the potency to suppress eosinophilic inflammation outside the GI tract. This potential comprises to alter critical function of DCs, in essence, the effect of UDCA on DCs through the modulation of the DC/T cell interaction. © 2012 John Wiley & Sons A/S.

  16. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  17. Scanning Ultrasound (SUS Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice.

    Directory of Open Access Journals (Sweden)

    Robert John Hatch

    Full Text Available Scanning ultrasound (SUS is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.

  18. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport

    Science.gov (United States)

    Taylor, Caitlin A.; Yan, Jing; Howell, Audrey S.; Dong, Xintong; Shen, Kang

    2015-01-01

    The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1. PMID:26633194

  19. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Science.gov (United States)

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  20. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sangwoo; Kim, Hyunghoon; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2017-02-01

    The formation mechanism of PbTe dendritic nanostructures grown at room temperature by electrodeposition in nitric acid electrolytes containing Pb and Te was investigated. Scanning electron microscopy and transmission electron microscopy analyses indicated that the PbTe dendritic nanostructures were composed of triangular-shaped units surrounded by {111} and {110} planes. Because of the interfacial energy anisotropy of the {111} and {110} planes and the difference in the current density gradient, the growth rate in the vertical direction of the (111) basal plane was slower than that in the direction of the tip of the triangular shape, leading to growth in the tip direction. In contrast to the general growth direction of fcc dendrites, namely <100>, the tip direction of the {111} basal plane for our samples was <112>, and the PbTe dendritic nanostructures grew in the tip direction. The angles formed by the main trunk and first branches were regular and approximately 60°, and those between the first and second branches were also approximately 60°. Finally, the nanostructures grew in single-crystalline dendritic form. - Highlights: • PbTe dendrite nanostructures were grown by electrodeposition. • PbTe dendritic nanostructures were composed of triangular-shaped units. • The formation mechanism of PbTe dendrite nanostructures was characterized.

  1. Using vitamin E to prevent the impairment in behavioral test, cell loss and dendrite changes in medial prefrontal cortex induced by tartrazine in rats.

    Science.gov (United States)

    Rafati, Ali; Nourzei, Nasrin; Karbalay-Doust, Saied; Noorafshan, Ali

    2017-03-01

    Tartrazine is a food color that may adversely affect the nervous system. Vitamin E is a neuro-protective agent. This study aimed to evaluate the effects of tartrazine and vitamin E on the performance of rats in memory and learning tests as well as the structure of medial Prefrontal Cortex (mPFC). The rats were first divided into seven groups which received the followings for a period of seven weeks: distilled water, corn oil, vitamin E (100mg/kg/day), a low dose (50mg/kg/day) and a high dose (50mg/kg/day) of tartrazine with and without vitamin E. Behavioral tests were conducted and the brain was extracted for stereological methods The high dose of tartrazine decreased the exploration time of novel objects (Ptartrazine led into an increase in working and reference memory errors in acquisition and retention phases (eight-arm radial maze) compared to distilled water group (Ptartrazine induced a reduction in the volume of mPFC (∼13%) and its subdivision. Not only that, but the number of neurons and glial cells (∼14%) as well as the mushroom and thin spines per dendrite length declined. The length of dendrites per neuron also reduced in comparison to the distilled water group (Ptartrazine prevented the above-mentioned changes. An acceptable daily dose of tartrazine could induce impairment in spatial memory and dendrite structure. Moreover, a high dose of tartrazine may defect the visual memory, mPFC structure, the spatial memory and also cause dendrite changes. Vitamin E could prevent the behavioral and structural changes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro.

    Science.gov (United States)

    Vucevic, Dragana; Melliou, Eleni; Vasilijic, Sasa; Gasic, Sonja; Ivanovski, Petar; Chinou, Ioanna; Colic, Miodrag

    2007-09-01

    Royal jelly (RJ), especially its protein components, has been shown to possess immunomodulatory activity. However, almost nothing is known about the influence of RJ fatty acids on the immune system. In this work we studied the effect of 10-hydroxy-2-decanoic acid (10-HDA) and 3,10-dihydroxy-decanoic acid (3,10-DDA), isolated from RJ, on the immune response using a model of rat dendritic cell (DC)-T-cell cocultures. Both fatty acids, at higher concentrations, inhibited the proliferation of allogeneic T cells. The effect of 10-HDA was stronger and was followed by a decrease in interleukin-2 (IL-2) production and down-regulation of IL-2 receptor expression. Spleen DC, cultivated with 10 microg/ml of fatty acids down-regulated the expression of CD86 and the production of IL-12, but up-regulated the production of IL-10. In contrast, DC, pretreated with 100 microg/ml of 3,10-DDA, up-regulated the expression of CD86 and augmented the proliferation of allogeneic T cells. The highest dose (200 microg/ml) of both fatty acids which was non-apoptotic for both T cells and DC, down-regulated the expression of MHC class II and CD86, decreased the production of IL-12 and made these DC less allostimulatory. The immunosuppressive activity of 3,10-DDA was also confirmed in vivo, using a model of Keyhole lymphet hemocyanine immunization of rats. In conclusion, our results showed the immunomodulatory activity of RJ fatty acids and suggest that DC are a significant target of their action.

  3. Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.

    Science.gov (United States)

    Matthews, Benjamin J; Grueber, Wesley B

    2011-09-13

    Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current.

    Science.gov (United States)

    Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Nam, Joo Hyun; Moon, Il Soo

    2014-01-01

    Neurotrophic factors are essential for the differentiation and maturation of developing neurons as well as providing survival support to the mature neurons. Moreover, therapeutically neurotrophic factors are promising to reconstruct partially damaged neuronal networks in neurodegenerative diseases. In the previous study, we reported that the ethanol extract of an edible marine alga, Gelidium amansii (GAE) had shown promising effects in the development and maturation of both axon and dendrites of hippocampal neurons. Here, we demonstrate that in primary culture of hippocampal neurons (1) GAE promotes a significant increase in the number of filopodia and dendritic spines; (2) promotes synaptogenesis; (3) enhances N-methyl-D-aspartic acid (NMDA) receptor recruitment; and (4) modulates NMDA-receptor-mediated postsynaptic current. Taken together these findings that GAE might be involved in both morphological and functional maturation of neurons suggest the possibility that GAE may constitute a promising candidate for novel compounds for the prevention and treatment of neurodegenerative diseases.

  5. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  6. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  7. Dendritic cell vaccines.

    Science.gov (United States)

    Mosca, Paul J; Lyerly, H Kim; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim

    2007-05-01

    Dendritic cells are antigen-presenting cells that have been shown to stimulate tumor antigen-specific T cell responses in preclinical studies. Consequently, there has been intense interest in developing dendritic cell based cancer vaccines. A variety of methods for generating dendritic cells, loading them with tumor antigens, and administering them to patients have been described. In recent years, a number of early phase clinical trials have been performed and have demonstrated the safety and feasibility of dendritic cell immunotherapies. A number of these trials have generated valuable preliminary data regarding the clinical and immunologic response to DC-based immunotherapy. The emphasis of dendritic cell immunotherapy research is increasingly shifting toward the development of strategies to increase the potency of dendritic cell vaccine preparations.

  8. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling

    OpenAIRE

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-01-01

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression ...

  9. Taming dendritic cells with TIM-3: Another immunosuppressive strategy by tumors

    Science.gov (United States)

    Patel, Jaina; Bozeman, Erica N.; Selvaraj, Periasamy

    2013-01-01

    The identification of TIM-3 expression on tumor associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells, however its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 mAb treated mice or mice depleted of all DCs which indicated that significant role played by TADCs inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings. PMID:23240746

  10. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  11. Exploiting the Physicochemical Properties of Dendritic Polymers for Environmental and Biological Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Geitner, Nicholas K.; Sarupria, Sapna; Ke, Pu Chun

    2013-04-07

    In this Perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers for humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on their 10 implications for water purification, environmental remediation, nanomedicine, and energy harvesting.

  12. Dendritic cell neoplasms: an overview.

    Science.gov (United States)

    Kairouz, Sebastien; Hashash, Jana; Kabbara, Wadih; McHayleh, Wassim; Tabbara, Imad A

    2007-10-01

    Dendritic cell neoplasms are rare tumors that are being recognized with increasing frequency. They were previously classified as lymphomas, sarcomas, or histiocytic neoplasms. The World Health Organization (WHO) classifies dendritic cell neoplasms into five groups: Langerhans' cell histiocytosis, Langerhans' cell sarcoma, Interdigitating dendritic cell sarcoma/tumor, Follicular dendritic cell sarcoma/tumor, and Dendritic cell sarcoma, not specified otherwise (Jaffe, World Health Organization classification of tumors 2001; 273-289). Recently, Pileri et al. provided a comprehensive immunohistochemical classification of histiocytic and dendritic cell tumors (Pileri et al., Histopathology 2002;59:161-167). In this article, a concise overview regarding the pathological, clinical, and therapeutic aspects of follicular dendritic, interdigitating dendritic, and Langerhans' cell tumors is presented.

  13. Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Ben Chung Lap Chan

    2015-09-01

    Full Text Available Atopic dermatitis (AD is a widely prevalent and chronically relapsing inflammatory skin disease. Penta Herbs Formula (PHF is efficacious in improving the quality of life and reducing topical corticosteroid used in children with AD and one of the active herbs it contains is Cortex Moutan. Recent studies showed that altered functions of dendritic cells (DC were observed in atopic individuals, suggesting that DC might play a major role in the generation and maintenance of inflammation by their production of pro-inflammatory cytokines. Hence, the aims of the present study were to identify the major active component(s of Cortex Moutan, which might inhibit DC functions and to investigate their possible interactions with conventional corticosteroid on inhibiting the development of DC from monocytes. Monocyte-derived dendritic cells (moDC culture model coupled with the high-speed counter-current chromatography (HSCCC, high pressure liquid chromatography (HPLC and Liquid Chromatography-Mass Spectrometry (LCMS analyses were used. Gallic acid was the major active component from Cortex Moutan which could dose dependently inhibit interleukin (IL-12 p40 and the functional cluster of differentiation (CD surface markers CD40, CD80, CD83 and CD86 expression from cytokine cocktail-activated moDC. Gallic acid could also lower the concentration of hydrocortisone required to inhibit the activation of DC.

  14. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    Science.gov (United States)

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  16. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  17. Effect of the dendritic morphology on hot tearing of carbon steels

    International Nuclear Information System (INIS)

    Ridolfi, M R

    2016-01-01

    Hot tears form during solidification in the brittle region of the dendritic front. Most hot tearing criteria are based on solid and fluid mechanics, being the phenomenon strictly depending on the solid resistance to applied strains and on the liquid capability of filling the void spaces. Modelling both mechanisms implies the precise description of the dendritic morphology. To this scope, the theory of coalescence of the dendritic arms at grain boundaries of Rappaz et al. has been applied, in this work, to the columnar growth of carbon steels by means of a simple mathematical model. Depending on the alloy composition, solid bridging starts at solid fractions down to about 0.8 and up to above 0.995 (very low carbon). The morphology of the brittle region changes drastically with increasing carbon and adding other solutes. In particular, ferritic dendrites, typical of low carbon steels, tend to offer short and wide interdendritic spaces to the surrounding liquid making possible their complete filling, and few solid bridges; peritectic steels show the rise of austenite growing and bridging rapidly in the interdendritic spaces, preventing void formation; austenitic dendrites form long and narrow interdendritic spaces difficult to reach for the liquid and with a lot of solid bridges. Sulphur addition mainly acts in delaying the coalescence end, more markedly in ferritic dendrites. (paper)

  18. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  19. Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors.

    Science.gov (United States)

    Patel, Jaina; Bozeman, Erica N; Selvaraj, Periasamy

    2012-12-01

    Evaluation of: Chiba S, Baghdadi M, Akiba H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832-842 (2012). The identification of TIM-3 expression on tumor-associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells; however, its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid-mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 monoclonal antibody-treated mice or mice depleted of all DCs, which indicated that a significant role is played by TADCs in inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings.

  20. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  1. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  2. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells

    NARCIS (Netherlands)

    Everts, Bart; Amiel, Eyal; van der Windt, Gerritje J. W.; Freitas, Tori C.; Chott, Robert; Yarasheski, Kevin E.; Pearce, Erika L.; Pearce, Edward J.

    2012-01-01

    TLR agonists initiate a rapid activation program in dendritic cells (DCs) that requires support from metabolic and bioenergetic resources. We found previously that TLR signaling promotes aerobic glycolysis and a decline in oxidative phosphorylation (OXHPOS) and that glucose restriction prevents

  4. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  5. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes

    Science.gov (United States)

    Schwenk, Benjamin M; Lang, Christina M; Hogl, Sebastian; Tahirovic, Sabina; Orozco, Denise; Rentzsch, Kristin; Lichtenthaler, Stefan F; Hoogenraad, Casper C; Capell, Anja; Haass, Christian; Edbauer, Dieter

    2014-01-01

    TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants. PMID:24357581

  6. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  7. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  8. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  9. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  10. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  11. Regulation of dendrite growth and maintenance by exocytosis

    Science.gov (United States)

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  12. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  13. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    Science.gov (United States)

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased

  14. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity.

    Science.gov (United States)

    Song, Yuguang; Liu, Yangping; Hemann, Craig; Villamena, Frederick A; Zweier, Jay L

    2013-02-15

    In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.

  15. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  16. Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Joris D. Veltman

    2010-01-01

    Full Text Available Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.

  17. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  18. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  19. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    Chronic caffeine consumption has been inversely associated with the risk of developing dementia and Alzheimer's disease. Here we assessed whether chronic caffeine treatment prevents the behavioral and cognitive decline that male Wistar rats experience from young (≈3 months) to middle age (≈10 months). When animals were young they were evaluated at weekly intervals in three tests: motor activity habituation in the open field (30-min sessions at the same time on consecutive days), continuous spontaneous alternation in the Y-maze (8 min), and elevated plus-maze (5 min). Afterward, rats from the same litter were randomly assigned either to a caffeine-treated group (n=13) or a control group (n=11), which received only tap water. Caffeine treatment (5 mg/kg/day) began when animals were ≈4 months old, and lasted for 6 months. Behavioral tests were repeated from day 14 to day 28 after caffeine withdrawal, a time period that is far in excess for the full excretion of a caffeine dose in this species. Thirty days after caffeine discontinuation brains were processed for Golgi-Cox staining. Compared with controls, we found that middle-aged rats that had chronically consumed low doses of caffeine (1) maintained their locomotor habituation during the second consecutive day exposure to the open field (an index of non-associative learning), (2) maintained their exploratory drive to complete the conventional minimum of nine arm visits required to calculate the alternation performance in the Y-maze in a greater proportion, (3) maintained their alternation percentage above chance level (an index of working memory), and (4) did not increase the anxiety indexes assessed by measuring the time spent in the open arms of the elevated plus maze. In addition, morphometric analysis of hippocampal neurons revealed that dendritic branching (90-140 μm from the soma), length of 4th and 5th order branches, total dendritic length, and spine density in distal dendritic branches were greater in

  20. Regulation of dendrite growth and maintenance by exocytosis

    OpenAIRE

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential req...

  1. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  2. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  3. Folic acid supplement use in the prevention of neural tube defects.

    LENUS (Irish Health Repository)

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  4. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  5. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines.

    Science.gov (United States)

    Padamsey, Zahid; McGuinness, Lindsay; Bardo, Scott J; Reinhart, Marcia; Tong, Rudi; Hedegaard, Anne; Hart, Michael L; Emptage, Nigel J

    2017-01-04

    Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca 2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca 2+ release from lysosomes in the dendrites. This Ca 2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca 2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Use of topical tranexamic acid or aminocaproic acid to prevent bleeding after major surgical procedures.

    Science.gov (United States)

    Ipema, Heather J; Tanzi, Maria G

    2012-01-01

    To evaluate the literature describing topical use of tranexamic acid or aminocaproic acid for prevention of postoperative bleeding after major surgical procedures. Literature was retrieved through MEDLINE (1946-September 2011) and International Pharmaceutical Abstracts (1970-September 2011) using the terms tranexamic acid, aminocaproic acid, antifibrinolytic, topical, and surgical. In addition, reference citations from publications identified were reviewed. All identified articles in English were evaluated. Clinical trials, case reports, and meta-analyses describing topical use of tranexamic acid or aminocaproic acid to prevent postoperative bleeding were included. A total of 16 publications in the setting of major surgical procedures were included; the majority of data were for tranexamic acid. For cardiac surgery, 4 trials used solutions containing tranexamic acid (1-2.5 g in 100-250 mL of 0.9% NaCl), and 1 trial assessed a solution containing aminocaproic acid (24 g in 250 mL of 0.9% NaCl). These solutions were poured into the chest cavity before sternotomy closure. For orthopedic procedures, all of the data were for topical irrigation solutions containing tranexamic acid (500 mg-3 g in 50-100 mL of 0.9% NaCl) or for intraarticular injections of tranexamic acid (250 mg to 2 g in 20-50 mL of 0.9% sodium chloride, with or without carbazochrome sodium sulfate). Overall, use of topical tranexamic acid or aminocaproic acid reduced postoperative blood loss; however, few studies reported a significant reduction in the number of packed red blood cell transfusions or units given, intensive care unit stay, or length of hospitalization. Topical application of tranexamic acid and aminocaproic acid to decrease postsurgical bleeding after major surgical procedures is a promising strategy. Further data are needed regarding the safety of this hemostatic approach.

  7. Folic Acid for the Prevention of Neural Tube Defects : US Preventive Services Task Force Recommendation Statement

    NARCIS (Netherlands)

    Calonge, Ned; Petitti, Diana B.; DeWitt, Thomas G.; Dietrich, Allen J.; Gregory, Kimberly D.; Grossman, David; Isham, George; LeFevre, Michael L.; Leipzig, Rosanne M.; Marion, Lucy N.; Melnyk, Bernadette; Moyer, Virginia A.; Ockene, Judith K.; Sawaya, George F.; Schwartz, J. Sanford; Wilt, Timothy

    2009-01-01

    Description: In 1996, the U. S. Preventive Services Task Force (USPSTF) recommended that all women planning or capable of pregnancy take a multivitamin supplement containing folic acid for the prevention of neural tube defects. This recommendation is an update of the 1996 USPSTF recommendation.

  8. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  9. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    Science.gov (United States)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  10. Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients.

    Science.gov (United States)

    Pochard, Pierre; Hammad, Hamida; Ratajczak, Céline; Charbonnier-Hatzfeld, Anne-Sophie; Just, Nicolas; Tonnel, André-Bernard; Pestel, Joël

    2005-07-01

    Lactic acid bacteria (LAB) are suggested to play a regulatory role in the development of allergic reactions. However, their potential effects on dendritic cells (DCs) directing the immune polarization remain unclear. The immunologic effect of Lactobacillus plantarum NCIMB 8826 (LAB1) on monocyte-derived dendritic cells (MD-DCs) from patients allergic to house dust mite was evaluated. MD-DCs were stimulated for 24 hours with the related allergen Der p 1 in the presence or absence of LAB1. Cell-surface markers were assessed by means of FACS analysis, and the key polarizing cytokines IL-12 and IL-10 were quantified. The subsequent regulatory effect of pulsed MD-DCs on naive or memory T cells was evaluated by determining the T-cell cytokine profile. LAB1 induced the maturation of MD-DCs, even if pulsed with Der p 1. Interestingly, after incubation with LAB1 and Der p 1, MD-DCs produced higher amounts of IL-12 than Der p 1-pulsed DCs. Indeed, the T H 2 cytokine (IL-4 and IL-5) production observed when naive or memory autologous T cells were cocultured with Der p 1-pulsed MD-DCs was highly reduced in the presence of LAB1. Finally, in contrast to naive or memory T cells exposed once to Der p 1-pulsed DCs, T cells stimulated by MD-DCs pulsed with Der p 1 and LAB1 failed to produce T H 2 cytokines in response to a new stimulation with Der p 1-pulsed DCs. Thus in the presence of LAB1, MD-DCs from allergic patients tend to reorientate the T-cell response toward a beneficial T H 1 profile.

  11. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  12. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  13. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  15. Randomly oriented twin domains in electrodeposited silver dendrites

    Directory of Open Access Journals (Sweden)

    Ivanović Evica R.

    2015-01-01

    Full Text Available Silver dendrites were prepared by electrochemical deposition. The structures of Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM, Z-contrast high angle annular dark field transmission electron microscopy (HAADF, and crystallografically sensitive orientation imaging microscopy (OIM. The results revealed that silver dendrites are characterized by the presence of randomly distributed 180° rotational twin domains. The broad surface of dendrites was of the {111} type. Growth directions of the main dendrite stem and all branches were of type. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  16. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  17. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan

    2008-01-01

    The current "gold standard" for generation of dendritic cell (DC) used in DC-based cancer vaccine studies is maturation of monocyte-derived DCs with tumor necrosis factor-alpha (TNF-alpha)/IL-1beta/IL-6 and prostaglandin E(2) (PGE(2)). Recently, a protocol for producing so-called alpha-Type-1...... polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC......-regulation of inhibitory molecules such as PD-L1, ILT2, ILT3 as compared to sDC. Although alphaDC1 matured DCs secreted more IL-12p70 and IL-23 these DCs had lower or similar stimulatory capacity compared to sDCs when used as stimulating cells in mixed lymphocyte reaction (MLR) or for induction of autologous influenza...

  18. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    Science.gov (United States)

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  19. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.

  20. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  1. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  2. Dendritic functionalization of monolayer-protected gold nanoparticles

    International Nuclear Information System (INIS)

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok

    2007-01-01

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. 1 H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles

  3. Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Otani Koichi

    2009-08-01

    Full Text Available Abstract Background Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level. Results In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in vitro (DIV and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect. Conclusion In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.

  4. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  5. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  6. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  7. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell.

    Directory of Open Access Journals (Sweden)

    Michael J Schachter

    2010-08-01

    Full Text Available The On-Off direction-selective ganglion cell (DSGC in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within

  8. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell.

    Science.gov (United States)

    Schachter, Michael J; Oesch, Nicholas; Smith, Robert G; Taylor, W Rowland

    2010-08-19

    The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry.

  9. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  10. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  11. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer's mice.

    Science.gov (United States)

    Luo, Zhongqiu; Li, Jialin; Nabar, Neel R; Lin, Xiaoyang; Bai, Ge; Cai, Jianfeng; Zhou, Shu-Feng; Cao, Chuanhai; Wang, Jinhuan

    2012-09-01

    Despite FDA suspension of Elan's AN-1792 amyloid beta (Aβ) vaccine in phase IIb clinical trials, the implications of this study are the guiding principles for contemporary anti-Aβ immunotherapy against Alzheimer's disease (AD). AN-1792 showed promising results with regards to Aβ clearance and cognitive function improvement, but also exhibited an increased risk of Th1 mediated meningoencephalitis. As such, vaccine development has continued with an emphasis on eliciting a notable anti-Aβ antibody titer, while avoiding the unwanted Th1 pro-inflammatory response. Previously, we published the first report of an Aβ sensitized dendritic cell vaccine as a therapeutic treatment for AD in BALB/c mice. Our vaccine elicited an anti-Aβ titer, with indications that a Th1 response was not present. This study is the first to investigate the efficacy and safety of our dendritic cell vaccine for the prevention of AD in transgenic mouse models (PDAPP) for AD. We also used Immunohistochemistry to characterize the involvement of LXR, ABCA1, and CD45 in order to gain insight into the potential mechanisms through which this vaccine may provide benefit. The results indicate that (1) the use of mutant Aβ1-42 sensitized dendritic cell vaccine results in durable antibody production, (2) the vaccine provides significant benefits with regards to cognitive function without the global (Th1) inflammation seen in prior Aβ vaccines, (3) histological studies showed an overall decrease in Aβ burden, with an increase in LXR, ABCA1, and CD45, and (4) the beneficial results of our DC vaccine may be due to the LXR/ABCA1 pathway. In the future, mutant Aβ sensitized dendritic cell vaccines could be an efficacious and safe method for the prevention or treatment of AD that circumvents problems associated with traditional anti-Aβ vaccines.

  12. The importance of γ-linolenic acid in the prevention and treatment

    Directory of Open Access Journals (Sweden)

    Małgorzata Białek

    2015-07-01

    Full Text Available The etiology of diet-related disorders is closely associated with dietary factors. A special role is attributed to intake of fat and fatty acid profile, both quantitative and qualitative. For prevention and treatment of the abovementioned diseases a proper supply of unsaturated fatty acids plays a significant role, because of their particular importance to health. γ-Linolenic acid (GLA, with three double bonds in the carbon chain, also known as all-cis 6,9,12-octadecatrienoic acid, belongs to the n-6 family of fatty acids. It plays biologically important functions in the human body, such as being a substrate for eicosanoids synthesis, involvement in the transport and oxidation of cholesterol, and being one of the components of lipid membrane. Its inadequate dietary intake or impaired formation is the cause of many inflammatory and degenerative diseases. A rich source of this fatty acid is vegetable oils, until recently used mainly in folk medicine. Nowadays, studies conducted both in animal models and in humans suggest its health-promoting properties in the prevention and treatment of atopic dermatitis, cardiovascular diseases, diabetes, cancers and rheumatoid arthritis.

  13. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  14. BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells.

    Science.gov (United States)

    Combes, Alexis; Camosseto, Voahirana; N'Guessan, Prudence; Argüello, Rafael J; Mussard, Julie; Caux, Christophe; Bendriss-Vermare, Nathalie; Pierre, Philippe; Gatti, Evelina

    2017-10-13

    Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1 + late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3 +/ LAMP2 +/ LAMP1 - endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-β-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.

  15. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  16. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  17. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum.

    Science.gov (United States)

    Pierozan, Paula; Biasibetti-Brendler, Helena; Schmitz, Felipe; Ferreira, Fernanda; Pessoa-Pureur, Regina; Wyse, Angela T S

    2018-06-01

    Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.

  18. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  19. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  20. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  2. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  3. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  4. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  5. Kinetics and structure-activity relationship of dendritic bridged hindered phenol antioxidants to protect styrene against free radical induced peroxidation

    Science.gov (United States)

    Li, Cui-Qin; Guo, Su-Yue; Wang, Jun; Shi, Wei-Guang; Zhang, Zhi-Qiu; Wang, Peng-Xiang

    2017-12-01

    A series of dendritic poly(amido-amine) (PAMAM) bridged hindered phenols antioxidants were synthesized. The active antioxidant group (3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionic acid) was attached to two generations of PAMAM dendrimers, and their structure was verified by nuclear magnetic resonance (NMR) and fourier transform infrared spectra (FT-IR). The antioxidant abilities of the dendritic phenols to inhibit the oxidation of styrene were evaluated and the relationships between the length of core, the generation of dendrimers and the antioxidant activities were established. The reaction kinetics of scavenging peroxyl radicals was followed by oxygen consumption. The inhibition time ( t inh) values showed the dendritic phenols had the ability of scavenging peroxyl radicals, and that the antioxidant ability increased with the increasing length of the core and the generation. The kinetic analysis demonstrated that dendritic phenols could slow the rate of styrene peroxidation induced by AIBN, as shown by the number of trapping ROO· ( n), and this role was in accordance with that of the t inh values.

  6. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Aarnoudse, Corlien A.; Meijer, Gerrit A.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2005-01-01

    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal

  7. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  8. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  9. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    Directory of Open Access Journals (Sweden)

    Lauren M DePoy

    2014-10-01

    Full Text Available Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC. Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability – the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

  10. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  11. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  12. Dendritic cell-based immunotherapy induces transient clinical response in advanced rat fibrosarcoma - comparison with preventive anti-tumour vaccination

    Czech Academy of Sciences Publication Activity Database

    Kučera, A.; Pýcha, K.; Pajer, Petr; Špíšek, R.; Škába, R.

    2009-01-01

    Roč. 55, č. 4 (2009), s. 119-125 ISSN 0015-5500 Institutional research plan: CEZ:AV0Z50520514 Keywords : dendritic cells * immunotherapy * cancer immunotherapy * chemotherapy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.924, year: 2009

  13. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  14. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    Science.gov (United States)

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  15. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  16. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  17. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  18. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  19. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice.

    Science.gov (United States)

    Chen, Yulin; Wu, Jie; Wang, Jiajia; Zhang, Wenjing; Xu, Bohui; Xu, Xiaojun; Zong, Li

    2018-03-15

    The intestinal immune system is an ideal target to induce immune tolerance physiologically. However, the efficiency of oral protein antigen delivery is limited by degradation of the antigen in the gastrointestinal tract and poor uptake by antigen-presenting cells. Gut dendritic cells (DCs) are professional antigen-presenting cells that are prone to inducing antigen-specific immune tolerance. In this study, we delivered the antigen heat shock protein 65-6×P277 (H6P) directly to the gut DCs of NOD mice through oral vaccination with H6P-loaded targeting nanoparticles (NPs), and investigated the ability of this antigen to induce immune tolerance to prevent autoimmune diabetes in NOD mice. A targeting NP delivery system was developed to encapsulate H6P, and the ability of this system to protect and facilitate H6P delivery to gut DCs was assessed. NOD mice were immunised with H6P-loaded targeting NPs orally once a week for 7 weeks and the onset of diabetes was assessed by monitoring blood glucose levels. H6P-loaded targeting NPs protected the encapsulated H6P from degradation in the gastrointestinal tract environment and significantly increased the uptake of H6P by DCs in the gut Peyer's patches (4.1 times higher uptake compared with the control H6P solution group). Oral vaccination with H6P-loaded targeting NPs induced antigen-specific T cell tolerance and prevented diabetes in 100% of NOD mice. Immune deviation (T helper [Th]1 to Th2) and CD4 + CD25 + FOXP3 + regulatory T cells were found to participate in the induction of immune tolerance. In this study, we successfully induced antigen-specific T cell tolerance and prevented the onset of diabetes in NOD mice. To our knowledge, this is the first attempt at delivering antigen to gut DCs using targeting NPs to induce T cell tolerance.

  20. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  1. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    LENUS (Irish Health Repository)

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  2. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  3. Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels--a preliminary study.

    Science.gov (United States)

    Ram, Jeffrey L; Purohit, Sonal; Newby, Bi-Min Zhang; Cutright, Teresa J

    2012-01-01

    The effectiveness of zosteric acid, a natural antifoulant from the marine seagrass Zostera marina, in preventing the attachment of quagga mussels, a biofouling bivalve, was investigated. Animals were exposed to water containing zosteric acid ranging from 0 to 1000 ppm, and their attachment to the container glass walls was tracked with time. 500 ppm zosteric acid was not effective at detaching animals that had already attached, but was able to prevent the attachment of most unattached animals for two days. The anti-fouling effect increased with higher concentration. Low concentrations (250 ppm and below) were not effective at preventing attachment; however, 1000 ppm zosteric acid prevented attachment of mussels for the first three days of zosteric acid exposure, and only 20% of the mussels were attached by day 4. In contrast, animals in control (no zosteric acid) solutions began to attach within one day. In conclusion, zosteric acid is an effective natural product deterrent of attachment of a biofouling bivalve.

  4. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  5. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  6. [Acetylsalicylic acid in primary prevention of cardiovascular events; literature study

    NARCIS (Netherlands)

    Bredie, S.J.H.; Wollersheim, H.C.H.; Verheugt, F.W.A.; Thien, Th.

    2002-01-01

    OBJECTIVE: To evaluate literature data on the use of acetylsalicylic acid (ASA) as a primary prevention measure for cardiovascular events. DESIGN: Literature search. METHOD: Using Medline, all randomised placebo-controlled trials of ASA published between 1985 and 1 May 2001, and which used

  7. RIG-I Helicase-Independent Pathway in Sendai Virus-Activated Dendritic Cells Is Critical for Preventing Lung Metastasis of AT6.3 Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Tomonori Kato

    2010-11-01

    Full Text Available We recently demonstrated highly efficient antitumor immunity against dermal tumors of B16F10 murine melanoma with the use of dendritic cells (DCs activated by replication-competent, as well as nontransmissible-type, recombinant Sendai viruses (rSeV, and proposed a new concept, “immunostimulatory virotherapy,” for cancer immunotherapy. However, there has been little information on the efficacies of thismethod: 1 inmore clinically relevant situations including metastatic diseases, 2 on other tumor types and other animal species, and 3 on the related molecular/cellular mechanisms. In this study, therefore, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV on a rat model of lung metastasis using a highly malignant subline of Dunning R-3327 prostate cancer, AT6.3. rSeV/dF-green fluorescent protein (GFP-activated bone marrow-derived DCs (rSeV/dF-GFP-DC, consistent with results previously observed in murine DCs. Vaccination of rSeV/dF-GFP-DC was highly effective at preventing lung metastasis after intravenous loading of R-3327 tumor cells, compared with the effects observed with immature DCs or lipopolysaccharide-activated DCs. Interestingly, neither CTL activity nor DC trafficking showed any apparent difference among groups. Notably, rSeV/dF-DCs expressing a dominant-negative mutant of retinoic acid-inducible gene I (RIG-I (rSeV/dF-RIGIC-DC, an RNA helicase that recognizes the rSeV genome for inducing type I interferons, largely lost the expression of proinflammatory cytokines without any impairment of antitumor activity. These results indicate the essential role of RIG-I-independent signaling on antimetastatic effect induced by rSeV-activated DCs and may provide important insights to DC-based immunotherapy for advanced malignancies.

  8. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  9. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  10. Nutrient-dependent increased dendritic arborization of somatosensory neurons.

    Science.gov (United States)

    Watanabe, Kaori; Furumizo, Yuki; Usui, Tadao; Hattori, Yukako; Uemura, Tadashi

    2017-01-01

    Suboptimal nutrition imposes developmental constraints on infant animals, which marshal adaptive responses to eventually become mature adults. Such responses are mounted at multiple levels from systemic to cellular. At the cellular level, the underlying mechanisms of cell proliferation control have been intensively studied. However, less is known about how growth of postmitotic and morphologically complex cells, such as neurons, is controlled by nutritional status. We address this question using Class I and Class IV dendritic arborization neurons in Drosophila larvae. Class IV neurons have been shown to sense nociceptive thermal, mechanical and light stimuli, whereas Class I neurons are proprioceptors. We reared larvae on diets with different protein and carbohydrate content throughout larval stages and examined how morphologies of Class I or Class IV neurons were affected. Dendritic arbors of Class IV neurons became more complex when larvae were reared on a low-yeast diet, which contains lower amounts of amino acids and other ingredients, compared to a high-yeast diet. In contrast, such low-yeast-dependent hyperarborization was not seen in Class I neurons. The physiological and metabolic implications of the hyperarborization phenotype are discussed in relation to a recent hypothesis that Class IV neurons sense protein-deficient stress and to our characterization of how the dietary yeast contents impacted larval metabolism. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  12. Thermosolutal convection and macrosegregation in dendritic alloys

    Science.gov (United States)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  13. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  14. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  15. Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.

    Science.gov (United States)

    De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico

    2012-01-01

    To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  16. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    Science.gov (United States)

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable

  17. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    Science.gov (United States)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  18. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    Science.gov (United States)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  19. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  20. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  1. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  2. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  3. CO2-switchable fluorescence of a dendritic polymer and its applications

    Science.gov (United States)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the

  4. A portrait of a sucker using landscape genetics: how colonization and life history undermine the idealized dendritic metapopulation.

    Science.gov (United States)

    Salisbury, Sarah J; McCracken, Gregory R; Keefe, Donald; Perry, Robert; Ruzzante, Daniel E

    2016-09-01

    Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration-drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T-Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature. © 2016 John Wiley & Sons Ltd.

  5. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  6. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  7. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules

    International Nuclear Information System (INIS)

    Fu, Jiajia; Ye, Weichun; Wang, Chunming

    2013-01-01

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH 3 ) 2 ]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10 −12 M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10 −12 M

  8. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    Science.gov (United States)

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  9. Large and Small Dendritic Spines Serve Different Interacting Functions in Hippocampal Synaptic Plasticity and Homeostasis

    Directory of Open Access Journals (Sweden)

    Joshua J. W. Paulin

    2016-01-01

    Full Text Available The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca2+ influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.

  10. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    Science.gov (United States)

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dendrite tungsten liquation in molybdenum alloys

    International Nuclear Information System (INIS)

    Kantor, M.M.; Ageeva, E.N.; Kolotinskij, V.N.

    1992-01-01

    A study was made on primary crystallization structure of ingots of Mo-W-B system alloys with electron microscopy were used to establish, that cells and cellular dendrites were the main elements of primary crystallization structure. Method of local X-ray spectral analysis enabled to establish, that intracrystallite liquation at cellular growth developed more intensively, as compared to the case of cellular dendrite formation. Change of boron content in alloys didn't practically affect the degree of development of intracrystallite W liquation in Mo

  12. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    Science.gov (United States)

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  13. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  14. Lack of retinoic acid leads to increased langerin-expressing dendritic cells in gut-associated lymphoid tissues.

    Science.gov (United States)

    Chang, Sun-Young; Cha, Hye-Ran; Chang, Jae-Hoon; Ko, Hyun-Jeong; Yang, Hyungjun; Malissen, Bernard; Iwata, Makoto; Kweon, Mi-Na

    2010-04-01

    Retinoic acid (RA) is a crucial factor for maintaining homeostasis in the gut, including lymphocyte homing, immunoglobulin (Ig) A production, and T regulatory cells (Treg) and T helper cell 17 (T(H)17) generation. Until now, most attention has focused on the function of dendritic cells (DCs) to initiate adaptive immunity including T and B lymphocytes through RA. To investigate the effects of RA on DCs of gut-associated lymphoid tissue (GALT), we analyzed the phenotype and function of DC subsets from GALT of vitamin A-deficient (VAD) mice. VAD mice were prepared by feeding them a VAD diet over 12 weeks from gestational days 10-14. Here, we report that tremendous increase of langerin(+) DCs occurred in the mesenteric lymph nodes (MLNs) and gut lamina propria of VAD mice dependent on CCR7 signaling. Langerin(+) DCs have phenotypes more similar to those of bone marrow-derived dermal langerin(+) DCs than epidermal Langerhans cells. Moreover, RA receptor antagonists enhance the differentiation of langerin(+) DCs from mouse and human precursors of bone marrow and peripheral blood. Langerin(+) DCs were highly differentiated but less inflammatory than langerin(-) DCs of MLNs of VAD mice. Moreover, tolerance to orally delivered antigen was completely abrogated by depletion of langerin(+) DCs in the VAD mice. These results suggest that generation of langerin(+) DCs in the GALT is tightly regulated by RA and that the microenvironment of tissues determines the phenotype of DCs. 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  16. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    Science.gov (United States)

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  17. Soft-template synthesis of single-crystalline CdS dendrites.

    Science.gov (United States)

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  18. Application of the novel mill tailings agglomeration technology for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Amaratunga, L.M.

    1994-01-01

    Acid generation and subsequent liberation of heavy metals results from the surface disposal of sulfide mineral bearing mill tailings. Most Canadian base metals such as Ni, Cu, Zn, and Pb, as well as uranium and precious metal milling operations are producers of reactive mill tailings containing the major sulfide gangue minerals such as pyrite, pyrrhotite and arsenopyrites. A novel disposal technology by cold-bond tailings agglomeration process (CBTA) is currently being developed at Laurentian University. This process has been adapted to prevent acid mine drainage from reactive mill tailings. A preliminary study was undertaken to evaluate the application of the concept of agglomeration of reactive mill tailings using various alkaline binders and incorporating suitable chemical additives. The binders and additives are selected for their effectiveness in the prevention or retardation of the initial chemical and biochemical oxidation reactions of sulfide mineral leading to acid generation. Following a cold-bond, cold curing tailings agglomeration process, various types and dosages of chemical binders and their additives were employed. The additives under investigation were lime, sodium lauryl sulfate, potassium phosphate dibasic, sodium chloride and sodium benzoate. Some of these chemicals are well known acid neutralizers and others are inexpensive anionic surfactants, detergents and fertilizers acting as bactericides. Most of these additives have been reported in the literature as effective chemical agents used in the prevention and control of acid mine drainage from sulfide minerals. The paper also presents a leachate study to investigate the acid generation potential from each batch of reactive tailings agglomerates containing various binders and non-toxic additives

  19. MINE WASTE TECHNOLOGY PROGRAM PREVENTION OF ACID MINE DRAINAGE GENERATION FROM OPEN-PIT HIGHWALLS

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Program Activity III, Project 26, Prevention of Acid Mine Drainage Generation from Open-Pit Highwalls. The intent of this project was to obtain performance data on the ability of four technologies to prevent the gener...

  20. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  1. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  2. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  3. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Science.gov (United States)

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  4. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population.

    Science.gov (United States)

    Zhang, Bin; Liu, Rui; Shi, Dan; Liu, Xingxia; Chen, Yuan; Dou, Xiaowei; Zhu, Xishan; Lu, Chunhua; Liang, Wei; Liao, Lianming; Zenke, Martin; Zhao, Robert C H

    2009-01-01

    Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.

  5. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  6. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  7. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study.

    Science.gov (United States)

    Jarvis, Sarah; Nikolic, Konstantin; Schultz, Simon R

    2018-03-01

    The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron's input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron's gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells-confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain

  8. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  9. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  10. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  11. Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl for ultrasensitive SERS detecting of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiajia; Ye, Weichun [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 73000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 73000 (China)

    2013-08-15

    Symmetric silver dendrites have been synthesized on commercial aluminum foil via galvanic replacement reaction with [Ag(NH{sub 3}){sub 2}]Cl. This process is facile and environmentally friendly, without the use of any templates, surfactants or oxidants, and also avoiding the introduction of fluoride anions as a strong toxicity resulting in hypocalcemia. The products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and X-ray diffraction (XRD). SEM characterizations and electrochemical measurements including an electrochemical direct current polarization method and OCP-t technique demonstrate that chloride has proven to be the key factor to the formation of well-defined dendritic shape. The as-prepared Ag dendrites are developed as a surface-enhanced Raman scattering (SERS)-active platform for detection of folic acid, DNA and RNA with well resolved bands and high Raman intensities. The detection concentration for the three biomolecules reaches the level of 10{sup −12} M, and thus the symmetric silver dendrites can potentially be employed as effective SERS sensors for label-free and ultrasensitive biomolecule detection. - Highlights: • Simple galvanic replacement is used to synthesize Ag dendrites on commercial Al foils. • This method avoids the introduction of fluoride anions. • The as-prepared dendrites exhibit high SERS activities for biomolecules. • The detection concentration for the biomolecules reaches the level of 10{sup −12} M.

  12. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  13. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  14. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  15. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  16. Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation.

    Science.gov (United States)

    Zhang, Ji-Chun; Yao, Wei; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Ushida, Yusuke; Suganuma, Hiroyuki; Hashimoto, Kenji

    2017-01-01

    Inflammation plays a role in the pathophysiology of depression. Sulforaphane (SFN), an isothiocyanate compound derived from broccoli, is a potent activator of the NF-E2-related factor-2 (Nrf2), which plays a role in inflammation. In this study, we examined whether the prevention effects of SFN in lipopolysaccharide (LPS) induced depression-like behavior in mice. Pretreatment with SFN significantly blocked an increase in the serum tumor necrosis factor-α (TNF-α) level and an increase in microglial activation of brain regions after a single administration of LPS (0.5 mg/kg). Furthermore, SFN significantly potentiated increased serum levels of IL-10 after LPS administration. In the tail-suspension test and forced swimming test, SFN significantly attenuated an increase of the immobility time after LPS administration. In addition, SFN significantly recovered to control levels for LPS-induced alterations in the proteins such as brain-derived neurotrophic factor, postsynaptic density protein 95 and AMPA receptor 1 (GluA1) and dendritic spine density in the brain regions. Finally, dietary intake of 0.1% glucoraphanin (a glucosinolate precursor of SFN) food during the juvenile and adolescence could prevent the onset of LPS-induced depression-like behaviors and dendritic spine changes in the brain regions at adulthood. In conclusion, these findings suggest that dietary intake of SFN-rich broccoli sprout has prophylactic effects on inflammation-related depressive symptoms. Therefore, supplementation of SFN-rich broccoli sprout could be prophylactic vegetable to prevent or minimize the relapse by inflammation in the remission state of depressed patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  19. Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice.

    Directory of Open Access Journals (Sweden)

    Gabriel Espinosa-Carrasco

    Full Text Available Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.

  20. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats.

    Science.gov (United States)

    Vidal, Blanca; Vázquez-Roque, Rubén A; Gnecco, Dino; Enríquez, Raúl G; Floran, Benjamin; Díaz, Alfonso; Flores, Gonzalo

    2017-03-01

    Curcuma is a natural compound that has shown neuroprotective properties, and has been reported to prevent aging and improve memory. While the mechanism(s) underlying these effects are unclear, they may be related to increases in neural plasticity. Morphological changes have been reported in neuronal dendrites in the limbic system in animals and elderly humans with cognitive impairment. In this regard, there is a need to use alternative therapies that delay the onset of morphologies and behavioral characteristics of aging. Therefore, the objective of this study was to evaluate the effect of curcuma on cognitive processes and dendritic morphology of neurons in the prefrontal cortex (PFC), the CA1 and CA3 regions of the dorsal hippocampus, the dentate gyrus, and the basolateral amygdala (BLA) of aged rats. 18-month-old rats were administered curcuma (100 mg/kg) daily for 60 days. After treatment, recognition memory was assessed using the novel object recognition test. Curcuma-treated rats showed a significant increase in the exploration quotient. Dendritic morphology was assessed by Golgi-Cox staining and followed by Sholl analysis. Curcuma-treated rats showed a significant increase in dendritic spine density and dendritic length in pyramidal neurons of the PFC, the CA1 and CA3, and the BLA. The preservation of dendritic morphology was positively correlated with cognitive improvements. Our results suggest that curcuma induces modification of dendritic morphology in the aforementioned regions. These changes may explain how curcuma slows the aging process that has already begun in these animals, preventing deterioration in neuronal morphology of the limbic system and recognition memory. © 2016 Wiley Periodicals, Inc.

  1. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  2. Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Abeta.

    Science.gov (United States)

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Garcia-Osta, Ana

    2011-06-01

    Aberrations in protein folding, processing, and/or degradation are common features of neurodegenerative diseases, such as Alzheimer's disease (AD). Sodium 4-phenylbutyrate (PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. PBA acts as a chemical chaperone reducing the load of mutant or unfolded proteins during cellular stress. Previously, we reported that 5-week administration of PBA reinstated memory loss and dendritic spine densities in the Tg2576 mouse model of AD. In this study we reported that chronic administration of PBA, starting before the onset of disease symptoms (6 month-old) prevents age-related memory deficits in Tg2576 mice. The amelioration of the memory impairment is associated to a decrease in amyloid beta pathology and the glial fibrillary acidic protein (GFAP), suggesting that inflammation was reduced in PBA-treated animals. Together, the beneficial effects of PBA make it a promising agent for the prevention of AD.

  3. K-Cl Cotransporter 2-mediated Cl- Extrusion Determines Developmental Stage-dependent Impact of Propofol Anesthesia on Dendritic Spines.

    Science.gov (United States)

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia-Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-05-01

    General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  4. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  5. Quantitative Determination of Ceramide Molecular Species in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Samar Al Makdessi

    2016-09-01

    Full Text Available Background/Aims: The activation of acid sphingomyelinase by cellular stress or receptors or the de novo synthesis lead to the formation of ceramide (N-acylsphingosine, which in turn modifies the biophysical properties of cellular membrane and greatly amplifies the intensity of the initial signal. Ceramide, which acts by re-organizing a given signalosome rather than being a second messenger, has many functions in infection biology, cancer, cardiovascular syndromes, and immune regulation. Experimental studies on the infection of human cells with different bacterial agents demonstrated the activation of the acid sphingomyelinase/ceramide system. Moreover, the release of ceramide was found to be a requisite for the uptake of the pathogen. Considering the particular importance of the cellular role of ceramide, it was necessary to develop sensitive and accurate methods for its quantification. Methods: Here, we describe a method quantifying ceramide in dendritic cells and defining the different fatty acids (FA bound to sphingosine. The main steps of the method include extraction of total lipids, separation of the ceramide by thin-layer chromatography, derivatization of ceramide-fatty acids (Cer-FA, and quantitation of these acids in their methyl form by gas chromatography on polar capillary columns. The identification of FA was achieved by means of known standards and confirmed by mass spectrometry. Results: FA ranging between C10 and C24 could be detected and quantified. The concentration of the sum of Cer-FA amounted to 14.88 ± 8.98 nmol/106 cells (n=10. Oleic acid, which accounted for approximately half of Cer-FA (7.73 ± 6.52 nmol/106 cells was the predominant fatty acid followed by palmitic acid (3.47 ± 1.54 nmol/106 cells. Conclusion: This highly sensitive method allows the quantification of different molecular species of ceramides.

  6. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    Science.gov (United States)

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  7. Ascorbic acid supplementation partially prevents the delayed reproductive development in juvenile male rats exposed to rosuvastatin since prepuberty.

    Science.gov (United States)

    Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Sanabria, Marciana; Dias, Ana Flávia Mota Gonçalves; Silva, Patrícia Villela E; Martins Junior, Airton da Cunha; Barbosa Junior, Fernando; Kempinas, Wilma De Grava

    2017-10-01

    Dyslipidemias are occurring earlier in the population due to the increase of obesity and bad eating habits. Rosuvastatin inhibits the enzyme HMG-CoA reductase, decreasing total cholesterol. Ascorbic acid is an important antioxidant compound for male reproductive system. This study aimed to evaluate whether ascorbic acid supplementation may prevent the reproductive damage provoked by rosuvastatin administration at prepuberty. Male pups were distributed into six experimental groups that received saline solution 0.9%, 3 or 10mg/kg/day of rosuvastatin, 150mg/day of ascorbic acid, or 150mg/day of ascorbic acid associated with 3 or 10mg/kg/day of rosuvastatin from post-natal day (PND) 23 until PND53. Rosuvastatin-treated groups showed delayed puberty installation, androgen depletion and impairment on testicular and epididymal morphology. Ascorbic acid partially prevented these reproductive damages. In conclusion, rosuvastatin exposure is a probable risk to reproductive development and ascorbic acid supplementation may be useful to prevent the reproductive impairment of rosuvastatin exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  9. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  10. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  11. Once-yearly zoledronic acid in hip fracture prevention

    Science.gov (United States)

    Demontiero, Oddom; Duque, Gustavo

    2009-01-01

    Osteoporosis is an escalating global problem. Hip fractures, the most catastrophic complication of osteoporosis, continue to cause significant mortality and morbidity despite increasing availability of effective preventative agents. Among these agents, oral bisphosphonates have been the first choice for the treatment and prevention of osteoporotic fractures. However, the use of oral bisphosphonates, especially in the older population, has been limited by their side effects and method of administration thus compromising their persistent use. The resultant low adherence by patients has undermined their full potential and has been associated with an increase in the incidence of fragility fractures. Recently, annual intravenous zoledronic acid (ZOL) has been approved for osteoporosis. Randomized controlled trials have demonstrated ZOL to be safe, have good tolerability and produce significant effect on bone mass and microarchitecture. Adherence has also been shown to be better with ZOL. Furthermore two large trials firmly demonstrated significant anti-osteoporotic effect (∼59% relative risk reduction of hip fractures) and mortality benefit (28% reduction in mortality) of ZOL in older persons with recent hip fractures. In this review, we report the current evidence on the use of ZOL for the prevention of hip fractures in the elderly. We also report the pharmacological characteristics and the advantages and disadvantages of ZOL in this particular group. PMID:19503777

  12. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  13. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  14. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Amezketa, E.; Aragues, R.; Gazol, R. [Gobierno Navarra, Pamplona (Spain). Agricultural Resources Evaluation Center

    2005-06-01

    We evaluated the efficiency of four amendments (sulfuric acid, mined-gypsum, and the by-products coal-gypsum and lacto-gypsum) in crusting prevention of two calcareous nonsodic and sodic soils and in sodic soil reclamation. Treatments for crust prevention consisted of surface-applied amendments at equivalent rates of 5 Mg pure-gypsum ha{sup -1}. Treatments for sodic soil reclamation consisted of surface-applied acid and soil-incorporated gypsums at rates of 1 pure-gypsum requirement. The efficiency of these amendments was evaluated by comparing the final infiltration rates (FIR) of the amended vs. the nonamended soils measured in disturbed-soil columns pounded with low-salinity irrigation water. Electrical conductivity (EC) and Na in the leachates of the sodic soil were measured. In the crusting prevention experiment, FIRs (mm h{sup -1) of the nonsodic soil were 21 (nonamended), 33 to 35 (gypsum materials), and 53 (sulfuric acid), whereas those for the sodic soil were 0 (nonamended), 9 (lacto-gypsum), 15 to 17 (coal- and mined-gypsum), and 21 (sulfuric acid). In the sodic-soil reclamation experiment, FIRs were 0 (nonamended), 8 to 9 (gypsum-materials), and 17 (sulfuric acid) mm h{sup -1}. All amendments were effective in crusting prevention and soil reclamation, but sulfuric acid was the most efficient due to the fastest EC and Na reductions in the leachates. The three gypsum-materials were equally effective in the reclamation process and in the nonsodic soil crusting-prevention, whereas lacto-gypsum was less efficient in the sodic-soil crusting-prevention.

  15. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  16. Development of non-dendritic microstructures in AA6061 cast billets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-D.; Chadwick, T.A.; Bryant, J.D. [Reynolds Metals Co., Chester, VA (United States)

    2000-07-01

    Non-dendritic structures have been shown to have many advantages over conventional, dendritic structures in castable aluminum alloys. Examples include high structural integrity, reduced porosity, excellent formability and enhanced near net-shape forming capability. Non-dendritic materials are characterized by an equiaxed, globularized grain structure. Previous work has focused on the application of these structures in traditional casting alloys such as A356 and A357, and on the processing of these alloys during semi-solid forming and squeeze casting. There is considerably less information on the impact of non-dendritic microstructures upon solid state deformation, and the use of such microstructures in the processing of traditional wrought aluminum alloys. In this paper, we will present our recent work in casting non-dendritic AA6061 alloy using different techniques, and discuss the effects of cast structure on deformation behavior during solid state processing at elevated temperatures. Cast microstructures were modified during direct chill casting using three different methods: magneto-hydrodynamic (MHD) agitation, mechanical stirring, and high loadings of grain refiner. A detailed microstructure characterization will be presented and discussed in terms of structural integrity, grain morphology, and their effects on deformation in the solid state. (orig.)

  17. Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    DEFF Research Database (Denmark)

    Kikionis, Stefanos; Ioannou, Efstathia; Andren, Oliver C.J.

    2017-01-01

    unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent...... nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture....

  18. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  19. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]. Keywords: Primary neurons, Dendritic signal processing, AC signal propagation, Voltage attenuation analysis

  20. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  1. Apparatus for growing a dendritic web

    International Nuclear Information System (INIS)

    Duncan, C.S.; Mchugh, J.P.; Piotrowski, P.A.; Skutch, M.E.

    1983-01-01

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn

  2. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  3. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  4. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  5. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.

    Science.gov (United States)

    Efimova, Nadia; Korobova, Farida; Stankewich, Michael C; Moberly, Andrew H; Stolz, Donna B; Wang, Junling; Kashina, Anna; Ma, Minghong; Svitkina, Tatyana

    2017-07-05

    Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that βIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that βIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of βIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by βIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in βIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, βIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding βIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking βIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration. SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal

  6. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    Science.gov (United States)

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  7. Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Hoffman, Jay R; Cohen, Hadas; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2016-12-01

    This study examined the effect of endurance exercise on dendritic arborization in the dentate gyrus subregion in rodents exposed to a predator scent stress (PSS). Sprague-Dawley rats were randomly assigned to one of four treatment groups. In two of the groups, rats were unexposed to PSS but either remained sedentary (SED + UNEXP) or were exercised (EX + UNEXP). In the other two groups, rats were exposed to the PSS but either remained sedentary (SED + PSS) or were exercised (EX + PSS). After 6 wk of either exercise or sedentary lifestyle, rats were exposed to either the PSS or a sham protocol. During exercise, the animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. Eight days after exposure to either PSS or sham protocol, changes in the cytoarchitecture (dendritic number, dendritic length, and dendrite spine density) of the dentate gyrus subregion of the hippocampus were assessed. No differences (P = 0.493) were noted in dendritic number between the groups. However, dendritic length and dendrite spine density for SED + PSS was significantly smaller (P animals in SED + PSS had significantly fewer (P stress. This provides further evidence for supporting the inclusion of an exercise regimen for reducing the risk of posttraumatic stress disorder.

  8. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-01-01

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  9. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin

    2017-03-16

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  10. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  11. Ibuprofen-conjugated hyaluronate/polygalacturonic acid hydrogel for the prevention of epidural fibrosis.

    Science.gov (United States)

    Lin, Cheng-Yi; Peng, Hsiu-Hui; Chen, Mei-Hsiu; Sun, Jui-Sheng; Chang, Chih-Ju; Liu, Tse-Ying; Chen, Ming-Hong

    2016-05-01

    The formation of fibrous tissue is part of the natural healing response following a laminectomy. Severe scar tissue adhesion, known as epidural fibrosis, is a common cause of failed back surgery syndrome. In this study, by combining the advantages of drug treatment with a physical barrier, an ibuprofen-conjugated crosslinkable polygalacturonic acid and hyaluronic acid hydrogel was developed for epidural fibrosis prevention. Conjugation was confirmed and measured by 1D(1)H NMR spectroscopy.In vitroanalysis showed that the ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel showed low cytotoxicity. In addition, the conjugated ibuprofen decreased prostaglandin E2production of the lipopolysaccharide-induced RAW264.7 cells. Histological data inin vivostudies indicated that the scar tissue adhesion of laminectomized male adult rats was reduced by the application of our ibuprofen-conjugated polygalacturonic acid-hyaluronic acid hydrogel. Its use also reduced the population of giant cells and collagen deposition of scar tissue without inducing extensive cell recruitment. The results of this study therefore suggest that the local delivery of ibuprofenviaa polygalacturonic acid-hyaluronic acid-based hydrogel reduces the possibility of epidural fibrosis. © The Author(s) 2016.

  12. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  13. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  14. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  15. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  16. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Science.gov (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  17. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  18. Calcium transient prevalence across the dendritic arbour predicts place field properties.

    Science.gov (United States)

    Sheffield, Mark E J; Dombeck, Daniel A

    2015-01-08

    Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.

  19. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  20. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    Science.gov (United States)

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  1. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability

    Science.gov (United States)

    He, Yaning; Gu, Xinyu; Guo, Miaocai; Wang, Xiaogong

    2008-09-01

    A series of dendritic azobenzene-containing compounds have been synthesized as a new type amorphous molecular material, which can show quick surface-relief-grating (SRG) formation ability upon light irradiation. For the synthesis, the dendritic precursor tris(2-(ethyl(phenyl)amino)ethyl)benzene-1,3,5-tricarboxylate and tris(3,5-bis(2-(ethyl(phenyl)amino)ethoxy)benzyl)benzene-1,3,5-tricarboxylate were prepared by esterification reactions between 1,3,5-benzenetricarbonyl chloride and N-ethyl- N-hydroxyethyl-aniline and 3,5-bis[2-( N-ethylanilino)ethoxy] benzylalcohol. The precursors were, respectively reacted with the diazonium salts of 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to introduce different types of donor-acceptor azo chromophores at the peripheral positions. The structure and properties of the dendritic azo compounds were characterized by the spectroscopic methods and thermal analysis. The surface-relief-grating (SRG) formation behavior of the dendritic azo compounds was studied by exposing the spin-coated thin films to an interference pattern of laser beams (532 nm) at modest intensity (100 mW/cm 2). The results show that the azo compounds can form stable amorphous glasses in a broad temperature range. The glass transition temperatures ( Tgs) depend on the backbone structures and the type of the peripheral azo chromophors. The type of the electron withdrawing groups in the p-positions of the terminal azobenzene units shows a significant influence on the SRG inscription rate. For the compounds containing the same type azo chromophores, the SRG inscription rate is also affected by the backbone structure.

  2. REMOD: a computational tool for remodeling neuronal dendrites

    Directory of Open Access Journals (Sweden)

    Panagiotis Bozelos

    2014-05-01

    Full Text Available In recent years, several modeling studies have indicated that dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations not only in various neuropathological conditions, but in physiological, too. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between structure and function remains largely elusive. The lack of a systematic approach for remodeling neuronal cells and their dendritic trees is a key limitation that contributes to this problem. In this context, we developed a computational tool that allows the remodeling of any type of neurons, given a set of exemplar morphologies. The tool is written in Python and provides a simple GUI that guides the user through various options to manipulate selected neuronal morphologies. It provides the ability to load one or more morphology files (.swc or .hoc and choose specific dendrites to operate one of the following actions: shrink, remove, extend or branch (as shown in Figure 1. The user retains complete control over the extent of each alteration and if a chosen action is not possible due to pre-existing structural constraints, appropriate warnings are produced. Importantly, the tool can also be used to extract morphology statistics for one or multiple morphologies, including features such as the total dendritic length, path length to the root, branch order, diameter tapering, etc. Finally, an experimental utility enables the user to remodel entire dendritic trees based on preloaded statistics from a database of cell-type specific neuronal morphologies. To our knowledge, this is the first tool that allows (a the remodeling of existing –as opposed to the de novo

  3. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2017-11-01

    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  4. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2018-03-01

    A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.

  5. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  6. Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron.

    Science.gov (United States)

    O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M

    2017-12-15

    The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons.

    Science.gov (United States)

    Judas, M; Sedmak, G; Rados, M; Sarnavka, V; Fumić, K; Willer, T; Gross, C; Hehr, U; Strahl, S; Cuk, M; Barić, I

    2009-02-01

    We have analyzed the morphology and dendritic development of neocortical neurons in a 2.5-month-old infant with Walker-Warburg syndrome homozygotic for a novel POMT1 gene mutation, by Golgi methods. We found that pyramidal neurons frequently displayed abnormal (oblique, horizontal, or inverted) orientation. A novel finding of this study is that members of the same population of pyramidal neurons display different stages of development of their dendritic arborizations: some neurons had poorly developed dendrites and thus resembled pyramidal neurons of the late fetal cortex; for some neurons, the level of differentiation corresponded to that in the newborn cortex; finally, some neurons had quite elaborate dendritic trees as expected for the cortex of 2.5-month-old infant. In addition, apical dendrites of many pyramidal neurons were conspiciously bent to one side, irrespective to the general orientation of the pyramidal neuron. These findings suggest that Walker-Warburg lissencephaly is characterized by two hitherto unnoticed pathogenetic changes in the cerebral cortex: (a) heterochronic decoupling of dendritic maturation within the same neuronal population (with some members significantly lagging behind the normal maturational schedule) and (b) anisotropically distorted shaping of dendritic trees, probably caused by patchy displacement of molecular guidance cues for dendrites in the malformed cortex. Copyright Georg Thieme Verlag KG Stuttgart New York.

  8. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  9. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  10. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  11. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  12. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  13. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    Science.gov (United States)

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  14. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    Science.gov (United States)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  15. Total prevention of folic acid-preventable spina bifida and anencephaly would reduce child mortality in India: Implications in achieving Target 3.2 of the Sustainable Development Goals.

    Science.gov (United States)

    Kancherla, Vijaya; Oakley, Godfrey P

    2018-03-15

    The potential to reduce child mortality by preventing folic acid-preventable spina bifida and anencephaly (FAP SBA) is inadequately appreciated. To quantify possible reduction in FAP SBA-associated child mortality in low- and middle-income countries, we conducted an analysis to demonstrate in India, a country with more than 25 million births and 1.2 million under-five deaths each year, the decrease in neonatal, infant, and under-five mortality that would occur through total prevention of FAP SBA. We estimated the percent reductions in neonatal, infant, and under-five mortality that would have occurred in India in 2015 had all of FAP SBA been prevented. We also estimated the contributions of these reductions toward India's Sustainable Development Goals on child mortality indicators. We considered the overall prevalence of spina bifida and anencephaly in India as 5 per 1,000 live births, of which 90% were preventable with effective folic acid intervention. In the year 2015, folic acid interventions would have prevented about 116,070 cases of FAP SBA and 101,565 under-five deaths associated with FAP SBA. Prevention of FAP SBA would have reduced annually, neonatal, infant, and under-five mortality by 10.2%, 8.9%, and 8.3%, respectively. These reductions would have contributed 18.5% and 17.2% to the reductions in neonatal and under-five mortality, respectively, needed by India to achieve its 2030 Sustainable Developmental Goal Target 3.2 addressing preventable child mortality. Total prevention of FAP SBA clearly has a significant potential for immediate reductions in neonatal, infant, and under-five mortality in India, and similarly other countries. © 2017 Wiley Periodicals, Inc.

  16. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Kinoshita, Manabu; Shinomiya, Nariyoshi; Hiroi, Sadayuki; Sugasawa, Hidekazu; Majima, Takashi; Seki, Shuhji; Matsushita, Yoshitaro; Saitoh, Daizoh

    2010-01-01

    While bone marrow or stem cell transplantation can rescue bone marrow aplasia in patients accidentally exposed to a lethal radiation dose, radiation-induced irreversible gastrointestinal damage (GI syndrome) is fatal. We investigated the effects of ascorbic acid on radiation-induced GI syndrome in mice. Ascorbic acid (150 mg/kg/day) was orally administered to mice for 3 days, and then the mice underwent whole body irradiation (WBI). Bone marrow transplantation (BMT) 24 h after irradiation rescued mice receiving a WBI dose of less than 12 Gy. No mice receiving 14 Gy-WBI survived, because of radiation-induced GI syndrome, even if they received BMT. However, pretreatment with ascorbic acid significantly suppressed radiation-induced DNA damage in the crypt cells and prevented denudation of intestinal mucosa; therefore, ascorbic acid in combination with BMT rescued mice after 14 Gy-WBI. DNA microarray analysis demonstrated that irradiation up-regulated expressions of apoptosis-related genes in the small intestine, including those related to the caspase-9-mediated intrinsic pathway as well as the caspase-8-mediated extrinsic pathway, and down-regulated expressions of these genes in ascorbic acid-pretreated mice. Thus, pretreatment with ascorbic acid may effectively prevent radiation-induced GI syndrome. (author)

  17. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  18. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Julio Aliberti

    2016-01-01

    Full Text Available Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn’s disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions.

  19. Prevention of Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae Using a Fatty Acid-Based Formulation

    Directory of Open Access Journals (Sweden)

    Colin P. Churchward

    2017-07-01

    Full Text Available Ophthalmia neonatorum, also called neonatal conjunctivitis, acquired during delivery can occur in the first 28 days of life. Commonly caused by the bacterial pathogen Neisseria gonorrhoeae, infection can lead to corneal scarring, perforation of the eye, and blindness. One approach that can be taken to prevent the disease is the use of an ophthalmic prophylaxis, which kills the bacteria on the surface of the eye shortly after birth. Current prophylaxes are based on antibiotic ointments. However, N. gonorrhoeae is resistant to many antibiotics and alternative treatments must be developed before the condition becomes untreatable. This study focused on developing a fatty acid-based prophylaxis. For this, 37 fatty acids or fatty acid derivatives were screened in vitro for fast antigonococcal activity. Seven candidates were identified as bactericidal at 1 mM. These seven were subjected to irritation testing using three separate methods: the bovine corneal opacity and permeability (BCOP test; the hen’s egg test—chorioallantoic membrane (HET-CAM; and the red blood cell (RBC lysis assay. The candidates were also tested in artificial tear fluid to determine whether they were effective in this environment. Four of the candidates remained effective. Among these, two lead candidates, monocaprin and myristoleic acid, displayed the best potential as active compounds in the development of a fatty acid-based prophylaxis for prevention of ophthalmia neonatorum.

  20. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons

    DEFF Research Database (Denmark)

    Del Negro, Christopher A; Hayes, John A; Rekling, Jens C

    2011-01-01

    to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We measured Ca(2+) transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca(2+) accumulation frequently precedes inspiratory bursts, particularly at recording...

  1. Preventive and therapeutic effects of tranexamic acid on postpartum bleeding

    Directory of Open Access Journals (Sweden)

    Samaneh Solltani

    2014-12-01

    Full Text Available Postpartum hemorrhage is among the leading causes of maternal mortality throughout the world. Severe blood loss contributes to  the increased blood transfusion risk with its concerned inherent adverse events and therefore increased rate of emergency re-operative interventions such as arterial ligation or hysterectomy. It also can lead to protracted anemia, particularly in low or median income countries. Extended application of antifibrinolytic agents such as tranexamic acid has been customary for long years to stop or reduce blood loss in postpartum period. However, there are not enough reliable evidence to approve the real efficacy of these drugs. In this brief and summary review, we pointed to a few conducted studies. The PubMed was searched for keyword including postpartum hemorrhage, tranexamic acid, cesarean section, vaginal delivery, and blood loss prevention. The articles with language other than English were excluded from our review.  We concluded that more convincing information is needed to determine the precise effects of tranexamic acid, and its benefits against adverse effects.

  2. Effect of Salicylic Acid on Prevention of Chilling Injury of Cherry Tomato (Lycopersicun esculentum cv. Messina(

    Directory of Open Access Journals (Sweden)

    hanifeh seyed hajizadeh

    2018-02-01

    Full Text Available Introduction: Fruits and vegetables play a major role in providing vitamins and minerals that are essential in the metabolism. In addition to providing vitamins and minerals compounds, they are called secondary metabolites. Tomatoes are one of the most vegetables in diets of people around the world. Low temperature stress associated with the production of reactive oxygen species causing damage can occur before or after harvest, farm, transportation, storage and marketing. Today, a greater emphasis is placed on post-harvest storage of agricultural products to increase productivity and make better use of labor resources, worker, energy and money, rather than an increase in production. One of the most promising treatments is the use of salicylic acid for prevention of the frost damage of post-harvest fruits and vegetables with different mechanisms such as increased enzymatic and non-enzymatic antioxidant system activity. Salicylic acid is known as a signal molecule in the induction defense mechanisms in plants. SA is a well-known phenol that can prevent ACO activity that is the direct precursor of ethylene and decreases Reactive Oxygen Species (ROS with increasing enzyme antioxidant activity. Salicylic acid is a natural phenolic compound known as a plant hormone having positive effect on storage life and quality of fruits. This study aimed to investigate the effects of pre- and post-harvest application of salicylic acid on antioxidant properties and quality of tomato and its effect was evaluated on prevention of chilling injury of cherry tomatoes during cold storage. Material and Methods: This research was conducted in a greenhouse of Horticulture Department of University of Maragheh. Treatments were included before harvest at fruit set stage with the control (distilled water and 0.75 mM salicylic acid spraying and after harvest, red ripened fruits were used for treatments control and immersion in 0.75 mM salicylic acid. Then all the treated fruits

  3. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  4. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  5. Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics

    Directory of Open Access Journals (Sweden)

    Valeria Rizzello

    2011-01-01

    Full Text Available A cooperative dialogue between natural killer (NK cells and dendritic cells (DCs has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the killing of transformed or infected cells in the periphery but may also be important for the generation of adaptive immunity. Indeed, it has been shown that NK cells may play a key role in polarizing a Th1 response upon interaction with DCs exposed to microbial products. This regulatory role of DC/NK cross-talk is of particular importance at mucosal surfaces such as the intestine, where the immune system exists in intimate association with commensal bacteria such as lactic acid bacteria (LAB. We here review NK/DC interactions in the presence of gut-derived commensal bacteria and their role in bacterial strain-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response.

  6. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice.

    Science.gov (United States)

    Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M

    2008-09-01

    Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.

  7. Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes.

    Directory of Open Access Journals (Sweden)

    Hervé Lecoeur

    Full Text Available BACKGROUND: After loading with live Leishmania (L amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i long-chain fatty acids (LCFA and cholesterol uptake/transport, (ii LCFA and cholesterol (re-esterification to triacyl-sn-glycerol (TAG and cholesteryl esters (CE, respectively. As these neutral lipids are known to make up the lipid body (LB core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. CONCLUSIONS/SIGNIFICANCE: As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin?

  8. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    Science.gov (United States)

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  9. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2017-07-01

    The effect of n-fold crystal symmetry is investigated for a two-dimensional stable dendritic growth in the presence of a forced convective flow. We consider dendritic growth in a one-component undercooled liquid. The theory is developed for the parabolic solid-liquid surface of dendrite growing at arbitrary growth Péclet numbers keeping in mind small anisotropies of surface energy and growth kinetics. The selection criterion determining the stable growth velocity of the dendritic tip and its stable tip diameter is found on the basis of solvability analysis. The obtained criterion includes previously developed theories of thermally and kinetically controlled dendritic growth with convection for the case of four-fold crystal symmetry. The obtained nonlinear system of equations (representing the selection criterion and undercooling balance) for the determination of dendrite tip velocity and dendrite tip diameter is analytically solved in a parametric form. These exact solutions clearly demonstrate a transition between thermally and kinetically controlled growth regimes. In addition, we show that the dendrites with larger crystal symmetry grow faster than those with smaller symmetry.

  10. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  11. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    Science.gov (United States)

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-11-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.

  12. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization.

    Directory of Open Access Journals (Sweden)

    Marjolein Meijerink

    Full Text Available BACKGROUND: Probiotics can be used to stimulate or regulate epithelial and immune cells of the intestinal mucosa and generate beneficial mucosal immunomodulatory effects. Beneficial effects of specific strains of probiotics have been established in the treatment and prevention of various intestinal disorders, including allergic diseases and diarrhea. However, the precise molecular mechanisms and the strain-dependent factors involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we aimed to identify gene loci in the model probiotic organism Lactobacillus plantarum WCFS1 that modulate the immune response of host dendritic cells. The amounts of IL-10 and IL-12 secreted by dendritic cells (DCs after stimulation with 42 individual L. plantarum strains were measured and correlated with the strain-specific genomic composition using comparative genome hybridisation and the Random Forest algorithm. This in silico "gene-trait matching" approach led to the identification of eight candidate genes in the L. plantarum genome that might modulate the DC cytokine response to L. plantarum. Six of these genes were involved in bacteriocin production or secretion, one encoded a bile salt hydrolase and one encoded a transcription regulator of which the exact function is unknown. Subsequently, gene deletions mutants were constructed in L. plantarum WCFS1 and compared to the wild-type strain in DC stimulation assays. All three bacteriocin mutants as well as the transcription regulator (lp_2991 had the predicted effect on cytokine production confirming their immunomodulatory effect on the DC response to L. plantarum. Transcriptome analysis and qPCR data showed that transcript level of gtcA3, which is predicted to be involved in glycosylation of cell wall teichoic acids, was substantially increased in the lp_2991 deletion mutant (44 and 29 fold respectively. CONCLUSION: Comparative genome hybridization led to the identification of gene loci in L

  13. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Abram DM

    2017-07-01

    Full Text Available Débora Moitinho Abram,1 Luis Gustavo Romani Fernandes,1,2 Antônio Celso Saragossa Ramos Filho,2 Patrícia Ucelli Simioni2–4 1Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil; 2Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil; 3Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP, Campinas, SP, Brazil; 4Department of Biochemistry and Microbiology, Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil Abstract: Diabetes mellitus type 1 (DM1 is an autoimmune disease in which β-cells of the pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting cells, mainly dendritic cells (DCs. It is already known that the regulation of tryptophan pathway in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase (IDO is present in many cells, including DC, and participates in the metabolism of the amino acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune response, which became more evident after the in vitro demonstration of IDO production by DC and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the progression of the immune response that triggers DM1. The initial results obtained are promising and indicate the possibility of developing therapies for the treatment or prevention of the DM1. Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. However, clinical trials are still in the initial phase and a robust group of assays is necessary. Keywords: autoimmunity, immunoregulation, diabetes mellitus type 1, clinical trials, dendritic cells, indoleamine, tryptophan

  14. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrical and Structural Characterization of Web Dendrite Crystals

    Science.gov (United States)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  16. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  17. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond.

    Science.gov (United States)

    Hrvoj-Mihic, Branka; Hanson, Kari L; Lew, Caroline H; Stefanacci, Lisa; Jacobs, Bob; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders

  18. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  19. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  20. Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z.B.; Tian, N. [The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Wei, Y.H. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing (China); The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Zhan, X.H.

    2009-04-15

    A multi-scale model is used to simulate columnar dendritic growth in TIG (tungsten inert-gas) weld molten pool of Al-Cu alloy. The grain morphologies at the edge of the weld pool are studied. The simulated results indicate that the average primary dendrite spacing changes during the solidification process in the weld pool because of the complicated thermal field, solute diffusion field and competitive growth. And it is shown that the secondary dendrite arms grow insufficiently in the space between dendrite trunks if the primary dendrite spacing is small. And the phenomenon has been explained by analyzing the influence of the solute accumulation on the constitutional undercooling and undercooling gradient when there are two different opposite solute diffusion fields. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Ana Hladnik

    2017-04-01

    Full Text Available In this study we have provided a detailed quantitative morphological analysis of medium spiny neurons (MSNs in the mice dorsal striatum and determined the consistency of values among three groups of animals obtained in different set of experiments. Dendritic trees of 162 Golgi Cox (FD Rapid GolgiStain Kit impregnated MSNs from 15 adult C57BL/6 mice were 3-dimensionally reconstructed using Neurolucida software, and parameters of dendritic morphology have been compared among experimental groups. The parameters of length and branching pattern did not show statistically significant difference and were highly consistent among groups. The average neuronal soma surface was between 160 μm2 and 180 μm2, and the cells had 5–6 primary dendrites with close to 40 segments per neuron. Sholl analysis confirmed regular pattern of dendritic branching. The total length of dendrites was around 2100 μm with the average length of individual branching (intermediate segment around 22 μm and for the terminal segment around 100 μm. Even though each experimental group underwent the same strictly defined protocol in tissue preparation and Golgi staining, we found inconsistency in dendritic volume and soma surface. These changes could be methodologically influenced during the Golgi procedure, although without affecting the dendritic length and tree complexity. Since the neuronal activity affects the dendritic thickness, it could not be excluded that observed volume inconsistency was related with functional states of neurons prior to animal sacrifice. Comprehensive analyses of tree complexity and dendritic length provided here could serve as an additional tool for understanding morphological variability in the most numerous neuronal population of the striatum. As reference values they could provide basic ground for comparisons with the results obtained in studies that use various models of genetically modified mice in explaining different pathological conditions that

  2. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  3. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  4. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    OpenAIRE

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the ...

  5. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  6. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  7. Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Matsuoka, Yutaka; Nishi, Daisuke; Yonemoto, Naohiro; Hamazaki, Kei; Matsumura, Kenta; Noguchi, Hiroko; Hashimoto, Kenji; Hamazaki, Tomohito

    2013-01-05

    Preclinical and clinical studies suggest that supplementation with omega-3 fatty acids after trauma might reduce subsequent posttraumatic stress disorder (PTSD). To date, we have shown in an open trial that PTSD symptoms in critically injured patients can be reduced by taking omega-3 fatty acids, hypothesized to stimulate hippocampal neurogenesis. The primary aim of the present randomized controlled trial is to examine the efficacy of omega-3 fatty acid supplementation in the secondary prevention of PTSD following accidental injury, as compared with placebo. This paper describes the rationale and protocol of this trial. The Tachikawa Project for Prevention of Posttraumatic Stress Disorder with Polyunsaturated Fatty Acid (TPOP) is a double-blinded, parallel group, randomized controlled trial to assess whether omega-3 fatty acid supplementation can prevent PTSD symptoms among accident-injured patients consecutively admitted to an intensive care unit. We plan to recruit accident-injured patients and follow them prospectively for 12 weeks. Enrolled patients will be randomized to either the omega-3 fatty acid supplement group (1,470 mg docosahexaenoic acid and 147 mg eicosapentaenoic acid daily) or placebo group. Primary outcome is score on the Clinician-Administered PTSD Scale (CAPS). We will need to randomize 140 injured patients to have 90% power to detect a 10-point difference in mean CAPS scores with omega-3 fatty acid supplementation compared with placebo. Secondary measures are diagnosis of PTSD and major depressive disorder, depressive symptoms, physiologic response in the experiment using script-driven imagery and acoustic stimulation, serum brain-derived neurotrophic factor, health-related quality of life, resilience, and aggression. Analyses will be by intent to treat. The trial was initiated on December 13 2008, with 104 subjects randomized by November 30 2012. This study promises to be the first trial to provide a novel prevention strategy for PTSD among

  8. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  9. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Haydn T Kissick

    Full Text Available The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC's with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.

  10. Dendritic Spines in Depression: What We Learned from Animal Models

    OpenAIRE

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have ...

  11. Clofibric and ethacrynic acids prevent experimental pyelonephritis by Escherichia coli in mice.

    Science.gov (United States)

    Balagué, Claudia E; de Ruiz, Clara Silva; Rey, Rosario; de Duffard, Ana María Evangelista; Nader-Macías, María Elena

    2004-11-01

    Interfering Escherichia coli attachment to the urinary tract, using P-fimbriation inhibitors, can prevent pyelonephritis. Clofibric and ethacrynic acids are organic compounds structurally related, but with different pharmacological uses. These agents are potentially active in the urinary tract due to its elimination in an unaltered form by the renal route. This study described a pyelonephritogenic E. coli strain, grown in the presence of sub-inhibitory concentrations of clofibric or ethacrynic acids (0.1 and 1 mM, respectively), which exhibits inhibition of P1 erythrocytes agglutination and a drastic decrease in fimbriation, using electron microscopy and quantitative analyses of superficial proteins (decrease to a 17-25% in comparison with the control). In vivo assays were performed using ascending urinary tract infection in mice. The treatment with therapeutic doses of the drugs, administered 2 days before the bacterial challenge and daily until the end of the experiment (22 days), abolished renal infection after 7-10 days of drug exposure. Within this period clofibric acid did not produce adverse effects on the renal parenchyma. However, ethacrynic acid caused pyelitis and tubular cellular desquamation. These results suggested that clofibric acid might be useful in the short-term prophylaxis of urinary tract infection.

  12. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  13. Neuron array with plastic synapses and programmable dendrites.

    Science.gov (United States)

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  14. Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time

    Directory of Open Access Journals (Sweden)

    José Francisco eGómez González

    2011-11-01

    Full Text Available It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and superlinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini, 2006;Losonczy, 2006. This led to the conjecture that CA1 pyramidal neurons may only express their nonlinear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm, inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as nonlinear integrative units in all major hippocampal states.

  15. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  16. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  17. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans

    Science.gov (United States)

    Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin

    2017-01-01

    Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540

  18. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  19. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jessica A Pane

    2014-03-01

    Full Text Available It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I

  20. Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells

    Science.gov (United States)

    Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.

    2014-01-01

    It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon

  1. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  2. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  3. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  4. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  5. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster.

    Science.gov (United States)

    Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N

    2017-12-01

    Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.

  6. Advanced dendritic web growth development

    Science.gov (United States)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  7. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    International Nuclear Information System (INIS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-01-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy. (paper)

  8. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    Science.gov (United States)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  9. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Patrycja Konieczna

    Full Text Available Appropriate dendritic cell processing of the microbiota promotes intestinal homeostasis and protects against aberrant inflammatory responses. Mucosal CD103(+ dendritic cells are able to produce retinoic acid from retinal, however their role in vivo and how they are influenced by specific microbial species has been poorly described. Bifidobacterium infantis 35624 (B. infantis feeding to mice resulted in increased numbers of CD103(+retinaldehyde dehydrogenase (RALDH(+ dendritic cells within the lamina propria (LP. Foxp3(+ lymphocytes were also increased in the LP, while TH1 and TH17 subsets were decreased. 3,7-dimethyl-2,6-octadienal (citral treatment of mice blocked the increase in CD103(+RALDH(+ dendritic cells and the decrease in TH1 and TH17 lymphocytes, but not the increase in Foxp3(+ lymphocytes. B. infantis reduced the severity of DSS-induced colitis, associated with decreased TH1 and TH17 cells within the LP. Citral treatment confirmed that these effects were RALDH mediated. RALDH(+ dendritic cells decreased within the LP of control inflamed animals, while RALDH(+ dendritic cells numbers were maintained in the LP of B. infantis-fed mice. Thus, CD103(+RALDH(+ LP dendritic cells are important cellular targets for microbiota-associated effects on mucosal immunoregulation.

  10. Dendritic cells: biology of the skin

    NARCIS (Netherlands)

    Toebak, M.J.; Gibbs, S.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T.

    2009-01-01

    Allergic contact dermatitis results from a T-cell-mediated, delayed-type hypersensitivity immune response induced by allergens. Skin dendritic cells (DCs) play a central role in the initiation of allergic skin responses. Following encounter with an allergen, DCs become activated and undergo

  11. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  12. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  13. Self-referential forces are sufficient to explain different dendritic morphologies

    Directory of Open Access Journals (Sweden)

    Heraldo eMemelli

    2013-01-01

    Full Text Available Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton-Watson process, while the geometry is determined by "homotypic forces" exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry.

  14. Self-referential forces are sufficient to explain different dendritic morphologies

    Science.gov (United States)

    Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James

    2013-01-01

    Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828

  15. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  16. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  18. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    NARCIS (Netherlands)

    Hammink, R.; Mandal, S.; Eggermont, L.J.; Nooteboom, M.; Willems, P.H.G.M.; Tel, J.; Rowan, A.E.; Figdor, C.G.; Blank, K.G.

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we

  19. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  20. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  1. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  2. The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β

    NARCIS (Netherlands)

    A.K. Gloudemans (Anouk); M. Plantinga (Maud); M. Guilliams (Martin); M.A. Willart (Monique); A. Ozir-Fazalalikhan (Arifa); A. van der Ham (Alwin); L. Boon (Louis); N.L. Harris (Nicola); H. Hammad (Hamida); H.C. Hoogsteden (Henk); M. Yazdanbakhsh (Maria); R.W. Hendriks (Rudi); B.N.M. Lambrecht (Bart); H.H. Smits (Hermelijn)

    2013-01-01

    textabstractIt is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing

  3. Paternal deprivation during infancy results in dendrite- and time-specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon degus.

    Science.gov (United States)

    Helmeke, C; Seidel, K; Poeggel, G; Bredy, T W; Abraham, A; Braun, K

    2009-10-20

    The aim of this study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on neuronal and synaptic development in the orbitofrontal cortex, a prefrontal region which is essential for emotional and cognitive function. On the behavioral level the quantitative comparison of parental behaviors in biparental and single-mother families revealed that (i) degu fathers significantly participate in parental care and (ii) single-mothers do not increase their maternal care to compensate the lack of paternal care. On the brain structural level we show in three-week-old father-deprived animals that layer II/III pyramidal neurons in the orbitofrontal cortex displayed significantly lower spine densities on apical and basal dendrites. Whereas biparentally raised animals have reached adult spine density values at postnatal day 21, fatherless animals seem "to catch up" by a delayed increase of spine density until reaching similar values as biparentally raised animals in adulthood. However, in adulthood reduced apical spine numbers together with shorter apical dendrites were observed in father-deprived animals, which indicates that dendritic growth and synapse formation (seen in biparental animals between postnatal day 21 and adulthood) were significantly suppressed. These results demonstrate that paternal deprivation delays and partly suppresses the development of orbitofrontal circuits. The retarded dendritic and synaptic development of the apical dendrites of layer II/III pyramidal neurons in the orbitofrontal cortex of adult fatherless animals may reflect a reduced excitatory connectivity of this cortical subregion.

  4. Langerin-expressing dendritic cells in gut-associated lymphoid tissues.

    Science.gov (United States)

    Chang, Sun-Young; Kweon, Mi-Na

    2010-03-01

    Dendritic cells (DCs) are key regulators of the immune system. They act as professional antigen-presenting cells and are capable of activating naive T cells and stimulating the growth and differentiation of B cells. According to their molecular expression, DCs can be divided into several subsets with different functions. We focus on DC subsets expressing langerin, a C-type lectin. Langerin expression is predominant in skin DCs, but langerin-expressing DCs also exist in mucosal tissue and can be induced by immunization and sometimes by nutrient deficiency. Topical transcutaneous immunization induces langerin(+)CD8 alpha(-) DCs in mesenteric lymph nodes (MLNs), which mediate the production of antigen-specific immunoglobulin A antibody in the intestine. Yet, in one recent study, langerin(+) DCs were generated in gut-associated lymphoid tissue and contributed to the suppressive intestinal immune environment in the absence of retinoic acid. In this review, we focus on the phenotypic and functional characteristics of langerin(+) DCs in the mucosal tissues, especially MLNs.

  5. Peptides and proteins in dendritic assemblies

    NARCIS (Netherlands)

    Baal, van I.

    2007-01-01

    Multiple, simultaneous interactions are often used in biology to enhance the affinity and specificity of binding, an effect referred to as multivalency. This multivalency can be mimicked by anchoring multiple peptides and proteins onto synthetic dendritic scaffolds. The aim of this research was to

  6. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  7. [Quantitative analysis of the structure of neuronal dendritic spines in the striatum using the Leitz-ASM system].

    Science.gov (United States)

    Leontovich, T A; Zvegintseva, E G

    1985-10-01

    Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.

  8. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  9. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  10. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    Science.gov (United States)

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  11. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  12. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica

    2017-04-01

    Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  13. Changes in dendritic architecture: not your "usual suspect" in control of the onset of puberty in male rats.

    Science.gov (United States)

    Hemond, Peter J; O'Boyle, Michael P; Hemond, Zoe; Gay, Vernon L; Suter, Kelly

    2013-01-01

    Until the recent past, the search for the underlying drive for the pubertal increase in gonadotropin-releasing hormone (GnRH) hormone from the GnRH-containing neurons in the hypothalamus was largely focused on extrinsic factors. The most recent evidence however indicates changes in the structure of GnRH neurons themselves may contribute to this fundamental event in development. Based on our studies in males, dendritic architecture is not static from birth until adulthood. Instead, dendrites undergo a dramatic remodeling during the postnatal period which is independent of testosterone and occurs before the pubertal increase in GnRH release. First, the number of dendrites emanating from somata is reduced between infancy and adulthood. Moreover, a dendrite of adult GnRH neurons invariability arises at angle of 180°from the axon as opposed to the extraordinary variability in location during infancy. In fact, in some neurons from infants, no dendrite even resides in the adult location. Thus, there is a spatially selective remodeling of primary dendrites. Secondly, dendrites of GnRH neurons from infants were highly branched prior to assuming the compact morphology of adults. Finally, other morphological aspects of GnRH neurons such as total dendritic length, the numbers of dendrite branches and the lengths of higher order branches were significantly greater in infants than adults, indicating a consolidation of dendritic arbors. Activity in multi-compartment models of GnRH neurons, suggest the impact of structure on neuronal activity is exerted with both active and passive dendrites. Thus, passive properties make a defining contribution to function. Accordingly, changes in morphology alone are likely to have functional consequences for the pattern of activity in GnRH neurons. Our findings suggest structural remodeling of dendrites during the postnatal period likely facilitates repetitive action potentials and thus, GnRH release at the time of puberty.

  14. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  15. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    Science.gov (United States)

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  17. Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: Implication for the treatment of postmenopausal bone loss.

    Directory of Open Access Journals (Sweden)

    Donatella Granchi

    Full Text Available The extracellular acidic milieu in bones results in activation of osteoclasts (OC and inhibition of osteoblasts (OB causing a net loss of calcium from the skeleton and the deterioration of bone microarchitecture. Alkalinization through supplementation with potassium citrate (K citrate has been proposed to limit the osteopenia progression, even though its pharmacological activity in bone microenvironment is not well defined. We evaluated if K citrate was able to prevent the adverse effects that acidic milieu induces on bone cells. OC and OB were maintained in neutral (pH 7.4 versus acidic (pH 6.9 culture medium, and treated with different K citrate concentrations. We evaluated the OC differentiation at seven days, by counting of multinucleated cells expressing tartrate-resistant acid phosphatase, and the activity of mature OC at 14 days, by quantifying of collagen degradation. To evaluate the effects on OB, we analyzed proliferation, mineralization, and expression of bone-related genes. We found that the low pH increased OC differentiation and activity and decreased OB function. The osteoclastogenesis was also promoted by RANKL concentrations ineffective at pH 7.4. Non-cytotoxic K citrate concentrations were not sufficient to steadily neutralize the acidic medium, but a inhibited the osteoclastogenesis, the collagen degradation, and the expression of genes involved in RANKL-mediated OC differentiation, b enhanced OB proliferation and alkaline phosphatase expression, whereas it did not affect the in vitro mineralization, and c were effective also in OC cultures resistant to alendronate, i.e. the positive control of osteoclastogenesis inhibition. In conclusion, K citrate prevents the increase in OC activity induced by the acidic microenvironment, and the effect does not depend exclusively on its alkalizing capacity. These data provide the biological basis for the use of K citrate in preventing the osteopenia progression resulting from low

  18. Prevention by lactic acid bacteria of the oxidation of human LDL.

    Science.gov (United States)

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  19. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  20. Self-organized dendritic patterns in the polymer Langmuir-Blodgett film

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Jun, E-mail: jun_m@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Toshio; Mikayama, Takeshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Aoki, Atsushi [Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Shouwa-ku, Nagoya 466-8555 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan)

    2011-01-03

    We report the formation of a self-organized dendritic pattern of nanometer thickness in polymer Langmuir-Blodgett (LB) films. Poly(N-dodecylacrylamide) (pDDA)/chloroform solution was spread on a water surface to form a stable polymer monolayer. A pDDA monolayer was deposited onto a hydrophilic silicon substrate by upward deposition from a water subphase, and a second layer was then deposited by downward deposition. The substrate with the two layers was withdrawn from a clean water surface at a high speed to form the dendritic pattern, which was imaged by atomic force microscopy. The height of the pattern, 3.5 nm, corresponds to the height of a bilayer pDDA LB film, suggesting that the pattern forms when the deposited outermost layer overturns by meniscus oscillation. A similar dendritic structure of narrower width and lower height was fabricated on a hydrophobic silicon substrate.

  1. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.5–5 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  2. Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films

    International Nuclear Information System (INIS)

    Shantsev, D V; Goa, P E; Barkov, F L; Johansen, T H; Kang, W N; Lee, S I

    2003-01-01

    Magneto-optical imaging was used to study a zero-field-cooled MgB 2 film at 9.6 K where in a slowly increasing field the flux penetrates by an abrupt formation of large dendritic structures. Simultaneously, a gradual flux penetration takes place, eventually covering the dendrites, and a detailed analysis of this process is reported. We find an anomalously high gradient of the flux density across a dendrite branch, and a peak value that decreases as the applied field increases. This unexpected behaviour is reproduced by flux creep simulations based on the non-local field-current relation in the perpendicular geometry. The simulations also provide indirect evidence that flux dendrites are formed at an elevated local temperature, consistent with a thermo-magnetic mechanism of the instability

  3. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    Science.gov (United States)

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  4. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma.

    Science.gov (United States)

    Loveland, Bruce E; Zhao, Anne; White, Shane; Gan, Hui; Hamilton, Kate; Xing, Pei-Xiang; Pietersz, Geoffrey A; Apostolopoulos, Vasso; Vaughan, Hilary; Karanikas, Vaios; Kyriakou, Peter; McKenzie, Ian F C; Mitchell, Paul L R

    2006-02-01

    Tumor antigen-loaded dendritic cells show promise for cancer immunotherapy. This phase I study evaluated immunization with autologous dendritic cells pulsed with mannan-MUC1 fusion protein (MFP) to treat patients with advanced malignancy. Eligible patients had adenocarcinoma expressing MUC1, were of performance status 0 to 1, with no autoimmune disease. Patients underwent leukapheresis to generate dendritic cells by culture ex vivo with granulocyte macrophage colony-stimulating factor and interleukin 4 for 5 days. Dendritic cells were then pulsed overnight with MFP and harvested for reinjection. Patients underwent three cycles of leukapheresis and reinjection at monthly intervals. Patients with clinical benefit were able to continue with dendritic cell-MFP immunotherapy. Ten patients with a range of tumor types were enrolled, with median age of 60 years (range, 33-70 years); eight patients were of performance status 0 and two of performance status 1. Dendritic cell-MFP therapy led to strong T-cell IFNgamma Elispot responses to the vaccine and delayed-type hypersensitivity responses at injection sites in nine patients who completed treatments. Immune responses were sustained at 1 year in monitored patients. Antibody responses were seen in three patients only and were of low titer. Side effects were grade 1 only. Two patients with clearly progressive disease (ovarian and renal carcinoma) at entry were stable after initial therapy and went on to further leukapheresis and dendritic cell-MFP immunotherapy. These two patients have now each completed over 3 years of treatment. Immunization produced T-cell responses in all patients with evidence of tumor stabilization in 2 of the 10 advanced cancer patients treated. These data support further clinical evaluation of this dendritic cell-MFP immunotherapy.

  5. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  6. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  7. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  8. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

    Directory of Open Access Journals (Sweden)

    Jinshan Yu

    2013-01-01

    Full Text Available The silver nanoparticles are synthesized by electrodeposition in ultradilute Ag+ concentration electrolyte under high overpotential. The as prepared Ag nanoparticles, with the sizes ranging from 20 to 30 nm, are arrayed orderly and formed dendritic morphology. The formation of this special dendritic nanoparticle structure can be contributed to the relatively high growth rate and the preferential growth directions along 111 due to the high overpotential, as well as the relative small number of Ag+ ions arriving at the Ag crystal surface per unit time due to the ultradilute Ag+ concentration. Surface enhanced Raman scattering (SERS experiments reveal that the as-prepared dendritic Ag nanoparticles possess high SERS properties and can be used as a candidate substrate for practical SERS applications to detect the Rhodamine 6G molecules.

  9. Adrenergic Modulation Regulates the Dendritic Excitability of Layer 5 Pyramidal Neurons In Vivo

    Directory of Open Access Journals (Sweden)

    Christina Labarrera

    2018-04-01

    Full Text Available Summary: The excitability of the apical tuft of layer 5 pyramidal neurons is thought to play a crucial role in behavioral performance and synaptic plasticity. We show that the excitability of the apical tuft is sensitive to adrenergic neuromodulation. Using two-photon dendritic Ca2+ imaging and in vivo whole-cell and extracellular recordings in awake mice, we show that application of the α2A-adrenoceptor agonist guanfacine increases the probability of dendritic Ca2+ events in the tuft and lowers the threshold for dendritic Ca2+ spikes. We further show that these effects are likely to be mediated by the dendritic current Ih. Modulation of Ih in a realistic compartmental model controlled both the generation and magnitude of dendritic calcium spikes in the apical tuft. These findings suggest that adrenergic neuromodulation may affect cognitive processes such as sensory integration, attention, and working memory by regulating the sensitivity of layer 5 pyramidal neurons to top-down inputs. : Labarrera et al. show that noradrenergic neuromodulation can be an effective way to regulate the interaction between different input streams of information processed by an individual neuron. These findings may have important implications for our understanding of how adrenergic neuromodulation affects sensory integration, attention, and working memory. Keywords: cortical layer 5 pyramidal neuron, dendrites, norepinephrine, HCN, Ih, Ca2+ spike, apical tuft, guanfacine, ADHD, somatosensory cortex

  10. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478 ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cell s * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  11. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155 ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cell s * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  12. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  14. DOES JASMONIC ACID PREVENT THE GERMINATION

    OpenAIRE

    ÇAVUŞOĞLU, Kürşat

    2009-01-01

    Abstract: Effect of jasmonic acid on seed germination and seedling growth of barley (Hordeum vulgare L. cv. Bülbül 89) was investigated in the present study. Jasmonic acid concentrations less than 1500 µM have not inhibited the seed germination, while 1500 and 2000 µM jasmonic acid levels caused atypical germination. The germination was completely inhibited at 3000 µM level of jasmonic acid. However, the seedling growth clearly slowed down with increasing concentrations of jasmonic acid. Furt...

  15. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Barbuto, Jose Alexandre M.; Neves, Andreia R.; Ensina, Luis Felipe C.; Anselmo, Luciene B.

    2005-01-01

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  16. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    International Nuclear Information System (INIS)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A.

    1991-01-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of 51 Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in 51 Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal 51 Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol

  17. Acute intestinal injury induced by acetic acid and casein: prevention by intraluminal misoprostol

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J.; Zhang, x.J.; Gu, x.A.; Clark, D.A. (Department of Pediatrics, Louisiana State University School of Medicine, New Orleans (USA))

    1991-07-01

    Acute injury was established in anesthetized rabbits by intraluminal administration of acetic acid with and without bovine casein, into loops of distal small intestine. Damage was quantified after 45 minutes by the blood-to-lumen movement of {sup 51}Cr-labeled ethylenediaminetetraacetic acid (EDTA) and fluorescein isothiocyanate-tagged bovine serum albumin as well as luminal fluid histamine levels. The amount of titratable acetic acid used to lower the pH of the treatment solutions to pH 4.0 was increased by the addition of calcium gluconate. Luminal acetic acid caused a 19-fold increase in {sup 51}Cr-EDTA accumulation over saline controls; casein did not modify this effect. In saline controls, loop fluid histamine levels bordered on the limits of detection (1 ng/g) but were elevated 19-fold by acetic acid exposure and markedly increased (118-fold) by the combination of acid and casein. Intraluminal misoprostol (3 or 30 micrograms/mL), administered 30 minutes before acetic acid, significantly attenuated the increase in epithelial permeability (luminal {sup 51}Cr-EDTA, fluorescein isothiocyanate-bovine serum albumin accumulation) and histamine release (P less than 0.05). Diphenhydramine, alone or in combination with cimetidine, and indomethacin (5 mg/kg IV) were not protective. It is concluded that exposure of the epithelium to acetic acid promotes the transepithelial movement of casein leading to enhanced mast cell activation and mucosal injury. Damage to the epithelial barrier can be prevented by misoprostol.

  18. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    Directory of Open Access Journals (Sweden)

    César A. Terrazas

    2010-01-01

    Full Text Available Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

  19. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  20. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Engering, Anneke; van Kooyk, Yvette

    2002-01-01

    Dendritic cells (DC) are present in essentially every tissue where they operate at the interface of innate and acquired immunity by recognizing pathogens and presenting pathogen-derived peptides to T cells. It is becoming clear that not all C-type lectins on DC serve as antigen receptors recognizing

  1. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA

    Directory of Open Access Journals (Sweden)

    Raúl Ortiz

    2017-07-01

    Full Text Available Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.

  2. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    National Research Council Canada - National Science Library

    Akporiaye, Emmanuel

    2004-01-01

    .... One of these factors is Transforming Growth Factor-beta (TGF-beta). TGF-beta is produced in large quantities by different types of cancer including breast cancer and inhibits the actions of several immune cells including dendritic cells (DC...

  3. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  4. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...

  5. Effect of temperature gradient and crystallization rate on morphological peculiarities of cellular-dendrite structure in iron-nickel alloys

    International Nuclear Information System (INIS)

    Kralina, A.A.; Vorontsov, V.B.

    1977-01-01

    Cellular and dendritic structure of Fe-Ni single crystals (31 and 45 wt%Ni) grown according to Bridgeman have been studied by metallography. Growth rates at which the crystallization frontier becomes unstable and splits into cells have been determined for three temperature gradients. The transition from cells to dendrites occurs gradually through the changes in the cells regular structure and formation of secondary and tertiary branches. The dependence of cell diameter and distance between dendrites on crystallization rate and temperature gradient are discussed in terms of the admixture substructures development according to the schedule: cells - cellular dendrites - dendrites

  6. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  7. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  8. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  9. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  10. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  11. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  12. Preventive maintenance basis: Volume 24 -- Battery -- flooded lead-acid (lead-calcium, lead antimony, plante). Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-12-01

    US nuclear power plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This document provides a program of preventive maintenance tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. This document provides a program of preventive maintenance (PM) tasks suitable for application to flooded lead-acid batteries. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, system engineers, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  13. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N.; Lascaud, S.

    1999-12-01

    The authors report on three different in situ and ex situ concentration measurement methods in symmetric lithium/polymer-electrolyte/lithium cells. The results were examined on the basis of a simple calculation of ionic concentration within the electrolyte, in the case where no dendrite is observed, this calculation accounts quantitatively for all experimental results. In the case of dendritic growth, the authors can measure the concentration distribution around the dendrites; this permits correlation of the active parts of the electrodes and of the growing dendrites with local ionic depletion in the vicinity of these active parts.

  14. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples

    Science.gov (United States)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  15. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  16. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  17. Targeting nanoparticles to dendritic cells for immunotherapy.

    NARCIS (Netherlands)

    Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G.

    2012-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in

  18. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  19. GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Audoy-Rémus, Julie; Bozoyan, Lusine; Dumas, Aline; Filali, Mohammed; Lecours, Cynthia; Lacroix, Steve; Rivest, Serge; Tremblay, Marie-Eve; Vallières, Luc

    2015-05-01

    Microglia surrounds the amyloid plaques that form in the brains of patients with Alzheimer's disease (AD), but their role is controversial. Under inflammatory conditions, these cells can express GPR84, an orphan receptor whose pathophysiological role is unknown. Here, we report that GPR84 is upregulated in microglia of APP/PS1 transgenic mice, a model of AD. Without GPR84, these mice display both accelerated cognitive decline and a reduced number of microglia, especially in areas surrounding plaques. The lack of GPR84 affects neither plaque formation nor hippocampal neurogenesis, but promotes dendritic degeneration. Furthermore, GPR84 does not influence the clinical progression of other diseases in which its expression has been reported, i.e., experimental autoimmune encephalomyelitis (EAE) and endotoxic shock. We conclude that GPR84 plays a beneficial role in amyloid pathology by acting as a sensor for a yet unknown ligand that promotes microglia recruitment, a response affecting dendritic degeneration and required to prevent further cognitive decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  1. Golgi Outpost Synthesis Impaired by Toxic Polyglutamine Proteins Contributes to Dendritic Pathology in Neurons

    Directory of Open Access Journals (Sweden)

    Chang Geon Chung

    2017-07-01

    Full Text Available Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs and a decreased supply of plasma membrane (PM in Drosophila class IV dendritic arborization (da (C4 da neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP, which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway.

  2. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Directory of Open Access Journals (Sweden)

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  3. Synthesis and characterization of a highly stable dendritic catechol-tripod bearing technetium-99m

    International Nuclear Information System (INIS)

    Bertin, A.; Gallani, J.L.; Felder-Flesch, D.; Michou-Gallani, A.I.; Steibel, J.

    2010-01-01

    The synthesis and preliminary biological tests (in vitro toxicity, in vitro stability) of new Tc(III)-radiolabelled dendro-chelates are presented. A dendritic 99m Tc chelate 1 derived from a pre-organized tripodal tris-catechol-amide exhibits a kinetic stability by far more important than its corresponding diethylenetriamine pentaacetic acid (DTPA) homologue 2. This permitted an assessment of the real impact of the pre-organized tripodal structure on kinetic inertness (and thus toxicity), an important issue to address when considering in vivo applications. Radiolabelling was performed using the stannous chloride reduction method; while DTPA-homologue 2 showed a high radiolabelling efficiency (96% radiolabelling yield after 30 min), tripodal complex 1 induced a 93% complexation yield after 45 min. In contrast, radio-complex 1 derived from the most rigid and organized structure has a higher kinetic stability than 2. Indeed, while dissociation of 2 reached 50% after 1 h 30 min in physiological media like phosphate buffer saline (PBS) and bovine serum albumin (BSA), over 80% of 1 remained stable during the half-life of the radionuclide (6.02 h for 99m Tc). Measurements of the cell leakage resulting from membrane damage of neuronal cells treated with increasing concentrations of dendritic ligand 16, together with pictures of treated neurons after staining, showed no detectable toxicity. (authors)

  4. Controlled synthesis of novel 3D dendritic Bi2S3 /cross-linked poly(vinyl alcohol) nanocomposites

    International Nuclear Information System (INIS)

    Wu, W-T; Shi Lei; Pang Wenmin; Wang Yusong; Zhu Qingren; Xu Guoyong

    2006-01-01

    Novel spherical three-dimensional (3D) dendritic Bi 2 S 3 /cross-linked poly(vinyl alcohol) (PVA) nanocomposites were successfully synthesized in aqueous solution of amphiphilic polyvinylacetone (PVKA) (ketalization degree D H = 0.549), via one-step in situ decomposition of the complex [Bi(Tu) x ] 3+ under γ-ray irradiation, utilizing the controllable hydrolysis property of PVKA in acidic solution. Herein, PVA chains are obtained from the hydrolysed PVKA. These uniform 3D spherical nanocomposites have a structure similar to that found in the natural lotus leaf, where every microscale papilla on the leaf surface is covered by nanoscale papillae

  5. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  6. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Directory of Open Access Journals (Sweden)

    Anouk K Gloudemans

    Full Text Available It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA, and how T cell-dependent (TD or -independent (TI pathways might be involved. Mucosal dendritic cells (DCs are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL, B cell activating factor (BAFF, Retinoic Acid (RA, TGF-β or nitric oxide (NO. We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  7. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Science.gov (United States)

    Gloudemans, Anouk K; Plantinga, Maud; Guilliams, Martin; Willart, Monique A; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L; Hammad, Hamida; Hoogsteden, Henk C; Yazdanbakhsh, Maria; Hendriks, Rudi W; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  8. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

    Directory of Open Access Journals (Sweden)

    Thewarid Berkban

    2015-06-01

    Full Text Available The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day for five weeks. L-NAME induced high systolic blood pressure (SBP and increased heart rate (HR, hindlimb vascular resistance (HVR and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.

  9. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  10. Living in the branches: population dynamics and ecological processes in dendritic networks

    Science.gov (United States)

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  11. Role of n-3 Polyunsaturated Fatty Acids and Exercise in Breast Cancer Prevention: Identifying Common Targets

    Directory of Open Access Journals (Sweden)

    Salma A. Abdelmagid

    2016-01-01

    Full Text Available Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.

  12. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  13. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    Science.gov (United States)

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  14. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  15. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  16. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  17. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.J.; Hu, L.; Wang, L.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-05-15

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2T{sub L}), 498 (0.19T{sub L}), and 483 K (0.18T{sub L}), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s{sup -1} at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature. (orig.)

  18. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    Science.gov (United States)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  19. Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Science.gov (United States)

    Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.

    2012-01-01

    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744

  20. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  1. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    Science.gov (United States)

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  2. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  3. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  4. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  5. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat

    2015-11-01

    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  6. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  7. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    International Nuclear Information System (INIS)

    Schmid, Bernhard; Rippmann, Joerg F.; Tadayyon, Moh; Hamilton, Bradford S.

    2005-01-01

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1- 14 C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  8. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.

    Science.gov (United States)

    Schulz, Jana; Franke, Kristin; Frick, Manfred; Schumacher, Stefan

    2016-10-01

    Rho GTPases play prominent roles in the regulation of cytoskeletal reorganization. Many aspects have been elaborated concerning the individual functions of Rho GTPases in distinct signaling pathways leading to cytoskeletal rearrangements. However, major questions have yet to be answered regarding the integration and the signaling hierarchy of different Rho GTPases in regulating the cytoskeleton in fundamental physiological events like neuronal process differentiation. Here, we investigate the roles of the small GTPases Rac1, Cdc42, and RhoG in defining dendritic tree complexity stimulated by the transmembrane epidermal growth factor family member CALEB/NGC. Combining gain-of-function and loss-of-function analysis in primary hippocampal neurons, we find that Rac1 is essential for CALEB/NGC-mediated dendritic branching. Cdc42 reduces the complexity of dendritic trees. Interestingly, we identify the palmitoylated isoform of Cdc42 to adversely affect dendritic outgrowth and dendritic branching, whereas the prenylated Cdc42 isoform does not. In contrast to Rac1, CALEB/NGC and Cdc42 are not directly interconnected in regulating dendritic tree complexity. Unlike Rac1, the Rac1-related GTPase RhoG reduces the complexity of dendritic trees by acting upstream of CALEB/NGC. Mechanistically, CALEB/NGC activates Rac1, and RhoG reduces the amount of CALEB/NGC that is located at the right site for Rac1 activation at the cell membrane. Thus, Rac1, Cdc42, and RhoG perform very specific and non-redundant functions at different levels of hierarchy in regulating dendritic tree complexity induced by CALEB/NGC. Rho GTPases play a prominent role in dendritic branching. CALEB/NGC is a transmembrane member of the epidermal growth factor (EGF) family that mediates dendritic branching, dependent on Rac1. CALEB/NGC stimulates Rac1 activity. RhoG inhibits CALEB/NGC-mediated dendritic branching by decreasing the amount of CALEB/NGC at the plasma membrane. Palmitoylated, but not prenylated form

  9. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis.

    Science.gov (United States)

    Shirkhani, Khojasteh; Teo, Ian; Armstrong-James, Darius; Shaunak, Sunil

    2015-07-01

    Aspergillus species are the major life threatening fungal pathogens in transplant patients. Germination of inhaled fungal spores initiates infection, causes severe pneumonia, and has a mortality of >50%. This is leading to the consideration of pre-exposure prophylaxis to prevent infection. We made a very low MWt amphotericin B-polymethacrylic acid nanoparticle. It was not toxic to lung epithelial cells or monocyte-derived-macrophages in-vitro, or in an in-vivo transplant immuno-suppression mouse model of life threatening invasive aspergillosis. Three days of nebuliser based prophylaxis delivered the nanoparticle effectively to lung and prevented both fungal growth and lung inflammation. Protection from disease was associated with >99% killing of the Aspergillus and a 90% reduction in lung TNF-α; the primary driver of tissue destructive immuno-pathology. This study provides in-vivo proof-of-principle that very small and cost-effective nanoparticles can be made simply, and delivered safely and effectively to lung by the aerosol route to prevent fungal infections. Aspergillus is an opportunistic pathogen, which affects immunocompromised patients. One novel way to help fight against this infection is pre-exposure prophylaxis. The authors here made PMA based anionic hydrogels carrying amphotericin B, with mucoadhesive behavior. They showed that aerosol route of the drug was very effective in protecting against the disease in an in-vivo model and should provide a stepping-stone towards clinical trials in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Sodium Bicarbonate-Ascorbic Acid Combination for Prevention of Contrast-Induced Nephropathy in Chronic Kidney Disease Patients Undergoing Catheterization.

    Science.gov (United States)

    Komiyama, Kota; Ashikaga, Takashi; Inagaki, Dai; Miyabe, Tomonori; Arai, Marina; Yoshida, Kiyotaka; Miyazawa, Satoshi; Nakada, Akihiro; Kawamura, Iwanari; Masuda, Shinichiro; Nagamine, Sho; Hojo, Rintaro; Aoyama, Yuya; Tsuchiyama, Takaaki; Fukamizu, Seiji; Shibui, Takashi; Sakurada, Harumizu

    2017-01-25

    Sodium bicarbonate and ascorbic acid have been proposed to prevent contrast-induced nephropathy (CIN). The present study evaluated the effect of their combined use on CIN incidence.Methods and Results:We prospectively enrolled 429 patients with chronic kidney disease (CKD: baseline estimated glomerular filtration rate <60 mL/min/1.73 m 2 ) prior to elective coronary catheterization. CIN was defined as absolute (≥0.5 mg/dL) or relative (≥25%) increase in serum creatinine within 72 h. In the saline hydration (n=218) and combined sodium bicarbonate+ascorbic acid (n=211) groups, a total of 1,500-2,500 mL 0.9% saline was given before and after the procedure. In addition, the combination group received 20 mEq sodium bicarbonate and 3 g ascorbic acid i.v. before the procedure, followed by 2 g ascorbic acid after the procedure and a further 2 g after 12 h. There were no significant differences between the basic characteristics and contrast volume in the 2 groups. CIN occurred in 19 patients (8.7%) in the saline group, and in 6 patients (2.8%) in the combined treatment group (P=0.008). Combined sodium bicarbonate and ascorbic acid could prevent CIN following catheterization in CKD patients.

  11. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Molecule Matters-Dendritic Architecture-A Clever Route to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Molecule Matters - Dendritic Architecture - A Clever Route to Monodispersed Macromolecules. N Jayaraman. Feature Article Volume 12 Issue 1 January 2007 pp 60-66 ...

  13. Synthesis and growth mechanism of Zn0.5Cd0.5S nanohexagon dendrite

    Science.gov (United States)

    Yu, Wen; Fang, Pengfei; Wang, Shaojie

    2014-12-01

    Hierarchical Zn0.5Cd0.5S nanohexagon dendrites were synthesized by a one-step hydrothermal method. The Zn0.5Cd0.5S nanohexagon dendrites were made up of nanohexagons with a side length of about 90 nm. The nanohexagons were regularly arranged forming as embranchments which were parallel to each other along certain hexagonal directions. Furthermore, these embranchments made up primary trunks shaping as dendrites. The growth mechanism of Zn0.5Cd0.5S nanohexagon dendrites was proposed in which molecular soft template and lowest energy principle played key roles. By adjusting the composition of the reactants, a series of ZnxCd1-xS solid solutions could be obtained. The morphology of the synthesized ZnxCd1-xS depended much on the x value. The UV-vis spectra absorb edges of the ZnxCd1-xS samples continuously shifted indicating the changes of the band gap.

  14. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  15. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  16. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  17. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa; Shi, Pengcheng; Liang, Xin; Xu, Wu

    2018-04-01

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphase layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.

  18. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth

    OpenAIRE

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C.; Parrish, Jay Z.

    2014-01-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrit...

  19. Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture.

    Science.gov (United States)

    Schrader, C E; George, A; Kerlin, R L; Cebra, J J

    1990-01-01

    Microcultures of helper T (Th) cells and a few appropriately primed murine B cells can be used to detect cognate T-B interactions which lead to clonal production of IgM, IgG1, and IgE. However, IgG2, IgG3, and IgA are very rarely expressed. We have found that the addition of dendritic cells to such cultures creates an extremely supportive environment for clones expressing IgA with other isotypes, as well as clones expressing only detectable IgA. Typically, 400 dendritic cells were added to 3000 conalbumin-specific Th cells (D10.G4.1) and 30 hapten-specific Peyer's patch (PP) B cells with antigen in 15 microliters. The response was antigen dependent and clonal. Almost half of the clones expressed only non-IgM isotypes, 43% expressed some IgA, and 14% expressed some IgG3; isotype diversity increased over time. Dendritic cells from PP and spleen were found to be equally supportive, and allowed the number of T cells required in microculture to be decreased from 3000 to 400. However, T cell proliferation was not required for the supportive effect of dendritic cells. Surface IgD-bearing cells were also found to switch to IgA production in microculture as judged by their generating clones expressing IgM along with IgA and other isotypes. Again, IgA was usually expressed only in the presence of dendritic cells. The mechanism may involve dendritic cell-induced T cell activation and/or dendritic cell factors, and is under investigation.

  20. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  1. Phase evolution and dendrite growth in laser cladding of aluminium on zirconium

    International Nuclear Information System (INIS)

    Yue, T.M.; Xie, H.; Lin, X.; Yang, H.O.

    2011-01-01

    Research highlights: → Laser cladding of Al on pure Zr. → A series of phase evolutions occurred across the laser-clad coating. → Epitaxial crystal growth, backward dendrite growth and two-phase eutectic dendritic growth. → Phase and microstructure evolution is discussed. - Abstract: Aluminium was laser clad on a pure zirconium substrate using the blown powder method. The microstructure across the laser-clad coating was studied. Starting from the bottom to the top surface of the coating, a series of phase evolutions had occurred: (Zr) → (Zr) + AlZr 2 + AlZr 3 → Al 4 Zr 5 + Al 3 Zr 2 → Al 3 Zr 2 + AlZr 2 → Al 2 Zr → Al 2 Zr + Al 3 Zr. This resulted in an epitaxial columnar crystal growth at the re-melt substrate boundary, a band of backward growth Al 3 Zr 2 dendrites towards the lower half of the coating, and a two-phase eutectic dendritic growth of Al 2 Zr + Al 3 Zr towards the top of the coating. The evolution of the various phases and microstructures is discussed in conjunction with the Al-Zr phase diagram, the criteria for planar interface instability, and the theory of eutectic growth under rapid solidification conditions (the TMK model).

  2. Easy Formation of Nanodisk-Dendritic ZnO Film via Controlled Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Nur Azimah Abd Samad

    2015-01-01

    Full Text Available A facile electrodeposition synthesis was introduced to prepare the nanodisk-dendritic ZnO film using a mixture solution of zinc chloride (ZnCl2 with potassium chloride (KCl that acted as a directing agent. This study aims to determine the best photoelectrochemical response for solar-induced water splitting. Based on our results obtained, it was found that an average diagonal of nanodisk was approximately 1.70 µm with the thickness of ≈150 nm that was successfully grown on the surface of substrate. The photocatalytic and photoelectrochemical responses of the resultant wurtzite type based-nanodisk-dendrite ZnO film as compared to the as-prepared ZnO film were monitored and evaluated. A photocurrent density of 19.87 mA/cm2 under ultraviolet rays and 14.05 mA/cm2 under visible light (500 nm was recorded for the newly developed nanodisk-dendritic ZnO thin film. It was believed that nanodisk-dendritic ZnO film can harvest more incident photons from the illumination to generate more photoinduced charge carriers to trigger the photocatalytic and photoelectrochemical reactions. Moreover, strong light scattering effects and high specific surface area of 2D nanostructures aid in the incident light absorption from any direction.

  3. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  4. Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates

    DEFF Research Database (Denmark)

    Brune, H.; Röder, H.; Bromann, K.

    1996-01-01

    Ag aggregation on Ag(111), Pt(111), and 1 ML Ag pseudomorphically grown on Pt(111), has been studied with variable temperature STM. These systems all have in common that dendritic patterns with trigonal symmetry rather than randomly ramified aggregates, which would be expected for a simple hit an...... theory show that this relaxation is highly asymmetric with respect to the two different kinds of close-packed steps. It leads to dendritic growth as verified by kinetic Monte-Carlo simulations which agree well with experiment....

  5. n-3 Fatty acids combined with flavan-3-ols prevent steatosis and liver injury in a murine model of NAFLD.

    Science.gov (United States)

    Vauzour, David; Rodriguez-Ramiro, Ildefonso; Rushbrook, Simon; Ipharraguerre, Ignacio R; Bevan, Damon; Davies, Susan; Tejera, Noemi; Mena, Pedro; de Pascual-Teresa, Sonia; Del Rio, Daniele; Gavrilovic, Jelena; Minihane, Anne Marie

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed medication has been approved. Despite its complex patho-physiology, dietary strategies aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of their complementary molecular targets, we aimed to demonstrate that the combination of n-3 LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD. In a high-fat high-fructose (HF/HFr) fed C57Bl/6J mouse model, the independent and interactive impact of n-3 and FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 (FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. While FLAV reduced body (-28-30%), adipose tissue (-45-50%) weights and serum insulin (-22-25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signalling in the intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should aim to demonstrate its efficacy in the prevention and treatment of human NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A route for direct retinal input to the preoptic hypothalamus: dendritic projections into the optic chiasm.

    Science.gov (United States)

    Silver, J; Brand, S

    1979-07-01

    With the use of Golgi, horseradish peroxidase, and electron microscopic techniques, neurons within a broad region of the preoptic hypothalamus of the mouse were shown to have dendrites that projected well into the depths of the optic chiasm. Further experimental and ultrastructural investigation demonstrated synapses between these dendrites and retinal axonal boutons within the chiasm. All synapses located in the chiasm were classified as Gray's type I. The possible function of these dendritic projections is discussed.

  7. ASIC2 Subunits Target Acid-Sensing Ion Channels to the Synapse via an Association with PSD-95

    OpenAIRE

    Zha, Xiang-ming; Costa, Vivian; Harding, Anne Marie S.; Reznikov, Leah; Benson, Christopher J.; Welsh, Michael J.

    2009-01-01

    Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not co-immunoprecipitate with PSD-95. We found that ASIC2...

  8. Internalisation of hybrid titanium dioxide/para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions.

    Science.gov (United States)

    Migdal, Camille; Rahal, Raed; Rubod, Alain; Callejon, Sylvie; Colomb, Evelyne; Atrux-Tallau, Nicolas; Haftek, Marek; Vincent, Claude; Serres, Mireille; Daniele, Stéphane

    2010-11-10

    Nanoparticles (NPs) have been reported to penetrate into human skin through lesional skin or follicular structures. Therefore, their ability to interact with dendritic cell (DC) was investigated using DCs generated from monocytes (mono-DCs). Hybrid titanium dioxide/para-amino benzoic acid (TiO(2)/PABA) NPs did not induce any cell toxicity. NPs were internalised into DCs through macropinocytosis and not by a receptor-mediated mechanism. Confocal microscopy showed that NPs were not detected in the nucleus. These data are confirmed by electronic microscopy which demonstrated that hybrid NPs were rapidly in contact with cellular membrane and localised into cytoplasmic vesicles without colocalisation with clathrin-coated vesicles. Hybrid NPs did not induce CD86 or HLA-DR overexpression or cytokine secretion (IL-8 and TNF-α) indicating no DC activation. Internalisation of hybrid NPs did not modify DC response towards sensitisers such as nickel and thimerosal or LPS used as positive controls. Moreover, hybrid NPs did not induce any oxidative stress implicated in DC activation process. After mono-DC irradiation by ultraviolet A (UVA), hybrid NP-treated cells did not produce UVA-induced reactive oxygen species (ROS) and exhibited a better cell viability compared with UVA-irradiated control cells, suggesting a protecting effect of hybrid TiO(2)/PABA NPs against UVA-induced ROS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  11. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    Science.gov (United States)

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  12. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Directory of Open Access Journals (Sweden)

    Alexandra Wittmann

    Full Text Available In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  13. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthias Landgraf

    2003-11-01

    Full Text Available The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.

  14. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  15. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.

    Science.gov (United States)

    Mora, J Rodrigo; von Andrian, Ulrich H

    2004-10-01

    T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.

  16. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  17. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    Science.gov (United States)

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  18. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  19. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis

    Science.gov (United States)

    Hinze, S J; Jackson, M R; Lie, S; Jolly, L; Field, M; Barry, S C; Harvey, R J; Shoubridge, C

    2017-01-01

    There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known. Here we reveal that IQSEC2 has a key role in dendritic spine morphology. Partial loss-of-function mutations were modeled using a lentiviral short hairpin RNA (shRNA) approach, which achieved a 57% knockdown of Iqsec2 expression in primary hippocampal cell cultures from mice. Investigating gross morphological parameters after 8 days of in vitro culture (8DIV) identified a 32% reduction in primary axon length, in contrast to a 27% and 31% increase in the number and complexity of dendrites protruding from the cell body, respectively. This increase in dendritic complexity and spread was carried through dendritic spine development, with a 34% increase in the number of protrusions per dendritic segment compared with controls at 15DIV. Although the number of dendritic spines had normalized by 21DIV, a reduction was noted in the number of immature spines. In contrast, when modeling increased dosage, overexpression of wild-type IQSEC2 led to neurons with shorter axons that were more compact and displayed simpler dendritic branching. Disturbances to dendritic morphology due to knockdown of Iqsec2 were recapitulated in neurons from Iqsec2 knockout mice generated in our laboratory using CRISPR/Cas9 technology. These observations provide evidence of dosage sensitivity for IQSEC2, which normally escapes X-inactivation in females, and links these disturbances in expression to alterations in

  20. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  1. Large-area sheet task advanced dendritic web growth development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1984-01-01

    The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded.

  2. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  3. The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al-Cu alloys immersed in H2SO4

    International Nuclear Information System (INIS)

    Osorio, Wislei R.; Spinelli, Jose E.; Freire, Celia M.A.; Cardona, Margarita B.; Garcia, Amauri

    2007-01-01

    Al-Cu alloys castings can exhibit different corrosion responses at different locations due to copper content and to the resulting differences on microstructural features and on Al 2 Cu fractions. The aim of this study was to investigate the influence of Al 2 Cu intermetallic particles associated to the dendritic arm spacings on the general corrosion resistance of three different hypoeutectic Al-Cu alloys samples in sulfuric acid solution. The cast samples were produced using a non-consumable tungsten electrode furnace with a water-cooled copper hearth under argon atmosphere. The typical microstructural pattern was examined by using electronic microscopy techniques. In order to evaluate the surface corrosion behavior of such Al-Cu alloys, corrosion tests were performed in a 0.5 M sulfuric acid solution at 25 deg. C by using an electrochemical impedance spectroscopy (EIS) technique and potentiodynamic polarization curves. An equivalent circuit was also used to provide quantitative support for the discussions and understanding of the corrosion behavior. It was found that Al 2 Cu has a less noble corrosion potential than that of the Al-rich phase. Despite that, dendrite fineness has proved to be more influent on corrosion resistance than the increase on alloy copper content with the consequent increase on Al 2 Cu fraction

  4. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Larsson, Karin; Istenič, Katja; Wulff, Tune

    2015-01-01

    BACKGROUND: Upon oxidation of the polyunsaturated fatty acids in fish oil, either before ingestion or, as recently shown, during the gastro-intestinal passage, a cascade of potentially cytotoxic peroxidation products, such as malondialdehyde and 4-hydroxy-2-hexenal, can form. In this study, we di...... in yeast and immunomodulation of dendritic cells....

  5. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling.

    Science.gov (United States)

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-02-28

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.

  6. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  7. Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ming Ni

    Full Text Available Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.

  8. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  9. Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero

    Science.gov (United States)

    Tea, Joy S.; Chihara, Takahiro; Luo, Liqun

    2010-01-01

    Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276

  10. High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors

    International Nuclear Information System (INIS)

    Falkenberg, G; Fleissner, G E; Fleissner, G U E; Schuchardt, K; Kuehbacher, M; Chalmin, E; Janssens, K

    2009-01-01

    Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons and various bird species are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments and first mathematical simulations affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation, but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.

  11. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  12. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease*

    Science.gov (United States)

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-01-01

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia (p iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex (p iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. PMID:28087694

  13. Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model

    Energy Technology Data Exchange (ETDEWEB)

    Wei Lei [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Lin Xin, E-mail: xlin@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Wang Meng; Huang Weidong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2012-07-01

    A three-dimensional (3-D) adaptive mesh refinement (AMR) cellular automata (CA) model is developed to simulate the equiaxed dendritic growth of pure substance. In order to reduce the mesh induced anisotropy by CA capture rules, a limited neighbor solid fraction (LNSF) method is presented. It is shown that the LNSF method reduced the mesh induced anisotropy based on the simulated morphologies for isotropic interface free energy. An expansion description using two interface free energy anisotropy parameters ({epsilon}{sub 1}, {epsilon}{sub 2}) is used in the present 3-D CA model. It is illustrated by present 3-D CA model that the positive {epsilon}{sub 1} favors the dendritic growth with the Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket preferred directions, and negative {epsilon}{sub 2} favors dendritic growth with the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket preferred directions, which has a good agreement with the prediction of the spherical plot of the inverse of the interfacial stiffness. The dendritic growths with the orientation selection between Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket are also discussed using the different {epsilon}{sub 1} with {epsilon}{sub 2}=-0.02. It is found that the simulated morphologies by present CA model are as expected from the minimum stiffness criterion.

  14. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses.

    Directory of Open Access Journals (Sweden)

    Sandra J van Vliet

    2009-10-01

    Full Text Available Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4(+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.

  15. Dendritic cell fate is determined by BCL11A

    Science.gov (United States)

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  16. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis.

    Directory of Open Access Journals (Sweden)

    Paul M B Medina

    Full Text Available BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.

  17. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  18. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  19. Dendritic solidification in undercooled Ni-Zr-Al melts: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Galenko, P.K., E-mail: Peter.Galenko@dlr.de [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Reutzel, S.; Herlach, D.M. [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Fries, S.G. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany)] [SGF Scientific Consultancy, Arndtstr 9, D-52064 Aachen (Germany); Steinbach, I. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany); Apel, M. [ACCESS eV, Intzestrasse 5, D-52072 Aachen (Germany)

    2009-12-15

    The kinetics of dendritic solidification in a ternary Ni{sub 98}Zr{sub 1}Al{sub 1} alloy is investigated experimentally in a range of melt undercoolings 40K{<=}{Delta}T{<=}320K. The growth velocity is measured for samples processed by the electromagnetic levitation technique using a high-speed video camera. With {Delta}T{<=}220K the measured growth rates are the same as those of a binary Ni{sub 99}Zr{sub 1} alloy. In the regime of rapid solidification, especially within the regime of thermal dendritic growth at {Delta}T{>=}220K, growth rates are decreased. Sharp-interface modeling predicts growth rates over the whole range of undercooling. Phase-field simulations give quantitative predictions for the dendritic growth velocity in the solute-controlled growth regime. Results show that the composition and temperature dependency of the thermodynamic data, e.g. liquidus slope and solute partition coefficient, are important for describing the alloys. Our findings give improved sharp-interface model predictions compared to calculations based on an approximation of the thermodynamic data derived from binary phase diagrams.

  20. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  1. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    have high sensitivity to surface enhanced Raman spectroscopy response. ... of interfaces and molecularly thin-films. SERS is a ... face plasmon polaritons, while the second is attributed ... 2.2 Fabrication and characterization of dendritic.

  2. Supramolecular dendritic pi-conjugated systems: synthesis of glycinylurea functionalized pi-conjugated diphenylanthracene guests and their complexation with dendritic hosts. Part I.

    NARCIS (Netherlands)

    Precup, F.S.; Schenning, A.P.H.J.; Meijer, E.W.; Hubca, G.

    2007-01-01

    Glycinylurea functionalized p-conjugated diphenylanthracene guests (DPA guests) that bind to adamantyl urea modified dendritic hosts were synthesized and fully characterized by NMR spectroscopy (1H-NMR, 13C-NMR) and MALDI-TOF-MS. The resulting supramolecular assemblies have been investigated with

  3. Knowledge and periconceptional use of folic acid for the prevention of neural tube defects in ethnic communities in the United Kingdom: systematic review and meta-analysis.

    Science.gov (United States)

    Peake, Jordana N; Copp, Andrew J; Shawe, Jill

    2013-07-01

    It is widely accepted that periconceptional supplementation with folic acid can prevent a significant proportion of neural tube defects (NTDs). The present study evaluated how folic acid knowledge and periconceptional use for NTD prevention varies by ethnicity in the United Kingdom (U.K.). A literature search was conducted to identify studies that included assessment of folic acid knowledge or use in U.K. women of different ethnicities. Only research and referenced sources published after 1991, the year of the landmark Medical Research Council's Vitamin Study, were included. A meta-analysis was performed of studies that assessed preconceptional folic acid use in Caucasians and non-Caucasians. Five studies met the inclusion criteria for assessment of knowledge and/or use of folic acid supplements in U.K. women including non-Caucasians. The available evidence indicates that South Asians specifically have less knowledge and lower periconceptional use of folic acid than Caucasians; one study found that West Indian and African women also had lower folic acid uptake. A synthesis of results from three of the studies, in a meta-analysis, shows that Caucasians are almost three times more likely to take folic acid before conception than non-Caucasians. From the limited evidence available, U.K. women of non-Caucasian ethnicity appear to have less knowledge and a lower uptake of folic acid supplementation than Caucasians during the periconceptional period. Implementing targeted, innovative education campaigns together with a mandatory fortification policy, including the fortification of ethnic minority foods, will be required for maximum prevention of folic acid-preventable NTDs across different ethnic groups. Copyright © 2013 Wiley Periodicals, Inc.

  4. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    NARCIS (Netherlands)

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  5. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  6. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  7. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  8. Conclusions and recommendations from the symposium, Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids.

    Science.gov (United States)

    Deckelbaum, Richard J; Leaf, Alexander; Mozaffarian, Dariush; Jacobson, Terry A; Harris, William S; Akabas, Sharon R

    2008-06-01

    After the symposium "Beyond Cholesterol: Prevention and Treatment of Coronary Heart Disease with n-3 Fatty Acids," faculty who presented at the conference submitted manuscripts relating to their conference topics, and these are presented in this supplement. The content of these manuscripts was reviewed, and 2 conference calls were convened. The objective was to summarize existing evidence, gaps in evidence, and future research needed to strengthen recommendations for specific intakes of n-3 fatty acids for different conditions relating to cardiovascular disease. The following 2 questions were the main items discussed. What are the roles of n-3 fatty acids in primary versus secondary prevention of coronary heart disease? What are the roles of n-3 fatty acids in hypertriglyceridemia, in the metabolic syndrome and type 2 diabetes, and in sudden cardiac death, cardiac arrhythmias, and vulnerable plaque? Each area was summarized by using 2 general categories: 1) current knowledge for which general consensus exists, and 2) recommendations for research and policy. Additional references for these conclusions can be found in the articles included in the supplement.

  9. DMPD: The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17702640 The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function...in dendritic celldevelopment and function. PubmedID 17702640 Title The role of th...e interferon regulatory factor (IRF) family in dendritic celldevelopment and function. Authors Gabriele L, O

  10. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    Science.gov (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  11. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  12. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    Science.gov (United States)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  13. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  14. The Proprotein Convertase KPC-1/Furin Controls Branching and Self-avoidance of Sensory Dendrites in Caenorhabditis elegans

    Science.gov (United States)

    Bülow, Hannes E.

    2014-01-01

    Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the ‘menorin’ pathway to control branching and growth of somatosensory dendrites in PVD. PMID:25232734

  15. Pulmonary infections in swine induce altered porcine surfactant protein D expression and localization to dendritic cells in bronchial-associated lymphoid tissue

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Holmskov, U.; Aalbæk, B.

    2005-01-01

    , the absence of macrophage marker immunoreactivity and the presence of dendritic cell marker immunoreactivity. Increased expression of pSP-D in the surfactant coincided with presence of pSP-D-positive dendritic cells in bronchus-associated lymphoid tissue (BALT), indicating a possible transport of p...... and with dendritic cells in microbial-induced BALT. The function of the interaction between pSP-D and dendritic cells in BALT remain unclear, but pSP-D could represent a link between the innate and adaptive immune system, facilitating the bacterial antigen presentation by dendritic cells in BALT.......Surfactant protein D (SP-D) is a pattern-recognition molecule of the innate immune system that recognizes various microbial surface-specific carbohydrate and lipid patterns. In vitro data has suggested that this binding may lead to increased microbial association with macrophages and dendritic...

  16. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  17. Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery

    Science.gov (United States)

    2011-11-01

    Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...can short circuit the anode and cathode . Anode- cathode short circuits are especially dangerous when a flammable organic solvent is used as the

  18. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  19. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  20. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  1. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    Science.gov (United States)

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  2. The Effect of Traditional Chinese Formula Danchaiheji on the Differentiation of Regulatory Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Yingxi Li

    2016-01-01

    Full Text Available Recently, regulatory dendritic cells (DCregs, a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increased IDO expression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity.

  3. The Effect of Traditional Chinese Formula Danchaiheji on the Differentiation of Regulatory Dendritic Cells

    Science.gov (United States)

    Wang, Xiaodong; Tong, Jingzhi; Li, Keqiu; Jing, Yaqing

    2016-01-01

    Recently, regulatory dendritic cells (DCregs), a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ) is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increased IDO expression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity. PMID:27525028

  4. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.

    Science.gov (United States)

    Engel, Dominique; Seutin, Vincent

    2015-11-15

    The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration

  5. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  6. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  7. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-03-03

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia ( p iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex ( p iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. CD1 and major histocompatibility complex II molecules follow a different course during dendritic cell maturation

    NARCIS (Netherlands)

    van der Wel, Nicole N.; Sugita, Masahiko; Fluitsma, Donna M.; Cao, Xaiochun; Schreibelt, Gerty; Brenner, Michael B.; Peters, Peter J.

    2003-01-01

    The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class IT compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1

  9. Membrane omega-3 Fatty Acid deficiency as a preventable risk factor for comorbid coronary heart disease in major depressive disorder.

    Science.gov (United States)

    McNamara, Robert K

    2009-01-01

    Major depression disorder (MDD) significantly increases the risk for coronary heart disease (CHD) which is a leading cause of mortality in patients with MDD. Moreover, depression is frequently observed in a subset of patients following acute coronary syndrome (ACS) and increases risk for mortality. Here evidence implicating omega-3 (n-3) fatty acid deficiency in the pathoaetiology of CHD and MDD is reviewed, and the hypothesis that n-3 fatty acid deficiency is a preventable risk factor for CHD comorbidity in MDD patients is evaluated. This hypothesis is supported by cross-national and cross-sectional epidemiological surveys finding an inverse correlation between n-3 fatty acid status and prevalence rates of both CHD and MDD, prospective studies finding that lower dietary or membrane EPA+DHA levels increase risk for both MDD and CHD, case-control studies finding that the n-3 fatty acid status of MDD patients places them at high risk for emergent CHD morbidity and mortality, meta-analyses of controlled n-3 fatty acid intervention studies finding significant advantage over placebo for reducing depression symptom severity in MDD patients, and for secondary prevention of cardiac events in CHD patients, findings that n-3 fatty acid status is inversely correlated with other documented CHD risk factors, and patients diagnosed with MDD after ACS exhibit significantly lower n-3 fatty acid status compared with nondepressed ACS patients. This body of evidence provides strong support for future studies to evaluate the effects of increasing dietary n-3 fatty acid status on CHD comorbidity and mortality in MDD patients.

  10. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A., E-mail: karuppasamy@psnacet.edu.in

    2015-12-30

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO{sub 3} (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO{sub 3}) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O{sub 2} atmosphere. Ti:WO{sub 3} thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10{sup −3}–5.0 × 10{sup −3} mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm{sup 2}) and tungsten (3 W/cm{sup 2}) were kept constant. Ti:WO{sub 3} films deposited at an oxygen pressure of 5 × 10{sup −3} mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm{sup 2}/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm{sup 2}, Qa: 17.72 mC/cm{sup 2}), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO{sub 3} films.

  11. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.

    2015-01-01

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO 3 (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO 3 ) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O 2 atmosphere. Ti:WO 3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10 −3 –5.0 × 10 −3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm 2 ) and tungsten (3 W/cm 2 ) were kept constant. Ti:WO 3 films deposited at an oxygen pressure of 5 × 10 −3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm 2 /C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm 2 , Qa: 17.72 mC/cm 2 ), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO 3 films.

  12. Utilizing dendritic scaffold for feasible formation of naphthalene ...

    Indian Academy of Sciences (India)

    the effect of dendritic scaffolds on the feasibility of naphthalene excimer formation has not been reported in the literature. Here, we report synthesis and photophysical study of naphthalene functionalized zero and first genera- tion PAMAM dendrimers in order to understand the mechanism of excimer formation in the system.

  13. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and at