WorldWideScience

Sample records for acid phosphatase

  1. Prostatic acid phosphatase by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, G.R.; Stirton, M.S.; Liedtke, R.J.; Batjer, J.D.

    1980-11-07

    Prostatic acid phosphatase values in 98 patients with prostatic carcinoma were measured by a commmercial radioimmunoassay (RIA) and by enzymatic assay. Forty-three carcinomas were staged by rigorous pathological criteria. Patients (N = 129) with benign prostatic hyperplasia were the control group. At 94% specificity, sensitivities of the RIA vs the enzymatic assay for clinically staged patients were as follows: stage A, 22% vs 6%; B, 29% vs 10%; C, 52% vs 38%; and D, 87% vs 80%. However, none of the seven patients with pathological stage A and B disease had a positive test result, and we suggest that variability in staging criteria accounts for the discrepant sensitivity claims reported. Prostatic acid phosphatase RIA should not be used for screening but as an adjunct for staging known prostatic carcinoma.

  2. Acid Phosphatase Development during Ripening of Avocado.

    Science.gov (United States)

    Sacher, J A

    1975-02-01

    The activity and subcellular distribution of acid phosphatase were assayed during ethylene-induced ripening of whole fruit or thick slices of avocado (Persea americana Mill. var. Fuerte and Hass). The activity increased up to 30-fold during ripening in both the supernatant fraction and the Triton X-100 extract of the precipitate of a 30,000g centrifugation of tissue homogenates from whole fruit or slices ripening in moist air. Enzyme activity in the residual precipitate after Triton extraction remained constant. The development of acid phosphatase in thick slices ripened in moist air was similar to that in intact fruit, except that enzyme development and ripening were accelerated about 24 hours in the slices. The increase in enzyme activity that occurs in slices ripening in moist air was inhibited when tissue sections were infiltrated with solutions, by aspiration for 2 minutes or by soaking for 2 hours, anytime 22 hours or more after addition of ethylene. This inhibition was independent of the presence or absence of cycloheximide or sucrose (0.3-0.5m). However, the large decline in enzyme activity in the presence of cycloheximide, as compared with the controls, indicated that synthesis of acid phosphatase was occurring at all stages of ripening.

  3. Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases.

    Science.gov (United States)

    Roiko, K; Jänne, O A; Vihko, P

    1990-05-14

    Overlapping cDNA clones encoding rat prostatic acid phosphatase (rPAP) were isolated by using two human prostatic acid phosphatase (hPAP)-encoding cDNAs to screen rat prostatic cDNA libraries. The isolated cDNAs encompassed a total of 1626 nucleotides (nt), of which 1143 nt corresponded to the protein coding sequence encoding a mature polypeptide of 350 amino acids (aa) and a 31-aa long signal peptide-like sequence. The deduced Mr of the mature rPAP was 40,599. RNA blot analysis indicated the presence of three mRNA species (4.9, 2.3 and 1.5 kb in size) in the rat prostate. The deduced aa sequences of rPAP and hPAP show 75% identity, whereas the similarity between rPAP and human lysosomal acid phosphatase (hLAP) is only 45%. Furthermore, the sequence similarity between rPAP and rat lysosomal acid phosphatase (rLAP) is 46% at the aa level. Similar to hPAP, but unlike hLAP and rLAP, the rPAP sequence lacks a membrane-anchoring domain indicating the secretory character of this phosphatase. All six cysteines present in the overlapping areas of the mature rPAP, hPAP, rLAP and hLAP proteins are positionally conserved, suggesting that these residues are important for the tertiary structure of acid phosphatases (APs). The previously reported active site residues, two arginines and one histidine, are also conserved in these APs.

  4. Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase.

    Science.gov (United States)

    Hoopman, Todd C; Wang, Wei; Brautigam, Chad A; Sedillo, Jennifer L; Reilly, Thomas J; Hansen, Eric J

    2008-02-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.

  5. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  6. Association of erythrocyte acid phosphatase phenotypes with myopia

    Directory of Open Access Journals (Sweden)

    Himabindu P

    2005-01-01

    Full Text Available Acid phosphatase is a polymorphic nonspecific orthophosphate monoesterase which catalyses the cleaving of phosphoric acid and subsequent breakdown of several monophosphoric esters under acidic pH conditions. Acid phosphatase has a physiologic function as a flavin mononucleotide phosphatase (FMN and regulates the intracellular concentrations of flavin coenzymes that are electron carriers in the oxidative phosphorylation pathway. Myopia or nearsightedness is caused by both environmental and genetic factors. Myopic eyes when subjected to excessive oxidative stress results in retinal detachments .In the present study there is a significant elevation of AA phenotype in myopes when compared to controls. The AA phenotype is more susceptible to oxidative stress and its lower enzyme activity is known to be associated with increased intrauterine growth that further results in increased axial length in progressive myopia. The AA phenotype also confers risk for myopia development in males, early age group and cases with parental consanguinity.

  7. Ultrastructural localization of acid phosphatase in nonhuman primate vaginal epithelium.

    Science.gov (United States)

    King, B F

    1985-01-01

    The vagina of the rhesus monkey is lined by a stratified squamous epithelium. However, little is known regarding the cytochemical composition of its cell organelles and the substances found in the intercellular spaces. In this study we have examined the ultrastructural distribution of acid phosphatase in the vaginal epithelium. In basal and parabasal cells reaction product was found in some Golgi cisternae and vesicles and in a variety of cytoplasmic granules. Reaction product was also found in some, but not all, membrane-coating granules. In the upper layers of the epithelium, the membrane-coating granules extruded their contents and acid phosphatase was localized in the intercellular spaces. The possible roles of acid phosphatase in keratinization, desquamation, or modification of substances in the intercellular compartment are discussed.

  8. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    Science.gov (United States)

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  9. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von

    1992-01-01

    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  10. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  11. Extralysosomal localisation of acid phosphatase in the rat kidney

    NARCIS (Netherlands)

    Rudiger, J; Kalicharan, D; Halbhuber, KJ; van der Want, JJL

    1998-01-01

    There is strong evidence that acid phosphatase (AcPase) plays an important role in the catabolism of the glomerular basement membrane (GEM) and the removal of macromolecular debris resulting from ultrafiltration. Recent enzyme histochemical investigations provide new evidence of the antithrombotic a

  12. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    Science.gov (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  13. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  14. Cytochemical localization of acid phosphatase in Leishmania mexicana amazonensis.

    Science.gov (United States)

    Pimenta, P F; De Souza, W

    1986-01-01

    Acid phosphatase was cytochemically detected at the ultrastructural level in infective and non-infective promastigotes and in amastigotes of the parasitic protozoan Leishmania mexicana amazonensis. Cerium chloride was used as the capture agent of the phosphate liberated during the hydrolysis of the substrate (Na-beta-glycerophosphate). Reaction product, indicative of enzyme activity, was seen in the outer face of the plasma membrane of many, but not all, infective and noninfective promastigote forms. No reaction product was seen in the plasma membrane of amastigote forms. Reaction product was seen in the endoplasmic reticulum, in the Golgi complex, in vesicles located close to the flagellar pocket and in cytoplasmic structures which may represent lysosomes. No reaction product was seen when the substrate was omitted from or sodium fluoride was added to the incubation medium. The possible role played by the acid phosphatase present in the plasma membrane of Leishmania parasites is discussed.

  15. Prostatic acid phosphatase in serum and semen of dogs

    OpenAIRE

    CRF Gadelha; WRR Vicente; APC Ribeiro; Apparicio, M. [UNESP; GJ Covizzi; ACN Campos

    2013-01-01

    The incidence of prostatic malignancy has increased the use of tissue markers to detect cancer. Tissue specific antigens or differentiation antigens are found on the surface of normal cells. Clinically, these antigens are important to diagnose alterations in the tissues and for immunotherapy. The objective of the present study was to evaluate the prostatic acid phosphatase concentration in blood and seminal plasma of intact and healthy dogs at different ages. The evaluation was carried out by...

  16. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Zhonghui [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology and Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nix, Jay C. [Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2006-05-01

    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  17. Radioimmunoassay for prostatic acid phosphatase in human serum. Methodologic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pradalier, N.; Canal, P.; Pujol, A.; Fregevu, Y. (Groupe de Recherches du Centre Claudius-Regaud, Toulouse (France)); Soula, G. (Faculte des Sciences Pharmaceutiques, Toulouse (France))

    1982-01-01

    We propose a double antibody radioimmunoassay for human prostatic acid phosphatase (PAP) in serum for diagnosis and management of prostatic adenocarcinoma under treatment. The antigen is purified from human prostatic fluid by a gel-filtration on Sephadex G 100 followed by affinity chromatography on Con A Sepharose. A specific antibody is raised in rabbits and purified by immunoadsorption with a female serum. The described technique offers both radioisotopic sensibility and immunologic specificity. Physiological values determined in the serum of 125 healthy males are below 2 ng/ml. No significative differences are observed with age. The proposed technique also shows significant differences between values evaluated for benign prostatic hyperplasia and prostatic adenocarcinoma.

  18. Characterization of cationic acid phosphatase isozyme from rat liver mitochondria.

    Science.gov (United States)

    Fujimoto, S; Murakami, K; Hosoda, T; Yamamoto, Y; Watanabe, K; Morinaka, Y; Ohara, A

    1992-05-01

    Acid phosphatase isozyme was highly purified from rat liver mitochondrial fraction. The enzyme showed an isoelectric point value of above 9.5 on isoelectric focusing, and the apparent molecular weight was estimated to be 32000 by Sephadex G-100 gel filtration or 16000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzed the hydrolysis of adenosine 5'-triphosphate, adenosine 5'-diphosphate, thiamine pyrophosphate, inorganic pyrophosphate, and phosphoprotein such as casein and phosvitin, but not of several phosphomonoesters, except for p-nitrophenyl phosphate and o-phosphotyrosine. The enzyme was not inhibited by L-(+)-tartrate, and was significantly activated by Fe2+ and reducing agents such as ascorbic acid, L-cysteine,and dithiothreitol. The enzyme was found to be distributed in various rat tissues including liver, spleen, kidney, small intestine, lung, stomach, brain and heart, but not in skeletal muscle.

  19. Human Prostatic Acid Phosphatase: Structure, Function and Regulation

    Directory of Open Access Journals (Sweden)

    William G. Chaney

    2013-05-01

    Full Text Available Human prostatic acid phosphatase (PAcP is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy.

  20. Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid-phosphatase-encoding genes.

    Science.gov (United States)

    Thaller, M C; Lombardi, G; Berlutti, F; Schippa, S; Rossolini, G M

    1995-01-01

    The gene encoding a minor phosphate-irrepressible acid phosphatase (named NapA) of Morganella morganii was cloned and sequenced, and its product characterized. NapA is a secreted acid phosphatase composed of four 27 kDa polypeptide subunits. The enzyme is active on several organic phosphate monoesters but not on diesters, and is also endowed with transphosphorylating activity from organic phosphoric acid esters to nucleosides and other compounds with free hydroxyl groups. Its activity is inhibited by EDTA, inorganic phosphate, nucleosides and Ca2+, but not by fluoride or tartrate, and is enhanced by Mg2+, Co2+ and Zn2+. At the sequence level, the NapA enzyme did not show similarities to any other sequenced bacterial phosphatases. However, a search for homologous genes in sequence databases allowed identification of two open reading frames located within sequenced regions of the Escherichia coli and Proteus mirabilis genomes respectively, encoding proteins of unknown function which are highly homologous to the Morganella enzyme. Moreover, the properties of the NapA enzyme are very similar to those reported for the periplasmic nonspecific acid phosphatase II of Salmonella typhimurium (for which no sequence data are available). These data point to the existence of a new family of bacterial acid phosphatases, which we propose designating class B bacterial acid phosphatases.

  1. Purification and characterization of acid phosphatase from a germinating black gram (Vigna mungo L. seedling

    Directory of Open Access Journals (Sweden)

    Asaduzzaman A.K.M.

    2011-01-01

    Full Text Available An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55°C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.

  2. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  3. Diagnostic value of prostatic acid phosphatase as determined by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, M.P.; Osterhage, H.R.; Ackkermann, R.

    1981-07-01

    Serum concentrations of prostatic acid phosphatase (PAP) were determined with 4 different radioimmunoassays and with the standard enzymatic method (p-nitrophenylphosphate) in 35 patients with prostatic carcinoma. Staging of localized tumors was based on histopathological evaluation after radial prostatectomy and pelvic lymphnode dissection (pTsub(1-3), pN/sub 0/). In tumor lesions Tsub(1-2) N/sub 0/ M/sub 0/ elevated PAP-serum concentrations were found by RIA-determination in only one patient. Increased PAP serum levels were observed in 43-78% of carcinomas stage T/sub 3/ N/sub 0/ M/sub 0/ and in 54-83% in stage Tsub(2-4) Nsub(x) M/sub 1/ tumors, depending on the test kit used for the PAP determination. Concentrations for PAP obtained with the 4 different RIA-kits used, varied significantly and thus are not comparable. No false positive results were observed in sera of 9 patients with benign prostatic hyperplasia. Elevated PAP serum levels were found in a significantly higher frequency when determined by radioimmunoassay than by the enzymatic method. The results clearly indicate, that PAP is of no value for early recognition of carcinoma of the prostate even when measured by radioimmunoassay. However, the RIA-method seems to be of clinical importance in estimating the course of advanced local and metastasizing carcinoma of the prostate.

  4. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  5. Bone marrow acid phosphatase by radioimmunoassay. [/sup 125/I; prostatic carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Belville, W.D.; Cox, H.D.; Mahan, D.E.; Olmert, J.P.; Mittemeyer, B.T.; Bruce, A.W.

    1978-06-01

    A double-antibody radioimmunoassay was developed and utilized to measure prostatic acid phosphatase in bone marrow aspirates. One hundred-eighteen patients with carcinoma of the prostate in various clinical stages, and fifty with benign prostatic hyperplasia were studied. In patients with carcinoma, levels of prostatic acid phosphatase in bone marrow aspirates were found to correlate well with increasing clinical stage of the disease. Determination of bone marrow prostatic acid phosphatase by radioimmunoassay may be a valuable adjunct to clinicopathologic staging of prostatic carcinoma.

  6. Purification of prostatic acid phosphatase (PAP) for structural and functional studies.

    Science.gov (United States)

    Herrala, Annakaisa M; Quintero, Ileana B; Vihko, Pirkko T

    2013-01-01

    High-scale purification methods are required for several protein studies such as crystallography, mass spectrometry, circular dichroism, and function. Here we describe a purification method for PAP based on anion exchange, L-(+)-tartrate affinity, and gel filtration chromatographies. Acid phosphatase activity and protein concentration were measured for each purification step, and to collect the fractions with the highest acid phosphatase activity the p-nitrophenyl phosphate method was used. The purified protein obtained by the procedure described here was used for the determination of the first reported three-dimensional structure of prostatic acid phosphatase.

  7. Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS.

    Science.gov (United States)

    Aguirre-García, M M; Cerbón, J; Talamás-Rohana, P

    2000-04-24

    Entamoeba histolytica contains and secretes acid phosphatase, which has been proposed as a virulence factor in some pathogenic microorganisms. In this work, we purified and characterised a membrane-bound acid phosphatase (MAP) from E. histolytica HM-1:IMSS and studied the effect of different chemical compounds on the secreted acid phosphatase and MAP activities. MAP purification was accomplished by detergent solubilisation, and affinity and ion exchange chromatographies. The enzyme showed a pI of 5.5-6.2, an optimum pH of 5.5, and a Km value of 1.14 mM with p-nitrophenyl phosphate.

  8. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.

  9. A critical evaluation of a specific radioimmunoassay for prostatic acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, S.L.; Silver, H.K.; Sullivan, L.D.; Morse, M.J.; Archibald, E.L.

    1982-11-01

    A radioimmunoassay (RIA) method for acid phosphatase detection was compared to a standard enzyme assay using sera from 210 normal volunteers and 285 patients with prostatic disease. Statistical and clinical comparisons were made between defined subgroups. All 55 normal females had RIA detectable serum acid phosphatase, implying that this assay cannot be entirely specific for enzyme of prostatic origin. Urinary catheterization did not affect acid phosphatase levels. In all stages of carcinoma there were more acid phosphatase elevations by the RIA method than enzyme method, but neither assay could differentiate intercapsular cancer from benign prostatic hyperplasia. A small number of patients with biopsy proven negative nodules had marginally elevated values, suggesting an obligation for closer follow-up. The RIA method may be superior for monitoring patients with more advanced malignancy. Additional practical advantages of the RIA include relative simplicity and elimination of the special serum handling required for the enzyme assay.

  10. The NanoChitosan thin film: a new portable support for immobilization of Acid phosphatase

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminiaa

    2016-12-01

    Full Text Available Immobilization can enhance the economic value of enzymes and helps reusing and improves their stability. For the first time, acid phosphatase from Phaseolus vulgaris seeds was immobilized on chitosan nanoparticles thin films (CSNPs-TFs. Maximum immobilization yield of NanoChitosan thin films with 1×1cm dimensionand 3±0.1 mg (one block was ∼84%. In comparison with free enzyme, the activity of acid phosphatase was decreased 16% after immobilization. Immobilized acid phosphatase retained 51 % activity upon storage for 90 days at 4 °C and could be reused for 20 cycles with more than 88 % activity retention. The present study, immobilization of acid phosphatase on CSNPs-TF, is a new promising method which could explore a new biocompatible and eco-friendly material in enzyme immobilization, water treatment application as well as new adsorbent for occupational and environmental monitoring.

  11. Phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes.

    Science.gov (United States)

    Saha, N; Patgunarajah, N

    1981-08-01

    The phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes was investigated in three populations in the Sudan and one population in Nilgiris, India. No significant consistent association of red cell acid phosphatase phenotypes was observed with these polymorphisms. However, there was a lack of acid phosphatase AB in G6PD deficient subjects from Nilgiris. The relative quantitative expression of red cell acid phosphatase genes PA, PB, and PC was 1.0, 1.2, and 1.3, respectively. The red cell acid phosphatase activity was higher (15%) in the presence of raised haemoglobin A2 and in sickle cell anaemia (21%). Those with Hp2 had 18% higher level of acid phosphatase than those with Hp1. G6PD deficient subjects had a lower level of acid phosphatase activity (20%) than those with normal G6PD activity.

  12. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  13. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Hume David A

    2008-09-01

    Full Text Available Abstract Background Tartrate-resistant acid phosphatases (TRAcPs, also known as purple acid phosphatases (PAPs, are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

  14. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    Science.gov (United States)

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P41212, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative. PMID:16511256

  15. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  16. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    Energy Technology Data Exchange (ETDEWEB)

    Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Calcutt, Michael J. [Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65212 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  17. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters.

    Science.gov (United States)

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S

    1987-01-01

    1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  18. Rapid assessment of acid phosphatase activity in the mycorrhizosphere and in arbuscular mycorrhizal fungal hyphae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular mycorrhizal hyphae. The pots had 5 compartments. The central root compartment was separated from the two adjacent hyphal compartments using nylon nets of 30 m m mesh, and the two hyphal compartments were separated from the two outermost compartments with 0.45 m m membranes. Red clover was grown in the root compartment and was either inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae or uninoculated. Sodium phytate was applied to all compartments. The results show that AMF can increase acid phosphatase activity of clover roots. The plant roots acquired deep red "mycorrhizal prints". The external hyphae also had obvious "hyphal prints" on the test papers, indicating the ability of mycorrhizal hyphae to release acid phosphatase.

  19. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica.

    Science.gov (United States)

    Seshagiri, Swetha; Tallapragada, Padmavathi

    2017-01-02

    Phosphorus is an essential plant macronutrient present in the soil. Only a small portion of phosphorus in soil is taken up by plants and the rest of it becomes unavailable to plants as it is immobilized. Phosphate solubilizing microorganisms play a vital role in converting the insoluble form of phosphates to the soluble form. The present paper reports the solubilization of tricalcium phosphate, rock phosphate, single super phosphate, zinc phosphate and aluminum phosphate by Piriformospora indica with the production of organic acids as well as acid phosphatase. The amount of phosphate released (4.73 mg ml(-1)) and titratable acidity (0.12%) was found to be the highest in the case of single super phosphate as compared to other phosphate sources. High performance liquid chromatography (HPLC) revealed the presence of oxalic acid, lactic acid, citric acid and succinic acid in the media. Highest phosphatase activity was observed with the cell membrane extract of the organism in the presence of zinc phosphate.

  20. Acidic-phosphoprotein phosphatase activity of rat ventral prostate nuclei: apparent lack of effect of androgens.

    Science.gov (United States)

    Wilson, M J; Ahmed, K; Fischbach, T J

    1978-08-01

    A protein phosphatase activity has been demonstrated in nuclei of rat ventral prostate utilizing 32P-labelled phosvitin as a model acidic phosphoprotein substrate. This phosphoprotein phosphatase has a pH optimum of 6.7, is unaffected by the sulphydryl protecting agent 2-mercaptoethanol, and requires a divalent cation for maximal activity. Of the various divalent cations tested, Mg2+ is the most effective in reactivating the EDTA-inhibited enzyme. The phosphatase is inhibited by sodium flouride, sodium oxalate, N-ethylmaleimide, ATP and ADP but is relatively insensitive to ammonium molybdate. Increased ionic strength of the reaction medium also causes a reduction in the enzyme activity, e.g., by 48% at 200 mM sodium chloride. The activity of the acidic phosphoprotein phosphatase did not change significantly at 48 h or 96 h post-orchiectomy when expressed per unit of nuclear protein. However, it is reduced by approx. 30% at these times after castration if based on DNA content. The decline in activity per nucleus reflects the decrease in the realtive nuclear protein content observed at 48 h or 96 h post-orchiectomy. This suggests that the decline in the phosphorylation of prostatic nuclear acidic proteins which occurs upon androgen withdrawal is not due to increased nuclear phosphatase activity.

  1. Acid- and alkaline phosphatase in amniotic fluid in normal and complicated pregnancy.

    Science.gov (United States)

    Beckman, G; Beckman, L; Löfstrand, T

    1978-01-01

    171 samples of amniotic fluid were obtained by abdominal amniocentesis from 67 women with complicated pregnancies (isoimmunization, diabetes mellitus or toxaemia). The levels of heat-labile alkaline phosphatase (HLAP), heat-stable alkaline phosphatase (HSAP) and acid phosphatase (AcP) were determined and compared to the enzyme levels in 179 samples from women with normal pregnancies of corresponding gestational ages. HLAP showed two "peaks" of activity, one in the 5th-22nd week and the other at term. HSAP and AcP showed increased activity at term. HSAP was decreased (p less than 0.01) in isoimmunization between the 36th and 40th week. 11 cases of toxaemia with placental insufficiency showed no differences in the levels of HLAP and HSAP compared with normal pregnancy. AcP showed no differences between normal and complicated pregnancy. Samples contaminated by blood showed no significant increase in the acid- and alkaline phosphatase levels. Samples contaminated by meconium showed a complex pattern. Some samples had normal enzyme levels, some had high levels of HLAP only and some had high levels of HSAP and AcP. The origin of the enzymes is not known with certainty. HSAP in amniotic fluid is most likely not of placental but intestinal origin. Determinations of acid- and alkaline phosphatase in amniotic fluid seem to be of little values in the clinical management of complicated pregnancy.

  2. Serum prostate-specific acid phosphatase: development and validation of a specific radioimmunoassay. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Vihko, P.; Sajanti, E.; Jaenne, O.; Peltonen, L.; Vihko, R.

    1978-11-01

    We describe radioimmunoassay for human prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) in serum, with use of monospecific antisera raised in rabbits against highly purified acid phosphatase from human prostates. The antiserum did not cross react with partly purified acid phosphatases from human spleen, erythrocytes, or synovial tissues. /sup 125/I-labeled acid phosphatase was prepared by a Chloramine T method, and the bound and free antigen was separated in the assay by use of anti-rabbit gamma-globulin raised in sheep. Uniform low nonspecific binding of the (/sup 125/I)acid phosphatase was achieved by using acid-phosphatase-free serum to prepare standard curves and diluted samples of serum with high acid phosphatase activities. Concentrations of immunoreactive acid phosphatase in the serum of healthy men ranged from <1 to 10 ..mu..g/liter and for 12 patients with advanced prostatic carcinoma between 100 and 500 ..mu..g/liter. The concentrations of the enzyme in sera of patients with benign prostatic hyperplasia were very similar to those in sera of the reference group.

  3. [Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots].

    Science.gov (United States)

    Sun, Haiguo; Zhang, Fusuo

    2002-03-01

    The activity of acid phosphatase exuded by roots, the tissue location of the enzyme, and the relationship between the enzyme activity and phosphorus efficiency of wheat were studied. The results showed that the activity of acid phosphatase exuded by wheat 81(85)5-3-3-3 and NC37 under P-sufficiency treat were lower than those under P-deficiency, and the enzyme activity of the former variety was significantly higher than that of the latter. There was a significant difference in the enzyme activity among 12 wheat genotypes grown under P-deficiency treat. Acid phosphatase was exuded by epidermis cell of root, especially by epidermal cell of root apex. Thus, there was a linear relationship between the enzyme activity and the surface area of root or the number of root apexes. It implied that the enzyme activity was markedly related to the size of root system. The linear relationship between relative grain yield and acid phosphatase activity was significant. It indicates that the enzyme activity could be used as an early indicator to select P-efficient wheat genotypes.

  4. Prostatic acid phosphatase: structural aspects of inhibition by L-(+)-tartrate ions.

    Science.gov (United States)

    Lovelace, L; Lewiński, K; Jakob, C G; Kuciel, R; Ostrowski, W; Lebioda, L

    1997-01-01

    The crystal structure of the complex between rat-prostatic acid phosphatase (PAP) and L-(+)-tartrate (Lindqvist et al., J. Biol. Chem., 1993, 268, 20744-20746) contains the model of the ligand with incorrect chirality. We report here the correct model and discuss the relation between this model and the model of the inhibitory complexes between PAP and oxy-anions.

  5. The manometric determination of thiamine pyrophosphate and the inhibition of the acid yeast phosphatase

    NARCIS (Netherlands)

    Steyn-Parvé, Elizabeth P.

    1962-01-01

    Sodium molybdate is a powerful inhibitor of the acid yeast phosphatase in both fresh baker's yeast and dried brewer's yeast, provided that the yeast is suspended in a suitable buffer. It displays no action in citrate or phosphate buffers, but is active in acetate or maleate buffers, both at the opti

  6. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover

    2003-06-01

    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  7. Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1B with cellular activities.

    Science.gov (United States)

    Zhang, Yi-Nan; Zhang, Wei; Hong, Di; Shi, Lei; Shen, Qiang; Li, Jing-Ya; Li, Jia; Hu, Li-Hong

    2008-09-15

    Protein tyrosine phosphatase 1B is a key factor in the negative regulation of insulin pathway and a promising target for treatment of diabetes and obesity. Herein, a series of competitive inhibitors were optimized from oleanolic acid, a natural triterpenoid identified against PTP1B by screening libraries of traditional Chinese medicinal herbs. Modifying at 3 and 28 positions, we obtained compound 13 with a K(i) of 130 nM, which exhibited good selectivity between other phosphatases involved in insulin pathway except T-cell protein tyrosine phosphatase. Further evaluation in cell models illustrated that the derivatives enhanced insulin receptor phosphorylation in CHO/hIR cells and also stimulated glucose uptake in L6 myotubes with or addition of without insulin.

  8. Effect of salinity on Arabidopsis thaliana seed germination and acid phosphatase activity

    Directory of Open Access Journals (Sweden)

    Nasri Nawel

    2016-01-01

    Full Text Available The salt tolerance of four accessions of Arabidopsis thaliana (COL (Columbia, NOK2, N1438 and N1380 was evaluated during germination by the capacity of seeds to germinate in the presence of 50 mM NaCl and to maintain adequate acid phosphatase activity. Our results show that saline conditions reduced the final germination percentage, speed of germination and delayed the germination processes of accessions NOK2, N1438 and N1380. In contrast, 100% of germination was found in COL under salt-stress conditions. In the presence of NaCl 50 mM, acid phosphatase activity increased in the first 24 h, the activity reaching the control level in germinating seeds of COL, but in the three other accessions NOK2, N1438 and N1380, acid phosphatase activity diminished under salt stress. These findings suggest that changes in the phosphatase enzymes might play an important role in the acclimation of COL seeds to the changing environmental conditions.

  9. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  10. An acid phosphatase locus expressed in mouse kidney (Apk) and its genetic location on chromosome 10.

    Science.gov (United States)

    Womack, J E; Auerbach, S B

    1978-04-01

    A genetic locus controlling the electrophoretic mobility of an acid phosphatase in mouse kidney is described. This locus, called acid phosphatase-kidney (Apk), is not expressed in erythrocytes, liver, spleen, heart, lung, brain, skeletal muscle, stomach, or testes. The product of Apk hydrolyzes the substrate naphthol AS-MX phosphoric acid but is not active on alpha-naphthylphosphate or 4-methylumbelliferylphosphate. It is not inactivated by 50 C for 1 hr, nor is its electrophoretic mobility altered by incubation with neuraminidase. The locus is invariant among 31 inbred strains (Apka), with a variant allele (Apkm) observed only in Mus musculus molossinus. Codominant expression was observed in F1 hybrids of M. m. molossinus and inbred strains. Apk was mapped on Chr 10, near the neurological mutant waltzer (v).

  11. Control of Ribonuclease and Acid Phosphatase by Auxin and Abscisic Acid during Senescence of Rhoeo Leaf Sections 1

    Science.gov (United States)

    De Leo, Pietro; Sacher, Joseph A.

    1970-01-01

    We report the effects of abscisic acid and auxin (α-naphthalene acetic acid) on regulation of enzyme synthesis during senescence of leaf sections of Rhoeo discolor Hance. Abscisic acid always accelerates the onset of and enhances the magnitude of the increase in activity of acid phosphatase; this is followed by an acceleration of the onset of a rapid increase in free space. RNase activity increases 2- to 5-fold after cutting of leaf sections. Abscisic acid increases RNase activity and inhibits the rate of incorporation of uridine and leucine in leaf sections removed from plants grown under stress but not favorable conditions. Auxin inhibits the increase in RNase and acid phosphatase and suppresses the effects of abscisic acid. The increase in activity of RNase and acid phosphatase is inhibited by inhibitors of RNA and protein synthesis. This and other evidence suggests that the increases in hydrolase activity could result from new enzyme synthesis. The possible significance of the results in respect of hormonal regulation of enzyme activity and senescence is discussed. PMID:5500207

  12. Control of ribonuclease and acid phosphatase by auxin and abscisic acid during senescence of Rhoeo leaf sections.

    Science.gov (United States)

    De Leo, P; Sacher, J A

    1970-12-01

    We report the effects of abscisic acid and auxin (alpha-naphthalene acetic acid) on regulation of enzyme synthesis during senescence of leaf sections of Rhoeo discolor Hance. Abscisic acid always accelerates the onset of and enhances the magnitude of the increase in activity of acid phosphatase; this is followed by an acceleration of the onset of a rapid increase in free space.RNase activity increases 2- to 5-fold after cutting of leaf sections. Abscisic acid increases RNase activity and inhibits the rate of incorporation of uridine and leucine in leaf sections removed from plants grown under stress but not favorable conditions. Auxin inhibits the increase in RNase and acid phosphatase and suppresses the effects of abscisic acid. The increase in activity of RNase and acid phosphatase is inhibited by inhibitors of RNA and protein synthesis. This and other evidence suggests that the increases in hydrolase activity could result from new enzyme synthesis. The possible significance of the results in respect of hormonal regulation of enzyme activity and senescence is discussed.

  13. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    Directory of Open Access Journals (Sweden)

    Juliana da Silva Agostini

    2010-08-01

    Full Text Available The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p O objetivo deste trabalho foi investigar a germinação de girassóis híbridos BRS 191 e C11 com finalidade de reduzir o teor de AF e aumentar as atividades de phytases e fosfatases endógenas. A concentração do AF nos aquênios de girassóis híbridos variou de 2,16 a 2,83 g /100g de amostra (p< 0,005. As atividades de fitases e fosfatases de girassóis BRS191 e C11 foram elevadas no 4º e 5º dia de germinação, respectivamente, com liberação do fósforo necessário para o desenvolvimento da semente. Estes resultados indicam que o AF do girassol hibrido reduz e a atividade de phytase aumenta em períodos distintos da germinação, possibilitando assim a aplicação desta enzima no controle do teor de AF em cereais, melhorando o seu valor nutricional.

  14. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    Science.gov (United States)

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  15. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J. (UMC)

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  16. Purification, enzymatic properties, and active site environment of a novel manganese(III)-containing acid phosphatase.

    Science.gov (United States)

    Sugiura, Y; Kawabe, H; Tanaka, H; Fujimoto, S; Ohara, A

    1981-10-25

    A new manganese-containing acid phosphatase has been isolated and crystallized from sweet potato tubers. The pure enzyme contains one atom of manganese per Mr = 110,000 polypeptide and shows phosphatase activity toward various phosphate substrates. The pH optimum of the enzyme was 5.8 and the enzyme activity was inhibited by Cu2+, Zn2+, Hg2+, AsO43-, and MoO42-. This stable metalloenzyme is red-violet in color with an intense absorption band at 515 nm (epsilon - 2460). Our electronic, circular dichroism, and electron spin resonance findings strongly indicate that the Mn-valence state of the native enzyme is trivalent. When the Mn-enzyme is excited by the 5145 A line of Ar+ laser, prominent Raman lines at 1230, 1298, 1508, and 1620 cm-1 were detected. This Raman spectrum can probably be interpreted in terms of internal vibration of a coordinated tyrosine phenolate anion. The tryptophan-modified enzyme showed a positive Raman band at 370 cm-1, which is preferentially assigned to a Mn(III)-S streching mode. The modification of the Mn-enzyme by N-bromosuccinimide led to a large decrease in the fluorescence intensity of 335 nm which was dominated by its tryptophan residues within a considerable hydrophobic environment. The acid phosphatase activity was significantly decreased by the tryptophan modification. With respect to the active site donor sets, the Mn(III)-containing acid phosphatase is distinctly different from the Zn(II)-containing alkaline phosphatase. Of interest is also the appreciable similarity of some enzymatic and spectroscopic properties between the present enzyme and uteroferrin.

  17. Acrylamide gel electrophoresis of proteins, acid phosphatases and RN-ases from three potato varieties

    Directory of Open Access Journals (Sweden)

    A. Kubicz

    2015-01-01

    Full Text Available Studies on variety differences in the protein and acid phosphatase patterns as well as ribunuclease activity distribution were carried out by disc electrophoresis on saline extracts of three varieties of the potato Solanum tuberosum (L.. The protein bands varied in number, position and relative abundance. One main zone of the acid phosphatase activity was detected consisting of 2-3 electrophoretically different bands. Variety differences were concerned with the number and relative abundance of these bands. RNase activity was detected in 4 main zones, in some of them additional subbands were visible. Differences between the three examined varieties were reflected in the occurence of the particular activity zones or their subbands.

  18. Phosphatidic acid phosphatase activity in subcellular fractions of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Olthoff, D; Jung, K

    1985-03-15

    Biopsy samples from normal and dystrophic human muscle (Duchenne type) were fractionated by differential centrifugation and microsomes, mitochondria and cytosol were assayed for phosphatidic acid phosphatase (EC 3.1.3.4) and marker enzymes of mitochondria and cytosol. The activity of phosphatidic acid phosphatase was significantly lower in microsomes and higher in cytosol and mitochondria of dystrophic muscle than in the corresponding subcellular fractions of normal muscle. The results support an explanation of earlier findings that there is reduced G3P incorporation into diglycerides and phosphatidylcholine and a qualitative and quantitative change in the amount of phosphatidylcholine in dystrophic microsomes. The possible reasons for the reduction in the activity of only microsomal PA-P-ase were discussed.

  19. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    , it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic...... that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains....

  20. Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211 (United States); Calcutt, Michael J. [Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 (United States); Tanner, John J., E-mail: tannerjj@missouri.edu [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2006-07-01

    Crystallization of a surface-localized acid phosphatase from Bacillus anthracis is reported. Flash annealing increased the high-resolution limit of usable data from 1.8 to 1.6 Å. Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 Å. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6° and a high-resolution limit of 1.8 Å. After flash-annealing, the apparent mosaicity decreased to 0.9° and the high-resolution limit of usable data increased to 1.6 Å. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques.

  1. Expression, purification and crystallization of class C acid phosphatases from Francisella tularensis and Pasteurella multocida

    Science.gov (United States)

    Singh, Harkewal; Felts, Richard L.; Ma, Li; Malinski, Thomas J.; Calcutt, Michael J.; Reilly, Thomas J.; Tanner, John J.

    2009-01-01

    Class C nonspecific acid phosphatases are bacterial enzymes that are secreted across the cytoplasmic membrane and hydrolyze a variety of phosphomono­esters at acidic pH. These enzymes are of interest for the development of improved vaccines and clinical diagnostic methods. In one case, the category A pathogen Francisella tularensis, the class C phosphatase plays a role in bacterial fitness. Here, the cloning, expression, purification and crystallization methods for the class C acid phosphatases from F. tularensis and Pasteurella multocida are reported. Crystals of the F. tularensis enzyme diffracted to 2.0 Å resolution and belonged to space group C2221, with one enzyme molecule in the asymmetric unit. Crystals of the P. multocida enzyme diffracted to 1.85 Å resolution and belonged to space group C2, with three molecules in the asymmetric unit. Diffraction patterns from crystals of the P. multocida enzyme exhibited multiple interpenetrating reciprocal-space lattices, indicating epitaxial twinning. Despite this aberrance, autoindexing was robust and the data could be satisfactorily processed to 1.85 Å resolution using MOSFLM and SCALA. PMID:19255471

  2. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    Energy Technology Data Exchange (ETDEWEB)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L. (Univ. of Massachusetts Medical School, Worcester (USA))

    1988-06-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity.

  3. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.

    Science.gov (United States)

    Darch, Tegan; Blackwell, Martin S A; Chadwick, David; Haygarth, Philip M; Hawkins, Jane M B; Turner, Benjamin L

    2016-12-15

    Soil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases. Five lowland tropical forest soils with contrasting properties (pH 4.4-6.1, total P 86-429 mg P kg(- 1)) were extracted with 2 mM citric acid (i.e., 10 μmol g(- 1), approximating rhizosphere concentrations) adjusted to soil pH in a 4:1 solution to soil ratio for 1 h. Three phosphatase enzymes were then added to the soil extract to determine the forms of hydrolysable organic phosphorus. Total phosphorus extracted by the procedure ranged between 3.22 and 8.06 mg P kg(- 1) (mean 5.55 ± 0.42 mg P kg(- 1)), of which on average three quarters was unreactive phosphorus (i.e., organic phosphorus plus inorganic polyphosphate). Of the enzyme-hydrolysable unreactive phosphorus, 28% was simple phosphomonoesters hydrolyzed by phosphomonoesterase from bovine intestinal mucosa, a further 18% was phosphodiesters hydrolyzed by a combination of nuclease from Penicillium citrinum and phosphomonoesterase, and the remaining 51% was hydrolyzed by a broad-spectrum phytase from wheat. We conclude that soil organic phosphorus can be solubilized and hydrolyzed by a combination of organic acids and phosphatase enzymes in lowland tropical forest soils, indicating that this pathway could make a significant contribution to biological phosphorus acquisition in tropical forests. Furthermore, we have developed a method that can be used to assess the bioavailability of this soil organic phosphorus.

  4. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.

    Science.gov (United States)

    Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J

    2015-11-01

    Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP.

  5. Acid phosphatase localization in the digestive glands of Dionaea muscipula Ellis flytraps.

    Science.gov (United States)

    Henry, Y; Steer, M W

    1985-04-01

    The intracellular localization of acid phosphatases in stimulated digestive glands of Dionaea flytraps has been studied to provide evidence for the route taken by this enzyme during secretion. Previous studies have either included or excluded a role for the dictyosomes in this pathway. Both p-nitrophenyl phosphate and beta-glycerophosphate were used as substrates, and both gave similar localization patterns. Unstimulated glands contained little phosphatase activity in the endomembrane system, whereas 24 and 48 hr after stimulation, heavy deposits of lead were located in the endoplasmic reticulum cisternae, including the nuclear envelope, the dictyosome cisternae, and secretory vesicles. Since dictyosome activation, as judged by the presence of secretory vesicles in the cytoplasm, also coincides with gland stimulation, we conclude that secretion of the hydrolase enzymes occurs via this route and not, as suggested elsewhere, via direct endoplasmic reticulum to plasma membrane connections.

  6. New, improved lanthanide-based methods for the ultrastructural localization of acid and alkaline phosphatase activity.

    Science.gov (United States)

    Halbhuber, K J; Zimmermann, N; Linss, W

    1988-01-01

    New, improved techniques for the ultrastructural localization of acid and alkaline phosphatase activity using lanthanide cations as the trapping agent were developed. Delayed penetration of the capture ions and the incubation constituents into cellular compartments was prevented by pretreating specimens with borohydride/saponin. Both the concentration of the capture agent in the incubation medium and the incubation time of the tissue specimens were optimized to achieve a satisfactory cytochemical reaction and to avoid precipitation artefacts caused by local matrix effects. The conversion of cerium phosphate into the almost insoluble cerium fluoride minimized losses of the reaction product during postincubation processing. Moreover, lanthanum itself as well as lanthanides other than cerium, e.g., gadolinium and didymium (praseodymium, neodymium), were successfully applied and can be recommended as capture agents for phosphatase cytochemistry.

  7. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  8. Distribution of alkaline and acid phosphatases in the duodenal wall of native blackgoats by using different fixatives

    Directory of Open Access Journals (Sweden)

    N. S. Ahmed

    2010-01-01

    Full Text Available Ten duodeni of adult goat were fixed in chilled acetone, 80% ethyl alcohol, alcohol-formalin solution, alcohol bouinssolution and buffered neutral formalin solution. The distribution of alkaline and acid phosphatases noticed in absorptive andgoblet cells that lining the duodenal mucosa of black goat, but different in their intensity and distribution according to differentfixatives. The distribution of alkaline phosphatase in absorptive columnar cells that lining intestinal glands was more intensethan other cells, whereas the concentration of acid phosphatase was more intense in goblet cells than other cells in the mucosaof goat duodenum specially in samples fixed in chilled acetone and ethyl alcohol 80%. The study revealed that the sampleswere fixed with chilled acetone gave highest reaction for alkaline and acid phosphatases than other fixative samples. Noreaction for alkaline and acid phosphatases included some absorptive cells lining villi, all cells lining the lower parts ofintestinal glands, paneth cells and submucosal glands in different fixatives, except submucosal glands revealed positivereaction for acid phosphatase in samples fixed in chilled acetone and 80% ethyl alcohol, paneth cells reveal positive reaction for the same enzyme in samples fixed in 80% ethyl alcohol in all examined areas of the duodenum wall of the native blackgoat.

  9. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  10. Acid phosphatase complex from the freshwater snail Viviparus viviparus L. under standard conditions and intoxication by cadmium ions.

    Science.gov (United States)

    Tsvetkov, I L; Popov, A P; Konichev, A S

    2003-12-01

    Acid phosphatases differing in both subcellular localization and substrate specificity were isolated for the first time from the liver of the freshwater snail Viviparus viviparus L. by preparative isoelectrofocusing. One of five characterized phosphatases is highly specific to ADP and the others can hydrolyze (at variable rate) a series of natural substrates. A scheme is proposed for the involvement of the studied phosphatases in carbohydrate metabolism. We have also studied some peculiarities of the effect of Cd2+ in vitro and in vivo on the activities of individual components of the acid phosphatase complex and corresponding changes in metabolism of the freshwater snail as a new test-object allowing the estimation of toxicity in water.

  11. [Effect of dental alloys on salivary alkaline and acid phosphatase, alpha amylase K+, Na+, and Cl-].

    Science.gov (United States)

    Todorov, I; Saprjanova, M

    1977-04-01

    Comparative studied were performed in healthy subjects without metals in their oral cavities and in individuals having different metal alloys (gold, steel, amalgam) in their mouths and presenting with various complaints such as xerostomia, burning mucosa, etc. It was found that the contents of alkaline and acid phosphatases, alpha-amylase, K+, Na+ and Cl- in saliva increased significantly with the increase in total corrosion potential when non-precious metal alloys, especially different types of alloys, were present. Parallel to this, the frequency and the intensity of the complaints increased.

  12. Effect of Diazinon on Acid and Alkaline Phosphatase Activities in Plasma and Organs of Clarias gariepinus

    OpenAIRE

    I.R. Inyang; E.R. Daka and E.N. Ogamba

    2011-01-01

    The aim of this study was to determine the effect of the pesticide, diazinon, on phosphatases in the plasma and organs on Clarias gariepinus. Adult Clarias gariepinus were exposed in four replicates to varying sublethal concentrations diazinon (ranging from 1.00 to 10.0 mg/L) in 30-day semi-static bioassays. Alkaline phoshatase (ALP) and acid phosphate (ACP) were determined in plasma and other organs (gastrointestinal tract - GIT, kidney, muscle, gill and liver) of the fish after the experime...

  13. Partial Purification and Properties of an Acid Phosphatase from Pearl Oyster Pinctada Fucata

    Institute of Scientific and Technical Information of China (English)

    柴云峰; 谢莉萍; 张荣庆

    2003-01-01

    Acid phosphatases (ACPs) are marker enzymes for the detection of lysosomes in cell fractions.However, ACPs in sea creatures are less studied than those on land.An acid phosphatase was partially purified from pearl oyster Pinctada fucata by chromatography on Sephadex G-150 and Con A-Sepharose 4B.The specific activity was 1719 U*mg-1 and with optimum pH (5.0) and temperature (60℃).The enzyme was strongly inhibited competitively by product analog WO3-4 and MoO3-4, but less inhibited by product analog AsO3-4.The enzyme could also be strongly inhibited by heavy metal ions, such as Ag+ and Cu2+, but was not affected by Pb2+.High concentrations of ethanol (64%) and NaF (10-3 mol·L-1) could inhibit the enzyme while low concentration of NaF (<10-4 mol·L-1) could slightly activate the enzyme.Other haloids (Cl-, Br-, I-) and EDTA did not have any effect on this enzyme, while tartrate and some chemical modification reagents (bromoacetic acid, formaldehyde and dithiothreitol) could inhibit the enzyme.It is concluded that the properties of the enzyme are different from many fresh water mollusks.

  14. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    Science.gov (United States)

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-05

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity.

  15. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Asgeirsson, Bjarni; Nielsen, Berit Noesgaard; Højrup, Peter

    2003-01-01

    Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid...... has the same variable residues as mammalian APs (His153 and His328 by E. coli AP numbering). General comparison of the amino acid composition with mammalian APs showed that cod AP contains fewer Cys, Leu, Met and Ser, but proportionally more Asn, Asp, Ile, Lys, Trp and Tyr residues. Three N......-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod...

  16. Histochemical demonstration of activity of acid phosphatase and beta-glucuronidase in bovine incisor tooth germs

    DEFF Research Database (Denmark)

    Kirkeby, S; Salling, E; Moe, D

    1983-01-01

    Activity of acid phosphatase and beta-glucuronidase was shown in bovine preodontoblasts and preameloblasts prior to the onset of secretion. In the preameloblasts the rather weak reaction consisted of small discrete granules dispersed in the cytoplasm apical, lateral, and proximal to the nucleus....... After initiation of enamel formation, a change in localization and intensity of the colored reaction product was observed in the ameloblasts. The activity appeared stronger and was restricted to a narrow zone just apical to the nucleus. It is proposed that the acid hydrolases in the tooth forming cells...... are located to the Golgi complex. The differences in activity of acid hydrolases between bone and tooth forming cells are expounded....

  17. Control of Acid Phosphatases Expression from Aspergillus niger by Soil Characteristics

    Directory of Open Access Journals (Sweden)

    Ely Nahas

    2015-10-01

    Full Text Available ABSTRACTThis work studied the acid phosphatase (APase activity from culture medium (extracellular, eAPase and mycelial extract (intracellular, iAPase ofAspergillus niger F111. The influence of fungus growth and phosphate concentration of the media on the synthesis and secretion of phosphatase was demonstrated. The effects of pH, substrate concentration and inorganic and organic compounds added to the reaction mixture on APase activity were also studied. Both enzymes were repressed by high concentrations of phosphate. Overexpression of iAPase in relation to eAPase was detected; iAPase activity was 46.1 times higher than eAPase. The maximal activity of eAPase was after 24h of fungus growth and for iAPase was after 96h. Optimal pH and substrate concentrations were 4.5 and 8.0 mM, respectively. Michaelis-Menten constant (Km for the hydrolysis of p-nitrophenyl phosphate was 0.57 mM with Vmax = 14,285.71 U mg-1 mycelium for the iAPase and 0.31 mM with V max = 147.06 U mg-1 mycelium for eAPase. Organic substances had little effect on acid phosphatases when compared with the salts. Both the APases were inhibited by 10 mM KH 2PO4 and 5 mM (NH42MoO4; eAPase was also inhibited by 1 mM CoCl2.

  18. Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase

    Science.gov (United States)

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P212121, with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 Å. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6° and a high-resolution limit of 1.8 Å. After flash-annealing, the apparent mosaicity decreased to 0.9° and the high-resolution limit of usable data increased to 1.6 Å. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques. PMID:16820700

  19. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    Science.gov (United States)

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  20. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    Science.gov (United States)

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  1. Use of acid phosphatase as biomarker during the castor bean seeds germination (ricinus communis

    Directory of Open Access Journals (Sweden)

    Carmen Ferreira Veríssima

    2008-12-01

    Full Text Available One of the main oil crop of prominent social and economic importance is to mamoneira (Ricinus communis L.; with countless application in the industry and agricultural. Broadly it distributed in Brazil; his cultivation can be an alternative of sustainability in the Brazilian northeast. It know the physiological and biochemical mechanisms of the germination they are important for the best utilization of the plant. The objective of this work was use acid phosphatase as biomarker during the germination. In the rough extract occurred the dosage of the activity for pNPP; Tyr-Pi and PPi; determination of protein and inorganic phosphatse. The peak of activity for pNPP was in the seventh day; for PPi and Tyr-Pi in the ninth and for PEP in the fifth. The concentration of protein increased according to the days of germination; with peak of activity in the eighth day; being coincidental with the peaks of the activities for the substrates. The content of inorganic phosphate diminished with the time of germination and after the third day occurred a fall accentuated of its concentration. We concluded that acid phosphatase is important for the germination of the seeds and his paper is related with the mobilization of inorganic phosphate; the main nutrients for the development.

  2. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    Directory of Open Access Journals (Sweden)

    Amanda Araújo Souza

    Full Text Available Acid phosphatases (ACPases are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  3. The genomic complement of purple acid phosphatase phytases in the Triticeae

    DEFF Research Database (Denmark)

    Madsen, Claus Krogh; Dionisio, Giuseppe; Holme, Inger

    2011-01-01

    phytase activity in the mature grains, however varying significantly between the individual species. After multiple steps of chromatography, the phytase activity elutes as one peak, indicating that it consists of either one enzyme or more than one very similar enzymes. Recent work in our group** has...... demonstrated that these enzymes are purple acid phosphatase phytases (PAPhy’s) encoded by a few highly conserved mRNA’s expressed either during grain filling (PAPhy_a’s) or germination (PAPhy_b’s). In the present study, 15 genomic PAPhy sequences from wheat, barley, rye, einkorn and Aegilops taushii were......, PAPhy_b promoters contain elements typical of gibberellic acid induced germination related hydrolases. PAPhy_a promoters in contrast possess elements known from storage protein promoters. **Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H. Cloning...

  4. The zinc test as an alternative for acid phosphatase spot tests in the primary identification of seminal traces.

    Science.gov (United States)

    Hooft, P J; van de Voorde, H P

    1990-10-01

    The value of the acid phosphatase spot test in the primary visualization and identification of seminal traces is hampered by the sensitiveness of the enzyme to biodegradation. An alternative spot test is proposed, based on the high concentration of the more stable zinc metal in seminal plasma. The proposed zinc spot test is simple and suitable for on site investigation. Although the sensitivity in fresh stains is lower than that of the acid phosphatase spot test, this is largely compensated by the lower sensitiveness to biodegradation. The specificity for semen is higher than that of the acid phosphatase spot test. In vaginal swabs it was nevertheless seen, that samples should be taken within 24 h after alleged sexual assault to give reliable results.

  5. Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum graminicola.

    Science.gov (United States)

    Schadeck, R J; Leite, B; de Freitas Buchi, D

    1998-12-01

    Colletotrichum graminicola, a pathogen of sorghum and corn, was investigated prior and during germination as to certain aspects of acid phosphatase activity and lipid mobilization. Ungerminated conidia cytoplasm was filled with lipid deposits, which were mobilized during the germination process. Cytochemical ultrastructural examination showed that conidia vacuoles exhibit acid phosphatase activity, which is suggestive of lytic activity. Lipid bodies, stored in the ungerminated conidia cytoplasm, were internalized by vacuoles in a process analogous to microautophagy and were apparently digested inside them. The lipid bodies disappeared and vacuoles became enlarged in conidial cells during germination. Appressoria also showed acid phosphatase activity in multiple heterogeneous vesicles which were, in most cases, juxtaposed with lipid bodies. These results suggest that the vacuolar system plays an important role during C. graminicola germination and that the initial stages of lipid metabolization are taking place inside the vacuoles.

  6. Adsorption of Acid Phosphatase on Minerals and Soil Colloids in Presence of Citrate and Phosphate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aim of this work was to study the influence of phosphate and citrate, which are common inorganic andorganic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separatedfrom yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major claymineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite andoxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted tothe Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBScolloid >LS colloid>kaolin≈goethite. In the presence of phosphate or citrate, the amounts of the enzymeadsorbed followed the sequence YBS colloid>kaolin>LS colloid>goethite. The presence of ligands alsodecreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligandconcentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme werefound in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed ongoethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However,no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations.When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usuallyenhanced the adsorption of enzyme. The results obtained in this study suggested the important role ofkaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.

  7. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus].

    Science.gov (United States)

    Sopina, V A

    2002-01-01

    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  8. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  9. Purification and characterization of a novel acid phosphatase from the split gill mushroom Schizophyllum commune.

    Science.gov (United States)

    Zhang, Guo-Qing; Chen, Qing-Jun; Sun, Jian; Wang, He-Xiang; Han, Chun-Hua

    2013-10-01

    A monomeric acid phosphatase (ACP) with a molecular mass of 72.5 kDa was purified from fresh fruiting bodies of cultured Schizophyllum commune mushroom. The isolation procedure entailed ion exchange chromatography on DEAE-cellulose, CM-cellulose, and Q-sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. It demonstrated a unique N-terminal amino acid sequence of NAPWAQIDEV, which exhibited 60% amino acid identity to that of S. commune hypothetical histidine ACP based on its genome sequence, but less than 30% amino acid identity to that of other fungal ACPs previously reported. The ACP exhibited an optimum temperature at 50 °C, an optimum pH at pH 4.6, and was considerably stable at a pH range of 4.0 to 9.0, and a temperature range of 20-40 °C. The Km of the purified enzyme for ρ-nitrophenyl phosphate (ρNPP) was 0.248 mM and the Vmax was 9.093 × 10(-3)  μM/min. ACP activity was strongly inhibited by Al(3+) and Fe(3+) , but enhanced by Co(2+) , Mg(2+) , and Ca(2+) at a concentration of 0.5 mM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  11. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases.

    Science.gov (United States)

    Siniossoglou, Symeon

    2013-03-01

    Phospholipids play important roles in nuclear function as dynamic building blocks for the biogenesis of the nuclear membrane, as well as signals by which the nucleus communicates with other organelles, and regulate a variety of nuclear events. The mechanisms underlying the nuclear roles of phospholipids remain poorly understood. Lipins represent a family of phosphatidic acid (PA) phosphatases that are conserved from yeasts to humans and perform essential functions in lipid metabolism. Several studies have identified key roles for lipins and their regulators in nuclear envelope organization, gene expression and the maintenance of lipid homeostasis in yeast and metazoans. This review discusses recent advances in understanding the roles of lipins in nuclear structure and function. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. [Supplemental data to the ultrastructural study of Trichomonas tenax. Intra-cellular distribution of acid phosphatase].

    Science.gov (United States)

    Ribaux, C L; Magloire, H

    1980-09-01

    In scanning electron microscopy, the flagella come out from the cellular body following different configurations: either separately or in groups. The undulating membrane lasted up to 2/3 of the cell body: at its end the recurrent flagella seems to penetrate again into the cell. The costa starts from the cinetosome of the recurrent flagella: the two parabasal filaments start from two different cinetosomes and follow the costa for a small distance. The nucleus is surrounded by a membrane which is not always visible. The axostyle has a cylindrical shape in the posterior two thirds of the cell. Bacteria at different stages of phagocytosis have been observed. The acid phosphatase is localized in the saccules and vesicles of the Golgi apparatus, in the lysosomes and phagolysosomes and in the terminal lamina of the undulating membrane.

  13. Localization of acid phosphatase activity in the apoplast of root nodules of pea (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Marzena Sujkowska

    2011-01-01

    Full Text Available Changes in the activity of acid phosphatase (AcPase in the apoplast of pea root nodule were investigated. The activity was determined using lead and cerium methods. The results indicated a following sequence of AcPase activity appearance during the development of the infection thread: 1 low AcPase activity appears in the outer part of cells of symbiotic bacteria; 2 bacteria show increased AcPase activity, and the enzyme activity appears in the thread walls; 3 activity exhibits also matrix of the infection thread; 4 bacteria just before their release from the infection threads show high AcPase activity; 5 AcPase activity ceases after bacteria transformation into bacteroids. The increase in bacterial AcPase activity may reflect a higher demand for inorganic phosphorus necessary for propagation of the bacteria within the infection threads and/or involved in bacteria release from the infection threads.

  14. Stabilization of human prostatic acid phosphatase by coupling with chondroitin sulfate.

    Science.gov (United States)

    Luchter-Wasylewska, E; Dulińska, J; Ostrowski, W S; Torchilin, V P; Trubetskoy, V S

    1991-02-01

    Human prostatic acid phosphatase (PAP) (EC 3.1.3.2) was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.

  15. CERVICAL ACID PHOSPHATASE: EVALUATION AS AN ADJUVANT TO PAPANICOLAOU SMEAR SCREENING IN CERVICAL CANCER DETECTION

    Directory of Open Access Journals (Sweden)

    Niranjan

    2015-02-01

    Full Text Available INTRODUCTION: Carcinoma of cervix accounts for 15% of all cancers diagnosed worldwide and is the second most common cancer in women. In the year 2000 there were over 4,71,000 new cases diagnosed and 2,88,000 deaths from cervical cancer. (1 Approximately 79% of these deaths occurred in developing countries. (2 Cervical cancer is preventable, but most women in poorer countries do not have access to effective screening programs. In India it is estimated that approximately 100,000 women develop cervical cancer each year. (3 Cancer cervix occupies either the top r ank or second among cancers in women in developing countries, whereas, in the developed countries cancer cervix does not find a place even in top five leading cancers in women. This is due to routine screening by cervical smear. Cervical smear cytology scr eening by Papanicolaou (Pap stained smears is the most efficacious and cost - effective method of cancer screening, decreasing the incidence and mortality from cervical cancer. (4 However, cervical smear screening has significant rates of false - positive and false - negative results, ranging from 10.3% for false positive cases to 5.6% for false negative cases. (5,6 To improve the detection and screening of cancerous and precancerous lesions of the cervix a number of sophisticated tests are available which are e xpensive and can be done only in a tertiary laboratory. To over - come this problems a cost effective cytochemical stain was introduced to measure the acid phosphatase activity in the cervical epithelium. (7 Since the description of the new Cervical Acid Phosphatase Test (CAP Test for visualization of cervical acid phosphatase activity (CAP inside abnormal cervical cells on smears, it has become possible to explore this enzyme as a biomarker for cervical dys plasia, and as a possible surrogate for PAP smear in detection of cervical intraepithelial neoplasia (CIN. AIMS AND OBJECTIVES: To assess the utility of Cervical Acid

  16. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-03-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area.

  17. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia.

    Directory of Open Access Journals (Sweden)

    Heping Cao

    Full Text Available Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4 that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i. PAPs are typically categorized into two subfamilies: Mg(2+-dependent soluble PAP and Mg(2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3VO(4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO32. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+-independent enzyme in plants.

  18. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  19. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    Science.gov (United States)

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta.

    Science.gov (United States)

    Seymen, Figen; Kim, Youn Jung; Lee, Ye Ji; Kang, Jenny; Kim, Tak-Heun; Choi, Hwajung; Koruyucu, Mine; Kasimoglu, Yelda; Tuna, Elif Bahar; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Kim, Young-Jae; Lee, Sang-Hoon; Lee, Zang Hee; Zhang, Hong; Hu, Jan C-C; Simmer, James P; Cho, Eui-Sic; Kim, Jung-Wook

    2016-11-03

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis.

  1. Evaluation of serum sialic acid, heat stable alkaline phosphatase and fucose as markers of breast carcinoma.

    Science.gov (United States)

    Patel, P S; Baxi, B R; Adhvaryu, S G; Balar, D B

    1990-01-01

    Serum levels of total sialic acid (TSA), lipid bound sialic acid (LSA), heat stable alkaline phosphatase (HSAP) and fucose were measured in 39 patients with breast carcinoma, 14 patients with benign breast diseases and 35 healthy female individuals. Elevated levels of the four biomarkers in breast carcinoma were significant when compared with controls (p less than 0.001). Fucose levels were most sensitive (71.8%), while TSA levels were most specific (64.3%) for breast carcinoma. Sensitivity and specificity were 100% when combinations of LSA with fucose and TSA with HSAP were studied respectively. LSA was significantly elevated in infiltrating duct carcinoma patients compared with lobular carcinoma (p less than 0.001). TSA, HSAP and fucose also had lower mean values in lobular carcinoma as compared to infiltrating duct carcinoma. Increase in the levels of LSA and HSAP after surgical removal of the tumor in breast carcinoma occurred prior to the clinical evidence of the recurrence. The results indicate that the combination of the markers studied might be useful in breast cancer diagnosis and treatment monitoring.

  2. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    Science.gov (United States)

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  3. Optimization of the tartrate-resistant acid phosphatase detection by histochemical method

    Science.gov (United States)

    Galvão, M.J.; Santos, A. R.; Ribeiro, M.D.; Ferreira, A.; Nolasco, F.

    2011-01-01

    According to the new kidney disease improving global outcomes (KDIGO) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling, the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 µm were stained to identify TRACP at different incubation temperatures (37°, 45°, 60°, 70° and 80°C) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60°C and 70°C. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 min, the reaction should be carried out at 60

  4. Light microscopical localization of enzymes by means of cerium-based methods. I.V. Optimization procedures for acid phosphatase.

    Science.gov (United States)

    Halbhuber, K J; Zimmermann, N; Feuerstein, H

    1986-01-01

    The earlier described cerium based histochemical reaction for acid phosphatase [Ce-Pb-reaction, Zimmermann and Halbhuber (1985)] was optimized. The target tissues (kidney, intestine) were fixed by perfusion with glutaraldehyde in cacodylate or piperazine buffer in anesthetized animals. Postfixation of prefixed sections is not advantageous because of the detectable repressing of the enzyme activity. Moreover, the employment of unfixed cryostat sections, which were postfixed, was always connected with a complete abolition of the acid phosphatase activity. The optimal concentration of the primary capture cerium III chloride in the incubation medium is about 1 mmol. Lower concentrations lead to an incomplete histochemical detection of phosphatase activity in lysosomes. The treatment of cryostat sections of perfusion fixed tissue with borohydride (diminution of aldehyde induced cross links) or with dimethylsulfoxide (extraction of lysosomal materials or the well known vehicle property) brought about an improvement of the penetration capacity for cerium-III-cations into the target structures. After conversion of the cerium phosphate (primary specific reaction product) into cerium perhydroxide, oxalate or fluoride, the Ce-Pb-reaction was negative. Therefore, these blocking reactions represent specific inhibition controls, which indicates the formation and presence of cerium phosphate. On the basis of these reactions it is possible to check the specificity of the histochemical Ce-Pb-reaction for phosphatase activity in sections.

  5. Development of immunoassays for serum tartrate-resistant acid phosphatase isoform 5a.

    Science.gov (United States)

    Chao, Tsu-Yi; Lee, Su-Huei; Chen, Mary M; Neustadt, David H; Chaudhry, Uzma A; Yam, Lung T; Janckila, Anthony J

    2005-09-01

    Serum tartrate-resistant acid phosphatase (TRACP) consists of 2 structurally related isoforms, TRACP 5a and 5b. TRACP 5b is from bone-resorbing osteoclasts. TRACP 5a may be a macrophage product of inflammation. We used a novel antibody to TRACP 5a to standardize immunoassays for serum TRACP 5a activity and protein. Biotinylated anti-TRACP antibodies were used to immobilize serum TRACP isoforms. TRACP activity was measured using 4-nitrophenyl phosphate as substrate. TRACP 5a protein was measured with an independent peroxidase-conjugated anti-TRACP antibody. Immunoassays were standardized for linearity of serum dose response, sensitivity and precision. Reference ranges for TRACP 5a were established from serum of 50 healthy males and 50 healthy age-matched females. Serum TRACP 5a activity and protein were determined in 29 cases of rheumatoid arthritis. Serum matrix interference in both TRACP 5a assays required dilution to 10% serum to approach linearity. Intra-assay and inter-assay CV% were unrelated to bone metabolism.

  6. Effects of Hg and Cu on the activities of soil acid phosphatase

    Institute of Scientific and Technical Information of China (English)

    XU Dong-mei; CHEN Bo; LIU Wen-li; LIU Guang-shen; LIU Wei-ping

    2007-01-01

    Comparative study on the activity and kinectic properties of acid phosphatase (ACPase) of three soils amended with Hg and Cu at constant temperature and humidity was carried out. The results indicated that the inhibition on ACPase of the three sample soils by Hg and Cu varied with the content of soil organic matter and pH, where, Soil 1 was the most seriously contaminated due to its lowest content of organic matter and the lowest pH among three samples, Soil 2 took the second place, and Soil 3was the least contaminated. Except Soil 3, the activity of soil ACPase tended to increase along with the contact time under the same type and the same concentration of heavy metal. In particular the Vmax values of ACPase in all three samples decreased with increasing Hg and Cu concentration, whereas the Km values were affected weakly. According to the change of Vmax and Km values,Cu and Hg had the same inhibition effect on soil ACPase. Both of them may be a type of compound of non-competitive and anti-competitive inhibition. Statistic analyses indicated that activities of soil ACPase and Vmax values could serve as bioindicator to partially denote the heavy metal Hg and Cu contamination degree.

  7. Expression, purification and crystallization of an atypical class C acid phosphatase from Mycoplasma bovis.

    Science.gov (United States)

    Singh, Harkewal; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2011-10-01

    Class C acid phosphatases (CCAPs) are 25-30 kDa bacterial surface proteins that are thought to function as broad-specificity 5',3'-nucleotidases. Analysis of the newly published complete genome sequence of Mycoplasma bovis PG45 revealed a putative CCAP with a molecular weight of 49.9 kDa. The expression, purification and crystallization of this new family member are described here. Standard purification procedures involving immobilized metal-ion affinity chromatography and ion-exchange chromatography yielded highly pure and crystallizable protein. Crystals were grown in sitting drops at room temperature in the presence of PEG 3350 and HEPES buffer pH 7.5 and diffracted to 2.3 Å resolution. Analysis of diffraction data suggested a primitive monoclinic space group, with unit-cell parameters a = 78, b = 101, c = 180 Å, β = 92°. The asymmetric unit is predicted to contain six molecules, which are likely to be arranged as three dimers.

  8. Blood groups and red cell acid phosphatase types in a Mixteca population resident in Mexico City.

    Science.gov (United States)

    Buentello, L.; García, P.; Lisker, R.; Salamanca, F.; Peñaloza, R.

    1999-01-01

    Several blood groups, ABO, Rh, Ss, Fy, Jk, and red cell acid phosphatase (ACP) types were studied in a native Mixteca population that has resided in Mexico City since 1950. Gene frequencies were obtained and used to establish admixture estimates with blacks and whites. The subjects came from three different geographical areas: High Mixteca, Low Mixteca, and Coast Mixteca. All frequencies were in Hardy-Weinberg equilibrium. The difference in the ABO frequencies was statistically significant when subjects from the three areas were compared simultaneously. Rh frequencies differed only between the High and the Low Mixteca populations. The ACP frequencies were similar between the Low Mixteca population and a previously reported Mestizo population. However, there were significant differences between the High Mixteca group and a Mestizo population, all the subjects being from Oaxaca. This is the first report of Ss, Fy, Jk, and ACP frequencies in a Mixteca population. Am. J. Hum. Biol. 11:525-529, 1999. Copyright 1999 Wiley-Liss, Inc.

  9. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  10. Effect of Diazinon on Acid and Alkaline Phosphatase Activities in Plasma and Organs of Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    I.R. Inyang

    2011-05-01

    Full Text Available The aim of this study was to determine the effect of the pesticide, diazinon, on phosphatases in the plasma and organs on Clarias gariepinus. Adult Clarias gariepinus were exposed in four replicates to varying sublethal concentrations diazinon (ranging from 1.00 to 10.0 mg/L in 30-day semi-static bioassays. Alkaline phoshatase (ALP and acid phosphate (ACP were determined in plasma and other organs (gastrointestinal tract - GIT, kidney, muscle, gill and liver of the fish after the experimental exposures. Dizinon did not cause any statistically significant difference on plasma ALP over the concentrations tested (p>0.05, but ACP showed significantly higher mean value at 10 mg/L compared to the control. ALP and ACP values in all the organs (GIT, intestinal tract, kidney, muscle, gill, liver decreased with increasing concentration of diazion. This indicates an evidence of inhibition of these enzymes in the organs by the toxicant, and therefore alteration of biochemical processes in C. gariepinus which can be used as bio-indicators of the effects of diazinon in the Niger Delta environment.

  11. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes.

    Science.gov (United States)

    Liu, Pan-Dao; Xue, Ying-Bin; Chen, Zhi-Jian; Liu, Guo-Dao; Tian, Jiang

    2016-07-01

    Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.

  12. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.

    Science.gov (United States)

    Dionisio, Giuseppe; Madsen, Claus K; Holm, Preben B; Welinder, Karen G; Jørgensen, Malene; Stoger, Eva; Arcalis, Elsa; Brinch-Pedersen, Henrik

    2011-07-01

    Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains.

  13. Activity of alkaline and acidic phosphatase in glandular cells of uterine endometrium of puerperal ewes after exposure to polychlorinated biphenyls

    OpenAIRE

    Valocky I.; Krajničakova Maria; Legath J.; Lenhardt L.; Ostro A.; Danko J.; Tkačikova L`udmila; Mojžišova Jana; Fialkovičova Maria; Mardzinova Silvia

    2005-01-01

    The study is focused on the observation of alkaline and acidic phosphatase activity in the glandular cells of uterine endometrium in puerperal ewes after exposure to polychlorinated biphenyls. Ewes of Slovak merino breed (n=25) divided into 2 groups were included in the experiment. The animals in the experimental group (n=14) and control group (n=11) were euthanised on day 17, 25 and 34 postpartum. The ewes in the experimental group were given per os capsules of the chemical preparation Delor...

  14. Comparison of enzyme-linked immunosorbent assay and radioimmunoassay for prostate-specific acid phosphatase in prostatic disease

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.; Rippe, D.F.; Panfili, P.R.

    1982-01-01

    Results of an enzyme-linked immunosorbent assay (ELISA) are compared with those of a standard radioimmunoassay (RIA) for detection and quantitation of prostate-specific acid phosphatase (EC 3.1.3.2) in serum. Control subjects, patients with benign prostatic hyperplasia, and patients in all four clinical stages of prostatic adenocarcinoma were tested. The upper limit of normal (95%of the population) by the ELISA was 2.0 ..mu..g/L, and by the RIA was 2.2 ..mu..g/L. In prostatic a denocarcinoma stage I (not detectable by digital rectal examination), ELISA was slightly more sensitive than RIA, but sensitivity was still relatively low (20%). As tumor mass increased (stages II through IV), the frequency of increased concentrations of prostatic acid phosphatase in serum also increased. We confirmed this increase in circulating enzyme in some cases of benign prostatic hyperplasia and suggest that this finding is related to either acinar cytolysis or an increase in acini size and number. Although prostate-specific acid phosphatase is not a cancer-specific enzyme, we conclude that its measurement may be of considerable value in monitoring prostatic disease.

  15. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings.

    Science.gov (United States)

    Hegeman, C E; Grabau, E A

    2001-08-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases.

  16. Cysteine proteases and acid phosphatases contribute to Tetrahymena spp. pathogenicity in guppies, Poecilia reticulata.

    Science.gov (United States)

    Leibowitz, M Pimenta; Ofir, R; Golan-Goldhirsh, A; Zilberg, D

    2009-12-03

    Systemic tetrahymenosis caused by the protozoan parasite Tetrahymena spp. is a serious problem in guppy (Poecilia reticulata) farms worldwide. There is no therapeutic solution for the systemic form of this disease. Guppies severely infected with Tetrahymena spp. were imported by a commercial ornamental fish farm and brought to our laboratory. Tetrahymena sp. (Tet-NI) was isolated and in vitro cultured. Isolates maintained in culture for different time periods (as reflected by different numbers of passages in culture) were analyzed-Tet-NI 1, 4, 5 and 6, with Tet-NI 1 being cultured for the longest period (about 15 months, 54 passages) and Tet-NI 6 for the shortest (2.5 months, 10 passages). Controlled internal infection was successfully achieved by IP injection with most isolates, except for Tet-NI 1 which produced no infection. The isolate Tet-NI 6 induced the highest infection rates in internal organs (80% vs. 50% and 64% for Tet-NI 4 and 5, respectively) and mortality rates (67% vs. 20% and 27% for Tet-NI 4 and 5, respectively, and 6.7% for Tet-NI 1). The correlation between pathogenicity and Tetrahymena enzymatic activity was studied. Electrophoretic analyses revealed at least two bands of gelanolytic activity in Tet-NI 4 and 5, three bands in Tet-NI 6, and no activity in Tet-NI 1. Total inhibition of gelanolytic activity was observed after pretreatment of Tet-NI 6 with E-64, a highly selective cysteine protease inhibitor. Using hemoglobin as a substrate, Tet-NI 6 had two bands of proteolytic activity and no bands were observed in Tet-NI 1. A correlation was observed between pathogenicity and acid phosphatase activities (analyzed by commercial fluorescence kit) for Tet-NI 1 and Tet-NI 6.

  17. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India

    Directory of Open Access Journals (Sweden)

    B.C. Behera

    2017-06-01

    Full Text Available Phosphorus is an essential element for all life forms. Phosphate solubilizing bacteria are capable of converting phosphate into a bioavailable form through solubilization and mineralization processes. Hence in the present study a phosphate solubilizing bacterium, PSB-37, was isolated from mangrove soil of the Mahanadi river delta using NBRIP-agar and NBRIP-BPB broth containing tricalcium phosphate as the phosphate source. Based on phenotypic and molecular characterization, the strain was identified as Serratia sp. The maximum phosphate solubilizing activity of the strain was determined to be 44.84 μg/ml, accompanied by a decrease in pH of the growth medium from 7.0 to 3.15. During phosphate solubilization, various organic acids, such as malic acid (237 mg/l, lactic acid (599.5 mg/l and acetic acid (5.0 mg/l were also detected in the broth culture through HPLC analysis. Acid phosphatase activity was determined by performing p-nitrophenyl phosphate assay (pNPP of the bacterial broth culture. Optimum acid phosphatase activity was observed at 48 h of incubation (76.808 U/ml, temperature of 45 °C (77.87 U/ml, an agitation rate of 100 rpm (80.40 U/ml, pH 5.0 (80.66 U/ml and with glucose as a original carbon source (80.6 U/ml and ammonium sulphate as a original nitrogen source (80.92 U/ml. Characterization of the partially purified acid phosphatase showed maximum activity at pH 5.0 (85.6 U/ml, temperature of 45 °C (97.87 U/ml and substrate concentration of 2.5 mg/ml (92.7 U/ml. Hence the present phosphate solubilizing and acid phosphatase production activity of the bacterium may have probable use for future industrial, agricultural and biotechnological application.

  18. The IBO germination quantitative trait locus encodes a phosphatase 2C-related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling.

    Science.gov (United States)

    Amiguet-Vercher, Amélia; Santuari, Luca; Gonzalez-Guzman, Miguel; Depuydt, Stephen; Rodriguez, Pedro L; Hardtke, Christian S

    2015-02-01

    Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.

  19. Exploiting Acid Phosphatases in the Synthesis of Phosphorylated Monoalcohols and Diols

    Science.gov (United States)

    Tasnádi, Gábor; Lukesch, Michael; Zechner, Michaela; Jud, Wolfgang; Hall, Mélanie; Ditrich, Klaus; Baldenius, Kai; Hartog, Aloysius F.; Wever, Ron

    2015-01-01

    Abstract A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.

  20. Exploiting acid phosphatases in the synthesis of phosphorylated monoalcohols and diols

    NARCIS (Netherlands)

    Tasnádi, G.; Lukesch, M.; Zechner, M.; Jud, W.; Hall, M.; Ditrich, K.; Baldenius, K.; Hartog, A.F.; Wever, R.; Faber, K.

    2015-01-01

    A set of phosphatases was evaluated for their potential to catalyze the regio- and stereoselective phosphorylation of alcs. using a high-​energy inorg. phosphate donor, such as di-​, tri- and polyphosphate. Parameters such as type and amt. of phosphate donor and pH of the reaction were investigated

  1. Extracellular acid phosphatase activities in Eriophorum vaginatum tussocks: A modeling synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Moorhead, D.L. (Texas Tech Univ., Lubbock (United States)); Kroehler, C.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg (United States)); Linkins, A.E. (Clarkson Univ., Potsdan, NY (United States)); Reynolds, J.F. (San Diego State Univ., CA (United States))

    1993-02-01

    Analyses of Eriophorum vaginatum tussocks provided mass and kinetic parameters for a Michaelis-Menten model of phosphatase activities in Alaskan tussock tundra. This model was used to simulate the temporal patterns of phosphatase activities, given a 90-d thawing season and organic phosphorus concentrations of 30 [mu]M in the first and last 10-d intervals; 15 [mu]M at other times. Results indicated that about 28% of the total annual tussock activity (155 mg P released) occurred during the brief period of high substrate availability in autumn; little occurred in spring because most of the tussock was frozen and live root mass was low. Phosphatases associated with living roots of E. vaginatum were responsible for about 4% of the total activity in tussocks (ca. 6 mg P), which is almost twice the annual plant demand (ca. 3.5 mg). These results suggest that (1) E. vaginatum may obtain much of its phosphorus requirement from the activities of root surface phosphatases, and (2) the timing of maximum plant phosphorus uptake (late in year) and growth (early in year) are asynchronous, i.e., E. vaginatum integrates nutrient availabilities across years. 41 refs., 2 figs., 1 tab.

  2. Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available Inorganic polyphosphate (poly(P has recently been found to play an important role in bone formation. In this study, we found that tartrate-resistant acid phosphatase (TRAP, which is abundantly expressed in osteoclasts, has polyphosphatase activity that degrades poly(P and yields Pi as well as shorter poly(P chains. Since the TRAP protein that coprecipitated with anti-TRAP monoclonal antibodies exhibited both polyphosphatase and the original phosphatase activity, poly(P degradation activity is dependent on TRAP and not on other contaminating enzymes. The ferrous chelator α, α'-bipyridyl, which inhibits the TRAP-mediated production of reactive oxygen species (ROS, had no effect on such poly(P degradation, suggesting that the degradation is not dependent on ROS. In addition, shorter chain length poly(P molecules were better substrates than longer chains for TRAP, and poly(P inhibited the phosphatase activity of TRAP depending on its chain length. The IC50 of poly(P against the original phosphatase activity of TRAP was 9.8 µM with an average chain length more than 300 phosphate residues, whereas the IC50 of poly(P with a shorter average chain length of 15 phosphate residues was 8.3 mM. Finally, the pit formation activity of cultured rat osteoclasts differentiated by RANKL and M-CSF were markedly inhibited by poly(P, while no obvious decrease in cell number or differentiation efficiency was observed for poly(P. In particular, the inhibition of pit formation by long chain poly(P with 300 phosphate residues was stronger than that of shorter chain poly(P. Thus, poly(P may play an important regulatory role in osteoclastic bone resorption by inhibiting TRAP activity, which is dependent on its chain length.

  3. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA

    Directory of Open Access Journals (Sweden)

    John S Gunn

    2016-04-01

    Full Text Available Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.

  4. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    Science.gov (United States)

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  5. High Uric Acid (UA Negatively Affects Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b Immunoassay.

    Directory of Open Access Journals (Sweden)

    Zhi-Qi Wu

    Full Text Available Bone metastases often occur in the majority of patients with advanced cancer, such as prostate cancer, lung cancer and breast cancer. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b, a novel bone resorption marker, has been used gradually in the clinics as a specific and sensitive marker of bone resorption for the early diagnosis of cancer patients with bone metastasis. Here, we reported that high concentrations of uric acid (UA lead to decrease of TRACP 5b levels and determined whether TRACP 5b level was associated with UA in interference experiment.A total of 77 patients with high concentrations of UA and 77 healthy subjects were tested to evaluate the differences in their TRACP 5b levels. Serial dilutions of UA were respectively spiked with a known concentration of TRACP 5b standard sample, then Serum TRACP 5b was detected by using bone TRAP® Assay. A correction equation was set to eliminate UA-derived TRACP 5b false-decrease. The effect of this correction was evaluated in high-UA individuals.The average TRACP level of the high-UA individuals (1.47 ± 0.62 U/L was significantly lower than that of the healthy subjects (2.62 ± 0.63 U/L (t-test, p < 0.0001. The UA correction equation derived: ΔTRACP 5b = -1.9751lgΔUA + 3.7365 with an R2 = 0.98899. Application of the UA correction equation resulted in a statistically non-significant difference in TRACP 5b values between the healthy subjects and high-UA individuals (p = 0.24.High UA concentrations can falsely decrease TRACP 5b levels due to a method-related systematic error. To avoid misdiagnoses or inappropriate therapeutic decisions, increased attention should be paid to UA interference, when TRACP 5b is used for early diagnosis of cancer patients with bone metastasis, evaluation of the aggressiveness of osteosarcoma or prediction of survival in prostate cancer and breast cancer with bone metastases.

  6. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase.

    Science.gov (United States)

    Denu, J M; Zhou, G; Guo, Y; Dixon, J E

    1995-03-14

    The mechanism of catalysis for the human dual-specific (vaccinia H1-related) protein-tyrosine-phosphatase was investigated. The pH dependence of the kcat value is bell-shaped when p-nitrophenyl phosphate was employed as a model substrate. The kcat/Km pH profile rises with a slope of 2 and decreases with a slope of -1, indicating that two groups must be unprotonated and one group must be protonated for activity. An amino acid residue with an apparent pKa value of 5.5 +/- 0.2 must be unprotonated and a residue with a pKa value of 5.7 must be unprotonated for activity. The pKa value of the catalytic cysteine-124 (C124) was 5.6 +/- 0.1. The aspartic acid-92-asparagine (D92N) mutant enzyme was 100-fold less active than the native enzyme and exhibited the loss of the basic limb in the pH profiles, suggesting that in the native enzyme D92 must be protonated for activity. The D92 residue is conserved throughout the entire family of dual-specific phosphatases. Mutants glutamic acid-6-glutamine, glutamic acid-32-glutamine, aspartic acid-14-asparagine, and aspartic acid-110-asparagine had less than a 2-fold effect on the kinetic parameters when compared to native enzyme. Based upon the lack of a "burst" in rapid reaction kinetics, formation of the intermediate is rate-limiting with both native and D92N mutant enzymes. In agreement with rate-limiting formation of the intermediate, the pKa value of 5.5 for the group which must be unprotonated for activity was assigned to C124.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Phosphate status and acid phosphatase activity in soil and ectomycorrhizas in two mature stands of scots pine (Pinus sylvestris L. exposed to different levels of anthropogenic pollution

    Directory of Open Access Journals (Sweden)

    Barbara Kieliszewska-Rokicka

    2014-01-01

    Full Text Available The relations between anthropogenic environmental pollution and the level of inorganic phosphorus in soil, enzyme activities of extracellular soil acid phosphatase and the surface acid phosphatase of excised ectomycorrhizas of Scots pine (Pinus sylvestris L. were studied. Soil and root samples were taken from two Scots pine stands in central Poland: a polluted site exposed to long-term pollution from a steelworks and the city of Warsaw and a reference plot (control free from direct impact of pollution. The polluted site was characterised by high concentration of trace elements (Cd, Pb, Cu, Zn, Mn, Cr and low level of inorganic phosphate in soil. This site had significantly lower enzyme activities of soil acid phosphatase (0.54 µmoles p-nitrophenol released g-1 dry weight h-1 and surface acid phosphatase of pine ectomycorrhizas (3.37 µmoles p-nitrophenol released g-1 fresh weight h-1 than the control site (1.36 µmoles p-nitrophenol released g-1 dry weight h-1 and 12.46 µmoles p-nitrophenol released g-1 fresh weight h-1, respectively. The levels of phosphate, carbon and nitrogen in pine fine roots were also analysed. Low concentrations of P04-P and high N: P ratio in pine fine roots from polluted site were found. The results suggest that soil pollutants may have a negative effect on the extracellular acid phosphatase of soil and Scots pine ectomycorrhizas and on the phosphorus status in fine roots of the plant.

  8. The maize (Zea mays ssp. mays var. B73 genome encodes 33 members of the purple acid phosphatase gene family

    Directory of Open Access Journals (Sweden)

    Eliécer eGonzález Muñoz

    2015-05-01

    Full Text Available Purple acid phosphatases (PAPs play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73 reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members.

  9. Positive cooperativity in substrate binding of human prostatic acid phosphatase entrapped in AOT-isooctane-water reverse micelles.

    Science.gov (United States)

    Luchter-Wasylewska, Ewa; Iciek, Małgorzata

    2004-05-15

    The kinetics of 1-naphthyl phosphate and phenyl phosphate hydrolysis, catalyzed by human prostatic acid phosphatase (PAP) entrapped in AOT-isooctane-water reverse micelles, has been studied over surfactant hydration degree (w0) range 5 to 35. Continuous spectrophotometric acid phosphatase assays, previously prepared, were employed. PAP was catalytically active over the whole w0 studied range. In order to determine steady-state reaction constants the experimental data were fitted to Hill rate equation. Positive cooperativity in substrate binding was observed, as it was earlier found in aqueous solutions. The extent of cooperativity (expressed as the value of the Hill cooperation coefficient h) increased from 1 to 4, when the micellar water-pool size was growing, at fixed enzyme concentration. In the plots of catalytic activity (kcat) versus w0, the maxima have been found at w0=10 (pH 5.6) and 23 (pH 3.8). It is suggested that catalytically active monomeric and dimeric PAP forms are entrapped in reverse micelles of w0=10 and 23, respectively.

  10. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family.

    Science.gov (United States)

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J H

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members.

  11. Variation of Photosynthesis, Fatty Acid Composition, ATPase and Acid Phosphatase Activities, and Anatomical Structure of Two Tea (Camellia sinensis (L. O. Kuntze Cultivars in Response to Fluoride

    Directory of Open Access Journals (Sweden)

    L. X. Wang

    2013-01-01

    Full Text Available The changes of photosynthetic parameters, water use efficiency (WUE, fatty acid composition, chlorophyll (Chl content, malondialdehyde (MDA content, ATPase and acid phosphatase activities, fluoride (F content, and leaf anatomical structure of two tea cultivars, “Pingyangtezao” (PY and “Fudingdabai” (FD, after F treatments were investigated. The results show that net photosynthetic rate (, stomatal conductance (, and transpiration rate (E significantly decreased in both cultivars after 0.3 mM F treatment, but FD had higher , , and WUE and lower E than PY. Chl content in PY significantly decreased after 0.2 and 0.3 mM F treatments, while no significant changes were observed in FD. The proportions of shorter chain and saturated fatty acids increased and those of longer chain and unsaturated fatty acids decreased in both cultivars under F treatments. The contents of MDA increased after F treatments but were higher in PY than in FD. In addition, F treatments decreased the activities of ATPase and acid phosphatase and increased F content in both cultivars; however, compared with PY, FD showed higher enzymatic activities and lower F content in roots and leaves. Leaf anatomical structure in FD indicated that cells in leaf midrib region were less injured by F than in PY.

  12. Low Soil Phosphorus Availability Increases Acid Phosphatases Activities and Affects P Partitioning in Nodules, Seeds and Rhizosphere of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Drevon

    2012-06-01

    Full Text Available The effect of phosphorus (P deficiency on phosphatases activities in N2-fixing legumes has been widely studied in hydroponic culture. However, the response of acid phosphatase (APase and phytase in rhizosphere, nodules and seeds of Phaseolus vulgaris to low soil’s P-availability is not yet fully understood. In this study, six genotypes of N2-fixing P. vulgaris were grown under contrasting soil P-availabilities; i.e., low  (4.3 mg P kg−1 and sufficient (16.7 mg P kg−1 in the Haouz region of Morocco. At flowering and maturity stages, plants were harvested and analyzed for their phosphatases activities, growth and P content. Results show that, low P decreased nodulation, growth, P uptake and N accumulation in all the genotypes, but to a greater extent in the sensitive recombinant inbreed line 147. In addition, while seed P content was slightly reduced under low P soil; a higher P was noticed in the Flamingo and Contender large seeded-beans (6.15 to 7.11 mg g−1. In these latter genotypes, high APase and phytase activities in seeds and nodules were associated with a significant decline in rhizosphere’s available P. APase activity was mainly stimulated in nodules, whereas phytase activity was highly induced in seeds (77%. In conclusion, the variations of APase and phytase activities in nodules and seeds depend on genotype and can greatly influence the internal utilization of P, which might result in low P soil tolerance in N2-fixing legumes.

  13. Evaluating the levels of salivary alkaline and acid phosphatase activities as biochemical markers for periodontal disease: A case series

    Directory of Open Access Journals (Sweden)

    Sarita Dabra

    2012-01-01

    Full Text Available Background: The purpose of this study was to determine the salivary levels of alkaline phosphatase (ALP and acid phosphatase (ACP activities in patients with periodontal disease and to evaluate the use of these enzymes as biochemical markers for periodontal tissue damage. Materials and Methods: In this prospective analytical study, we examined the activities of salivary ALP and ACP in patients with periodontal disease, before and after periodontal treatment. The experimental groups consisted of 20 gingivitis patients and 20 periodontitis patients and the control group had healthy subjects (20 samples. The stimulated saliva of the patient was collected in a sterile test tube and analyzed using Hitachi′s Diagnostic Automatic Analyser. Periodontal disease was determined based on clinical parameters such as gingival index, probing depth and clinical attachment loss. Patients with periodontal disease were under conventional periodontal treatment. The statistical analysis applied was Student′s t-test. Probabilities less than 0.05 (P < 0.05 were considered significant. Results: The obtained results showed statistically significant increased activities of ALP and ACP in saliva from patients with periodontal disease in relation to control group. A significant reduction in the enzyme levels was seen after conventional periodontal therapy. Conclusions: Based on these results, salivary ALP and ACP can be considered to be the biomarkers for evaluating periodontal tissue damage.

  14. Single Laboratory Validation of A Ready-to-Use Phosphatase Inhibition Assay for Detection of Okadaic Acid Toxins

    Directory of Open Access Journals (Sweden)

    Luis Mata

    2012-04-01

    Full Text Available A phosphatase inhibition assay for detection of okadaic acid (OA toxins in shellfish, OkaTest, was single laboratory validated according to international recognized guidelines (AOAC, EURACHEM. Special emphasis was placed on the ruggedness of the method and stability of the components. All reagents were stable for more than 6 months and the method was highly robust under normal laboratory conditions. The limit of detection and quantification were 44 and 56 µg/kg, respectively; both below the European legal limit of 160 µg/kg. The repeatability was evaluated with 2 naturally contaminated samples. The relative standard deviation (RSD calculated was 1.4% at a level of 276 µg/kg and 3.9% at 124 µg/kg. Intermediate precision was estimated by testing 10 different samples (mussel and scallop on three different days and ranged between 2.4 and 9.5%. The IC50 values of the phosphatase used in this assay were determined for OA (1.2 nM, DTX-1 (1.6 nM and DTX-2 (1.2 nM. The accuracy of the method was estimated by recovery testing for OA (mussel, 78–101%; king scallop, 98–114%, DTX-1 (king scallop, 79–102% and DTX-2 (king scallop, 93%. Finally, the method was qualitatively compared to the mouse bioassay and LC-MS/MS.

  15. Cloning and Characterization of a Novel Purple Acid Phosphatase Gene (MtPAP1) from Medicago truncatula Barrel Medic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel purple acid phosphatase gene (MtPAP1) was isolated from the model legume Medicago truncatula Barrel Medic. The cDNA was 1 698 bp in length with an open reading frame (ORF) of 1 398 bp capable of encoding an N-terminal signal peptide of 23 amino acids. The transcripts of MtPAP1 were mainly detected in leaves under high-phosphate conditions, whereas under low-phosphate conditions the transcript level was reduced in leaves and increased in roots, with the strongest hybridization signal detected in roots. A chimeric gene construct fusing MtPAP1 and GFPwas made in which the fusion was driven by the CaMV35S promoter. Transgenlc Arabidopsis plants carrying the chimeric gene constructs showed that the fusion protein was mainly located at the apoplast based on confocal microscopic analysis, showing that MtPAP1 could be secreted to the outside of the cell directed by the signal peptide at the N-terminal. The coding region of MtPAP1 without signal peptide was inserted into the prokaryotic expression vector pET-30a (+) and overexpressed in Escherlchia coll BL21(DE3). The acid phosphatase (APase) proteins extracted from bacterial culture were found largely based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An enzyme activity assay demonstrated that the APase activity in the transformed bacteria was 3.16-fold higher than that of control. The results imply that MtPAP1 functions to improve phosphorus acquisition in plants under conditions of phosphorus (P) stress.

  16. Effect of noise exposure (85 dB ) on testicular adrenocortical steroidogenic key enzymes, acid and alkaline phosphatase activities of sex organs in mature albino rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Changes in the activities of △5-3β-hydroysteroid dehydrogenase (HSD) in testis and adrenal gland, 17β-hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesicle were observed in noise exposed mature rats at the intensity of 85 dB for 8 h/day for 45 days. The results indicated that noise exposed group showed a significant diminution in the activities of androgenic key enzymes △5-3β and 17β-HSD, acid phosphatase in testis, prostate and seminal vesicle. There was a significant elevation in the activities of adrenal △5-3β-HSD, alkaline phosphatase in testis and other accessory sex organ in noise exposed group. Gonadosomatic, prostatosomatic and seminal vesiculo-somatic indexes were decreased significantly in noise exposed group. Therefore, it is evident that noise exposure at 85dB exerts a deleterious effect on testicular and adrenocortical activities.

  17. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells.

    Science.gov (United States)

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E

    1993-10-15

    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  18. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells.

    Science.gov (United States)

    Yang, Yu; Lv, Qi-Yan; Guo, Liang-Hong; Wan, Bin; Ren, Xiao-Min; Shi, Ya-Li; Cai, Ya-Qi

    2016-08-29

    Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.

  19. Changes of the Biomass and Acid Phosphatase Activity in Maize (Zea mays L.) Lines Under Low-P Stress

    Institute of Scientific and Technical Information of China (English)

    YAO Qilun

    2008-01-01

    A pot culture trial was conducted to investigate the changes of the biomass and acid phosphatase (APase) activity in 10 maize lines under low-P stress. P-deficiency significantly decreased the biomass, but induced the significant enhancement of the APase activity. Since P-deficiency had smaller effects on the low-P tolerant maize lines compared with P-sensitive lines, it was demonstrated that differences of tolerance to P-deficiency existed among 10 different maize lines. In addition, the relative biomass and APase activity changed during the vegetative stage of development, and there existed a significant correlation between the biomass and APase activity under low-P stress. These results suggest that the biomass and APase activity can be regarded as indicative traits of maize lines for tolerance to low-P stress at seedling stage.

  20. Increased tartrate-resistant acid phosphatase (TRAP expression in malignant breast, ovarian and melanoma tissue: an investigational study

    Directory of Open Access Journals (Sweden)

    Eck M

    2006-07-01

    Full Text Available Abstract Background Tartrate-resistant acid phosphatase (TRAP is a metalloprotein enzyme that belongs to the acid phosphatases and is known to be expressed by osteoclasts. It has already been investigated as a marker of bone metastases in cancer patients. In this study, which examined the value of serum TRAP concentrations as a marker of bone disease in breast cancer patients, we observed high concentrations of TRAP even in patients without bone metastases. To elucidate this phenomenon, we examined the expression of TRAP in breast cancer cells and the cells of several other malignancies. Methods TRAP concentrations in the serum of tumor patients were determined by ELISA. The expression of TRAP in breast, ovarian, and cervical cancer and malignant melanoma was analyzed by immunohistochemistry. RT-PCR and immunocytology were used to evaluate TRAP expression in cultured tumor cells. Results A marked increase in serum TRAP concentrations was observed in patients with breast and ovarian cancer, regardless of the presence or absence of bone disease. TRAP expression was found in breast and ovarian cancers and malignant melanoma, while cervical cancer showed only minimal expression of TRAP. Expression of TRAP was absent in benign tissue or was much less marked than in the corresponding malignant tissue. TRAP expression was also demonstrated in cultured primary cancer cells and in commercially available cell lines. Conclusion Overexpression of TRAP was detected in the cells of various different tumors. TRAP might be useful as a marker of progression of malignant disease. It could also be a potential target for future cancer therapies.

  1. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    DEFF Research Database (Denmark)

    Madsen, Claus Krogh; Dionisio, Giuseppe; Holme, Inger

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley...

  2. Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells

    DEFF Research Database (Denmark)

    Vuocolo, Scott; Purev, Enkhtsetseg; Zhang, Dongmei

    2003-01-01

    Levels of Rb2/p130 protein are increased 5-10-fold following all-trans-retinoic acid (ATRA) treatment of the retinoid-sensitive ovarian adenocarcinoma cell line CAOV3, but not the retinoid-resistant adenocarcinoma cell line SKOV3. We found that this increase in Rb2/p130 protein levels in ATRA......-treated CAOV3 cells was the result of an increased protein stability. Moreover, Rb2/p130 exhibited a decreased ubiquitination following ATRA treatment. Because phosphorylation frequently mediates ubiquitination of proteins, we examined the serine/threonine phosphatase activity in our CAOV3 cells following ATRA...... treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate...

  3. Distribution of acid phosphatases in the hypopharyngeal glands from workers, queens and males of a Brazilian stingless bee Scaptotrigona postica Latreille: an ultrastructural cytochemical study.

    Science.gov (United States)

    Costa, R A; da Cruz-Landim, C

    2001-01-01

    The present study reports the localization of acid phosphatase in the hypopharyngeal gland cells from workers (newly-emerged, nurse and forager), queens (newly-emerged and laying) and males (newly-emerged and mature for mating) of the Brazilian stingless bee, Scaptotrigona postica. The phosphatase activity varied in intensity and localization depending on the individual class, physiological age and the substrate used. In newly-emerged workers, the phosphatase-positive sites suggest the involvement of the enzyme with cellular differentiation that occurs in the presecretory phase, in nurse workers with protein synthesis and in forager workers with changes in cellular activity or glandular regression. In males mature for mating and laying queens, the positive sites are related to secretory activity, showing that the gland maintains some activity in spite of the regressive aspect. Of the substrates used, beta-glycerophosphate gave the least specific localization.

  4. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  5. Valproic Acid Induces Hair Regeneration in Murine Model and Activates Alkaline Phosphatase Activity in Human Dermal Papilla Cells

    Science.gov (United States)

    Lee, Soung-Hoon; Yoon, Juyong; Shin, Seung Ho; Zahoor, Muhamad; Kim, Hyoung Jun; Park, Phil June; Park, Won-Seok; Min, Do Sik; Kim, Hyun-Yi; Choi, Kang-Yell

    2012-01-01

    Background Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA), a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. Methodology/ Principal Findings Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP). VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX), a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. Conclusions/ Significance Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth. PMID:22506014

  6. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo. METHODOLOGY/ PRINCIPAL FINDINGS: Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice. CONCLUSIONS/ SIGNIFICANCE: Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  7. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2011-01-01

    the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft...

  8. The genetics of feto-placental development: A study of acid phosphatase locus 1 and adenosine deaminase polymorphisms in a consecutive series of newborn infants

    Directory of Open Access Journals (Sweden)

    Bergamaschi Antonio

    2008-09-01

    Full Text Available Abstract Background Acid phosphatase locus 1 and adenosine deaminase locus 1 polymorphisms show cooperative effects on glucose metabolism and immunological functions. The recent observation of cooperation between the two systems on susceptibility to repeated spontaneous miscarriage prompted us to search for possible interactional effects between these genes and the correlation between birth weight and placental weight. Deviation from a balanced development of the feto-placental unit has been found to be associated with perinatal morbidity and mortality and with cardiovascular diseases in adulthood. Methods We examined 400 consecutive newborns from the Caucasian population of Rome. Birth weight, placental weight, and gestational length were registered. Acid phosphatase locus 1 and adenosine deaminase locus 1 phenotypes were determined by starch gel electrophoresis and correlation analysis was performed by SPSS programs. Informed verbal consent to participate in the study was obtained from the mothers. Results Highly significant differences in birth weight-placental weight correlations were observed among acid phosphatase locus 1 phenotypes (p = 0.005. The correlation between birth weight and placental weight was markedly elevated in subjects carrying acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (A, CA and CB phenotypes compared to those carrying acid phosphatase locus 1 phenotypes with medium-high F isoform concentration (BA and B phenotypes (p = 0.002. Environmental and developmental variables were found to exert a significant effect on birth weight-placental weight correlation in subjects with medium-high F isoform concentrations, but only a marginal effect was observed in those with medium-low F isoform concentrations. The correlation between birth weight and placental weight is higher among carriers of the adenosine deaminase locus 1 allele*2, which is associated with low activity, than in homozygous adenosine

  9. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To understand whether genotypic variation in acid phosphatase (APase) activity in rapeseed (Brassica napus L.) induced by phosphorus (P) deficiency has impact on P efficiency,soil APase activity in the rhizosphere for rapeseed P-efficient genotype 102 and P-inefficient genotype 105 was measured against organic and inorganic P sources in the pot experiment,and the activities of root-secreted APase and leaf intracellular APase were investigated in different P-starvation periods in the nutrient solution.Higher activity of root-secreted APase in B.napus was induced under low P conditions.However,P nutrition and P uptake efficiency of the plants supplied with organic P were not directly related to the activity of root-secreted APase due to several confounding factors affecting APase availability.The higher activity of leaf APase improved P remobilization in plants and played important roles in enhancing P use efficiency,shown by the significant correlation between leaf APase activity and P use efficiency in a rapeseed recombinant inbred population of 135 lines.

  10. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.; Liao, Q.; Hu, Y.; You, L.; Zhou, L.; Zhao, Y. [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing (China)

    2013-08-10

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  11. A change of osteocalcin (OC) and tartrate resistant acid phosphatase 5b (TRACP-5b) with the menstrual cycle.

    Science.gov (United States)

    Lee, S; Kumagai, T; Hashimoto, J; Satoh, A; Suzuki, T; Yamai, K; Ohta, S

    2012-09-01

    Bone metabolism markers associated with 4 menstrual cycle phases were evaluated in 14 healthy young females without menstrual disorder. Menstrual cycle phases were confirmed with basal body temperature for 3 months, luteinizing hormone kits, and sexual hormone concentrations of serum. The bone metabolism markers used were osteocalcin (OC), which was measured by immunoradiometric assay (IRMA), and tartrate resistant acid phosphatase 5b (TRACP-5b), which was measured by enzyme immunometric assay (EIA). The highest values of OC and TRACP-5b were observed in the ovulation phase, and TRACP-5b increased significantly when compared with levels in the menstrual phase (pchanges in sex-hormone secretion involved in OC and TRACP-5b showed specific patterns during the menstrual cycle. In other words, TRACP-5b levels are influenced by sex hormones produced during the menstrual period and are based on the bone-formation status. Therefore, it is presumed that the TRACP-5b levels during ovulation play a central role in bone formation and bone metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Detection of prostatic cancer by solid-phase radioimmunoassay of serum prostatic acid phosphatase. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Foti, A.; Cooper, J.F.; Herschman, H.; Malvaez, R.R.

    1977-12-22

    We compared our radioimmunoassay with the standard enzyme assay for prostatic acid phosphatase in the diagnosis of prostatic cancer. Serum samples from 50 controls, 113 patients with prostatic cancer, 36 with benign prostatic hyperplasia, 83 with other cancers, 20 with gastrointestinal disorders and 28 with total prostatectomies were randomized and studied by radioimmunoassay and enzyme assay. When the upper limit was set at 8.0 ng per milliliter (mean + 4 S.D.) the radioimmunoassay diagnosed prostatic cancer in 33, 79, 71 and 92 percent of the patients with Stage I, II, III and IV disease. In contrast, the enzyme assay detected elevations of enzyme in the serum of 12, 15, 29, and 60 percent respectively. No false-positive results were detected by either assay in normal controls but the radioimmunoassay test was positive in two patients with benign prostatic hyperplasia, in one patient after total prostatectomy, in nine with other cancers and in one of the group with gastrointestinal disorders. In contrast to the enzyme assay, the radioimmunoassay distinguished over half the cases of intracapsular prostatic cancer.

  13. Molecular Characterization and Functional Analysis of a New Acid Phosphatase Gene (Ha-acp1) from Heterodera avenae

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-ke; HUANG Wen-kun; LONG Hai-bo; PENG Huan; HE Wen-ting; PENG De-liang

    2014-01-01

    For sedentary endo-parasitic nematodes, parasitism genes encoding secretory protein expressed in the subventral glands cells always play an important role during the early parasitic process. A new acid phosphatase gene (Ha-acp1) expressed in the subventral glands of the cereal cyst nematode (Heterodera avenae) was cloned and the characteristics of the gene were analyzed. Results showed that the gene had a putative signal peptide for secretion and in situ hybridization showed that the transcripts of Ha-acp1 accumulated speciifcally in the subventral gland cells of H. avenae. Southern blot analysis suggested that Ha-acp1 belonged to a multigene family. RT-PCR analysis indicated that this transcription was strong at the pre-parasitic juveniles. Knocking down Ha-acp1 using RNA interference technology could reduce nematode infectivity by 50%, and suppress the development of cyst. Results indicated that Ha-acp1 could play an important role in destroying the defense system of host plants.

  14. Red cell acid phosphatase types and GC polymorphisms in Mérida, Oaxaca, León, and Saltillo, Mexico.

    Science.gov (United States)

    Lisker, R; Ramírez, E; Peñaloza, R; Salamanca, F

    1994-12-01

    Red cell acid phosphatase types and GC polymorphisms were studied in Mérida and Oaxaca, Mexico. GC polymorphisms were also investigated in León and Saltillo. The ACP*A, ACP*B, and ACP*C gene frequencies were 0.215, 0.770, and 0.015 respectively, in Mérida and 0.205, 0.788, and 0.002, respectively, in Oaxaca. In Oaxaca the ACP*R gene had a frequency of 0.005. The results are similar to other Mestizo groups studied in Mexico; it is concluded that the ACP*C and ACP*R genes were introduced by admixture of native Amerindians with whites and blacks, respectively. The GC*1S, GC*1F, and GC*2 gene frequencies were 0.489, 0.289 and 0.222, respectively, in León; 0.500, 0.272, and 0.228, respectively, in Mérida; 0.454, 0.337, and 0.209, respectively, in Oaxaca; and 0.505, 0.356, and 0.139, respectively, in Saltillo. These results are similar to what has been obtained in other Mestizo populations and Indian groups in Mexico, probably because the main ethnic component in both is Amerindian.

  15. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    Directory of Open Access Journals (Sweden)

    Z. Wen

    2013-08-01

    Full Text Available Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  16. Combination of acid phosphatase positivity and rimmed vacuoles as useful markers in the diagnosis of adult-onset Pompe disease lacking specific clinical and pathological features

    Directory of Open Access Journals (Sweden)

    Claire Dolfus

    2016-10-01

    Full Text Available Introduction: The clinical and histological presentations of the adult form of Pompe disease may be atypical. In such cases, identifying histological signs that point to the diagnosis would be crucial to avoid a delay in care. The aim of our study was to investigate the presence of rimmed vacuoles and acid phosphatase positivity in muscle biopsies of patients with late-onset Pompe disease. Material and methods: We retrospectively studied muscle biopsies of all cases of the adult form of Pompe disease diagnosed at the University Hospital of Caen. Three of these four cases showed atypical clinical signs, and diagnosis was established tardily based on family history or systematic analysis of acid maltase activity. Results: All biopsies showed some rimmed vacuoles. The acid phosphatase reaction showed positive inclusions and labelled vacuoles in biopsies of all patients. Conclusions: The presence of rimmed vacuoles and acid phosphatase positivity in muscle biopsy should suggest the diagnosis of the adult form of Pompe disease, this is decisive since effective therapy is available.

  17. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Asgeirsson, Bjarni; Nielsen, Berit Noesgaard; Højrup, Peter

    2003-01-01

    sequencing by Edman degradation. The primary structure exhibits greatest similarity to human tissue non-specific AP (80%), and approximately 30% similarity to AP from Escherichia coli. The key residues required for catalysis are conserved in the cod AP, except for the third metal binding site, where cod AP......-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod...... APs. This may invoke greater movement in the structure that together with weaker subunit contacts leads to improved catalytic efficiency....

  18. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  19. Electron micrographic study of precipitates formed by interaction of silicic acid and alkaline phosphatase: contribution to a study of silica urolithiasis in cattle.

    Science.gov (United States)

    Bailey, C B; Cheng, K J; Costerton, J W

    1982-12-01

    Association of alkaline phosphatase with silicic acid in precipitates formed in dilute solution was studied as a model for the nonspecific reaction between silicic acid and protein. Precipitates contained 68-83% of the silicic acid and 52-83% of the enzyme in the original mixture and were in the form of aggregates of roundish particles 150-800 nm in diameter. Enzyme protein formed a tightly bound layer on the surface of particles formed in solutions of freshly prepared silicic acid. The similarity between the ultrastructural features of precipitates from solutions of silicic acid and of internal portions of siliceous urinary calculi from cattle suggests that deposition of silica during development of such calculi is due, at least in part, to the interaction of protein with silicic acid in urine.

  20. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley.

    Science.gov (United States)

    Centeno, C; Viveros, A; Brenes, A; Canales, R; Lozano, A; de la Cuadra, C

    2001-07-01

    Two assays were conducted to study the evolution of rye and barley phosphatases (phytase and acid phosphatase) and the degradation of its substrates (inositol phosphate esters) during seed germination. In this manner we could obtain a low-phytate, endogenous phosphatase rich ingredient to be used in animal nutrition. In the first assay, the seeds were soaked for 1 and 14 h and germinated for 3 and 5 days with and without the addition of gibberellic acid (GA3). In the second assay, the seeds were soaked for 1 h and germinated for 1, 3, and 5 days with GA3. Phytase (up to 5739 and 3151 U x kg(-1)) and acid phosphatase (up to 18288 and 3151 U x g(-1)) activities, and IP6 (6.09 and 6.01 mg x g(-1)), IP5 (0.48 and 0.48 mg x g(-1)), and IP4 (0.13 and 0.06 mg x g(-1)) were detected in ungerminated rye and barley, respectively. The germination process caused a significant increase of Phy and AcPh activities in rye (up to 112 and 213%) and barley (up to 212 and 634%) and a reduction in the phytate phosphorus content (up to 84 and 58%, respectively). Phytate phosphorus content was affected only by soaking time in the case of rye. Finally, during the course of germination, IP6 and IP5 were rapidly degraded in rye (88 and 79%) and barley (67 and 52%), and IP4 was only a short-living intermediate, which was increased during hydrolysis and degraded to IP3. In conclusion, a marked increase of Phy and AcPh activities in rye and barley with a concomitant decrease in phytate phosphorus content and an increase in the content of lower inositol phosphates were observed during the rye and barley germination.

  1. EFEITO DE FATORES AMBIENTAIS DA FOSFATASE ÁCIDA NO FEIJOEIRO EFFECTS OF ENVIRONMENTAL FACTORS ON THE ACTIVITY OF ACID PHOSPHATASE IN COMMON BEAN

    Directory of Open Access Journals (Sweden)

    José Renato de Freitas

    2007-09-01

    Full Text Available

    Plantas com 15 dias após a germinação foram colhidas em experimentos de campo com a finalidade de conhecer o pH, temperatura e tempo necessários para melhor expressar a atividade da fosfatase ácida em três variedades do feijoeiro (Phaseolus vulgaris L., Carioca, EMP-84 e CNF-l0, na presença e na ausência de fósforo. Os maiores valores de atividade da fosfatase ácida foram observadas quando as plantas foram colocadas em solução em pH 5,5 durante 120 minutos à temperatura de 30°C. A utilização de substâncias tamponantes como PNPP + Triton X-100 expressaram melhor a atividade da fosfatase ácida. As condições de vácuo constituíram um fator positivo para a atividade da fosfatase ácida. As plantas desenvolvidas sob estresse hídrico apresentaram menor atividade da fosfatase ácida. A relação folha-raiz da atividade da fosfatase ácida atingiu 5,72 para a variedade Carioca, 4,91 para a variedade EMP-84 e 4,36 para a variedade CNF-10.

    PALAVRAS-CHAVE: pH; temperatura; solução tamponada; tempo de reação; Phaseolus vulgaris.

    Plants with 15 days after the germination were picked in field experiments with the purpose of knowing the best pH, temperature and the necessary time to express the activity of the phosphatase acid in three bean varieties (Phaseolus vulgaris L., Carioca, EMP-84 and CNF-10, in the presence and in the phosphorus absence. The largest values of activity of the phosphatase acid were observed when the plants were tested in pH 5.5 solution during 120 minutes at the temperature of 30°C. The use of buffer substances as PNPP + Triton X-100 expressed better the activity of the phosphatase acid. The vacuum condition constituted a positive factor to express the activity of the phosphatase acid. The plants

  2. Tartrate-resistant acid phosphatase 5b is a potential biomarker for rheumatoid arthritis: a pilot study in Han Chinese

    Institute of Scientific and Technical Information of China (English)

    Cheng Tao; Wang Mingjun; Chen Zhiwei; Robert A Eisenberg; Zhang Yu; Zou Yaohong; Deng Yingsu

    2014-01-01

    Background Bone damage around the joints is one of the major pathophysiological mechanisms that leads to rheumatoid arthritis (RA) chronic disability.Serum tartrate-resistant acid phosphatase 5b (TRACP-5b) is secreted by osteoclasts,its activity can be used as a clinically relevant bone resorption marker.The aim of this study was to test whether the measurement of serum levels of TRACP-5b in patients with RA would correlate with measures of disease activity and with responses to therapy.Methods Fifty-six patients were randomly assigned to receive recombinant human cytotoxic tlymphocyte-associated antigen-4 immunoglobulin (RhCTLA4-lg),infliximab or methotrexate (MTX).The clinical and serologic indicators of RA activity were evaluated at baseline and at 24 weeks.Serum TRACP-5b was measured by Enzyme-linked Immunosorbent Assay (ELISA) at 0,12 and 24 weeks.Hand X-rays were obtained at baseline.Results At baseline,the levels of TRACP-5b correlated with the severity of X-ray damage,disease duration (r=0.332,P=0.012),and tender joint count (r=0.408,P=0.002).The 24 weeks values of TRACP-5b for RhCTLA4-lg group and infliximab group differed significantly from the baseline values in each group (P <0.05; P <0.05),whereas only the value for RhCTLA4-lg group differed significantly from the 24 weeks value for the MTX group (P <0.01).Considering the two biologics-treated groups together,the TRACP-5b levels at 24 weeks differed significantly from the baseline values only in those patients who reached an ACR70 level (P <0.05).Conclusions Measurement of serum TRACP-5b in RA patients reflects clinical and radiological measures of disease activity,treatment with certain biologics,and degree of response to therapy.TRACP-5b should be investigated further as a potential biomarker to predict response to therapy,including slowing of radiographic progression.

  3. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.;

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (S...

  4. Measuring phosphatidic acid phosphatase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods

    Science.gov (United States)

    Phosphatidate phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4), which is also known as PAP, catalyzes the dephosphorylation of phosphatidate (PtdOH) to form diacylglycerol (DAG) and inorganic phosphate. In eukaryotes, PAP driven reaction is the committed step in the synthesis of triacyl...

  5. Age- and diapause-related acid and alkaline phosphatase activities in the intestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say).

    Science.gov (United States)

    Yi, S X; Adams, T S

    2001-03-01

    Specific activities for soluble (s) and membrane (m)-bound acid (ACP) and alkaline phosphatases (ALP) were determined in the midgut, hindgut, and Malpighian tubules for developing, prediapausing, and diapausing adult Colorado potato beetles, Leptinotarsa decemlineata (Say). High ACP activities were found in the hindgut and Malpighian tubules while high ALP activities were found in the Malpighian tubules. Variation in both ACP and ALP activities in each tissue reflects fluctuation in protein synthesis and secretion involved with digestion, excretion, and other unknown functions. Phosphatase activities in the tissues examined show the dynamic nature of diapause in this insect. Diapausing beetles showed increases in phosphatase activity after hormone treatments. JHA treatments increased s-ACP and m-ACP activities in all tissues but 20-HE did not increase activity in any tissue. Allatotropin tended to mimic the effects of JHA treatment. The s-ALP activity was also increased in all tissues whereas m-ALP was increased in the midgut and hindgut by JHA treatment. Malpighian tubule m-ALP activity was only increased by 20-HE treatments. Allatotropin was not as effective in increasing ALP activities as it was with ACP activities.

  6. Effect of PUFAs from Pteleopsis suberosa stem bark on androgenic enzymes, cellular ATP and prostatic acid phosphatase in mercury chloride – Exposed rat

    Directory of Open Access Journals (Sweden)

    J.K. Akintunde

    2017-09-01

    Full Text Available Occupational and environmental exposure to mercury causes varieties of adverse reproductive disorders in mammals. The present study was designed to investigate the unsaturated fatty acids of Pteleopsis suberosa stem bark extract (PTSSBE, evaluate its antioxidant properties and examine its biochemical targets on sub-acute mercury-induced testicular dysfunctions. Rats were divided into five groups of 10 animals each. Group I was given distilled water; group II, III, IV and V was orally administered with mercury at a dose of 3.75 mg/kg body weight. Group III, IV and V were co-treated with PTSSBE of 25, 50 and 100 mg/kg body weight respectively, for 10 days. Rats exposed to mercury significantly decreased the activities of catalase (CAT, lactate dehydrogenase (LDH, and the level of reduced glutathione (GSH, while the formation of malondialdehyde (MDA was increased. There was also a marked significant decrease (p < 0.05 in testicular activities of Δ5-3β-hydroxysteroid dehydrogenase and Δ5 17β-hydroxysteroid dehydrogenase. Moreover, the activities of prostatic acid phosphatase, total acid phosphatase and prostatic alkaline phosphatase, were significantly (p < 0.05 elevated in mercury treated rats. These effects were prevented by co-treatment with PTSSBE in mercury-induced testicular toxicity in rats. Aphrosidiac effects of Pteleopsis suberosa, may find clinical application in reproductive abnormalities. Isolation and translation of individual active ingredient would help to find new drugs to cure and/or prevent male infertility among mercury exposed workers.

  7. Regulation of the abscisic acid response by protein phosphatase 2C-interacting proteins ABP7 and ABP9 in Arabidopsis thaliana

    OpenAIRE

    Ma-Lauer, Yue

    2011-01-01

    The protein phosphatases 2C ABI1 and ABI2 are negative regulators in signal transduction of the phytohormone abscisic acid (ABA). The aim of this work is to characterize two homologous proteins ABP7 and ABP9, which were identified as interacting partners of ABI2 in the yeast two-hybrid system. In protoplasts, ABP7 and ABP9 interacted with both ABI1 and ABI2 in the nucleus and the cytosol. Overexpression of ABP7 and ABP9 resulted in dramatic inductions of ABA-induced gene expression in div...

  8. Fosfatasa ácida en Oxisoles bajo cultivo de tabaco Acid phosphatase in Oxisols under tobacco cropping

    Directory of Open Access Journals (Sweden)

    Toledo Marcela

    2010-07-01

    Full Text Available En suelos ácidos de trópicos y subtrópicos, caracterizados por una baja disponibilidad de P para las plantas, el papel de las fosfatasas ácidas en la mineralización del P orgánico es fundamental, constituyendo una variable promisoria para estimar la calidad del suelo. El objetivo del trabajo fue evaluar la actividad de la fosfatasa ácida en Oxisoles bajo uso tabacalero, como indicador sensible de calidad. En la provincia de Misiones ubicada al nordeste de la República Argentina, se estableció un ensayo sobre Eutrudoxes Ródicos, familia arcillosa fina, hipertérmica, aplicándose un diseño con cuatro bloques completos aleatorizados. Se establecieron 2 tratamientos: selva subtropical (Sv y uso tabacalero (Ta. Se tomaron muestras compuestas a 3 profundidades: 0-10; 10-20; 20-30 cm. Se determinaron las siguientes variables: actividad de la fosfatasa ácida (APA, pH, contenido de arcilla, carbono orgánico edáfico (CO, nitrógeno total (N, fósforo asimilable (P, materia orgánica particulada (MOP, y respiración del suelo (RES. En los casos estudiados, la APA fue mayor en los primeros diez centímetros de suelo, y fue disminuyendo con el aumento de la profundidad del perfil, en estrecha relación con los contenidos orgánicos del suelo. El 70% de la variabilidad de la APA se explicó por el nitrógeno total, íntimamente relacionado con la materia orgánica del suelo (pSoil biological parameters are of great value as sensitive indicators of transformations occurring under different uses and management practices (Mijangos et al., 2006. The aim of this study was to evaluate the activity of the acid phosphatase enzyme in Oxisols under tobacco cropping. The experimental design was in randomized complete blocks, with two treatments: subtropical rainforest (Sv and tobacco cropping (Ta (Nicotiana tabacum L.. Soil samples were taken from 0-10, 10 -20 and 20 -30 cm-deep layers. The variables measured were: APA, pH, clay content, total nitrogen (N

  9. [Alkaline phosphatase in Amoeba proteus].

    Science.gov (United States)

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  10. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    Science.gov (United States)

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  11. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Antonyuk

    2014-03-01

    Full Text Available Phosphatases function in the production, transport and recycling of inorganic phosphorus, which is crucial for cellular metabolism and bioenergetics, as well as in bacterial killing, since they are able to generate reactive oxygen species via Fenton chemistry. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1, a glycoprotein plant purple acid phosphatase (PAP from yellow lupin seeds, contains a bimetallic Fe–Mn catalytic site which is most active at acidic pH. Unlike other plant PAPs, PPD1 cleaves the pyrophosphate bond in diphosphonucleotides and the phosphodiester bond in various phosphodiesters. The homohexameric organization of PPD1, as revealed by a 1.65 Å resolution crystal structure and confirmed by solution X-ray scattering, is unique among plant PAPs, for which only homodimers have previously been reported. A phosphate anion is bound in a bidentate fashion at the active site, bridging the Fe and Mn atoms in a binding mode similar to that previously reported for sweet potato PAP, which suggests that common features occur in their catalytic mechanisms. The N-terminal domain of PPD1 has an unexpected and unique fibronectin type III-like fold that is absent in other plant PAPs. Here, the in vitro DNA-cleavage activity of PPD1 is demonstrated and it is proposed that the fibronectin III-like domain, which `overhangs' the active site, is involved in DNA selectivity, binding and activation. The degradation of DNA by PPD1 implies a role for PPD1 in plant growth and repair and in pathogen defence.

  12. The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease

    Science.gov (United States)

    Leyria, Jimena; Fruttero, Leonardo L.; Nazar, Magalí; Canavoso, Lilián E.

    2015-01-01

    In this work, we have investigated the involvement of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia of Dipetalogaster maxima, a hematophagous insect vector of Chagas’ disease. For the studies, fat bodies, ovaries and hemolymph were sampled from anautogenous females at representative days of the reproductive cycle: pre-vitellogenesis, vitellogenesis as well as early and late atresia. Real time PCR (qPCR) and western blot assays showed that DmCatD was expressed in fat bodies and ovaries at all reproductive stages, being the expression of its active form significantly higher at the atretic stages. In hemolymph samples, only the immunoreactive band compatible with pro-DmCatD was observed by western blot. Acid phosphatase activity in ovarian tissues significantly increased during follicular atresia in comparison to pre-vitellogenesis and vitellogenesis. A further enzyme characterization with inhibitors showed that the high levels of acid phosphatase activity in atretic ovaries corresponded mainly to a tyrosine phosphatase. Immunofluorescence assays demonstrated that DmCatD and tyrosine phosphatase were associated with yolk bodies in vitellogenic follicles, while in atretic stages they displayed a different cellular distribution. DmCatD and tyrosine phosphatase partially co-localized with vitellin. Moreover, their interaction was supported by FRET analysis. In vitro assays using homogenates of atretic ovaries as the enzyme source and enzyme inhibitors demonstrated that DmCatD, together with a tyrosine phosphatase, were necessary to promote the degradation of vitellin. Taken together, the results strongly suggested that both acid hydrolases play a central role in early vitellin proteolysis during the process of follicular atresia. PMID:26091289

  13. Alkaline phosphatase of Physarum polycephalum is insoluble.

    Science.gov (United States)

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  14. Ekspresi Tartrate-Resistant Acid Phosphatase-5b pada Epifisis Tulang Femur Tikus Ovariektomi yang Mengkonsumsi Calcitriol dan Raloxifene (TARTRATE-RESISTANT ACID PHOSPHATASE-5b EXPRESSION OF EPIPHYSYS DISTALIS FEMUR OVARIECTOMIZED RATS CONSUMING CALCITRIO

    Directory of Open Access Journals (Sweden)

    Hartiningsih .

    2016-03-01

    Full Text Available Tartrate resistant alkaline phosphatase 5b (TRACP5b is secreted by osteoclasts during bonedifferentiation and resorption. The objective of the research was to study TRAP5b expression inovariectomized Wistar rat consuming the combinations of calcitriol and raloxifene supplementation foreight weeks. Twenty five female Wistar rats aged eight weeks were randomly divided into five groups:normal control (NK, ovariectomy control (OVK, ovariectomy+calcitriol supplementation (OVD,ovariectomy+ raloxifene supplementation (OVR, and ovariectomy+calcitriol+ raloxifene supplementation(OVDR. At the end of the treatment, blood samples were taken from plexus orbitalis medialis forestrogen analysis. All rats were euthanized, the uteri were taken and weighed. Left femur was taken forhistopatological examination and immunohistochemistry TRAP5b using monoclonal antibody anti TRAP5bwhich was detected with streptavidin-biotin. The results showed that estrogen levels of the rats in OVKgroup were significantly decreased compared to the rats in NK group, meanwhile estrogen levels in the OVDR rat group were significantly decreased compared to the NK and OVK rat group. Histopathologicalobservation of distal femur epiphysis in group NK showed normal structure, meanwhile, distal femurepiphysis in OVK group was found osteoporosis, with some abnormalities, such as: increased of bonemarrow space, domination of adipocytes in the bone marrow, and decrease of trabecular bone speculum inepiphysis. Histopathological findings of distal femur epiphysis in OVDR group were increased of trabecularbone speculum in epiphysis and the domination of adipocytes in the bone marrow of epiphysis.Immunohistochemistry of distal femur epiphysis in OVDR group revealed increasing tartrate resistantalkaline phosphatase 5b (TRAP5b expression in trabecular bone, which was located in bone marrow spaceand trabecular speculum surface as well. It can be concluded that the combination of calcitriol and

  15. Serum Bone Resorption Markers after Parathyroidectomy for Renal Hyperparathyroidism: Correlation Analyses for the Cross-Linked N-telopeptide of Collagen I and Tartrate-Resistant Acid Phosphatase

    Directory of Open Access Journals (Sweden)

    Kuo-Chin Hung

    2012-01-01

    Full Text Available Patients on long-term dialysis may develop secondary hyperparathyroidism (SHPT with increased serum concentrations of bone resorption markers such as the cross-linked N-telopeptide of type I collagen (NTX and type-5b tartrate-resistant acid phosphatase (TRAP. When SHPT proves refractory to treatment, parathyroidectomy (PTX may be needed. Renal patients on maintenance HD who received PTX for refractory SHPT (n=23 or who did not develop refractory SHPT (control subjects; n=25 were followed prospectively for 4 weeks. Serum intact parathyroid hormone (iPTH, NTX, TRAP, and bone alkaline phosphatase (BAP concentrations were measured serially and correlation analyses were performed. iPTH values decreased rapidly and dramatically. BAP values increased progressively with peak increases observed at 2 weeks after surgery. NTX and TRAP values decreased concurrently and progressively through 4 weeks following PTX. A significant correlation between TRAP and NTX values was observed before PTX but not at 4 weeks after PTX. Additionally, the fractional changes in serum TRAP were larger than those in serum NTX at all times examined after PTX. Serum iPTH, TRAP, and NTX values declined rapidly following PTX for SHPT. Serum TRAP values declined to greater degrees than serum NTX values throughout the 4-week period following PTX.

  16. Effect of okadaic acid and calyculin-A, two protein phosphatase inhibitors, on thyrotropin-stimulated triiodothyronine secretion in cultured sheep thyroid cells.

    Science.gov (United States)

    Arufe, M C; Beckett, G J; Durán, R; Alfonso, M

    1999-12-01

    We have studied the effect of two protein phosphatase inhibitors on thyrotropin (TSH)-stimulated triiodothyronine (T3) production by sheep thyroid cells grown in primary culture. Incubation of sheep thyrocytes with okadaic acid (OA) and calyculin-A (CL-A), two potent inhibitors of type 1 (PP1) and type 2A (PP2A) protein phosphatases, resulted in an increase of TSH-stimulated T3 production. This effect was detected using concentrations as low as 0.1 pM with OA and 1 fM with CL-A. An inhibitory effect on T3 production, due to cellular death, was observed with 6 nM OA and 1 nM CL-A. In the absence of TSH, OA or CL-A had no effect on T3 production by thyrocytes. Forskoline (10 microM), an activator of adenylate cyclase, increased the basal and TSH-stimulated T3 release by sheep thyroid cells; this effect was increased by OA in cells grown in the basal state but not in the presence of TSH. These results suggest that the marine toxins OA and CL-A, two potent inhibitors of PP-1 and PP-2A, have significant stimulatory effects on T3 secretion promoted by TSH and FK. These observations indicate that these proteins could be important mediators of thyroid hormone production.

  17. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice.

    Science.gov (United States)

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-12-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.

  18. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion.

    Science.gov (United States)

    Moonga, B S; Pazianas, M; Alam, A S; Shankar, V S; Huang, C L; Zaidi, M

    1993-01-29

    Previous studies have demonstrated that G-protein agonists induce quiescence (Q effect) or retraction (R effect) in isolated osteoclasts. We now report the functional effects of such agonists on osteoclastic bone resorption and enzyme release. Exposure of osteoclasts to tetrafluoro-aluminate anions (AlF4-), a universal G protein stimulator, resulted in a marked concentration-dependent inhibition of bone resorption. This was associated with a dramatic increase in the secretion of the osteoclast-specific enzyme, tartrate-resistant acid phosphatase (TRAP). Cholera toxin, a Gs stimulator and a selective Q effect agonist, similarly abolished bone resorption and enhanced TRAP secretion. In contrast, pertussis toxin, a Gi inhibitor and a selective R effect agonist, inhibited bone resorption significantly, but slightly reduced enzyme release. The results suggest an involvement of a Gs-like G protein in TRAP secretion from the osteoclast, possibly through a cyclic AMP-dependent mechanism.

  19. Self-assembled histidine acid phosphatase nanocapsules in ionic liquid [BMIM][BF4] as functional templates for hollow metal nanoparticles.

    Science.gov (United States)

    Soni, Sarvesh K; Selvakannan, P R; Bhargava, Suresh K; Bansal, Vipul

    2012-07-17

    We report the biomacromolecular self-assembly of histidine acid phosphatase (HAP), an enzyme of significant biomedical and industrial importance, in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). The spontaneous self-assembly of HAP enzyme in [BMIM][BF(4)] results in the formation of HAP nanocapsules. The HAP enzyme molecules were found to retain their enzymatic activity after the self-assembly process, which enabled us to utilize self-assembled HAP capsules as self-catalyzing templates for the synthesis of a range of hollow metal nanoparticles (Au, Ag, Pd, and Ni) without employing any additional reducing agent. The hollow metal nanospheres with HAP encapsulated within their cavity were found to retain enzymatic activity for at least up to four cycles, as demonstrated in the case of Au-coated HAP capsules as the model system.

  20. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    Science.gov (United States)

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  1. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean.

    Science.gov (United States)

    Li, Chengchen; Li, Caifeng; Zhang, Haiyan; Liao, Hong; Wang, Xiurong

    2017-02-01

    Induction of secreted and intracellular purple acid phosphatases (PAPs; EC 3.1.3.2) is widely recognized as an adaptation of plants to phosphorus (P) deficiency. The secretion of PAPs plays important roles in P acquisition. However, little is known about the functions of intracellular PAP in plants and nodules. In this study, we identified a novel PAP gene GmPAP21 in soybean. Expression of GmPAP21 was induced by P limitation in nodules, roots and old leaves, and increased in roots with increasing duration of P starvation. Furthermore, the induction of GmPAP21 in nodules and roots was more intensive than in leaves in both P-efficient genotype HN89 and P-inefficient genotype HN112 in response to P starvation, and the relative expression in the leaves and nodules of HN89 was significantly greater than that of HN112 after P deficiency treatment. Further functional analyses showed that over-expressing GmPAP21 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under P starvation condition, indicating that GmPAP21 plays an important role in P utilization. Moreover, GUS expression driven by GmPAP21 promoter was shown in the nodules besides roots. Overexpression of GmPAP21 in transgenic soybean significantly inhibited nodule growth, and thereby affected plant growth after inoculation with rhizobia. This suggests that GmPAP21 is also possibly involved in regulating P metabolism in nodules. Taken together, our results suggest that GmPAP21 is a novel plant PAP that functions in the adaptation of soybean to P starvation, possibly through its involvement in P recycling in plants and P metabolism in nodules.

  2. Evaluation of staphylococcus aureus class C non-specific acid phosphatase (SapS) as a reporter for gene expression and protein secretion in gram-negative and gram-positive bacteria

    CSIR Research Space (South Africa)

    Du Plessis, EM

    2007-11-01

    Full Text Available using a cost-effective plate screen, quantitatively measured by a simple enzyme assay and detected with zymography, its potential use as a reporter system was investigated. The S. aureus acid phosphatase (sapS) gene has been cloned and expressed from its...

  3. Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet.

    Science.gov (United States)

    Lynes, Matthew D; Widmaier, Eric P

    2011-02-28

    The vertebrate intestine is notable for its plasticity in response to environmental, pathologic, reproductive, and dietary challenges. The molecular mechanisms of intestinal adaptations typically involve both morphologic and functional changes. In response to chronic ingestion of a high-fat diet, for example, the mammalian small intestine quickly adapts to efficiently accommodate increased transport of long-chain fatty acids across the mucosa. Whereas this may be adaptive in the short term, in the long term it may contribute to the pathologies associated with chronic high-fat diets in humans and other mammals. This review focuses on some of the known and putative mechanisms by which fatty acids are transported across the intestinal epithelium in addition to simple diffusion, and how these mechanisms may be regulated in part by a high-fat diet. A model is proposed in which two key proteins, CD36 and the enzyme intestinal alkaline phosphatase, work in a coordinated manner to optimize fatty acid transport across enterocytes in mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity*

    Science.gov (United States)

    Krokowski, Dawid; Jobava, Raul; Guan, Bo-Jhih; Farabaugh, Kenneth; Wu, Jing; Majumder, Mithu; Bianchi, Massimiliano G.; Snider, Martin D.; Bussolati, Ovidio; Hatzoglou, Maria

    2015-01-01

    Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress. PMID:26041779

  5. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    Science.gov (United States)

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  6. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Science.gov (United States)

    Ivanov, Delyan P; Parker, Terry L; Walker, David A; Alexander, Cameron; Ashford, Marianne B; Gellert, Paul R; Garnett, Martin C

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  7. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  8. Biological activities of Zn(II)-S-methyl-cysteine complex as antiradical, inhibitor of acid phosphatase enzyme and in vivo antidepressant effects.

    Science.gov (United States)

    Escudero, Graciela E; Martini, Nancy; Jori, Khalil; Jori, Nadir; Maresca, Nahuel R; Laino, Carlos H; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G

    2016-12-01

    The antidepressant effect of simple Zn(II) salts has been proved in several animal models of depression. In this study, a coordination metal complex of Zn(II) having a sulfur containing ligand is tested as antidepressant for the first time. Forced swimming test method on male Wistar rats shows a decrease in the immobility and an increase in the swimming behavior after treatment with [Zn(S-Met)2] (S-Met=S-methyl-l-cysteine) being more effective and remarkable than ZnCl2. The thiobarbituric acid and the pyranine consumption (hydroxyl and peroxyl radicals, respectively) methods were applied to evaluate the antioxidant activity of S-Met and [Zn(S-Met)2] showing evidence of attenuation of hydroxyl but not peroxyl radicals activities. UV-vis studies on the inhibition of acid phosphatase enzyme (AcP) demonstrated that S-methyl-l-cysteine did not produce any effect but, in contrast, [Zn(S-Met)2] complex behaved as a moderate inhibitor. Finally, bioavailability studies were performed by fluorescence spectroscopy denoting the ability of the albumin to transport the complex.

  9. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis

    KAUST Repository

    Lei, Mingguang

    2010-11-30

    With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  10. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    Science.gov (United States)

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  11. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    Science.gov (United States)

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  12. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Díaz, Leila Milena; Villanueva, Claudia Añazco; Heyser, Wolfgang; Boeckx, Pascal

    2012-01-01

    Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plant. This study evaluated the effects of ectomycorrhizal morphotype and soil fertility on ACP activity in the extraradical mycelium (ACP(myc)), the mantle (ACP(mantle)) and the Hartig net region (ACP(Hartig)) of ectomycorrhizal Nothofagus obliqua seedlings. ACP activity was quantified in vivo using enzyme-labelled fluorescence-97 (ELF-97) substrate, confocal laser microscopy and digital image processing routines. There was a significant effect of ectomycorrhizal morphotype on ACP(myc), ACP(mantle) and ACP(Hartig), while soil fertility had a significant effect on ACP(myc) and ACP(Hartig). The relative contribution of the mantle and the Hartig net region to the ACP activity on the ectomycorrhizal root was significantly affected by ectomycorrhizal morphotype and soil fertility. A positive correlation between ACP(Hartig) and the shoot P concentration was found, providing evidence that ACP activity at the fungus:root interface is involved in P transfer from the fungus to the host. It is concluded that the spatial distribution of ACP in ectomycorrhizas varies as a function of soil fertility and colonizing fungus.

  13. Phosphatase-Stable Phosphoamino Acid Mimetics That Enhance Binding Affinities with the Polo-Box Domain of Polo-like Kinase 1.

    Science.gov (United States)

    Hymel, David; Burke, Terrence R

    2017-02-03

    (2S,3R)-2-Amino-3-methyl-4-phosphonobutanoic acid (Pmab) is a phosphatase-stable analogue of phosphothreonine (pThr), which has been used in a variety of biological contexts. Among these applications are peptidomimetic ligands that bind to the polo-box domain (PBD) of polo-like kinase 1 (Plk1) with affinities approaching that of the corresponding pThr-containing peptides. However, Pmab is not widely used, because there are no direct, high-yield preparations of suitably protected reagent. We have now achieved an efficient synthesis of protected Pmab, as well as variants with different substituents at the 3R center. When incorporated into our peptidomimetic scaffold, these new Pmab analogues exhibit Plk1 PBD-binding affinities that are several-fold higher than Pmab, yet retain good selectivity for Plk1 relative to the PBDs of Plk2 and Plk3. These findings will significantly impact the future development of PBD-binding inhibitors, as well as ligands directed against a broad spectrum of pThr-dependent processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    Science.gov (United States)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  15. A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds.

    Science.gov (United States)

    Médici, Rosario; Garaycoechea, Juan I; Valino, Ana L; Pereira, Claudio A; Lewkowicz, Elizabeth S; Iribarren, Adolfo M

    2014-04-01

    Natural and modified nucleoside-5'-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. coli BL21 pET22b-phoEa and E. coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained.

  16. Characterization of N-type glycosylation sites and glycan structures of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing

    2011-01-01

    Wheat (Triticum aestivum L.) possesses preformed phytase activity in the grain that is essential to make phosphate available to cell metabolism and in food and feed (Brejnholt S. et al., 2011). Cereals contain the purple acid phosphatase type of phytases, PAPhy (Dionisio G. et al., 2011a). Mature.......e. the HRP-type of glycan. Complex-type glycans with one or two additional GlcNAc were observed, however in trace amount only. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini (Dionisio G. et al., 2011b). References: Brejnholt S., Dionisio G., Glitsoe V......., Skov L. Brinch-Pedersen H. (2011). The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J. Sci. Food Agri. (in press). Dionisio G., Madsen C.K., Holm P.B., Welinder K.G., Jørgensen M., Stoger E., Arcalis E., Brinch-Pedersen H. (2011a...

  17. Terpenes and sterols from the fruits of Prunus mume and their inhibitory effects on osteoclast differentiation by suppressing tartrate-resistant acid phosphatase activity.

    Science.gov (United States)

    Yan, Xi-Tao; Lee, Sang-Hyun; Li, Wei; Jang, Hae-Dong; Kim, Young-Ho

    2015-02-01

    The fruits of Prunus mume are a common commercial product and a valuable source of food and medicinal material in Eastern Asian countries. Our phytochemical investigation of the P. mume fruit led to the isolation of nine terpenes, including three ursane-type triterpenes (1-3), two cycloartane-type triterpenes (4 and 5), and four tocopherols (10-13), as well as four sterols (6-9). Their structures were elucidated based on extensive spectroscopic analysis, including 1D and 2D NMR and ESI-MS, and the majority of these compounds were isolated from this plant for the first time. The anti-osteoporosis activities of 1-13 were evaluated by measuring their inhibitory effects on tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor κB ligand-induced osteoclastic RAW 264.7 macrophage cells. Compounds 2-7 and 9-12 significantly suppressed TRAP activity down to 47.96 ± 2.45-86.45 ± 3.07 % relative to the control at a concentration of 1 μM. These results suggest that the fruits of P. mume could be an excellent source of anti-osteoporosis phytochemicals that may be developed as natural nutraceuticals and functional foods.

  18. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  19. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer

    NARCIS (Netherlands)

    E. Hoekstra (Elmer); L.L. Kodach (Liudmila L.); A. Mooppilmadham Das (Asha); R.R. Ruela-de-Sousa (Roberta); C.V. Ferreira (Carmen); J.C. Hardwick (James); C.J. van der Woude (Janneke); M.P. Peppelenbosch (Maikel); T.L.M. ten Hagen (Timo); G.M. Fuhler (Gwenny)

    2015-01-01

    textabstractPhosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influ

  20. Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Seung Ho Baek

    2017-02-01

    Full Text Available Ginkgolic acid C 17:1 (GAC 17:1 extracted from Ginkgo biloba leaves, has been previously reported to exhibit diverse antitumor effect(s through modulation of several molecular targets in tumor cells, however the detailed mechanism(s of its actions still remains to be elucidated. Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that regulates various critical functions involved in progression of diverse hematological malignancies, including multiple myeloma, therefore attenuating STAT3 activation may have a potential in cancer therapy. We determined the anti-tumor mechanism of GAC 17:1 with respect to its effect on STAT3 signaling pathway in multiple myeloma cell lines. We found that GAC 17:1 can inhibit constitutive activation of STAT3 through the abrogation of upstream JAK2, Src but not of JAK1 kinases in U266 cells and also found that GAC can suppress IL-6-induced STAT3 phosphorylation in MM.1S cells. Treatment of protein tyrosine phosphatase (PTP inhibitor blocked suppression of STAT3 phosphorylation by GAC 17:1, thereby indicating a critical role for a PTP. We also demonstrate that GAC 17:1 can induce the substantial expression of PTEN and SHP-1 at both protein and mRNA level. Further, deletion of PTEN and SHP-1 genes by siRNA can repress the induction of PTEN and SHP-1, as well as abolished the inhibitory effect of drug on STAT3 phosphorylation. GAC 17:1 down-regulated the expression of STAT3 regulated gene products and induced apoptosis of tumor cells. Overall, GAC 17:1 was found to abrogate STAT3 signaling pathway and thus exert its anticancer effects against multiple myeloma cells.

  1. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein, glutathione-S-transferase, acid phosphatase, and ATPase of freshwater crab Sinopotamon yangtsekiense.

    Science.gov (United States)

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui; Zou, Enmin

    2014-03-01

    Cadmium (Cd) is an environmental contaminant showing a variety of deleterious effects, including the potential threat for the ecological environment and human health via food chains. Low molecular weight chitosan (LMWC) has been demonstrated to be an effective antioxidant. Metallothionein (MT) mRNA levels and activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), acid phosphatase (ACP), Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as malondialdehyde (MDA) contents in the gills of the freshwater crab Sinopotamon yangtsekiense were analyzed in vivo in order to determine the injury of Cd exposure on the gill tissues as well as the protective effect of LMWC against this injury. The results showed that there was an apparent accumulation of Cd in the gills, which was lessened by the presence of LMWC. Moreover, Cd(2+) significantly increased the gill MT mRNA levels, ACP activity and MDA content while decreasing the activities of SOD, GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in the crabs relative to the control. Cotreatment with LMWC reduced the levels of MT mRNA and ACP but raised the activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in gill tissues compared with the crabs exposed to Cd(2+) alone. These results suggest that LMWC may exert its protective effect through chelating Cd(2+) to form LMWC-Cd(2+) complex, elevating the antioxidative activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as alleviating the stress pressure on MT and ACP, consequently protecting the cell from the adverse effects of Cd.

  2. Combined Phosphatase and Tensin Homolog (PTEN Loss and Fatty Acid Synthase (FAS Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xuehua Zhu

    2012-08-01

    Full Text Available We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN, to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC. The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, p < 0.0001. Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, p < 0.0001. Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (p = 0.043 for histological grades I–II versus grade III. Loss of total PTEN was significantly correlated with FAS overexpression (p = 0.014. Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (p = 0.049. Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (p = 0.011. Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS

  3. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer.

    Science.gov (United States)

    Becker, Jordan T; Olson, Brian M; Johnson, Laura E; Davies, James G; Dunphy, Edward J; McNeel, Douglas G

    2010-01-01

    Prostatic acid phosphatase (PAP) is a tumor antigen in prostate cancer and the target of several anti-tumor vaccines in earlier clinical trials. Ultimately, the goal of anti-tumor vaccines is to elicit a sustainable immune response, able to eradicate a tumor, or at least restrain its growth. We have investigated plasmid DNA vaccines and have previously conducted a phase 1 trial in which patients with recurrent prostate cancer were vaccinated with a DNA vaccine encoding PAP. In this study, we investigated the immunologic efficacy of subsequent booster immunizations, and conducted more detailed longitudinal immune analysis, to answer several questions aimed at guiding optimal schedules of vaccine administration for future clinical trials. We report that antigen-specific cytolytic T-cell responses were amplified after immunization in 7 of 12 human leukocyte antigen-A2-expressing individuals, and that multiple immunizations seemed necessary to elicit PAP-specific interferon-gamma-secreting immune responses detectable by enzyme-linked immunosorbent spot assay. Moreover, among individuals who experienced a >/=200% increase in prostate-specific antigen doubling time, long-term PAP-specific interferon-gamma-secreting T-cell responses were detectable in 6 of 8, but in only 1 of 14 individuals without an observed change in prostate-specific antigen doubling time (P=0.001). Finally, we identified that immune responses elicited could be further amplified by subsequent booster immunizations. These results suggest that future trials using this DNA vaccine, and potentially other anti-tumor DNA vaccines, could investigate ongoing schedules of administration with periodic booster immunizations. Moreover, these results suggest that DNA vaccines targeting PAP could potentially be combined in heterologous immunization strategies with other vaccines to further augment PAP-specific T-cell immunity.

  4. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.

  5. [Phosphatase activity in Amoeba proteus at pH 9.0].

    Science.gov (United States)

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).

  6. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Directory of Open Access Journals (Sweden)

    Lee Jee

    2012-02-01

    Full Text Available Abstract Background The peroxisome proliferator-activated receptor (PPAR-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA, is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1 were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK phosphorylation and activator protein 1 (AP1 activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism

  7. Acid and alkaline phosphatase activities in a novel phosphorothionate (RPR-11) treated male and female rats. Evidence of dose and time-dependent response.

    Science.gov (United States)

    Rahman, M F; Siddiqui, M K; Jamil, K

    2000-08-01

    The effect of a novel phosphorothionate, the methyl ester of 2-butenoic acid-3-diethoxy phosphinothioyl (RPR-II) was studied on membrane bound target enzymes Acid (AcP) and Alkaline (AkP) Phosphatases in different tissues of male and female albino Wistar rats. Three sub-chronic doses 0.014 (low), 0.028 (medium) and 0.042 (high)mg/kg-1 were administered to the rats daily for a period of 90 days. The long term and repeated administration of RPR-II caused significant increase of AcP and AkP in serum and kidney (AcP), whereas these enzymes simultaneously decreased significantly in liver, kidney (female rat AkP) and lung tissues in both male and female rats after 45 and 90 days of treatment. However, the kidney AcP increased significantly in both the sexes which is suggestive of an increase in synthesis of this enzyme which may be an adaptive mechanism to the toxicant stress. The changes in serum, liver, kidney and lung of both male and female rats by this compound were statistically significant when compared with two way Anova showing that they are dose and time dependent. The alterations in male rats were statistically insignificant when compared with female rats showing no sexual dimorphism by this compound. Recovery was observed after 28 days of post treatment (withdrawal study) indicating reversal of the toxic symptoms once the toxicant is removed. High degree negative correlation was observed for serum versus liver and lung and in other cases substantial correlation was observed. The changes observed in these enzymes showed that liver was most susceptible followed by lung and kidney. There are marker enzymes and their increase in different tissues might be due to the increased permeability of plasma membrane or cellular necrosis, showing the stress condition of the treated rats. This investigation elucidates the effect of these biomarker enzymes which increased in blood, might be due to the necrosis of liver, kidney and lung tissues by this compound.

  8. Serum proteins, trace metals and phosphatases in psoriasis

    Directory of Open Access Journals (Sweden)

    Bhatnagar M

    1994-01-01

    Full Text Available Serum proteins, zinc, copper, acid phosphatase (AcPase and alkaline phosphatase (AlPase were studied in both active and remission phases of psoriasis. Data were compared with healthy controls, ?1, ? and ? globulins were high in active phase while ?1 and ? globulins were at par in remission phase. Serum copper was low but zinc and alkaline phosphatase were significantly high in both active and remission phases of the disease. Acid phosphatase level was at par in all the experimental groups. Study suggests a positive correlation of globulin, zinc and Alpase in active and remission phase of psoriasis.

  9. [Effect of VAM fungi on phosphatase activity in maize rhizosphere].

    Science.gov (United States)

    Song, Y; Li, X; Feng, G

    2001-08-01

    The effect of VAM fungi on phosphatase activity in maize rhizosphere was examined by pot culture experiment, in which, three-compartment-pots were used, the central compartment being separated from the outer two by a nylon net with 30 microns mesh. Plants were harvested 70 days after planting. Soil acid and alkaline phosphatase were measured at different distances from root surface. The results showed that VAM increased the activities of soil acid and alkaline phosphatase in the rhizosphere. It was found that different phosphorous sources had different effects on phosphatase activity.

  10. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems

    Directory of Open Access Journals (Sweden)

    ADÃO S. FERREIRA

    2016-06-01

    Full Text Available The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna. This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC, no-tillage (NT, conventional tillage (CT and pasture with Brachiaria brizantha (PBb and evaluated with acetate buffer (AB, tris-HCl buffer (TB, modified universal buffer (MUB and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP. MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils.

  11. Age-related changes of serum tartrate-resistant acid phosphatase 5b and the relationship with bone mineral density in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Hao ZHANG; Wei-wei HU; Yu-juan LIU; Yun-qiu HU; Miao LI; Jie-mei GU; Jin-wei HE

    2008-01-01

    Aim: Ostcoclastic activity is mainly assessed by measurement of urinary markers (eg C-terminal cross-linked telopeptides of type I collagen, N-terminal cross-linked telopeptides of type I collagen etc), the levels of which could often be affected by renal clearance. Recently, serum tartrate-resistant acid phosphatase 5b (TRACP5b) has been used as an alternative serum marker to evaluate osteoclastic activity. We investigated the age-related changes of TRACP5b level and its association with bone mineral density (BMD) in Chinese women. Methods: Seven-hundred and twenty-two Chinese mainland women aged 20-79 years were recruited in the study. Serum TRACP5b level was measured using immunoassay to evaluate the state of bone resorption. Bone mineral density (BMD) (g/cm2) at lumbar spine 1-4 and proximal femur were measured by duel-energy X-ray absorptiometry. Results: The serum TRACP5b level reached a bottom value in premenopausal women aged 30-39, gradually increased in women aged 40-49, rapidly rose in women aged 50-59, and culminated with a maximum value in women aged 60-69 before a slow drop in women aged 70-79. The average level of TRACPSb was significantly higher in postmenopausal women [(3.29±1.07) U/L] than in premenopausal women ([1.70±0.59] U/L). The levels of TRACP5b were inversely correlated with BMD at all measured sites (P<0.001). Furthermore, the level of TRACP5b was obviously higher in women with osteoporosis and osteopenia than those with normal bone mass (P<0.001). Conclusion: We have established the reference values of serum TRACPSb in Chinese mainland women, and found that postmenopausal women had higher TRACP5b concentration than younger women. The results showed that serum TRACPSb was a sensitive and useful parameter for the evaluation of age-related changes of bone absorption.

  12. Change of glutamic acid decarboxylase antibody and protein tyrosine phosphatase antibody in Chinese patients with acute-onset type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    CHAO Chen; HUANG Gan; LI Xia; YANG Lin; LIN Jian; JIN Ping; LUO Shuo-ming

    2013-01-01

    Background Glutamic acid decarboxylase antibody (GADA) and protein tyrosine phosphatase antibody (IA-2A) are two major autoantibodies,which exert important roles in the process of type 1 diabetes mellitus (T1D).Our study aimed to investigate the changes in positivity and titers of GADA and IA-2A during the course of Chinese acute-onset T1D patients and their relationships with clinical features.Methods Two hundreds and forty-seven Chinese newly diagnosed acute-onset T1D patients were consecutively recruited.GADA and IA-2A were detected at the time of diagnosis,one year later,3-5 years later after diagnosis during the follow-up; all the clinical data were recorded and analyzed as well.Results During the course of acute-onset T1D,the majority of patients remained stable for GADA or IA-2A,however,a few patients changed from positivity to negativity and fewer patients converted from negativity to positivity.The prevalence of GADA was 56.3% at diagnosis,decreasing to 50.5% one year later,and 43.3% 3-5 years later while the corresponding prevalence of IA-2A were 32.8%,31.0% and 23.3%,respectively.The median GADA titers were 0.0825 at diagnosis,declining to 0.0585 one year later and 0.0383 3-5 years later (P <0.001),while the corresponding median titers were 0.0016,0.0010,0.0014 for IA-2A,respectively.Fasting C-peptide (FCP) and postprandial C-peptide 2 hours (PCP2h)levels of GADA or IA-2A negativity persistence patients were higher than those of positivity persistence and negativity conversion patients (P <0.05) which indicated GADA or IA-2A negativity persistence T1D patients had a less loss of β cell function.Conclusion Our data suggest that repeated detection of GADA and IA-2A are necessary for differential diagnosis of autoimmune diabetes and the indirect prediction of the β cell function in Chinese patients.

  13. Relationship of spermatoscopy, prostatic acid phosphatase activity and prostate-specific antigen (p30) assays with further DNA typing in forensic samples from rape cases.

    Science.gov (United States)

    Romero-Montoya, Lydia; Martínez-Rodríguez, Hugo; Pérez, Miguel Antonio; Argüello-García, Raúl

    2011-03-20

    In the forensic laboratory the biological analyses for rape investigation commonly include vaginal swabs as sample material combined to biochemical tests including sperm cytology (SC) and detection of acid phosphatase activity (AP) and prostate-specific antigen (PSA, p30) for the conclusive identification of semen components. Most reports comparing these tests relied on analysis of semen samples or donor swabs taken under controlled conditions; however their individual or combined efficacy under real live sampling conditions in different laboratories is largely unknown. We carried out SC, APA and PSA analyses in vaginal swabs collected from casework rapes submitted to Mexican Forensic Laboratories at Texcoco and Toluca. On the basis of positive and negative results from each assay and sample, data were classified into eight categories (I-VIII) and compared with those obtained in the two only similar studies reported in Toronto, Canada and Hong Kong, China. SC and APA assays had the higher overall positivity in Toluca and Texcoco samples respectively and otherwise PSA had a lower but very similar positivity between these two laboratories. When compared to the previous studies some similarities were found, namely similar frequencies (at a ratio of approximately 1 out of 3) of samples being positive or negative by all techniques (Categories I and VI respectively) and a comparable overall positivity of APA and SC but higher than that of PSA. Indeed the combined results of using SC, APA and PSA tests was considered as conclusive for semen detection from approximately 1 out of 3 cases (Category I) to approximately 1 out of 2 cases in a scenario where at least SC is positive, strongly presumptive in 2 out of 3 cases (with at least one test positive) and the remainder 1 out of 3 cases (Category VI) suggested absence of semen. By determining Y-STR polymorphisms (12-loci) in additional samples obtained at Toluca laboratory, complete DNA profiles were determined from all

  14. [Protein phosphatases: structure and function].

    Science.gov (United States)

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  15. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  16. Synthesis of 2'(3')-O-DL-alanyl hexainosinic acid using T4 RNA ligase: suppression of the enzymic reverse transfer reaction by alkaline phosphatase.

    Science.gov (United States)

    Profy, A T; Lo, K M; Usher, D A

    1983-03-11

    2'(3')-O-DL-Alanyl (Ip)5I was synthesized by a new method. An alanine ortho ester of inosine 5'-phosphate was added to (Ip)4I using the ATP-independent reaction of T4 RNA ligase, and the product was converted smoothly to the desired ester. The enzymic reverse transfer reaction was conveniently suppressed by the dephosphorylation of the adenosine 5'-phosphate coproduct, catalyzed in situ by alkaline phosphatase.

  17. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E. [Argonne National Lab., IL (United States); Fujiki, H. [National Cancer Center Research Institute, Tokyo (Japan)

    1992-08-20

    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  18. 基于不同方法测定土壤酸性磷酸酶活性的比较%Comparison of soil acid phosphatase activity determined by different methods

    Institute of Scientific and Technical Information of China (English)

    李莹飞; 耿玉清; 周红娟; 杨英

    2016-01-01

    土壤酸性磷酸酶与有机磷的矿化及植物的磷素营养关系最为密切。目前国内学者在测定酸性磷酸酶活性时主要参照关松荫《土壤酶及其研究法》中以磷酸苯二钠为基质的测定方法,而国外学者主要参照 Dick《Methods of Soil Enzymology》中以对硝基苯磷酸二钠为基质的测定方法(PNPP)。但是,在以磷酸苯二钠为基质测定生成物的过程中,常出现显色程度不明显的问题;另外,采用不同基质测定酸性磷酸酶活性也造成了测定方法选择的困难。为合理选择土壤酸性磷酸酶活性的测定方法,本研究选用酸性、中性和碱性土壤各10个土样,分别采用以磷酸苯二钠为基质,且在显色阶段分别加入 pH5.0醋酸盐缓冲液(DPP 1)和 pH9.4硼酸盐缓冲液(DPP 2)的方法,以及PNPP方法测定土壤酸性磷酸酶活性。同时也研究了不同pH缓冲液和苯酚浓度对生成物显色反应的影响。结果表明:以磷酸苯二钠为基质、在显色反应阶段加入 pH≤6的缓冲液时,苯酚和2,6-二溴苯醌氯亚胺不显色;当加入pH≥8的缓冲液时,两者之间显色且苯酚浓度和吸光值的Pearson相关系数极显著。这说明 pH 低是导致高苯酚浓度和2,6-二溴苯醌氯亚胺显色效果差的一个主要原因。此外,采用PNPP 方法测定时,在酸性、中性和碱性土壤中,10个样本酸性磷酸酶活性的变异系数分别较 DPP 2增加了70.04%、42.44%和21.17%;极差分别是DPP 2的27.18倍、26.85倍和39.43倍。总之,如果选用磷酸苯二钠为基质测定土壤酸性磷酸酶活性,应在显色阶段加入碱性硼酸盐缓冲液;选用对硝基苯磷酸二钠为基质,是更为简单和灵敏的方法。%Soil phosphatase, especially acid phosphatase, plays a critical role in the decomposition of organic phosphorus and has a major impact on plant phosphorus uptake. Most Chinese researchers refer to the book entitled Soil Enzyme and Its Research

  19. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation

    Institute of Scientific and Technical Information of China (English)

    Liangsheng Wang; Shan Lu; Ye Zhang; Zheng Li; Xiaoqiu Du; Dong Liu

    2014-01-01

    Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation. In Arabidopsis, there are 29 purple acid phosphatase (AtPAP) genes. To systematical y investigate the roles of different AtPAPs, we first identified knockout or knock-down T-DNA lines for al 29 AtPAP genes. Using these atpap mutants combined with in-gel and quantitative APase enzyme assays, we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAP10 is mainly a secreted APase. On Pi-deficient (P-) medium or P-medium supplemented with the organophosphates ADP and fructose-6-phosphate (Fru-6-P), growth of atpap10 was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type (WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on P-or P- medium supplemented with ADP or Fru-6-P. Interest-ingly, Pi levels are essential y the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.

  20. Effect of phenylmercuric acetate injections on phosphatase activity in chickens resistant and susceptible to Leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; Csonka, E.

    1972-01-01

    The weighted means of liver and kidney alkaline phosphatase activity was greater in three strains of chickens classified as susceptible to limphoid leukosis than in five strains classified as resistant. On the same basis, four strains classified as susceptible to Marek's disease had more liver alkaline phosphatase activity than four strains classified as resistant. The weighted means of liver and kidney acid phosphatase activity were not different among the same strains of chickens classified similarly. Kidney alkaline phosphatase activity was the most generally inhibited by phenylmercuric acetate injections, followed by liver acid and alkaline phosphatase. Kidney acid phosphatase activity was enhanced by phenylmercuric acetate injections in three strains of chickens classified as resistant to both lymphoid leukosis and Marek's disease. Liver acid phosphatase activity was depressed in three strains classed as resistant to lymphoid leukosis.

  1. ATIVIDADE DA FOSFATASE ÁCIDA NO FEIJOEIRO E SUA CORRELAÇÃO COM PARÂMETROS DE CRESCIMENTO ACTIVITY OF ACID PHOSPHATASE IN COMMON BEAN AND ITS CORRELATION WITH SOME PARAMETERS OF PLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Renato S. Mota dos Santos

    2007-09-01

    L. plant growth to be correlated with acid phosphatase activity. The importance of this phosphatase is related with its ability to improve phosphorus up fall under low concentration in acid soil. Five common bean cultivars were tested harvesting plants at weekly interval starting from 7 till 56 days after germination. The enzyme activity in decreasing order was observed in the LM 300030, Carioca, A-176, CNF-10 and Jalo cultivars at l4 day old plants. All the plant parameters analyzed correlated negatively with enzyme activity. Then, the phosphatase activity was considered as a complementary mechanism to the plant to supply its phosphorus needs. The curves of acid phosphatase activity, inorganic and total phosphorus were similar and expressed by second grade equations while both, inorganic and total phosphorus, decreased according to negatively exponential equation modelings.

    KEY-WORDS: Phosphatase; acid soil; common bean; Phaseolus vulgaris; genotypes.

  2. Cdc14 phosphatase

    DEFF Research Database (Denmark)

    Machín, Félix; Quevedo Rodriguez, Oliver; Ramos-Pérez, Cristina

    2016-01-01

    Cycling events in nature start and end to restart again and again. In the cell cycle, whose purpose is to become two where there was only one, cyclin-dependent kinases (CDKs) are the beginning and, therefore, phosphatases must play a role in the ending. Since CDKs are drivers of the cell cycle an...

  3. A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin

    DEFF Research Database (Denmark)

    Hansen, L; Hansen, T; Vestergaard, H

    1995-01-01

    -dependent diabetes mellitus (NIDDM) and obesity, the G-subunit of PP1 should be viewed as a candidate gene for inherited insulin resistance. When applying heteroduplex formation analysis and nucleotide sequencing of PP1G-subunit cDNA from 30 insulin resistant white NIDDM patients two cases were identified...... was associated with alterations in insulin secretion which might be secondary to the insulin resistance of skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)......The regulatory G-subunit of the glycogen-associated form of protein phosphatase 1 (PP1) plays a crucial part in muscle tissue glycogen synthesis and breakdown. As impaired insulin stimulated glycogen synthesis in peripheral tissues is considered to be a pathogenic factor in subsets of non-insulin...

  4. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    Science.gov (United States)

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  5. Presence of multiple acid phosphatases activity in seedlings of cucumber, radish and rocket salad Presença de atividade de múltiplas fosfatases ácidas em plântulas de pepino, rabanete e rúcula

    Directory of Open Access Journals (Sweden)

    Luciane Almeri Tabaldi

    2008-06-01

    Full Text Available Acid phosphatases (3.1.3.2 are a group of enzymes widely distributed in nature, which catalyze the hydrolysis of a variety of phosphate esters in the pH range of 4-6. We confirmed the presence of acid phosphatases in seedlings of cucumber (Cucumis sativus, radish (Raphanus sativus and rocket salad (Eruca vesicaria under different assay conditions using a rapid and simple preparation. The results showed that the optimum pH and temperature used for all species were close to 5.5 and 35°C, respectively. The enzyme was inhibited by molybdate, fluoride, azide, levamisole, orthovanadate, Zn2+ and Cu2+. Suramin had no effect on enzyme activity. The acid phosphatase from cucumber, radish and rocket salad hydrolyzed a wide variety of phosphate esters and the highest activity was observed with PPi, ATP and GTP. These results demonstrate that the enzyme investigated in this study is different from well known ester phosphate cleaving plant enzymes (apyrase and inorganic pyrophosphatases and this preparation could be a useful tool to future toxicological studies and to study initially all isoforms of acid phosphatase.As fosfatases ácidas (3.1.3.2 são um grupo de enzimas amplamente distribuídas na natureza, as quais catalisam a hidrólise de uma variedade de ésteres de fosfato com uma variação de pH entre quatro e seis. Foi confirmada a presença de fosfatases ácidas em plântulas de pepino (Cucumis sativus, rabanete (Raphanus sativus e rúcula (Eruca vesicaria sob diferentes condições de ensaio usando uma preparação rápida e simples. Os resultados mostraram que o pH e a temperatura ótimos para todas as espécies foram 5,5 e 35°C, respectivamente. A enzima foi inibida por molibdato, fluoreto, azida, levamisole, ortovanadato, Zn2+ e Cu2+. O inibidor suramim não afetou a atividade enzimática. As fosfatases ácidas de pepino, rabanete e rúcula hidrolisaram uma ampla variedade de ésteres de fosfato e a maior atividade foi observada com PPi, ATP

  6. Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Atlung, Tove

    1996-01-01

    The expression and transcriptional regulation of the Escherichia coli cyx-appA operon and the appY gene has been investigated during different environmental conditions using single copy transcriptional lacZ fusions. The cyx-appA operon encodes acid phosphatase and a putative cytochrome oxidase.......ArcA and AppY activated transcription of the cyx-appA operon during entry into stationary phase and under anaerobic growth conditions. The expression of the cyx-appA operon was affected by the anaerobic energy metabolism.The presence of the electron acceptors nitrate and fumarate repressed the expression...... in this paper indicate a clear difference in the regulation of the cyx-appA operon compared to the cyd operon, encoding the cytochrome d oxidase complex. The results suggest that cytochrome x oxidase has a function at even more oxygen limiting conditions than cytochrome d oxidase. The expression of the appY...

  7. Glucose-6-phosphatase deficiency.

    OpenAIRE

    Labrune Philippe; Gajdos Vincent; Eberschweiler Pascale; Hubert-Buron Aurélie; Petit François; Vianey-Saban Christine; Boudjemline Alix; Piraud Monique; Froissart Roseline

    2011-01-01

    Abstract Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, betw...

  8. [ATPase and phosphatase activity of drone brood].

    Science.gov (United States)

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  9. Biomarkers for the activation of calcium metabolism in dairy cows: elevation of tartrate-resistant acid phosphatase activity by lowering dietary cation-anion difference is associated with the prevention of milk fever.

    Science.gov (United States)

    Kurosaki, Naotoshi; Yamato, Osamu; Sato, Jun; Naito, Yoshihisa; Mori, Fuminobu; Imoto, Seiichi; Maede, Yoshimitsu

    2007-03-01

    In our previous study, it was demonstrated that the administration of anion salts, which slightly lower the dietary cation-anion difference (DCAD), in the prepartum period is safe and effective for preventing milk fever in multiparous cows. In the present study, several biomarkers, which might show activation of Ca metabolism, were analyzed using stored samples in the previous study to investigate the mechanism of the preventive effect on milk fever by lowering DCAD. Changes in bone-specific alkaline phosphatase activity, osteocalcin and insulin-like growth factor I concentrations in serum were almost the same among the three groups of multiparous cows with or without the oral administration of anion salts, while the levels of these serum biomarkers in the group of primiparous cows (heifer group) were much higher compared with those in the three multiparous groups throughout the experimental period. Urinary deoxypyridinoline excretion was not a useful biomarker for dairy cows because it hardly changed during the peripartum period in all groups. However, serum tartrate-resistant acid phosphatase (TRAP) activity, which is known as a biomarker of osteoclast activity, was well associated with the administration of anion salts lowering DCAD because among the three multiparous groups, only the group of multiparous cows fed the anion salts (anion group) showed an increased level, which rose to the level in the heifer group, and was markedly higher than those in the other control groups of multiparous cows. The increased activity of serum TRAP in the anion group suggested that Ca in the plasma pool was mobilized smoothly from bone-bound Ca via mature osteoclasts at parturition, which might be due to prior activation under mild acidosis induced by slightly lowering DCAD. Therefore, TRAP was the best biomarker to monitor the activation of Ca metabolism in dairy cows fed anion salts.

  10. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  11. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer

  12. Multisystemic functions of alkaline phosphatases.

    Science.gov (United States)

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  13. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  14. 杂色鲍紫色酸性磷酸酯酶基因克隆及应激下的表达%Molecular cloning and expression of purple acid phosphatase in Haliotis diversicolor under stress

    Institute of Scientific and Technical Information of China (English)

    黄贻涛; 蔡秀红; 张子平; 王国栋; 邹志华; 王淑红; 王艺磊

    2013-01-01

    The small abalone Haliotis diversicolor is one of the most commercially important cultured abalone in southern coastal areas in China. However, the frequent occurrence of infectious disease, especially during hot summers, is a major problem that has threatened the abalone aquaculture industry for a long time. As an inverte-brate, abalone lacks an adaptive immune system and relies exclusively on innate immunity to defend against bac-terial challenge. However, research on gastropod immune responses is limited. Purple acid phosphatase (PAP) belongs to a large family of dinuclear metalloenzymes and is distinguished from other acid phosphatases by its purple color, which is due to a Tyr-to-iron (III) charge transfer transition. PAPs are a group of tartrate resistant, molybdate sensitive, iron containing acid phosphatases with a molecular weight of about 35-40 kD and a high activity towards activated phosphoric acid monoesters and anhydrides. They catalyze the hydrolysis of a wide range of phosphate esters. PAPs play important roles in response to different stresses in plants and mammals. However, to date it has not been investigated in molluscs. In this study, the first molluscan PAP gene, HdPAP from H. diversicolor, was cloned by combining the expressed sequence tag (EST) and rapid amplification of cDNA end (RACE) methods. Its full length cDNA sequence is 1 215 bp, with a 969 bp open reading frame encoding a protein of 322 amino acids (GenBank:KC337074). The 5′and 3′untranslated regions (UTR) of HdPAP contain 28 bp and 218 bp, respectively. Pairwise analysis results revealed that the HdPAP amino acid sequence has the highest iden-tity, 59%, to the invertebrate Saccoglossus kowalevskii PAP. The calculated molecular mass of deduced HdPAP is 36.8 kD with a theoretical isoelectric point (PI) of 5.27. Multiple sequence alignment of the HdPAP amino acid sequence with other known vertebrate PAPs and invertebrate PAP family proteins revealed that it was conserved, while

  15. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest

    NARCIS (Netherlands)

    Sardans, J.; Penuelas, J.; Ogaya, R.

    2008-01-01

    A six-year (1999-2005) experiment of drought manipulation was conducted in a Quercus ilex Mediterranean forest (Southern Catalonia) to simulate predicted climatic conditions projected for the decades to come. The aim was to investigate the direct and indirect effects of drought conditions on acid an

  16. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  17. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    Science.gov (United States)

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  18. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    Science.gov (United States)

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-22

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.

  19. Effects of cerebrocellular growth peptide on acid phosphatase in cochlea of gentamicin induced ototoxic guinea pigs%脑细胞生长肽对豚鼠耳蜗毛细胞内酸性磷酸酶的影响

    Institute of Scientific and Technical Information of China (English)

    康颂建; 史献君; 魏佑震; 洪岸; 李亚鲁

    2002-01-01

    目的观察脑细胞生长肽(Cerebrai cell growth peptide,CCGP)对庆大霉素(Gentamicin,GM)引起的耳中毒豚鼠耳蜗毛细胞内酸性磷酸酶(Acid phosphatase,ACP)的影响.方法分别用脑干听觉诱发电位(Brainstemauditory evoked potential,BAEP)和组织化学方法检测动物听阈的变化和耳蜗毛细胞溶酶体的变化.结果CCGP能降低GM引起的BAEP反应阈的上升幅度,能保护耳蜗毛细胞溶酶体的完整性,减轻了毛细胞的损伤.结论CCGP能降低GM的耳毒性.保护耳蜗毛细胞溶酶体的完整性,降低溶酶体水解酶逸出引起的毛细胞自溶性损伤,可能是CCGP防治GM耳毒性的机制之一.

  20. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    Science.gov (United States)

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  1. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2015-01-01

    Full Text Available This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3, a repeatability of 9.4% (n = 3 and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition.

  2. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  3. Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green.

    Science.gov (United States)

    Riccio, M L; Rossolini, G M; Lombardi, G; Chiesurin, A; Satta, G

    1997-02-01

    A system for expression cloning of bacterial phosphatase-encoding genes has been developed, and its potential has been investigated. The system is based on histochemical screening of bacterial genomic libraries, constructed in an Escherichia coli multicopy plasmid vector, for phosphatase-producing clones using an indicator medium (named TPMG) made of Tryptose-Phosphate agar supplemented with the phosphatase substrate phenolphthalein diphosphate and the stain methyl green. To test the performance of this system, three genomic libraries were constructed from bacterial strains of different species which showed different patterns of phosphatase activity, and were screened using the TPMG medium. Following a partial screening, three different phosphatase-encoding genes (respectively encoding a class A non-specific acid phosphatase, an acid-hexose phosphatase and a non-specific alkaline phosphatase) were shotgun-cloned from the above libraries, indicating that the TPMG-based expression cloning system can be useful for rapid isolation of different bacterial phosphatase-encoding genes.

  4. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  5. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  6. Glucose-6-phosphatase deficiency.

    Science.gov (United States)

    Froissart, Roseline; Piraud, Monique; Boudjemline, Alix Mollet; Vianey-Saban, Christine; Petit, François; Hubert-Buron, Aurélie; Eberschweiler, Pascale Trioche; Gajdos, Vincent; Labrune, Philippe

    2011-05-20

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  7. [Phosphatase activity in Amoeba proteus at low pH].

    Science.gov (United States)

    Sopina, V A

    2009-01-01

    In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC 3.1.3.2). This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.

  8. Isolation, Purification and Characterization of Acid Phosphatase from Cilantro%芫荽酸性磷酸酶的提取、纯化及酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    王丹; 万骥; 傅婷; 唐云明

    2015-01-01

    采用硫酸铵分级沉淀、CM-Sepharose离子交换层析、Superdex-200凝胶过滤层析法,从新鲜芫荽中分离纯化出电泳纯的酸性磷酸酶(acid phosphatase,ACP).该酶的酶活回收率为14.20%、纯化倍数为238.60、酶比活力为295.87 U/mg、亚基分子质量约为53.8 kD;芫荽ACP酶学性质研究结果表明:该酶的最适反应温度为55℃,在50℃以下时较稳定,因此该酶对温度较敏感;该酶的最适反应pH值为5.8,在pH 4.0~7.0之间较稳定,表明该酶耐受于酸性环境;芫荽ACP的对硝基苯酚磷酸二钠km值为0.63 mmol/L,表明该酶与底物对硝基苯酚磷酸二钠具有较高的亲和力;甲醇、乙醇、异丙醇、抗坏血酸、草酸、Cu2+、Pb2+、Ag+对该酶具有强烈的抑制作用;Mg2+、Mn2+、Ba2+、K+对该酶具有一定的激活作用.

  9. Phosphatase activity on the cell wall of Fonsecaea pedrosoi.

    Science.gov (United States)

    Kneipp, L F; Palmeira, V F; Pinheiro, A A S; Alviano, C S; Rozental, S; Travassos, L R; Meyer-Fernandes, J R

    2003-12-01

    The activity of a phosphatase was characterized in intact mycelial forms of Fonsecaea pedrosoi, a pathogenic fungus that causes chromoblastomycosis. At pH 5.5, this fungus hydrolyzed p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 12.78 +/- 0.53 nmol p-NP per h per mg hyphal dry weight. The values of Vmax and apparent Km for p-NPP hydrolyses were measured as 17.89 +/- 0.92 nmol p-NP per h per mg hyphal dry weight and 1.57 +/- 0.26 mmol/l, respectively. This activity was inhibited at increased pH, a finding compatible with an acid phosphatase. The enzymatic activity was strongly inhibited by classical inhibitors of acid phosphatases such as sodium orthovanadate (Ki = 4.23 micromol/l), sodium molybdate (Ki = 7.53 micromol/l) and sodium fluoride (Ki = 126.78 micromol/l) in a dose-dependent manner. Levamizole (1 mmol/l) and sodium tartrate (10 mmol/l), had no effect on the enzyme activity. Cytochemical localization of the acid phosphatase showed electrondense cerium phosphate deposits on the cell wall, as visualized by transmission electron microscopy. Phosphatase activity in F. pedrosoi seems to be associated with parasitism, as sclerotic cells, which are the fungal forms mainly detected in chromoblastomycosis lesions, showed much higher activities than conidia and mycelia did. A strain of F. pedrosoi recently isolated from a human case of chromoblastomycosis also showed increased enzyme activity, suggesting that the expression of surface phosphatases may be stimulated by interaction with the host.

  10. Synthesis of carbohydrates in a continuous flow reactor by immobilized phosphatase and aldolase

    NARCIS (Netherlands)

    Babich, L.; Hartog, A.F.; van Hemert, L.J.C.; Rutjes, F.P.J.T.; Wever, R.

    2012-01-01

    Herein, we report a new flow process with immobilized enzymes to synthesize complex chiral carbohydrate analogues from achiral inexpensive building blocks in a three-step cascade reaction. The first reactor contained immobilized acid phosphatase, which phosphorylated dihydroxyacetone to

  11. Phosphate solubilizing bacteria and alkaline phosphatase activity in coastal waters off Trivandrum

    Digital Repository Service at National Institute of Oceanography (India)

    Mamatha, S.S.; Gobika, A.; Janani, P.

    Phosphorus is a key nutrient in marine environment. Phosphate solubilising bacteria (PSB) have the ability to solubilise ionic forms of orthophosphoric acid to free form of phosphrous in the water column. Both PSB and alkaline phosphatase activity...

  12. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  13. Influencia de especies forestales sobre la actividad de las enzimas fosfatasa ácida y proteasas en un suelo de bosque Influence of tree species on the activity of acid phosphatase and protease in a forest soil

    Directory of Open Access Journals (Sweden)

    Rl Defrieri

    2008-12-01

    reflejaron mejor los cambios debidos a la influencia de las diferentes especies y de la época del año que otros parámetros químicos del suelo.Plant cover and especially the dominant tree species affect biological and chemical properties of the soil. Litter decomposition rate is affected by its N and P concentration. The aim of this work was to determine the different effects of forest tree species on some biochemical properties of the soil. The study site was located at the Reserva Natural Estricta Colonia Benítez, Chaco, Argentina. Soil samples were taken under trees of the four dominant species in the area and at two depths (0-10 cm and 10-20cm and moments: in summer and in winter. Activities of acid phosphatase and protease enzymes and some edaphic parameters were determined. The results obtained for all studied variables were significantly lower at the 10-20 cm depth, for all forest species and in both seasons. Values of enzyme activities showed significant differences between species only in surface samples where the incorporation of organic matter is greater and in summer. In these conditions, the values of enzymatic activities obtained in soils under each species ranged between 1,600 and 900 μg p-nitrophenol g-1 h-1 for acid phosphatase and between 850 y 450 g tyrosine g-1h-1 for protease. For two of the studied species, a relationship was found between the amount of litter produced, the different decomposition rates and the N and P concentrations in senescent leaves with the enzyme activities in soils. Inorganic N and available P concentrations in soils did not show significant differences between species. In this study, soil enzyme activities were more related to the overlying species than some measured soil parameters.

  14. Alteração da atividade enzimática em organismos aquáticos por poluentes de origem agrícola: uma abordagem geral e sobre a suscetibilidade da fosfatase ácida Alteration of enzymatic activity in aquatic organisms by agricultural pollutants: a general approach and the susceptibility of the acid phosphatase

    Directory of Open Access Journals (Sweden)

    Claudio Martín Jonsson

    2010-01-01

    Full Text Available The input of agrochemicals in the aquatic compartment can results in biochemical injuries for living organisms. In this context, the knowledge of alterations of enzymatic activities due the presence of agriculture pollutants contributes for the elucidation of the mechanisms of toxicity, implementation of economic methods for monitoring purposes and establishment of maximum allowed concentrations. In the present work, the above considerations are discussed, and data concerning changes in enzymatic function by pesticides and fertilizer contaminants are reviewed. Also, we focused on the acid phosphatase due its susceptibility to several pollutants and diversity in cellular functions.

  15. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity.

    Science.gov (United States)

    Villamizar, Genis A Castillo; Nacke, Heiko; Daniel, Rolf

    2017-01-01

    The release of phosphate from inorganic and organic phosphorus compounds can be mediated enzymatically. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation and diagnostic analysis. Metagenomic approaches provide access to novel phosphatase-encoding genes. Here, we describe a function-based screening approach for rapid identification of genes conferring phosphatase activity from small-insert and large-insert metagenomic libraries derived from various environments. This approach bears the potential for discovery of entirely novel phosphatase families or subfamilies and members of known enzyme classes hydrolyzing phosphomonoester bonds such as phytases. In addition, we provide a strategy for efficient heterologous phosphatase gene expression.

  16. Estudio de la fosfatasa ácida y alcalina en suelos de la Región Pampeana Norte del área sojera argentina Study of acid and alkaline phosphatase in soils of the Pampean North Region from argentine soybean area

    Directory of Open Access Journals (Sweden)

    Leticia Andrea Fernández

    2008-07-01

    ón de ambos métodos, es posible estudiar la fosfatasa ácida y alcalina de un suelo y obtener información sobre el potencial del mismo para movilizar Po.Transformation of organic phosphorus (Po into soluble inorganic phosphorus (Pi is called mineralization and is carried out by phosphatase enzymes. The present research focuses on the study of the phosphatase activity of five soils from the soybean area of the Northern Pampean region, by evaluating the phosphatase activity in soil samples and the number of bacteria and fungi with that activity. Soil samples were collected and the total number and phosphatase activity of cultivated heterotrophic aerobic bacteria (CHAB and cultivated fungi (CF was assessed. No significant differences were observed in the numbers of CHAB and CH between the studied soils. The number of bacteria with acid phosphatase activity was 6.85 10(5 CFU g-1 soil, while alkaline activity was 5.80 10(5 CFU g-1 soil. In contrast, the number of fungi with acid phosphatase activity was 1.78 10³ CFU g-1 soil and with alkaline activity was 1.77 10³ CFU g-1 soil. No significant differences were observed in the number of bacteria and fungi with both enzymes. However, acid activity was higher than alkaline activity in soil samples. Alkaline phosphatase activity ranged from 5.72 to 15.5 mg p- nitrofenol kg-1 soil h-1 while acid activity varied from 27.4 to 10(5 mg p-nitrofenol kg-1 soil h-1. There were significant differences in phosphatase activity between the soybean soils. Our results show that the mineralization activities of Po sources are in agreement with other cultivated soils. On the other hand, the number of bacteria and fungi complements the information on soil phosphatase activity. Clearly, both methods allow the study of alkaline and acid phosphatase activity in soil and give information about the soil potential to mobilize Po.

  17. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    Science.gov (United States)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  18. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    Science.gov (United States)

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Wang, Yingda; Oeser, James K; O'Brien, Richard M

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.

  19. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    Science.gov (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  20. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  1. Correlations between calcineurin phosphatase inhibition and cyclosporine metabolites concentrations in kidney transplant recipients: implications for immunoassays

    DEFF Research Database (Denmark)

    Karamperis, N; Koefoed-Nielsen, PB; Brahe, P

    2006-01-01

    transplant patients were included in the study. Blood samples were drawn before, 1, 2, 3, 4, 6, 8, and 12 hr after oral intake of cyclosporine. Parent drug and metabolites were determined by liquid chromatography/tandem mass spectrometry (LC/MSMS). Additionally, cyclosporine concentration was determined...... by the enzyme multiplied immunoassay technique (EMIT) and by the polyclonal fluorescence polarization immunoassay (pFPIA). Calcineurin phosphatase activity was measured by its ability to dephosphorylate a previously phosphorylated 19-amino acid peptide. We found that calcineurin phosphatase inhibition...... by inhibiting the enzyme calcineurin phosphatase. Determination of the enzyme's activity is one of the most promising pharmacodynamic markers. It is unknown how calcineurin phosphatase inhibition correlates with various cyclosporine monitoring assays and what is the potential impact of metabolites...

  2. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  3. Alkaline Phosphatase, an Unconventional Immune Protein.

    Science.gov (United States)

    Rader, Bethany A

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  4. Alkaline Phosphatase, an Unconventional Immune Protein

    Science.gov (United States)

    Rader, Bethany A.

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont. PMID:28824625

  5. Alkaline Phosphatase, an Unconventional Immune Protein

    Directory of Open Access Journals (Sweden)

    Bethany A. Rader

    2017-08-01

    Full Text Available Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs, revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP proteins, most is known about tissue non-specific AP (TNAP and intestinal AP (IAP. This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  6. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  7. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  8. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  9. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  10. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  11. Association of alkaline phosphatase phenotypes with arthritides

    Directory of Open Access Journals (Sweden)

    Padmini A

    2004-01-01

    Full Text Available Arthritides, a symmetrical polyarticular disease of the bone are a heterogenous group of disorders in which hereditary and environmental factors in combination with an altered immune response appear to play a causative and pathogenic role in its occurrence. Alkaline phosphatase (ALP is an enzyme found in all tissues, with particularly high concentrations of ALP observed in the liver, bile ducts, placenta, and bone.Alkaline phosphatase is an orthophosphoric monoester phosphohydrolase catalyzing the hydrolysis of organic esters at alkaline pH, indicating that alkaline phosphatase is involved in fundamental biological processes.1 The present study envisages on identifying the specific electromorphic association of alkaline phosphatase with arthritides. Phenotyping of serum samples was carried out by PAGE (Polyacrylamide gel electrophoresis following Davies (19642 protocol on 41 juvenile arthritis, 150 rheumatoid arthritis and 100 osteo arthritis apart from, 25 normal children and 100 adult healthy subjects. Phenotyping of alkaline phosphatase revealed an increase in preponderance of p+ and p++ phenotypes in juvenile, rheumatoid and osteo arthritic patients. However a significant association of these phenotypes was observed only with rheumatoid arthritis condition (c2:17.46. Similarly, a significant increase of p+ phenotypes in female rheumatoid arthritis patients was observed (c2:14.973, suggesting that the decrease in p° (tissue non specific synthesis/secretion of alkaline phosphatase could be associated with decreased mineralization and ossification process in arthritis condition.

  12. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar M.; Sharma M.K.; Saxena P.S.; Kumar A. [Rajasthan Univ., Jaipur (India)

    2003-03-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  13. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    Science.gov (United States)

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.

  14. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  15. A novel screening model for the molecular drug for diabetes and obesity based on tyrosine phosphatase Shp2.

    Science.gov (United States)

    Bu, Yanyan; Shi, Tao; Meng, Minghui; Kong, Guiping; Tian, Yingpu; Chen, Quancheng; Yao, Xinsheng; Feng, Gensheng; Chen, Haifeng; Cheng, Haifeng; Lu, Zhongxian

    2011-01-15

    Tyrosine phosphatase Src-homology phosphotyrosyl phosphatase 2 (Shp2) was identified as a potential molecular target for therapeutic treatment of diabetes and obesity. However, there is still no systematic research on the enhancers for the Shp2 enzyme. The present study established a novel powerful model for the high-throughput screening of Shp2 enhancers and successfully identified a new specific Shp2 enhancer, oleanolic acid, from Chinese herbs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation

    DEFF Research Database (Denmark)

    Daum, G; Regenass, S; Sap, J

    1994-01-01

    Among all the receptor-linked protein-tyrosine-phosphatase RPTP alpha clones described from mammalian tissues, one differed in that it encoded a 9-amino-acid insert 3 residues upstream from the transmembrane segment (Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R. Ravera, M., Ricca, G...

  17. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts as a gene...

  18. Fósforo da biomassa microbiana e atividade de fosfatases ácidas durante a diminuição do fósforo disponível no solo Soil microbial biomass phosphorus and activity of acid phosphatases during decline of soil available phosphorus

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2008-08-01

    Full Text Available O objetivo deste trabalho foi avaliar o conteúdo de fósforo armazenado na biomassa microbiana e a atividade de fosfatases ácidas, durante a diminuição dos teores de fósforo disponível no solo, causado por cultivos sucessivos com plantas. Foram utilizadas amostras de Latossolo Vermelho distroférrico típico, com adição prévia de fosfatos solúveis (0, 180, 360, 540 e 720 kg ha-1 de P2O5, aplicados em seis anos consecutivos. Efetuaram-se 15 cultivos sucessivos com diferentes plantas, em casa de vegetação, sem a reposição do fósforo absorvido pelas plantas. Após cada três cultivos sucessivos, foram determinados: o teor de fósforo disponível por resina trocadora de ânions, o fósforo microbiano e a atividade de fosfatases ácidas. Com a diminuição da disponibilidade de fósforo do solo, a quantidade de fósforo armazenada na biomassa microbiana do solo diminuiu, e a atividade de fosfatases ácidas aumentou. Em solos com baixo teor de fósforo e de resíduos de plantas, o P microbiano tem pouca importância para a nutrição das plantas.The objective of this work was to evaluate the content of phosphorus stored in the soil microbial biomass and the activity of acid fosfatases, during the decline of soil available phosphorus, caused by successive crops in pot experiment. Samples of Oxisol were utilized with previous addition of soluble phosphates (0, 180, 360, 540, and 720 kg ha-1 of P2O5, applied in six consecutive years. The soil samples were submitted to 15 successive crops in greenhouse, without replacement of absorbed phosphorus by plants. After each three successive crops, soil was sampled, and the following variables were determined: the available phosphorus by anion exchange resin, phosphorus stored in the soil microbial biomass and the activity of acid phosphatases. As a consequence of the reduction of the soil available phosphorus, the amount of microbial phosphorus decreased, and the activity of phosphatases increased

  19. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  20. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  1. Therapeutic Implications for Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Neuropsychiatric Disorders

    OpenAIRE

    Goebel-Goody, Susan M.; Baum, Matthew; Paspalas, Constantinos D.; Fernandez, Stephanie M.; Carty, Niki C.; Kurup, Pradeep; LOMBROSO, PAUL J.

    2012-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-d-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn...

  2. Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.

    OpenAIRE

    Barik, S

    1993-01-01

    The predicted amino acid sequence encoded by the open reading frame 221 (orf221) of bacteriophage lambda exhibited a high degree of similarity to the catalytic subunits of a variety of protein serine/threonine phosphatases belonging to PP1, PP2A, and PP2B groups. Cloning and expression of the orf221 gene in Escherichia coli provided direct evidence that the gene codes for a protein serine/threonine phosphatase. The single-subunit recombinant enzyme was purified in soluble form and shown to po...

  3. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...... glucan phosphatases showed similar affinities for the short oligosaccharide β-cyclodextrin. We performed structure-guided mutagenesis to define the mechanism of these differences. We found that the carbohydrate binding module (CBM) domain provided a stronger binding affinity compared to surface binding...

  4. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development.

    Science.gov (United States)

    Treuner-Lange, A; Ward, M J; Zusman, D R

    2001-04-01

    Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.

  5. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders.

    Science.gov (United States)

    Veillette, André; Rhee, Inmoo; Souza, Cleiton Martins; Davidson, Dominique

    2009-03-01

    The proline-, glutamic acid-, serine- and threonine-rich (PEST) family of protein tyrosine phosphatases (PTPs) includes proline-enriched phosphatase (PEP)/lymphoid tyrosine phosphatase (LYP), PTP-PEST, and PTP-hematopoietic stem cell fraction (HSCF). PEP/LYP is a potent inhibitor of T-cell activation, principally by suppressing the activity of Src family protein tyrosine kinases (PTKs). This function seems to be dependent, at least in part, on the ability of PEP to bind C-terminal Src kinase (Csk), a PTK also involved in inactivating Src kinases. Interestingly, a polymorphism of LYP in humans (R620W) is a significant risk factor for autoimmune diseases including type 1 diabetes, rheumatoid arthritis, and lupus. The R620W mutation may be a 'gain-of-function' mutation. In non-hematopoietic cells, PTP-PEST is a critical regulator of adhesion and migration. This effect correlates with the aptitude of PTP-PEST to dephosphorylate cytoskeletal proteins such as Cas, focal adhesion associated-kinase (FAK), Pyk2, and PSTPIP. While not established, a similar function may also exist in immune cells. Additionally, overexpression studies provided an indication that PTP-PEST may be a negative regulator of lymphocyte activation. Interestingly, mutations in a PTP-PEST- and PTP-HSCF-interacting protein, PSTPIP1, were identified in humans with pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome and familial recurrent arthritis, two autoinflammatory diseases. These mutations abrogate the ability of PSTPIP1 to bind PTP-PEST and PTP-HSCF, suggesting that these two PTPs may be negative regulators of inflammation.

  6. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not appare...

  7. Protein-tyrosine phosphatases in zebrafish gastrulation

    NARCIS (Netherlands)

    van Eekelen, M.J.L.

    2011-01-01

    Protein tyrosine phosphorylation plays a key role in relaying external stimuli and signals into the cell towards the appropriate responses. This process is mediated by protein-tyrosine kinases adding a phosphor group to a tyrosine residue and protein-tyrosine phosphatases removing a phosphor group f

  8. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  9. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes.

    Science.gov (United States)

    Fulceri, R; Gamberucci, A; Scott, H M; Giunti, R; Burchell, A; Benedetti, A

    1995-01-01

    In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact microsomes. The effect of CoA required ATP and fatty acids to form fatty acyl esters. Increasing concentrations (2-50 microM) of CoA (plus ATP and 20 microM added palmitic acid) or of palmitoyl-CoA progressively decreased glucose-6-phosphatase activity to 50% of the control value. The inhibition lowered the Vmax without significantly changing the Km. A non-hydrolysable analogue of palmitoyl-CoA also inhibited, demonstrating that binding of palmitoyl-CoA rather than hydrolysis produces the inhibition. Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer demonstrated that palmitoyl-CoA alone or CoA plus ATP and palmitic acid altered the microsomal permeability to glucose 6-phosphate, but not to glucose or phosphate, indicating that T1 is the site of palmitoyl-CoA binding and inhibition of glucose-6-phosphatase activity in native microsomes. The type of inhibition found suggests that liver microsomes may comprise vesicles heterogeneous with respect to glucose-6-phosphate translocase(s), i.e. sensitive or insensitive to fatty acid ester inhibition. PMID:7733874

  10. Isozymes of bovine intestinal alkaline phosphatase. Characterization and functional studies

    Energy Technology Data Exchange (ETDEWEB)

    Besman, M.J.A.

    1986-01-01

    The membrane-associated alkaline phosphatases of calf and adult bovine small intestines have been isolated to homogeneity by a novel method developed to purify large quantities of enzyme. Chromatofocusing revealed the existence of two isozymes in calf tissue while only one form was present in the adult. The three amphiphilic metallo protein dimers were characterized as to total amino acid and carbohydrate content, zinc stoichiometries and mode of carbohydrate linkage. The molecular relationship between the three enzymes was defined by tryptic peptide HPLC-mapping and N-terminal sequencing, and demonstrated the existence of two calf isozymes of unique primary sequence, only one of which is expressed in the adult animal. In the presence of protease inhibitors, two new, higher M/sub r/ species (66,000 and 62,000 daltons vs 60,000 daltons) of adult bovine alkaline phosphatase were demonstrated by electrophoresis of /sup 32/P/sub i/-labeled tissue, probing gels by autoradiography and Western blotting. The in vivo enzyme was isolated using a modified, rapid procedure; the two higher M/sub r/ species copurified.

  11. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  12. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    Science.gov (United States)

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  13. TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dubots

    Full Text Available The evolutionarily conserved target of rapamycin complex 1 (TORC1 controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.

  14. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  15. Identification and Biochemical Characterization of Protein Phosphatase 5 from the Cantharidin-Producing Blister Beetle, Epicauta chinensis

    Directory of Open Access Journals (Sweden)

    Xi'en Chen

    2013-12-01

    Full Text Available Protein phosphatase 5 (PP5 is a unique member of serine/threonine phosphatases which has been recognized in regulation of diverse cellular processes. A cDNA fragment encoding PP5 (EcPP5 was cloned and characterized from the cantharidin-producing blister beetle, E. chinensis. EcPP5 contains an open reading frame of 1500 bp that encodes a protein of 56.89 kDa. The deduced amino acid sequence shares 88% and 68% identities to the PP5 of Tribolium castaneum and humans, respectively. Analysis of the primary sequence shows that EcPP5 has three TPR (tetratricopeptide repeat motifs at its N-terminal region and contains a highly conserved C-terminal catalytic domain. RT-PCR reveals that EcPP5 is expressed in all developmental stages and in different tissues. The recombinant EcPP5 (rEcPP5 was produced in Escherichia coli and purified to homogeneity. The purified protein exhibited phosphatase activity towards pNPP (p-nitrophenyl phosphate and phosphopeptides, and its activity can be enhanced by arachidonic acid. In vitro inhibition study revealed that protein phosphatase inhibitors, okadaic acid, cantharidin, norcantharidin and endothall, inhibited its activity. Further, protein phosphatase activity of total soluble protein extract from E. chinensis adults could be impeded by these inhibitors suggesting there might be some mechanism to protect this beetle from being damaged by its self-produced cantharidin.

  16. Comparative phytohormone profiles, lipid kinase and lipid phosphatase activities in barley aleurone, coleoptile, and root tissues.

    Science.gov (United States)

    Meringer, Maria V; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela E; Racagni, Graciela E

    2012-09-01

    We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.

  17. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    Science.gov (United States)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  18. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus.

    Science.gov (United States)

    Mohan, D; Verma, S R

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  19. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, D.; Verma, S.R.

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  20. Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin.

    Science.gov (United States)

    Bertini, I; Calderone, V; Fragai, M; Luchinat, C; Talluri, E

    2009-08-13

    The inhibition of a subgroup of human serine/threonine protein phosphatases is responsible for the cytotoxicity of cantharidin and norcantharidin against tumor cells. It is shown that the anhydride rings of cantharidin and norcantharidin are hydrolyzed when bound to the catalytic domain of the human serine/threonine protein phosphatases 5 (PP5c), and the high-resolution crystal structures of PP5c complexed with the corresponding dicarboxylic acid derivatives of the two molecules are reported. Norcantharidin shows a unique binding conformation with the catalytically active Mn2PP5c, while cantharidin is characterized by a double conformation in its binding mode to the protein. Different binding modes of norcantharidin are observed depending of whether the starting ligand is in the anhydride or in the dicarboxylic acid form. All these structures will provide the basis for the rational design of new cantharidin-based drugs.

  1. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes

    Directory of Open Access Journals (Sweden)

    Andreeva Alexandra V

    2004-11-01

    Full Text Available Abstract Background In eukaryotes, PPP (protein phosphatase P family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases. Results We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some α-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhizobiales / Rhodobacterales / Rhodospirillaceae-like phosphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed Shewanella-like phosphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed ApaH-like phosphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a

  2. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts...... conclude that residue 182 can modulate the functionality of both Asp(181) and Gln(262). and therefore affect the E-P hydrolysis step of PTP-mediated catalysis....

  3. Effect of Heat Stress on the Intestinal Flora Structure and Alkaline Phosphatase Activities and mRNA Expression of Amino Acid Transporters of Layer%热应激对蛋鸡肠道菌群结构、碱性磷酸酶活性及氨基酸转运载体mRNA表达丰度的影响

    Institute of Scientific and Technical Information of China (English)

    李永洙; 陈常秀; Yongquan Cui

    2013-01-01

    [目的]揭示热应激环境下蛋鸡肠道菌群结构、肠黏膜碱性磷酸酶活性和氨基酸转运载体mRNA表达量的变化机理。[方法]试验选择16周龄济宁百日鸡96只,随机分成对照组((24±1)℃;Ⅰ)和热应激((38±1)℃)组,各组设6个重复,每个重复8只,试验持续14 d。采用16S rDNA的PCR-DGGE技术和实时荧光定量PCR等手段,分析热应激2(Ⅱ)、7(Ⅲ)、14 d(Ⅳ)时,对十二指肠、空肠及回肠内容物菌群多样性和肠黏膜碱性磷酸酶活性以及氨基酸转运载体rBAT、y+LAT 1、CAT l mRNA基因表达的相对丰度变化规律。[结果]热应激7 d开始各肠段菌群多样性较为丰富,热应激7、14 d时空肠和回肠部位敏感乳杆菌(Lactobacillus agilis),回肠部位约氏乳杆菌(Lactobacillus johnsonii)、不可培养细菌(uncultured bacterium)和不可培养的拟杆菌属(uncultured Bacteroidalesbacterium)均末检测到;而热应激不同时间段空肠和回肠部位可检测到不可培养细菌、溃疡拟杆菌(Bacteroides helcogenes)、卵形拟杆菌(Bacteroides ovatus)、索氏志贺氏菌(Shigella sonnei);空肠和回肠部位黏膜上皮细胞表面的碱性磷酸酶活性与Ⅰ组比较显著下降(P<0.05);而空肠和回肠Ⅲ组的rBAT、y+LAT 1 mRNA表达丰度均最低,空肠在各热应激时段表达丰度变化幅度最大(P<0.05),回肠的CAT 1 mRNA表达丰度在Ⅲ、Ⅳ组与Ⅰ组比较影响更明显(P<0.01)。[结论]热应激对空肠和回肠部位微生物菌群影响较为明显,肠道微生物群落改变可导致肠道的消化吸收功能发生改变。%[Objective] The objective of this study is to reveal the influence mechanisms of heat stress affecting the intestinal flora structure of layer, the alkaline phosphatase activities of intestinal mucosa and the mRNA expression of amino acid transporters.[Method]A total of 96 Jining Bairi

  4. Extraction, partial characterization and susceptibility to Hg2+ of acid phosphatase from the microalgae Pseudokirchneriella subcapitata Extração, caracterização parcial e susceptibilidade ao Hg2+ da fosfatase ácida da microalga Pseudokirchneriella subcapitata

    Directory of Open Access Journals (Sweden)

    Claudio Martín Jonsson

    2009-10-01

    Full Text Available Pseudokirchneriella subcapitata is a unicellular green algae widely distributed in freshwater and soils. Due to its cosmopolitan characteristic, its use is recommended by national and international protocols in ecotoxicity studies. The alteration of phosphatase activities by agriculture pollutants like heavy metals has been extensively used as a biomarker in risk assessment and biomonitoring. In this study, we compared the extraction of acid phosphatase from P. subcapitata by different procedures and we studied the stability, substrates specificity, kinetics and the effect of Hg2+ in the crude extract. The freezing and thawing technique associated with probe sonication was the most suitable method of extraction. The enzyme was stable when frozen at -20ºC for at least six months, showed an optimum pH of 5 and a Km value of 0.27 mM for p-nitrophenylphosphate (pNPP as substrate. Some natural organic substrates were cleaved by a similar extent as the synthetic substrate pNPP. Short term exposure (24 hours to Hg2+ had little effect but inhibition of the specific activity was observed after 7 days with EC50 (concentration of Hg2+ that promotes 50% decrease of specific activity value of 12.63 μM Hg2+.Pseudokirchneriella subcapitata é uma alga verde unicelular amplamente distribuída em corpos d´agua e solos. Devido a sua natureza cosmopolita, seu uso é recomendado por protocolos nacionais e internacionais na realização de estudos de ecotoxicidade. A alteração da atividade de fosfatases por agentes poluentes de origem agrícola, como metais pesados, tem sido largamente usada como um biomarcador na avaliação de risco e biomonitoramento. No presente trabalho foi comparada a extração da fosfatase ácida de P. subcapitata por diferentes métodos e estudada a sua estabilidade, especificidade por substratos, cinética e efeito do Hg2+ no extrato bruto. O congelamento e descongelamento, associado com ultrassom, foi o método que proporcionou maior

  5. Auxiliary phosphatases in two-component signal transduction.

    Science.gov (United States)

    Silversmith, Ruth E

    2010-04-01

    Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Low serum alkaline phosphatase activity in Wilson's disease.

    Science.gov (United States)

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  7. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    Science.gov (United States)

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases.

  8. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    Science.gov (United States)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  9. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  10. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities.

    Science.gov (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2001-04-01

    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  11. 华支睾吸虫膜抗原/排泄分泌抗原酸性磷酸酶的克隆、表达、生物学特征分析及组织定位%Cloning, expression, biological characteristics and tissue localization of a Clonorchis sinensis membrane antigen/excretory-secretory antigen, acid phosphatase

    Institute of Scientific and Technical Information of China (English)

    郑明慧; 胡坤华; 张彤; 刘炜; 余新炳

    2014-01-01

    目的:对华支睾吸虫(Clonorchis sinensis,Cs)成虫酸性磷酸酶(acid phosphatase,AP)进行克隆、表达、生物学特征分析、组织定位及膜抗原/排泄分泌抗原鉴定.方法:对CsAP进行生物信息学、分子生物学、免疫组化及明胶酶谱分析.结果:从Cs cDNA文库中筛选出编码AP新基因,全长1 410 bp,重组并由大肠杆菌表达、纯化,得到分子量为55 kD的重组蛋白GsAP.Western blotting分析表明,CsAP既是膜抗原又是分泌排泄抗原;免疫组化显示,CsAP荧光显示于成虫的表皮层和肠支,在囊蚴也有显示,在雷蚴和尾蚴未显示荧光;ELISA分析表明sAP识别华支睾吸虫病人和日本血吸虫病人存在吸虫间的交叉免疫反应,CsAP及粗抗原识别轻、中、重度感染程度华支睾吸虫病人的差别不明显.重组蛋白免疫大鼠后,总IgG抗体滴度于3周达较高峰,抗体效价大于1∶25 600.明胶降解实验表明:CsAP具降解胶原能力.结论:上述结果表明,CsAP在大肠杆菌中高效表达,具有较好的免疫原性,但血清诊断价值不理想;CsAP可能既是膜抗原,又是排泄分泌抗原.

  12. Enzymatic activity toward poly(L-lactic acid) implants

    NARCIS (Netherlands)

    Schakenraad, J.M.; Hardonk, M.J.; Feijen, J.; Molenaar, I.; Nieuwenhuis, P.

    1990-01-01

    Tissue reactions toward biodegradable poly(L-lactic acid) implants were monitored by studying the activity pattern of seven enzymes as a function of time: alkaline phosphatase, acid phosphatase, -naphthyl acetyl esterase, -glucuronidase, ATP-ase, NADH-reductase, and lactate dehydrogenase. Cell types

  13. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  14. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  15. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

    Science.gov (United States)

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C

    1999-05-14

    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  16. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    Science.gov (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings.

  17. Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis.

    NARCIS (Netherlands)

    Glondu-Lassis, M.; Dromard, M.; Chavey, C.; Puech, C.; Fajas, L.; Hendriks, W.J.A.J.; Freiss, G.

    2009-01-01

    The insulin/insulin-like growth factor 1 (IGF-1) signaling pathway is a major regulator of adipose tissue growth and differentiation. We recently demonstrated that human protein tyrosine phosphatase (PTP) L1, a large cytoplasmic phosphatase also known as PTP-BAS/PTPN13/PTP-1E, is a negative

  18. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function.

    Science.gov (United States)

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F; Mori Sequeiros García, M Mercedes; Maloberti, Paula M; Orlando, Ulises D; Mele, Pablo G; Poderoso, Cecilia; Podesta, Ernesto J

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.

  19. Phosphatase-dependent regulation of epithelial mitogen-activated protein kinase responses to toxin-induced membrane pores.

    Directory of Open Access Journals (Sweden)

    Jorge L Aguilar

    Full Text Available Diverse bacterial species produce pore-forming toxins (PFT that can puncture eukaryotic cell membranes. Host cells respond to sublytic concentrations of PFT through conserved intracellular signaling pathways, including activation of mitogen-activated protein kinases (MAPK, which are critical to cell survival. Here we demonstrate that in respiratory epithelial cells p38 and JNK MAPK were phosphorylated within 30 min of exposure to pneumolysin, the PFT from Streptococcus pneumoniae. This activation was tightly regulated, and dephosphorylation of both MAPK occurred within 60 min following exposure. Pretreatment of epithelial cells with inhibitors of cellular phosphatases, including sodium orthovanadate, calyculin A, and okadaic acid, prolonged and intensified MAPK activation. Specific inhibition of MAPK phosphatase-1 did not affect the kinetics of MAPK activation in PFT-exposed epithelial cells, but siRNA-mediated knockdown of serine/threonine phosphatases PP1 and PP2A were potent inhibitors of MAPK dephosphorylation. These results indicate an important role for PP1 and PP2A in termination of epithelial responses to PFT and only a minor contribution of dual-specificity phosphatases, such as MAPK phosphatase-1, which are the major regulators of MAPK signals in other cell types. Epithelial regulation of MAPK signaling in response to membrane disruption involves distinct pathways and may require different strategies for therapeutic interventions.

  20. Investigations into the stabilisation of drugs by sugar glasses : II: Delivery of an inulin-stabilised alkaline phosphatase in the intestinal lumen via the oral route

    NARCIS (Netherlands)

    Eriksson, H.J.C.; Verweij, W.R.; Poelstra, K.; Hinrichs, W.L.J.; de Jong, G.J.; Somsen, G.W.; Frijlink, H.W.

    2003-01-01

    In this study the possibility to deliver the acid-sensitive enzyme alkaline phosphatase (AP) from calf intestine (CIAP) to the intestinal system by oral administration was investigated. Tablets were prepared and in vitro evaluated. Final proof of concept studies were performed in rats. This acid lab

  1. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya

    2010-02-01

    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  2. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  3. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    Directory of Open Access Journals (Sweden)

    Sarma Uddipan

    2012-07-01

    Full Text Available Abstract Background The three layer mitogen activated protein kinase (MAPK signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can

  4. Functional study of the effect of phosphatase inhibitors on KCNQ4 channels expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Tzu-rong SU; Cay-huyen CHEN; Shih-jen HUANG; Chun-yi LEE; Mao-chang SU; Gwan-hong CHEN; Shuan-yow LI; Jiann-jou YANG; Min-jon LIN

    2009-01-01

    Aim: KCNQ4 channels play an important part in adjusting the function of cochlear outer hair cells. The aim of this study was to investigate the effects of ser/thr phosphatase inhibitors on human KCNQ4 channels expressed in Xenopus laevis oocytes. Methods: Synthetic cRNA encoding human KCNQ4 channels was injected into Xenopus oocytes. We used a two-electrode voltage clamp to measure the ion currents in the oocytes. Results: Wild-type KCNQ4 expressed in Xenopus oocytes showed the typical properties of slow activation kinetics and low threshold activation. The outward K~+ current was almost completely blocked by a KCNQ4 blocker, linopirdine (0.25 mmol/L). BIMI (a PKC inhibitor) prevented the effects of PMA (a PKC activator) on the KCNQ4 current, indicating that PKC may be involved in the regulation of KCNQ4 expressed in the Xenopus oocyte system. Treatment with the ser/thr phosphatase inhibitors, cyclosporine (2 μmoVL), calyculin A (2 μmol/L) or okadaic acid (1 μmol/L), caused a significant positive shift in V_(1/2) and a decrease in the conductance of KCNQ4 chan-nels. The V_(1/2) was shifted from-14.6±0.5 to-6.4±0.4 mV by cyclosporine, -18.8±0.5 to-9.2±0.4 mV by calyculin A, and-14.1±0.5 to -0.7±0.6 mV by okadaic acid. Moreover, the effects of these phosphatase inhibitors (okadaic acid or calyculin A) on the induction of a positive shift of V_(1/2) were augmented by further addition of PMA. Conclusion: These results indicate that ser/thr phosphatase inhibitors can induce a shift to more positive potentials of the activation curve of the KCNQ4 current. It is highly likely that the phosphatase functions to balance the phosphorylated state of substrate protein and thus has an important role in the regulation of human KCNQ4 channels expressed in Xenopus oocytes.

  5. The protein phosphatase 7 regulates phytochrome signaling in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Thierry Genoud

    Full Text Available The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA and phytochrome B (phyB but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7 are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2, a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

  6. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  7. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  8. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  9. 耐酒石酸酸性磷酸酶5基因多态性与青少年特发性脊柱侧凸患者相关性研究%Association between tartrate-resistant acid phosphatase 5 gene polymorphism and adolescent idiopathic scoliosis

    Institute of Scientific and Technical Information of China (English)

    赵清华; 朱泽章; 邱勇; 王斌; 钱邦平; 蒋军; 毛赛虎

    2012-01-01

    目的 探讨耐酒石酸酸性磷酸酶5 (ACP5)基因多态性与青少年特发性脊柱侧凸(AIS)易感性和严重程度的相关性.方法 选择2006年1月至2008年12月372例AIS患者(AIS组)和2005年3月至2006年8月239名健康青少年(正常对照组),所有AIS患者Cobb角均≥10°.结合汉族人单倍体型资料,选取rs2229531、rs2071484两个单核苷酸多态性位点,采用PCR-限制性片段长度多态性的方法对这两个位点进行基因分型.比较不同基因型在AIS组与正常对照组之间的分布差异,并分析基因多态性与Cobb角的相关性.结果 AIS组与正常对照组的rs2229531位点均未见多态性.AIS组ACP5基因rs2071484位点的基因型及等位基因分布与正常对照组比较差异无统计学意义(x2=3.336和1.438,P>0.05).rs2071484多态性位点AA、AG、GG基因型所对应的平均最大Cobb角分别为38°±19°、34°±14°、38°±21°,三者相比差异无统计学意义(P =0.157).结论 ACP5基因多态性可能与AIS的发生发展没有明显关系.%Objective To investigate whether the titrate-resistant acid phosphatase 5 (ACP5) gene polymorphisms were associated with the occurrence or curve severity of adolescent idiopathic scoliosis (AIS).Methods There were 372 AIS patients from January 2006 to December 2008 and 239 normal controls from March 2005 to August 2006 were recruited.The Cobb angles were ≥ 10° in all AIS patients.Using the haplotype data of Han population from the Hapmap Project,two tag SNPs ( rs2229531,rs2071484)were defined for ACP5 gene.PCR-restriction fragment length polymorphism was used for the genotyping.Results No polymorphism in rs2229531 was found in this study.The genotype and allele frequency distribution in rs2071484 were similar between AIS patients and normal controls ( x2 =3.336 and 1.438,P >0.05).The mean maximum Cobb angles of different genotypes of rs2071484 in ACP5 gene were 38° ±19° in AA,34° ± 14° in AG and 38° ±21° in GG,which were

  10. Alkaline phosphatase as a periodontal disease marker

    Directory of Open Access Journals (Sweden)

    Malhotra Ranjan

    2010-01-01

    Full Text Available Background: The potential of alkaline phosphatase (ALP as an important diagnostic marker of gingival crevicular fluid (GCF has been the subject to investigation since 1970. ALP is stored in specific granules and secretory vesicles of the neutrophils and is mainly released during their migration to the site of infection. It is also present in bacteria within dental plaque, osteoblasts and fibroblasts. It has, thus, become important to elucidate whether GCF levels of ALP are potential measures of the inflammatory activity occurring in the adjacent periodontal tissues. Objective: The aim of this study was to assess the total activity of ALP in the GCF collected from healthy sites, sites with gingivitis and with chronic adult periodontitis. An attempt was also made to establish the correlation of ALP activity with plaque index, gingival index, bleeding index and probing depth. Materials and Methods: A total of 18 patients were divided into three groups: viz., healthy sites, Group I; gingivitis, Group II; chronic periodontitis, Group III. Clinical parameters like plaque index, bleeding index, gingival index and probing depth were recorded. The ALP level in GCF of all three groups was determined by spectrophotometric analysis. Results: Total enzyme activity of ALP was significantly higher in periodontitis as compared with that in healthy and gingivitis sites, and was significantly and positively correlated with probing depth. Conclusion: ALP can be considered as a periodontal disease marker as it can distinguish between healthy and inflamed sites. However, to better define its capacity for periodontal diagnosis, additional longitudinal studies are required.

  11. Protein tyrosine phosphatases: structure-function relationships.

    Science.gov (United States)

    Tabernero, Lydia; Aricescu, A Radu; Jones, E Yvonne; Szedlacsek, Stefan E

    2008-03-01

    Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.

  12. Membrane Topology and Biochemical Characterization of the Escherichia coli BacA Undecaprenyl-Pyrophosphate Phosphatase.

    Directory of Open Access Journals (Sweden)

    Guillaume Manat

    Full Text Available Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2 catalyze the dephosphorylation of C55-PP molecules on the same (outer side of the plasma membrane.

  13. Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Yakunin, A. F.; Kuznetsova, E.; Xu, X.; Pennycooke, M.; Gu, J.; Cheung, F.; Proudfoot, M.; Arrowsmith, C. H.; Joachimiak, A.; Edwards, A.; Christendat, D.; Biosciences Division; Univ. of Toronto; Clinical Genomics Centre

    2004-01-02

    The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel {beta}-sheet with strand order S10, S9, S8, S1, S2 and a small {beta}-hairpin, strands S3 and S4. This central sheet is flanked by a set of three {alpha}-helices on one side and two helices on the other. The smaller domain is composed of an open faced {beta}-sandwich represented by three antiparallel {beta}-strands, S5, S6, and S7, flanked by two oppositely oriented {alpha}-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg{sup 2+}, and competitive inhibition behavior with Cl{sup -} ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.

  14. Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329.

    Directory of Open Access Journals (Sweden)

    Pablo Sánchez-Martín

    Full Text Available Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780, is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin's oligomerization.

  15. Effects of Newly Synthesized DCP-LA-Phospholipids on Protein Kinase C and Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Takeshi Kanno

    2013-04-01

    Full Text Available Background/Aims: The linoleic acid derivative DCP-LA selectively activates PKCε and inhibits protein phosphatase 1 (PP1. In the present study, we have newly synthesized phosphatidyl-ethanolamine, -serine, -choline, and -inositol containing DCP-LA at the α and β position (diDCP-LA-PE, -PS, PC, and -PI, respectively, and examined the effects of these compounds on activities of PKC isozymes and protein phosphatases. Methods: Activities of PKC isozymes PKCα, -βΙ, -βΙΙ, -γ, -δ, -ε-, ι, and -ζ and protein phosphatases PP1, PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Results: All the compounds activated PKC, with the different potential, but only PKCγ inhibition was obtained with diDCP-LA-PC. Of compounds diDCP-LA-PE alone significantly activated PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI suppressed PP1 activity, but otherwise diDCP-LA-PI enhanced PP2A activity. diDCP-LA-PE, diDCP-LA-PS, and diDCP-LA-PI strongly reduced PTP1B activity, while diDCP-LA-PC enhanced the activity. Conclusion: All the newly synthesized DCP-LA-phospholipids serve as a PKC activator and of them diDCP-LA-PE alone has the potential to activate the atypical PKC isozymes PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI serve as an inhibitor for PP1 and PTP1B, diDCP-LA-PS as a PTP1B inhibitor, diDCP-LA-PI as a PP2A enhancer, and diDCP-LA-PC as a PTP1B enhancer.

  16. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses.

    Science.gov (United States)

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo

    2016-09-01

    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

  17. Dephosphorylation of Centrins by Protein Phosphatase 2C and

    Directory of Open Access Journals (Sweden)

    Marie-Christin Thissen

    2009-01-01

    Full Text Available In the present study, we identified protein phosphatases dephosphorylating centrins previously phosphorylated by protein kinase CK2. The following phosphatases known to be present in the retina were tested: PP1, PP2A, PP2B, PP2C, PP5, and alkaline phosphatase. PP2C and were capable of dephosphorylating P-Thr138-centrin1 most efficiently. PP2C was inactive and the other retinal phosphatases also had much less or no effect. Similar results were observed for centrins 2 and 4. Centrin3 was not a substrate for CK2. The results suggest PP2C and to play a significant role in regulating the phosphorylation status of centrins in vivo.

  18. Inhibition of ecto-phosphatase activity in conidia reduces adhesion and virulence of Metarhizium anisopliae on the host insect Dysdercus peruvianus.

    Science.gov (United States)

    Cosentino-Gomes, Daniela; Rocco-Machado, Nathália; Santi, Lucélia; Broetto, Leonardo; Vainstein, Marilene H; Meyer-Fernandes, José Roberto; Schrank, Augusto; Beys-da-Silva, Walter O

    2013-05-01

    Metarhizium anisopliae is an entomopathogenic fungus with the ability to infect a broad range of arthropods, and have evolved distinct strategies for their attachment to hosts. Here, we describe the characterisation of ecto-phosphatase activity on the conidia surface of M. anisopliae and its relevance in the host interaction process. Ecto-phosphatase activity was linear for 60 min and during this time, was linear with the increase of cell density. The optimum pH was in the acidic range and some divalent metals, such as Cu(2+), Cd(2+) and Zn(2+), inhibited ecto-phosphatase activity. The activity was also reduced by phosphatase inhibitors. Importantly, the inhibition of phosphatase activity in conidia reduced the adhesion to Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) integument and, consequently and indirectly, M. anisopliae infection. The results herein presented show, for the first time, the importance of ecto-phosphatase activity in M. anisopliae conidia and provide the first evidence of its direct involvement in adhesion and host infection.

  19. Unique carbohydrate binding platforms employed by the glucan phosphatases.

    Science.gov (United States)

    Emanuelle, Shane; Brewer, M Kathryn; Meekins, David A; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.

  20. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue binding phosphatases.

    Science.gov (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2000-01-01

    Implication of protein phosphatases in Alzheimer disease led us to a systemic investigation of the identification of these enzyme activities in human brain. Human brain phosphatases eluted from DEAE-Sephacel with 0.22 M NaCl were resolved into two main groups by affi-gel blue chromatography, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue-binding phosphatases were further separated into four different phosphatases, designated P1, P2, P3, and P4 by calmodulin-Sepharose 4B and poly-(L-lysine)-agarose chromatographies. These four phosphatases exhibited activities towards nonprotein phosphoester and two of them, P1 and P4, could dephosphorylate phosphoproteins. The activities of the four phosphatases differed in pH optimum, divalent metal ion requirements, sensitivities to various inhibitors and substrate affinities. The apparent molecular masses as estimated by gel-filtration for P1, P2, P3, and P4 were 97, 45, 42, and 125 kDa, respectively. P1 is markedly similar to PP2B from bovine brain and rabbit skeletal muscle. P4 was labeled with anti-PP2A antibody and may represent a new subtype of PP2A. P1 and P4 were also effective in dephosphorylating Alzheimer disease abnormally hyperphosphorylated tau (AD P-tau). The resulting dephosphorylated AD P-tau had its activity restored in promoting assembly of microtubules in vitro. These results suggest that P1 and P4 might be involved in the regulation of phosphorylation of tau in human brain, especially in neurodegenerative conditions like Alzheimer's disease which are characterized by the abnormal hyperphosphorylation of this protein.

  1. Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity.

    Directory of Open Access Journals (Sweden)

    Vikas V Dukhande

    Full Text Available Lafora Disease (LD is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs. LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.

  2. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase.

    Science.gov (United States)

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2016-02-01

    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  3. Distribution of Phosphate Solubilizing Bacteria and Soil Phosphatase Activity in Different Land Uses

    Directory of Open Access Journals (Sweden)

    M. R. Sarikhani

    2016-09-01

    Full Text Available Introduction: Phosphorous is one of the essential macronutrients for plant growth and development but its mobility in soil is very low. The utilization of the soil biological potential, in particular phosphate solubilizing bacteria, is an efficient way which can be used for exploiting available sources of phosphorous in the soil. The principal mechanism for mineral phosphate solubilization is the production of organic acid, and acid and alkaline phosphatases play a major role in the mineralization of organic phosphorous in the soil. Presence and distribution of phosphate solubilizing bacteria in the soil and soil phosphatase activities is influenced by soil conditions such as climate, soil type, vegetation and land uses. In order to understand the relationships and considering the importance of the subject, the soil samples were chosen from two different climates; semi-moist (Fandoghlou-Ardabil and semi-arid (Namin- Ardabil under culture of legumes, cereals and uncultivated areas, in this experiment. Materials and Methods: In order to study the effects of different land uses, climate conditions and soil physicochemical properties on phosphate solubilizing microorganism (PSM distribiution and soil acid and alkaline phosphatase activity, a factorial experiment based on completely randomized design was performed with considering three different land uses (including legumes, cereals and wasteland and two climate conditions (semi-moist: Fandoghlu- Ardabil and semi-arid: Namin-Ardabil. Four composite soil samples (0-25 cm were taken from each land uses. Finally, a total number of 24 soil samples were used to enumerate phosphate solubilizng bacteria and evaluate soil phosphatase activities. The enumeration and selection of bacteria in the mineral Sperber medium was done by attention to the clear zone production in the presence of tri-calcium phosphate and in organic sperber (IHP+BCIP due to blue phenotype of grown colonies. Also, phosphatase activity

  4. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates

    Science.gov (United States)

    Mukhopadhyay, Archana; Kennelly, Peter J.

    2011-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the Km and Vmax values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys7, to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys7SerAsp125Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803. PMID:21288886

  5. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    Directory of Open Access Journals (Sweden)

    Siddiqui Zaved

    2008-09-01

    Full Text Available Abstract Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile.

  6. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba.

    Science.gov (United States)

    Nualkaew, Natsajee; Guennewich, Nils; Springob, Karin; Klamrak, Anuwatchakit; De-Eknamkul, Wanchai; Kutchan, Toni M

    2013-07-01

    Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57-85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.

  7. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence.

    Science.gov (United States)

    Keum, Dongil; Kruse, Martin; Kim, Dong-Il; Hille, Bertil; Suh, Byung-Chang

    2016-06-28

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  8. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    Science.gov (United States)

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  9. Moraxella catarrhalis Synthesizes an Autotransporter That Is an Acid Phosphatase▿

    OpenAIRE

    Hoopman, Todd C.; Wang, Wei; Brautigam, Chad A.; Sedillo, Jennifer L; Reilly, Thomas J.; Hansen, Eric J.

    2007-01-01

    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10−10) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation dom...

  10. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X;

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull...

  11. Effect and clinical significance of infliximab on tartrate-resistant acid phosphatase 5b in rheumatoid arthritis%英夫利西单抗对类风湿关节炎患者血清抗酒石酸酸性磷酸酶5b的影响

    Institute of Scientific and Technical Information of China (English)

    程韬; 张育; 邹耀红; 陈志伟

    2011-01-01

    目的 观察英夫利西单抗治疗活动性类风湿关节炎(RA)患者前后血清抗酒石酸酸性磷酸酶5b(TRACP-5b)水平,并分析其与RA患者各项活动性指标及疗效的相关性,比较不同抗RA药物对骨侵蚀的影响并阐明可能的机制.方法 36例RA患者随机分为2组,英夫利西单抗治疗组16例,甲氨蝶呤(MTX)治疗组20例,记录所有患者24周的临床及实验室指标.对比2组间及组内血清TRACP-5b水平的差异,并分析其与RA各项活动性指标及疗效的相关性.计量资料组间比较采用秩和检验、成组设计和配对设计的t检验,计数资料采用x2检验,相关分析采用Spearman、Pearson相关分析.结果 基线X线表现为Ⅰ、Ⅱ、Ⅲ、Ⅳ期的RA患者血清TRACP-5b水平分别为(1.69±0.48)、(2.64±1.13)、(3.34±1.07)、(4.05±0.25)U/L,Ⅲ、Ⅳ期TRACP-5b水平与Ⅰ期比较差异有统计学意义(P<0.05).治疗24周后,英夫利西单抗治疗组血清TRACP-5b水平为(2.16±1.09)U/L,较MTX治疗组[(3.05±0.93)U/L ]低,差异有统计学意义(P<0.05);较英夫利西单抗组治疗前血清TRACP-5b水平[(3.07±1.32)U/L]低,差异有统计学意义(P<0.05).活动性RA血清中TRACP-5b基线水平与病程、健康评价呈正相关(r=0.313,P=0.043;r=0.443,P=0.007).结论 TRACP-5b血清水平随RA关节X分期增加而升高;血清TRACP-5b的治疗变化可能反映了英夫利西单抗对RA骨破坏的抑制作用.治疗24周后,英夫利西单抗治疗组血清TRACP-5b水平较甲氨蝶呤治疗组明显低,提示英夫利西单抗对破骨细胞的抑制作用可能优于MTX.%Objective To detect the serum level of tartrate-resistant acid phosphatase 5b (TRACP5b) in patients with rheumatoid arthritis (RA) before and after infliximab treatment and analyze the relevance between TRACP-5b and activity indexes of RA.The effect of different medicines on bony erosion in RA and its possible mechanism were explored.Methods Patients were divided into two groups:16

  12. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

    Directory of Open Access Journals (Sweden)

    Bryan M Zhao

    Full Text Available Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P residue, but also the Ser(P and Thr(P residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7, atypical (DUSP3, DUSP14, DUSP22 and DUSP27, viral (variola VH1, and Cdc25 (A-C. Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.

  13. New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer.

    Science.gov (United States)

    Erneux, Christophe; Ghosh, Somadri; Ramos, Ana Raquel; Edimo, William's Elong

    2016-01-01

    Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer.

  14. The catalytic properties of alkaline phosphatases under various conditions

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  15. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  16. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases.

    Science.gov (United States)

    Cui, Danica S; Beaumont, Victor; Ginther, Patrick S; Lipchock, James M; Loria, J Patrick

    2017-07-21

    Drug-like molecules targeting allosteric sites in proteins are of great therapeutic interest; however, identification of potential sites is not trivial. A straightforward approach to identify hidden allosteric sites is demonstrated in protein tyrosine phosphatases (PTP) by creation of single alanine mutations in the catalytic acid loop of PTP1B and VHR. This approach relies on the reciprocal interactions between an allosteric site and its coupled orthosteric site. The resulting NMR chemical shift perturbations (CSPs) of each mutant reveal clusters of distal residues affected by acid loop mutation. In PTP1B and VHR, two new allosteric clusters were identified in each enzyme. Mutations in these allosteric clusters altered phosphatase activity with changes in kcat/KM ranging from 30% to nearly 100-fold. This work outlines a simple method for identification of new allosteric sites in PTP, and given the basis of this method in thermodynamics, it is expected to be generally useful in other systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phytase, phosphatase activity and p-nutrition of soybean as influenced by inoculation of bacillus.

    Science.gov (United States)

    Ramesh, A; Sharma, Sushil K; Joshi, O P; Khan, I R

    2011-01-01

    The efficiency of different Bacillus isolates on rhizosphere soil enzyme activities and P-nutrition of soybean was carried out under microcosm conditions. Significant increase in enzyme activities viz., fluorescein diacetate activity, phosphatase and phytase activity and consequent effects on P-nutrition were observed with the inoculation of Bacillus isolates over uninoculated control. Among the isolates, BD-3-1B, KHBD-6, BDKH-3, Bacillus amyloliquefacians, and Bacillus cereus were found to be promising. The phytic acid-P as a percentage of total P content in soybean seeds decreased with the inoculation of Bacillus isolates as compared to un-inoculated control. A decrease in phytic-P in soybean seeds not only results in better digestibility and increased feed efficiency. Pearson correlation studies revealed a significant positive association between acid, alkaline phosphatases, phytase activity on available P content in soil and P content in seeds with the inoculation of Bacillus isolates, indicating role of these enzymes in P mobilization and acquisition by soybean.

  18. Recognition of Staphylococcus saprophyticus in urine cultures by screening colonies for production of phosphatase.

    Science.gov (United States)

    Pickett, D A; Welch, D F

    1985-01-01

    Phenolphthalein diphosphate was incorporated into a primary blood agar medium for use in performing quantitative urine cultures. Phosphatase-negative staphylococci, such as Staphylococcus saprophyticus, were differentiated from phosphatase-positive species, such as Staphylococcus epidermidis, by spot testing colonies on filter paper saturated with 1 N NaOH. Phosphatase-positive colonies turned pink within seconds, and phosphatase-negative colonies showed no color. None of 55 S. saprophyticus isolates showed production of phosphatase on this medium. Of 193 consecutive coagulase-negative staphylococci isolated from the urine of 190 adolescent female patients, 84% were phosphatase positive, non-S. saprophyticus species; 16% were phosphatase-negative and indicated S. saprophyticus (22), Staphylococcus haemolyticus (4), Staphylococcus simulans (2), Staphylococcus warneri (1), and Staphylococcus hominis (1). Phosphatase activity was variable in the other flora encountered in the urine cultures. Mixtures of phosphatase-positive and -negative organisms did not cause false-positive reactions. PMID:2984240

  19. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    Science.gov (United States)

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.

  20. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    Science.gov (United States)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  1. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function

    Science.gov (United States)

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F.; Mori Sequeiros García, M. Mercedes; Maloberti, Paula M.; Orlando, Ulises D.; Mele, Pablo G.; Poderoso, Cecilia; Podesta, Ernesto J.

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the “classical” protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  2. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris.

    Science.gov (United States)

    Nurul Islam, Md; Jung, Hyun Ah; Sohn, Hee Sook; Kim, Hye Mi; Choi, Jae Sue

    2013-05-01

    As a part of our ongoing effort to identify anti-diabetic constituents from natural sources, we examined the inhibitory activity of the methanol extracts of 12 species of the genus Artemisia, against α-glucosidase and protein tyrosine phosphatase 1B (PTP1B). The methanol extracts of different species exhibited promising α-glucosidase and PTP1B inhibitory activities. Since the methanol extract of Artemisia capillaris exhibited the highest α-glucosidase inhibitory activity together with significant PTP1B inhibitory activity, it was selected for further investigation. Repeated column chromatography based on bioactivity guided fractionation yielded 10 coumarins (esculetin, esculin, scopolin, isoscopolin, daphnetin, umbelliferone, 7-methoxy coumarin, scoparone, scopoletin, 6-methoxy artemicapin C), 8 flavonoids (hyperoside, quercetin, isorhamnetin, cirsilineol, arcapillin, isorhamnetin 3-robinobioside, linarin, isorhamnetin 3-glucoiside), 6 phenolic compounds (1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid methyl ester, 4,5-dicaffeoylquinic acid, 3-caffeoylquinic acid), and one chromone (capillarisin). Among these compounds, esculetin, scopoletin, quercetin, hyperoside, isorhamnetin, 3,5-dicaffeoylquinic acid methyl ester, 3,4-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid exhibited potent α-glucosidase inhibitory activity when compared to the positive control acarbose. In addition, esculetin and 6-methoxy artemicapin C displayed PTP1B inhibitory activity. Interestingly, all isolated dicaffeoylquinic acids showed significant PTP1B inhibitory activity. Therefore, the results of the present study clearly demonstrate the potential of the A. capillaris extract to inhibit α-glucosidase and PTP1B. These inhibitory properties can be largely attributed to a combination of different chemical structures, including coumarins, flavonoids, and dicaffeoylquinic acids, which could be further explored to develop

  3. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  4. Cell Death Inducing Microbial Protein Phosphatase Inhibitors—Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Rune Kleppe

    2015-10-01

    Full Text Available Okadaic acid (OA and microcystin (MC as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS and activation of Ca2+/calmodulin kinase II (CaM-KII. New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity.

  5. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  6. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  7. Structural basis of response regulator dephosphorylation by Rap phosphatases.

    Science.gov (United States)

    Parashar, Vijay; Mirouze, Nicolas; Dubnau, David A; Neiditch, Matthew B

    2011-02-08

    Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic "switch" residue to an internal position when the β4-α4 loop adopts an active-site proximal conformation.

  8. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  9. Human placental alkaline phosphatase electrophoretic alleles: Quantitative studies

    Science.gov (United States)

    Lucarelli, Paola; Scacchi, Renato; Corbo, Rosa Maria; Benincasa, Alberto; Palmarino, Ricciotti

    1982-01-01

    Human placental alkaline phosphatase (ALP) activity has been determined in specimens obtained from 562 Italian subjects. The mean activities of the three common homozygotes (Pl 2 = 4.70 ± 0.24, Pl 1 = 4.09 ± 0.08, and Pl 3 = 2.15 ± 0.71 μmol of p-nitrophenol produced) were significantly different. The differences among the various allelic forms account for 10% of the total quantitative variation of the human placental alkaline phosphatase. PMID:7072721

  10. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    Energy Technology Data Exchange (ETDEWEB)

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E. (WVU); (UNC); (Colorado); (EC Uni.)

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  11. Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2014-08-01

    Full Text Available STEP (STriatal-Enriched protein tyrosine Phosphatase is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD. The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153 as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT and STEP knockout (KO cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD mice, with no change in beta amyloid and phospho-tau levels.

  12. Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline

    DEFF Research Database (Denmark)

    Hardies, Katia; Cai, Yiying; Jardel, Claude

    2016-01-01

    SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a...... with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology....... with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid...... in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1...

  13. Doxorubicin-resistant LoVo adenocarcinoma cells display resistance to apoptosis induction by some but not all inhibitors of ser/thr phosphatases 1 and 2A.

    Science.gov (United States)

    Sieder, S; Richter, E; Becker, K; Heins, R; Steinfelder, H J

    1999-06-15

    LoVo adenocarcinoma cells are fairly sensitive to cytostatic drugs, e.g. doxorubicin, but can develop drug resistance by expression of a P-glycoprotein-mediated MDR1 phenotype. LoVo cells respond with apoptosis to nanomolar concentrations of okadaic acid and micromolar concentrations of cantharidic acid. Interestingly, LoVoDx cells which had become about 10-fold less sensitive to doxorubicin by incubation in increasing concentrations of this cytostatic drug were also less sensitive to the toxicity of okadaic acid. Resistance to both agents was lost or significantly reduced by incubation in drug-free medium for about 4 months. On the other hand, LoVoDx cells did not lose responsiveness to the structurally different phosphatase inhibitor cantharidic acid but were about twofold more sensitive to the cytotoxic effect of this agent. Thus, MDR expression protects LoVo cells from the toxicity of phosphatase inhibitors that presumably are substrates of the P-glycoprotein, e.g. okadaic acid and its derivatives but not cantharidic acid, despite the fact that both agents are potent inducers of apoptotic cell death via ser/thr phosphatase inhibition.

  14. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the high...

  15. Protein tyrosine phosphatase PTPRR isoforms in cellular signaling and trafficking

    NARCIS (Netherlands)

    Dilaver, Gönül

    2005-01-01

    Previous work has revealed the existence of two Protein Tyrosine Phosphatases in mouse, PTPBR7 and PTP-SL, that were in part identical, suggesting that they originated from the same gene, termed Ptprr (1,5,6). In this thesis, I report on the characterization of the various PTPRR isoforms in neuronal

  16. Isolation of a potential anticancer agent with protein phosphatase ...

    African Journals Online (AJOL)

    Malaysia. *For correspondence: Email: shf@putra.upm.edu.my; Tel: +603-8947 2387. Received: 4 July 2015 ... phosphatases belonging to the PPP gene family which is .... low pressure. ... Student's t-test (SPSS version 12.0) to evaluate.

  17. Endotoxin detoxification by alkaline phosphatase in cholestatic livers

    NARCIS (Netherlands)

    Poelstra, K; Bakker, WW; Hardonk, MJ; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C

    1997-01-01

    Increased expression of alkaline phosphatase (AP) in the liver is a hallmark of cholestasis but the pathophysiological role of this is not clear. We argue that deprotonation of carboxyl groups at the active site of the enzyme may be a prerequisite for optimal AP activity. Such a creation of negative

  18. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide

    NARCIS (Netherlands)

    Kapojos, Jola Jovita; Poelstra, Klaas; Borghuis, Theo; van den Berg, Anke; Baelde, Hans J.; Klok, P.A; Bakker, W.W

    2003-01-01

    Alkaline phosphatase (AP) can be considered as a host defence molecule since this enzyme is able to detoxify bacterial endotoxin at physiological pH. The question emerged whether this anti-endotoxin principle is inducible in the glomerulus and if so, which glomerular cells might be involved in the e

  19. Bone alkaline phosphatase and mortality in dialysis patients

    NARCIS (Netherlands)

    C. Drechsler; M. Verduijn; S. Pilz; R.T. Krediet; F.W. Dekker; C. Wanner; M. Ketteler; E.W. Boeschoten; V. Brandenburg

    2011-01-01

    Serum alkaline phosphatase (AP) is associated with vascular calcification and mortality in hemodialysis patients, but AP derives from various tissues of origin. The aim of this study was to assess the effect of bone-specific AP (BAP) on morbidity and mortality in dialysis patients. From a prospectiv

  20. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology.

    Science.gov (United States)

    Buchser, William J; Slepak, Tatiana I; Gutierrez-Arenas, Omar; Bixby, John L; Lemmon, Vance P

    2010-07-01

    Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase alpha (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.

  1. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy

    NARCIS (Netherlands)

    Clar, Julie; Gri, Blandine; Calderaro, Julien; Birling, Marie-Christine; Herault, Yann; Smit, G. Peter A.; Mithieux, Gilles; Rajas, Fabienne

    2014-01-01

    Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and

  2. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin i

  3. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    Science.gov (United States)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  4. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M J

    2014-01-01

    A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production

  5. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders.

    Science.gov (United States)

    Goebel-Goody, Susan M; Baum, Matthew; Paspalas, Constantinos D; Fernandez, Stephanie M; Carty, Niki C; Kurup, Pradeep; Lombroso, Paul J

    2012-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-D-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn leads to inactivation of these enzymes, whereas STEP-mediated dephosphorylation of surface NMDARs and AMPARs promotes their endocytosis. Accordingly, the current model of STEP function posits that it opposes long-term potentiation and promotes long-term depression. Phosphorylation, cleavage, dimerization, ubiquitination, and local translation all converge to maintain an appropriate balance of STEP in the central nervous system. Accumulating evidence over the past decade indicates that STEP dysregulation contributes to the pathophysiology of several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, epileptogenesis, alcohol-induced memory loss, Huntington's disease, drug abuse, stroke/ischemia, and inflammatory pain. This comprehensive review discusses STEP expression and regulation and highlights how disrupted STEP function contributes to the pathophysiology of diverse neuropsychiatric disorders.

  6. Golgi-resident PAP-specific 3'-phosphatase-coupled sulfotransferase assays.

    Science.gov (United States)

    Prather, Brittany; Ethen, Cheryl M; Machacek, Miranda; Wu, Zhengliang L

    2012-04-01

    Sulfotransferases are a large group of enzymes that transfer a sulfonate group from the donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS)(1), to various acceptor substrates, generating 3'-phosphoadenosine-5'-phosphate (PAP) as a by-product. A universal phosphatase-coupled sulfotransferase assay is described here. In this method, Golgi-resident PAP-specific 3'-phosphatase (gPAPP) is used to couple to a sulfotransferase reaction by releasing the 3'-phosphate from PAP. The released phosphate is then detected using malachite green reagents. The enzyme kinetics of gPAPP have been determined, which allows calculation of the coupling rate, the ratio of product-to-signal conversion, of the coupled reaction. This assay is convenient, as it eliminates the need for radioisotope labeling and substrate-product separation, and is more accurate through removal of product inhibition and correction of the results with the coupling rate. This assay is also highly reproducible, as a linear correlation factor above 0.98 is routinely achievable. Using this method, we measured the Michaelis-Menten constants for recombinant human CHST10 and SULT1C4 with the substrates phenolphthalein glucuronic acid and α-naphthol, respectively. The activities obtained with the method were also validated by performing simultaneous radioisotope assays. Finally, the removal of PAP product inhibition by gPAPP was clearly demonstrated in radioisotope assays.

  7. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources.

    Science.gov (United States)

    McDonough, EmilyKate; Kamp, Heather; Camilli, Andrew

    2016-02-01

    Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo- and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection.

  8. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  9. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  10. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  11. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-02-11

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity.

  12. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.

    Science.gov (United States)

    Deshimaru, Shungo; Miyake, Yasuo; Ohmiya, Tadamasa; Tatsu, Yoshiro; Endo, Yasuko; Yumoto, Noboru; Toraya, Tetsuo

    2002-05-01

    The 3'-terminal region of starfish Asterina pectinifera cdc25 cDNA encoding the C-terminal catalytic domain was overexpressed in Escherichia coli. The C-terminal domain consisted of 226 amino acid residues containing the signature motif HCxxxxxR, a motif highly conserved among protein tyrosine and dual-specificity phosphatases, and showed phosphatase activity toward p-nitrophenyl phosphate. The enzyme activity was strongly inhibited by SH inhibitors. Mutational studies indicated that the cysteine and arginine residues in the conserved motif are essential for activity, but the histidine residue is not. These results suggest that the enzyme catalyzes the reaction through a two-step mechanism involving a phosphocysteine intermediate like in the cases of other protein tyrosine and dual-specificity phosphatases. The C-terminal domain of Cdc25 activated the histone H1 kinase activity of the purified, inactive form of Cdc2.cyclin B complex (preMPF) from extracts of immature starfish oocytes. Synthetic diphosphorylated di- to nonadecapeptides mimicking amino acid sequences around the dephosphorylation site of Cdc2 still retained substrate activity. Phosphotyrosine and phosphothreonine underwent dephosphorylation in this order. This is the reverse order to that reported for the in vivo and in vitro dephosphorylation of preMPF. Monophosphopeptides having the same sequence served as much poorer substrates. As judged from the results with synthetic phosphopeptides, the presence of two phosphorylated residues was important for specific recognition of substrates by the Cdc25 phosphatase.

  13. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.;

    1995-01-01

    was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite......An experiment was set up to test the ability of arbuscular mycorrhizal (AM) roots and hyphae to produce extracellular phosphatases and to study the relationship between phosphatase activity and soil organic P (P-o). Non-mycorrhizal cucumber and cucumber in symbiosis with either of two mycorrhizal...... fungi were grown in a sandy loam-sand mixture in three-compartment pots. Plant roots were separated from two consecutively adjoining compartments, first by a 37 m mesh excluding roots and subsequently by a 0.45 m membrane excluding mycorrhizal hyphae. Soil from the two root-free compartments...

  14. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans.

    Science.gov (United States)

    Yang, Senugmi; Na, Min Kyun; Jang, Jun Pil; Kim, Kyung Ah; Kim, Bo Yeon; Sung, Nak Ju; Oh, Won Keun; Ahn, Jong Seog

    2006-08-01

    Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as one of the drug targets for treating type 2 diabetes and obesity. Bioassay-guided fractionation of a MeOH extract of the semen of Myristica fragrans Houtt. (Myristicaceae) afforded PTP1B inhibitory compounds, meso-dihydroguaiaretic acid (1) and otobaphenol (2). Compounds 1 and 2 inhibited PTP1B with IC(50) values of 19.6 +/- 0.3 and 48.9 +/- 0.5 microM, respectively, in the manner of non-competitive inhibitors. Treatment with compound 1 on 32D cells overexpressing the insulin receptor (IR) resulted in a dose-dependent increase in the tyrosine phosphorylation of IR. These results indicate that compound 1 can act as an enhancing agent in intracellular insulin signaling, possibly through the inhibition of PTP1B activity.

  15. Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Friis, Ulla Glenert; Gooch, Jennifer L;

    2010-01-01

    To examine the role of the calcium/calmodulin-dependent phosphatase calcineurin in regulation of renin release, we assayed exocytosis using whole-cell patch clamp of single juxtaglomerular cells in culture. The calcineurin inhibitor, cyclosporine A (CsA), significantly increased juxtaglomerular......A, but not tacrolimus, significantly stimulated renin release from cultured juxtaglomerular cells. Juxtaglomerular cells expressed the calcineurin isoforms A-beta and A-gamma but not A-alpha. Plasma renin concentrations (PRCs) were not different in wild-type, calcineurin A-alpha, or A-beta knockout mice but increased...... cell membrane capacitance, an index of cell surface area and an established measure of exocytosis in single-cell assays. This effect was mimicked by intracellular delivery of a calcineurin inhibitory peptide, the calcium chelator ethylene glycol tetraacetic acid (EGTA), or the calmodulin inhibitor W-13...

  16. The dual specificity phosphatase Cdc14B bundles and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Plumley, Hyekyung [ORNL; Liu, Yie [ORNL; Gomez, Marla V [ORNL; Wang, Yisong [ORNL

    2005-01-01

    The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated -tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.

  17. The Detection of Alkaline Phosphatase Using an Electrochemical Biosensor in a Single-Step Approach

    Directory of Open Access Journals (Sweden)

    Chung-Chiun Liu

    2009-10-01

    Full Text Available A one-step, single use, disposable Alkaline Phosphatase (ALP biosensor has been developed. It is based on the detection of phenol produced by an ALP enzymatic reaction. It can operate at 25 °C in a pH 10 medium. It measures ALP of 0–300 IU/L. The permissible concentrations of glucose, ascorbic acid and urea without interference are 10 mM/L, 5 mg/L and 400 mg/L, respectively. Experimental results are compared to those obtained by spectrophotometric measurements in bovine serum. Excellent linearity between the biosensor outputs and the ALP concentrations exists. The agreement between the measurements of this biosensor and the spectrophotometer is also outstanding.

  18. A reference method for measurement of alkaline phosphatase activity in human serum.

    Science.gov (United States)

    Tietz, N W; Burtis, C A; Duncan, P; Ervin, K; Petitclerc, C J; Rinker, A D; Shuey, D; Zygowicz, E R

    1983-05-01

    We present an official AACC reference method for the measurement of alkaline phosphatase, the culmination of optimization experiments conducted by a group of independent laboratories. The details of this method and evaluation of factors affecting the measurement are described. A metal ion buffer has been incorporated that maintains optimal and constant concentrations of zinc(II) and magnesium(II) ions. Final reaction conditions are: pH (30 degrees C), 10.40 +/- 0.05; 2-amino-2-methyl-1-propanol buffer, 0.35 mol/L; 4-nitrophenyl phosphate, 16.0 mmol/L; magnesium acetate, 2.0 mmol/L; zinc sulfate, 1.0 mmol/L; and N-(2-hydroxyethyl)ethylenediaminetriacetic acid, 2.0 mmol/L.

  19. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography.

    Science.gov (United States)

    Wiley, J P; Hughes, K A; Kaiser, R J; Kesicki, E A; Lund, K P; Stolowitz, M L

    2001-01-01

    Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.

  20. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    SHI YiGong

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serinetthreonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  1. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, medi-ated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interac-tion with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  2. Protein phosphatase 2A, a key player in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Rong LIU; Qing TIAN

    2009-01-01

    Protein phosphatase 2A (PP2A) is the pre-dominant serine/threonine phosphatase in eukaryotic cells. In the brains of patients with Alzheimer's disease (AD), decreased PP2A activities were observed, which is suggested to be involved in neurofibrillary tangle (NFT) formation, disturbed amyloid precursor protein (APP) secretion and neurodegeneration in AD brain. Based on our research and other previous findings, decreased PP2Ac level, decreased PP2A holoenzyme composition, increased level of PP2A inhibitors, increased PP2Ac Leu309 demethylation and Tyr307 phosphorylation underlie PP2A inactivation in AD. β-amyloid (Aβ) over-production, estrogen deficiency and impaired homocys-teine metabolism are the possible up-stream factors that inactivate PP2A in AD neurons. Further studies are required to disclose the role of PP2A in Alzheimer's disease.

  3. Glycerol-3-phosphate phosphatase/PGP: Role in intermediate metabolism and target for cardiometabolic diseases.

    Science.gov (United States)

    Possik, Elite; Madiraju, S R Murthy; Prentki, Marc

    2017-08-04

    Metabolic diseases, including obesity, type 2 diabetes, and metabolic syndrome arise because of disturbances in glucose and fat metabolism, which impact associated physiological events such as insulin secretion and action, fat storage and oxidation. Even though, decades of research has contributed to our current understanding of the components involved in glucose and fat metabolism and their regulation, that led to the development of many therapeutics, there are still many unanswered questions. Glycerol-3-phosphate (Gro3P), which is formed during glycolysis, is at the intersection of glucose and fat metabolism, and the availability of this metabolite can regulate energy and intermediary metabolism in mammalian cells. During the course of evolution, mammalian cells are assumed to have lost the capacity to directly hydrolyze Gro3P to glycerol, until the recent discovery from our laboratory showing that a previously known mammalian enzyme, phosphoglycolate phosphatase (PGP), can function as Gro3P phosphatase (G3PP) and regulate this metabolite levels. Emerging evidence indicates that G3PP/PGP is an evolutionarily conserved "multi-tasking" enzyme that belongs to the superfamily of haloacid dehalogenase-like phosphatase enzymes, and is capable of hydrolyzing Gro3P, an abundant physiologically relevant substrate, as well as other metabolites including 2-phosphoglycolate, 4-phospherythronate and 2-phospholactate, which are present in much smaller amounts in cells, under normal conditions. G3PP, by regulating Gro3P levels, plays a critical role in intermediary metabolism, including glycolysis, glucose oxidation, cellular redox and ATP production, gluconeogenesis, esterification of fatty acids towards glycerolipid synthesis and fatty acid oxidation. Because of G3PP's ability to regulate energy and intermediary metabolism as well as physiological functions such as insulin secretion, hepatic glucose production, and fat synthesis, storage and oxidation, the pathophysiological

  4. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  5. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.

    Science.gov (United States)

    Hung, H C; Chang, G G

    2001-12-01

    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N I(1) I(2) I(3) I(4) I(5) D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical

  6. Autophagy Signaling in Prostate Cancer: Identification of a Novel Phosphatase

    Science.gov (United States)

    2013-01-01

    selectable neomycin resistance gene into the D1 phosphatase (catalytic) domain. From these mice, we generated MEFs that lack both Ptprs transcript...arthritis (CIA) model. We immunized DBA/1 mice with chicken col- lagen to elicit an inflammatory response. Threeweeks later, after the onset of...intradermally immu- nized at the base of the tail with 100 ml of chicken collagen/FCA (Freund’s complete adjuvant) emulsion (EK-0210, Hooke Laboratories

  7. phoD Alkaline Phosphatase Gene Diversity in Soil.

    Science.gov (United States)

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K

    2015-10-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  8. RHIZOSPHERE pH AND PHOSPHATASE ACTIVITY IN ORTHIC ALLOPHANIC SOIL UNDER Pinus radiata SEEDLINGS GROWN WITH BROOM AND RYEGRASS

    Directory of Open Access Journals (Sweden)

    Achmad A. Rivaie

    2009-06-01

    Full Text Available Under  Pinus radiata plantations  where  the tree spacing  is wider  and most soils are phosphorus  (P deficient,  the radiata  tree response to P fertilizer is expected  to be more influenced  by  the interaction between  the applied  P fertilizer, the tree and understorey vegetation.  Therefore,  a better understanding of the soil P chemistry under radiata pine trees in association  with  other  plants  is required.  We investigated  the effect of broom  (Cytisus scoparius L. and ryegrass  (Lolium multiflorum grown  with  radiata  seedlings  in Orthic Allophanic Soil treated with  0, 50, and 100 μg P g-1  soil of TSP on the pH and phosphatase activity in the rhizosphere soils under glasshouse condition. The pHs of radiata rhizosphere soils either grown with broom or grass were lower than  those in the  bulk soils and the bulk and rhizosphere soils of grass and broom,  whether  they  were grown  alone or grown  with radiata at the  applications of 50 and 100 μg P g-1 soil. These results suggest that P application enhanced root induced acidification  in a P-deficient Allophanic Soil under radiata.  The soils in the rhizosphere of grass and broom, grown in association with radiata, were also acidified by  the effect of radiata  roots.  Acid  phosphatase  activity in soils under  radiata,  grass and broom  decreased with  an increased  rate of P application. At all P rates,  acid phosphatase activity was higher in the rhizosphere of radiata  grown  with  broom than in the bulk soils. The phosphatase activity in the rhizosphere soil of radiata grown with broom was also higher than that of radiata grown with grass, but it was slightly lower than that in the rhizosphere of broom grown  alone. These results suggest that broom may have also contributed to the higher  phosphatase  activity in the rhizosphere soils than  in the bulk  soils of broom  and radiata when they were grown  together

  9. The role of phosphatases in the initiation of skeletal mineralization.

    Science.gov (United States)

    Millán, José Luis

    2013-10-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

  10. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  11. PTPL1: a large phosphatase with a split personality.

    Science.gov (United States)

    Abaan, Ogan D; Toretsky, Jeffrey A

    2008-06-01

    Protein tyrosine phosphatase, PTPL1, (also known as PTPN13, FAP-1, PTP-BAS, PTP1E) is a non-receptor type PTP and, at 270 kDa, is the largest phosphatase within this group. In addition to the well-conserved PTP domain, PTPL1 contains at least 7 putative macromolecular interaction domains. This structural complexity indicates that PTPL1 may modulate diverse cellular functions, perhaps exerting both positive and negative effects. In accordance with this idea, while certain studies suggest that PTPL1 can act as a tumor-promoting gene other experimental studies have suggested that PTPL1 may function as a tumor suppressor. The role of PTPL1 in the cancer cell is therefore likely to be both complex and context dependent with possible roles including the modulation of growth, stress-response, and cytoskeletal remodeling pathways. Understanding the nature of molecular complexes containing PTPL1, its interaction partners, substrates, regulation and subcellular localization are key to unraveling the complex personality of this protein phosphatase.

  12. The phosphatase calcineurin regulates pathological TDP-43 phosphorylation.

    Science.gov (United States)

    Liachko, Nicole F; Saxton, Aleen D; McMillan, Pamela J; Strovas, Timothy J; Currey, Heather N; Taylor, Laura M; Wheeler, Jeanna M; Oblak, Adrian L; Ghetti, Bernardino; Montine, Thomas J; Keene, C Dirk; Raskind, Murray A; Bird, Thomas D; Kraemer, Brian C

    2016-10-01

    Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90 % of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date, several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together, these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.

  13. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.

    Science.gov (United States)

    Carman, George M; Han, Gil-Soo

    2017-08-16

    The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    Science.gov (United States)

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  15. A study on the mechanism of neurotrophic factors for repair of nerve tissue:effects of cerebrocellular growth peptide on acid phosphatase of hair cells in cochlea of gentamicin induced ototoxic guinea pigs%神经营养因子修复神经组织机制的研究:脑细胞生长肽对豚鼠耳蜗毛细胞内酸性磷酸酶的影响

    Institute of Scientific and Technical Information of China (English)

    康颂建; 史献君; 魏佑震; 洪岸; 马天宝

    2004-01-01

    背景:脑细胞生长肽(cerebrocellular growth peptide,CCGP)对庆大霉素引起的耳蜗毛细胞内酸性磷酸酶(acid phosphatase,ACP)的变化是否有影响?对受损耳蜗组织是否有促进修复的作用?目的:观察CCGP对庆大霉素引起的耳中毒豚鼠ACP的影响.设计:随机对照研究.地点和材料:实验地点:泰山医学院听觉研究室.选用健康杂色豚鼠40只,对照组10只,肌肉注射生理盐水1 mL/(kg·d);庆大霉素组15只,肌肉注射硫酸庆大霉素80 mg/(kg·d);CCGP组15只,肌肉注射硫酸庆大霉素同庆大霉素组,并肌肉注射CCGP 1 mg/(kg·d).各组用药25d.方法:用脑干听觉诱发电位(brainstem auditory evoked potential,BAEP)和组织化学方法检测动物听阈的变化和耳蜗毛细胞ACP显色变化.主要观察指标:各组动物BAEP反应阈值和ACP显色变化.结果:用药前BAEP反应阈值[dB(peSLP)]:生理盐水组32.62±2.33,庆大霉素组31.87±2.63,CCGP组32.56±2.39.用药后BAEP反应阈值均有不同程度的升高,用药后25 d BAEP反应阈值:生理盐水组32.81±2.48,庆大霉素组56.73±17.21,CCGP组42.87±9.95,庆大霉素组、CCGP组与生理盐水组比较,差异均有显著性意义(t=3.113,4.335,P均<0.01),CCGP组与庆大霉素组比较,差异有显著性意义(t=2.700,P<0.05).ACP显色变化:生理盐水组毛细胞ACP染色呈棕褐色,毛细胞排列整齐.庆大霉素组ACP变化显著,毛细胞显色失明显;CCGP组ACP显色变化较轻,两组铺片显示有明显差别.结论:CCGP能降低庆大霉素的耳毒性,减轻由于溶酶体的破坏溢出的ACP引起的毛细胞的损伤.%BACKGROUND: Cerebrocellular growth peptides(CCGP) can affect the change of acid phosphatase(ACP) in cochlea induced by gentamicin and accelerate the repair of injured cochlear tissue is unknown. And whether inter neurotrophins have a coordinated effect is also unclear.OBJECTIVE: To investigate the effects of CCGP on ACP in cochlear hair cells of GM-induced ototoxic

  16. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation.

    Science.gov (United States)

    Yabe, Ryotaro; Miura, Akane; Usui, Tatsuya; Mudrak, Ingrid; Ogris, Egon; Ohama, Takashi; Sato, Koichi

    2015-01-01

    Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.

  17. Have We Overlooked the Importance of Serine/Threonine Protein Phosphatases in Pancreatic Beta-Cells? Role Played by Protein Phosphatase 2A in Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Esser V

    2005-07-01

    Full Text Available Genetic predisposition and environmental influences insidiously converge to cause glucose intolerance and hyperglycemia. Beta-cell compensates by secreting more insulin and when it fails, overt diabetes mellitus ensues. The need to understand the mechanisms involved in insulin secretion cannot be stressed enough. Phosphorylation of proteins plays an important role in regulating insulin secretion. In order to understand how a particular cellular process is regulated by protein phosphorylation the nature of the protein kinases and protein phosphatases involved and the mechanisms that determine when and where these enzymes are active should be investigated. While the actions of protein kinases have been intensely studied within the beta-cell, less emphasis has been placed on protein phosphatases even though they play an important regulatory role. This review focuses on the importance of protein phosphatase 2A in insulin secretion. Most of the present knowledge on protein phosphatase 2A originates from protein phosphatase inhibitor studies on islets and beta-cell lines. The ability of protein phosphatase 2A to change its activity in the presence of glucose and inhibitors provides clues to its role in regulating insulin secretion. An aggressive approach to elucidate the substrates and mechanisms of action of protein phosphatases is crucial to the understanding of phosphorylation events within the beta-cell. Characterizing protein phosphatase 2A within the beta-cell will certainly help us in understanding the mechanisms involved in insulin secretion and provide valuable information for drug development.

  18. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    Science.gov (United States)

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  19. Structure-Function Analysis of 2-Keto-3-Deoxy-D-Glycero-D-Galacto-Nononate-9-Phosphate Phosphatase Defines Specificity Elements in Type C0 had Family Members

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Wang, L; Dunaway-Mariano, D; Allen, K

    2009-01-01

    The phosphotransferases of the haloalkanoate dehalogenase superfamily (HADSF) act upon a wide range of metabolites in all eukaryotes and prokaryotes and thus constitute a significant force in cell function. The challenge posed for biochemical function assignment of HADSF members is the identification of the structural determinants that target a specific metabolite. The '8KDOP' subfamily of the HADSF is defined by the known structure and catalytic activity of 2-keto-3-deoxy-8-phospho-d-manno-octulosonic acid (KDO-8-P) phosphatase. Homologues of this enzyme have been uniformly annotated as KDO-8-P phosphatase. One such gene, BT1713, from the Bacteroides thetaiotaomicron genome was recently found to encode the enzyme 2-keto-3-deoxy-d-glycero-d-galacto-9-phosphonononic acid (KDN-9-P) phosphatase in the biosynthetic pathway of the 9-carbon ?-keto acid, 2-keto-3-deoxy-d-glycero-d-galactonononic acid (KDN). To find the structural elements that provide substrate-specific interactions and to allow identification of genomic sequence markers, the x-ray crystal structures of BT1713 liganded to the cofactor Mg2+and complexed with tungstate or Formula/Neu5Ac were determined to 1.1, 1.85, and 1.63 A resolution, respectively. The structures define the active site to be at the subunit interface and, as confirmed by steady-state kinetics and site-directed mutagenesis, reveal Arg-64*, Lys-67*, and Glu-56 to be the key residues involved in sugar binding that are essential for BT1713 catalytic function. Bioinformatic analyses of the differentially conserved residues between BT1713 and KDO-8-P phosphatase homologues guided by the knowledge of the structure-based specificity determinants define Glu-56 and Lys-67* to be the key residues that can be used in future annotations.

  20. INFLUENCE OF LIMING AND WASTE ORGANIC MATERIALS ON THE ACTIVITY OF PHOSPHATASE IN SOIL CONTAMINATED WITH NICKEL

    Directory of Open Access Journals (Sweden)

    Beata Kuziemska

    2014-10-01

    Full Text Available A study was carried out on soil following a two-year pot experiment that was conducted in 2009–2010, in three repetitions in Siedlce. The experiment included the following factors: 1 – amount of Ni in soil (0, 75, 150 and 225 mg·kg-1 soil by applying an aqueous NiSO4·7H2O solution; 2 – liming (0 and Ca according to 1 Hh as CaCO3; 3 – organic waste products (rye straw at a dose of 4 t·ha-1 and brown coal at a dose of 40 t·ha-1. In each experimental year, orchard grass was the test plant and four swaths were harvested. The activities of acidic and alkaline phosphatase, pH and the content of carbon in organic compounds were determined in the soil samples collected after each grass swath and in each experimental year. It was found that Ni at 75 mg·kg-1 soil activated the enzymes under study, whereas higher doses caused their statistically-confirmed inactivation. The lowest activity of the investigated enzymes was detected in soil supplemented with 225 Ni·kg-1 soil. Liming caused an increase in the activity of alkaline phosphatase and a reduction in the activity of acidic phosphatase. Straw and brown coal induced a substantial increase in the activity of both enzymes in the tested soil samples. Both liming and straw and carbon eliminated the negative effect of higher nickel doses on the activity of the enzymes under study.

  1. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane.

    Science.gov (United States)

    Tong, Shuilong; Lin, Yibin; Lu, Shuo; Wang, Meitian; Bogdanov, Mikhail; Zheng, Lei

    2016-08-26

    PgpB belongs to the lipid phosphate phosphatase protein family and is one of three bacterial integral membrane phosphatases catalyzing dephosphorylation of phosphatidylglycerol phosphate (PGP) to generate phosphatidylglycerol. Although the structure of its apo form became recently available, the mechanisms of PgpB substrate binding and catalysis are still unclear. We found that PgpB was inhibited by phosphatidylethanolamine (PE) in a competitive mode in vitro Here we report the crystal structure of the lipid-bound form of PgpB. The structure shows that a PE molecule is stabilized in a membrane-embedded tunnel formed by TM3 and the "PSGH" fingerprint peptide near the catalytic site, providing structural insight into PgpB substrate binding mechanism. Noteworthy, in silico docking of varied lipid phosphates exhibited similar substrate binding modes to that of PE, and the residues in the lipid tunnel appear to be important for PgpB catalysis. The catalytic triad in the active site is essential for dephosphorylating substrates lysophosphatidic acid, phosphatidic acid, or sphingosine-1-phosphate but surprisingly not for the native substrate PGP. Remarkably, residue His-207 alone is sufficient to hydrolyze PGP, indicating a specific catalytic mechanism for PgpB in PG biosynthesis. We also identified two novel sensor residues, Lys-93 and Lys-97, on TM3. Our data show that Lys-97 is essential for the recognition of lyso-form substrates. Modification at the Lys-93 position may alter substrate specificity of lipid phosphate phosphatase proteins in prokaryotes versus eukaryotes. These studies reveal new mechanisms of lipid substrate selection and catalysis by PgpB and suggest that the enzyme rests in a PE-stabilized state in the bilayer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane*

    Science.gov (United States)

    Tong, Shuilong; Lin, Yibin; Lu, Shuo; Wang, Meitian; Bogdanov, Mikhail; Zheng, Lei

    2016-01-01

    PgpB belongs to the lipid phosphate phosphatase protein family and is one of three bacterial integral membrane phosphatases catalyzing dephosphorylation of phosphatidylglycerol phosphate (PGP) to generate phosphatidylglycerol. Although the structure of its apo form became recently available, the mechanisms of PgpB substrate binding and catalysis are still unclear. We found that PgpB was inhibited by phosphatidylethanolamine (PE) in a competitive mode in vitro. Here we report the crystal structure of the lipid-bound form of PgpB. The structure shows that a PE molecule is stabilized in a membrane-embedded tunnel formed by TM3 and the “PSGH” fingerprint peptide near the catalytic site, providing structural insight into PgpB substrate binding mechanism. Noteworthy, in silico docking of varied lipid phosphates exhibited similar substrate binding modes to that of PE, and the residues in the lipid tunnel appear to be important for PgpB catalysis. The catalytic triad in the active site is essential for dephosphorylating substrates lysophosphatidic acid, phosphatidic acid, or sphingosine-1-phosphate but surprisingly not for the native substrate PGP. Remarkably, residue His-207 alone is sufficient to hydrolyze PGP, indicating a specific catalytic mechanism for PgpB in PG biosynthesis. We also identified two novel sensor residues, Lys-93 and Lys-97, on TM3. Our data show that Lys-97 is essential for the recognition of lyso-form substrates. Modification at the Lys-93 position may alter substrate specificity of lipid phosphate phosphatase proteins in prokaryotes versus eukaryotes. These studies reveal new mechanisms of lipid substrate selection and catalysis by PgpB and suggest that the enzyme rests in a PE-stabilized state in the bilayer. PMID:27405756

  3. The crystal structure of Arabidopsis VSP1 reveals the plant class C-like phosphatase structure of the DDDD superfamily of phosphohydrolases.

    Directory of Open Access Journals (Sweden)

    Yuhong Chen

    Full Text Available Arabidopsis thaliana vegetative storage proteins, VSP1 and VSP2, are acid phosphatases and belong to the haloacid dehalogenase (HAD superfamily. In addition to their potential nutrient storage function, they were thought to be involved in plant defense and flower development. To gain insights into the architecture of the protein and obtain clues about its function, we have tested their substrate specificity and solved the structure of VSP1. The acid phosphatase activities of these two enzymes require divalent metal such as magnesium ion. Conversely, the activity of these two enzymes is inhibited by vanadate and molybdate, but is resistant to inorganic phosphate. Both VSP1 and VSP2 did not exhibit remarkable activities to any physiological substrates tested. In the current study, we presented the crystal structure of recombinant VSP1 at 1.8 Å resolution via the selenomethionine single-wavelength anomalous diffraction (SAD. Specifically, an α-helical cap domain on the top of the α/β core domain is found to be involved in dimerization. In addition, despite of the low sequence similarity between VSP1 and other HAD enzymes, the core domain of VSP1 containing conserved active site and catalytic machinery displays a classic haloacid dehalogenase fold. Furthermore, we found that VSP1 is distinguished from bacterial class C acid phosphatase P4 by several structural features. To our knowledge, this is the first study to reveal the crystal structure of plant vegetative storage proteins.

  4. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils

    Science.gov (United States)

    Beazley, Melanie J.; Martinez, Robert J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2011-10-01

    The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d -1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d -1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.

  5. TIMAP-protein phosphatase 1-complex controls endothelin-1 production via ECE-1 dephosphorylation.

    Science.gov (United States)

    Boratkó, Anita; Veréb, Zoltán; Petrovski, Goran; Csortos, Csilla

    2016-04-01

    Endothelin induced signaling pathways can affect blood pressure and vascular tone, but the influence of endothelins on tumor cells is also significant. We have detected elevated endothelin-1 secretion from TIMAP (TGF-β inhibited membrane associated protein) depleted vascular endothelial cells. The autocrine signaling activated by the elevated endothelin-1 level through the ETB receptors evoked an angiogenic-like phenotype, the cells assumed an elongated morphology, and enhanced tube formation and wound healing abilities. The depleted protein, TIMAP, is a highly specific and abundant protein in the endothelial cells, and it is a regulatory/targeting subunit for the catalytic subunit of protein phosphatase 1 (PP1c). Protein-protein interaction between the TIMAP-PP1c complex and the endothelin converting enzyme-1 (ECE-1) was detected, the latter of which is a transmembrane protein that produces the biologically active 21-amino acid form of endothelin-1 from proendothelin. The results indicate that silencing of TIMAP induces a reduction in TIMAP-PP1c activity connected to ECE-1. This leads to an increase in the amount of ECE-1 protein in the plasma membrane and a consequent increase in endothelin-1 secretion. Similarly, activation of PKC, the kinase responsible for ECE-1 phosphorylation increased ECE-1 protein level in the membrane fraction of the endothelial cells. The elevated ECE-1 level was mitigated in time in normal cells, but was clearly preserved in TIMAP-depleted cells. Overall, our results indicate that PKC-phosphorylated ECE-1 is a TIMAP-PP1c substrate and this phosphatase complex has an important role in endothelin-1 production of EC through the regulation of ECE-1 activity.

  6. Silymarin induces insulin resistance through an increase of phosphatase and tensin homolog in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Kai-Chun Cheng

    Full Text Available BACKGROUND AND AIMS: Phosphatase and tensin homolog (PTEN is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. METHODS: Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. RESULTS: Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. CONCLUSIONS: Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.

  7. Characterization of the protein tyrosine phosphatase PRL from Entamoeba histolytica.

    Science.gov (United States)

    Ramírez-Tapia, Ana Lilia; Baylón-Pacheco, Lidia; Espíritu-Gordillo, Patricia; Rosales-Encina, José Luis

    2015-12-01

    Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite Entamoeba histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism.

  8. Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus.

    Science.gov (United States)

    Guimarães, Luis Henrique Souza; Jorge, João Atilio; Terenzi, Héctor Francisco; Jamur, Maria Célia; Oliver, Constance; De Lourdes Teixeira De Moraes Polizeli, Maria

    2003-01-01

    The effect of several carbon sources on the production of alkaline phosphatase by the thermotolerant Aspergillus caespitosus was analysed. The fungus released high levels of alkaline phosphatases into the medium after being cultured for long periods with xylan or industrial residues such as wheat raw and sugar cane bagasse in the culture media. In contrast, the alkaline phosphatase activities were found only intracellulary when the fungus was cultured in glucose-supplemented media. The pH of the medium likely affects the process of enzyme secretion according to the carbon source used. Addition of xylan or industrial residues in the culture medium stimulated the secretion of phosphatases. In contrast, media supplemented with glucose or disaccharides promoted retention of these enzymes into the cells. The subcellular location activities of alkaline phosphatases were studied using histochemical and immunochemical methods and showed that alkaline phosphatases were present in the mycelial walls and septa.

  9. PTEN inhibits BMI1 function independently of its phosphatase activity

    Directory of Open Access Journals (Sweden)

    Kapoor Anil

    2009-11-01

    Full Text Available Abstract Background PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by dephosphorylating phosphatidylinositol (3,4,5-triphosphate (PIP3 to phosphatidylinositol (4,5-biphosphate (PIP2, thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K-mediated tumorigenic activities. Consistent with this model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to nuclear PTEN-mediated tumor suppression. The nuclear protein BMI1 promotes stem cell self-renewal and tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI1 function. Results We investigated whether PTEN inhibits BMI1 function during prostate tumorigenesis. PTEN binds to BMI1 exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN mutants, PTEN/C124S (CS, PTEN/G129E (GE, and a C-terminal PTEN fragment (C-PTEN excluding the catalytic domain, all associate with BMI1. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMI1. This interaction reduces BMI1's function. BMI1 enhances hTERT activity and reduces p16INK4A and p14ARF expression. These effects were attenuated by PTEN, PTEN(CS, PTEN(GE, and C-PTEN. Furthermore, knockdown of PTEN in DU145 cells increased hTERT promoter activity, which was reversed when BMI1 was concomitantly knocked-down, indicating that PTEN reduces hTERT promoter activity via inhibiting BMI1 function. Conversely, BMI1 reduces PTEN's ability to inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to dephosphorylate membrane-bound PIP3. Furthermore, BMI1 appears to co-localize with PTEN more frequently in clinical prostate tissue samples from patients diagnosed with PIN

  10. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  11. Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Knudsen, Michael; Wiuf, Carsten Henrik

    2012-01-01

    We study signaling cascades with an arbitrary number of layers of one-site phosphorylation cycles. Such cascades are abundant in nature and integrated parts of many pathways. Based on the Michaelis-Menten model of enzyme kinetics and the law of mass-action, we derive explicit analytic expressions...... for how the steady state concentrations and the total amounts of substrates, kinase, and phosphatates depend on each other. In particular, we use these to study how the responses (the activated substrates) vary as a function of the available amounts of substrates, kinase, and phosphatases. Our results...

  12. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  13. Plasma calcium, magnesium, phosphorus, and alkaline phosphatase levels in normal British schoolchildren.

    Science.gov (United States)

    Round, J M

    1973-07-21

    In a cross-sectional survey 624 schoolchildren were screened for plasma calcium, inorganic phosphate, and alkaline phosphatase levels. Plasma magnesium and alkaline phosphatase isoenzymes were also estimated in some cases.No significant difference was found between adult and childhood values for calcium and magnesium. Levels of alkaline phosphatase and inorganic phosphorus varied with both age and sex. The magnitude of these variations in normal ranges is of clear importance in assessing data from individual paediatric or adolescent patients.

  14. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.

    Science.gov (United States)

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S R Murthy; Prentki, Marc

    2016-01-26

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.

  15. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems

    Science.gov (United States)

    Sayler, Gary S.; Puziss, Marla; Silver, Martin

    1979-01-01

    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  16. SHP-1 phosphatase activity counteracts increased T cell receptor affinity.

    Science.gov (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie

    2013-03-01

    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  17. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    Science.gov (United States)

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  18. Protein phosphatase Z modulates oxidative stress response in fungi.

    Science.gov (United States)

    Leiter, Éva; González, Asier; Erdei, Éva; Casado, Carlos; Kovács, László; Ádám, Csaba; Oláh, Judit; Miskei, Márton; Molnar, Monika; Farkas, Ilona; Hamari, Zsuzsanna; Ariño, Joaquín; Pócsi, István; Dombrádi, Viktor

    2012-09-01

    The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.

  19. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy.

    Science.gov (United States)

    Tautz, Lutz; Senis, Yotis A; Oury, Cécile; Rahmouni, Souad

    2015-06-15

    Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Kinetic aspects of human placental alkaline phosphatase enzyme membrane.

    Science.gov (United States)

    Roig, M G; Serrano, M A; Bello, J F; Cachaza, J M; Kennedy, J F

    1991-01-01

    The crosslinking of alkaline phosphatase of human placenta with human serum albumin has been optimized. During the physico-chemical characterization of this immobilized biocatalyst, special attention was paid to attributes such as the irreversibility of the enzyme support bonding, the stability of the catalytic activity, and the effects of pH and temperature on this activity. Regarding stability, patterns of denaturation are proposed, to account for inactivation curves over time and under storage/operation conditions. These patterns, in some cases, indicate the existence of different populations of immobilized enzyme molecules, with a different degree of sensitivity to denaturation. The activity vs pH profiles are clearly modified by the immobilization process. This is because the pH of the free homogeneous solution, measurable with a pH-meter, differs from the real pH of the immediate microenvironment of the immobilized enzyme molecules due to the effects of proton accumulation in the microenvironment (in the reaction catalysed by alkaline phosphatase, protons are produced), to limitations to the free diffusion of H+ and to the possible partition effects of H+ due to polar interactions with residues or molecules of the enzyme membrane. In the experimental working conditions, the apparent optimum temperatures are centered at 40 degrees C, inactivation (thermal denaturation) occurring above this temperature. In the temperature range 10-40 degrees C, the kinetic control over the overall activity of the immobilized enzyme was observed, causing the Arrhenius profiles to be linear.

  1. Purification and Characterization of PRL Protein Tyrosine Phosphatases

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-fa; WANG Yan; LI Qing-shan; ZHAO Zhi-zhuang Joe; FU Xue-qi; LI Yu-lin; LI Yi-lei

    2005-01-01

    PRLs constitute a subfamily of protein tyrosine phosphatases(PTPs). In the present paper are reported the molecular cloning, expression, purification, and characterization of all the three members of the PRL enzymes in human and the only PRL in C.elegans. These enzymes were expressed as glutathione S-transferase(GST) fusion proteins in DE3pLysS E.coli cells, and the recombinant fusion proteins were purified on glutathione-Sepharose affinity columns. Having been cleaved with thrombin, GST-free enzymes were further purified on an S-100 Sepharose gel filtration column. The purified proteins show single polypeptide bands on SDS-polyacrylamide gel electrophoresis. With para-nitrophenyl phosphate(p-NPP) as a substrate, PRLs exhibit classical Michaelis-Menten kinetics with Vmax values two orders of magnitude smaller than those of classic PTPs. The responses of PRLs to ionic strength, metal ions and phosphatase inhibitors are similar to those of other characterized PTPs, but their optimal pH values are different. These data thus reveal distinct common biochemical properties of PRL subfamily PTPs as well.

  2. Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation.

    Science.gov (United States)

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Cai, Changmeng; Yang, Hongmei; Zhang, Xiaoping; Liu, Jihong; Balk, Steven P; Chen, Shaoyong

    2016-01-12

    The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms. We next show that PP1α binds primarily to the AR ligand binding domain and decreases its ubiquitylation and degradation. Moreover, we find that the PP1α inhibitor tautomycin increases phosphorylation of AR ubiquitin ligases including SKP2 and MDM2 at sites that enhance their activity, providing a mechanism by which PP1α may suppress AR degradation. Significantly, the tautomycin mediated decrease in AR expression was most pronounced at low androgen levels or in the presence of the AR antagonist enzalutamide. Consistent with this finding, the sensitivity of LNCaP and C4-2 PCa cells to tautomycin, as assessed by PSA synthesis and proliferation, was enhanced at low androgen levels or by treatment with enzalutamide. Together these results indicate that PP1α may contribute to stabilizing AR protein after androgen deprivation therapies, and that targeting PP1α or the AR-PP1α interaction may be effective in castration-resistant prostate cancer (CRPC).

  3. Effect of organic/inorganic compounds on the enzymes in soil under acid rain stress

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-shen; XU Dong-mei; WANG Li-ming; LI Ke-bin; LIU Wei-ping

    2004-01-01

    The main effects of pollutions including acid rain, Cu2+, atrazine and their combined products on theactivities of urease, invertin, acid phosphatase and catalase were studied by means of orthogonal test. The resultsshowed that H + and Cu2+ had significant influence on the activities of four enzymes and the ability of their inhibitingfollowed the order: H+ > Cu2+ . Al3+ and atrazine only had litter effects on the activity of urease and phosphatase,respectively. Furthermore, interaction analysis revealed that Cu2+ -H+ affected on the activity of acid phosphatasesignificantly and antagonism on invertin and urease, Cu2+ -atrazine only exhibited the synergism on the activity ofacid phosphatase. But atrazine-H+ had non-interaction within the investigated concentration range. Among fourenzymes, acid phosphatase was the most sensitive one to the contaminations.

  4. The TriTryp Phosphatome: analysis of the protein phosphatase catalytic domains

    Directory of Open Access Journals (Sweden)

    Huxley-Jones Julie

    2007-11-01

    Full Text Available Abstract Background The genomes of the three parasitic protozoa Trypanosoma cruzi, Trypanosoma brucei and Leishmania major are the main subject of this study. These parasites are responsible for devastating human diseases known as Chagas disease, African sleeping sickness and cutaneous Leishmaniasis, respectively, that affect millions of people in the developing world. The prevalence of these neglected diseases results from a combination of poverty, inadequate prevention and difficult treatment. Protein phosphorylation is an important mechanism of controlling the development of these kinetoplastids. With the aim to further our knowledge of the biology of these organisms we present a characterisation of the phosphatase complement (phosphatome of the three parasites. Results An ontology-based scan of the three genomes was used to identify 86 phosphatase catalytic domains in T. cruzi, 78 in T. brucei, and 88 in L. major. We found interesting differences with other eukaryotic genomes, such as the low proportion of tyrosine phosphatases and the expansion of the serine/threonine phosphatase family. Additionally, a large number of atypical protein phosphatases were identified in these species, representing more than one third of the total phosphatase complement. Most of the atypical phosphatases belong to the dual-specificity phosphatase (DSP family and show considerable divergence from classic DSPs in both the domain organisation and sequence features. Conclusion The analysis of the phosphatome of the three kinetoplastids indicates that they possess orthologues to many of the phosphatases reported in other eukaryotes, including humans. However, novel domain architectures and unusual combinations of accessory domains, suggest distinct functional roles for several of the kinetoplastid phosphatases, which await further experimental exploration. These distinct traits may be exploited in the selection of suitable new targets for drug development to prevent

  5. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins.

    Science.gov (United States)

    Ghodge, Swapnil V; Fedorov, Alexander A; Fedorov, Elena V; Hillerich, Brandan; Seidel, Ronald; Almo, Steven C; Raushel, Frank M

    2013-02-12

    L-Histidinol phosphate phosphatase (HPP) catalyzes the hydrolysis of L-histidinol phosphate to L-histidinol and inorganic phosphate, the penultimate step in the biosynthesis of L-histidine. HPP from the polymerase and histidinol phosphatase (PHP) family of proteins possesses a trinuclear active site and a distorted (β/α)(7)-barrel protein fold. This group of enzymes is closely related to the amidohydrolase superfamily of enzymes. The mechanism of phosphomonoester bond hydrolysis by the PHP family of HPP enzymes was addressed. Recombinant HPP from Lactococcus lactis subsp. lactis that was expressed in Escherichia coli contained a mixture of iron and zinc in the active site and had a catalytic efficiency of ~10(3) M(-1) s(-1). Expression of the protein under iron-free conditions resulted in the production of an enzyme with a 2 order of magnitude improvement in catalytic efficiency and a mixture of zinc and manganese in the active site. Solvent isotope and viscosity effects demonstrated that proton transfer steps and product dissociation steps are not rate-limiting. X-ray structures of HPP were determined with sulfate, L-histidinol phosphate, and a complex of L-histidinol and arsenate bound in the active site. These crystal structures and the catalytic properties of variants were used to identify the structural elements required for catalysis and substrate recognition by the HPP family of enzymes within the amidohydrolase superfamily.

  6. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1.

  7. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Kanwal [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Wang, Wen Wen; Wang, Yan Wei [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Sakamoto, Akira [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260‐8675 (Japan); Zhang, Yan Fang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Naranmandura, Hua, E-mail: narenman@zju.edu.cn [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Suzuki, Noriyuki [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260‐8675 (Japan)

    2012-09-15

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs{sup III}) and its intermediate metabolites such as monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA{sup III} and DMA{sup III}) but not by iAs{sup III}. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA{sup III} directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA{sup III} strongly inhibited activity of PTP1B. ► DMA{sup III} directly

  8. Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents.

    Science.gov (United States)

    Sharlow, Elizabeth R; Wipf, Peter; McQueeney, Kelley E; Bakan, Ahmet; Lazo, John S

    2014-05-01

    Protein tyrosine (Tyr) phosphatases have been implicated in many diseases, most notably in cancer. While there are a significant number of clinically approved inhibitors of protein Tyr kinases, there are no drugs specifically targeting protein Tyr phosphatases in clinical use despite the attractiveness of the molecular target. This review examines the investigational challenges in identifying Tyr phosphatase inhibitors using the oncogenic phosphatase PTP4A3 as a prototype. The article includes a review of the structure, functionality and validation of PTP4A3 as a cancer target. It also provides an evaluation of existing small molecule and antibody inhibitors and provides new computational guidance for potentially more potent small molecule inhibitors. Tyr phosphatases, like PTP4A3, represent high value but ignored molecular targets for the treatment of cancer and other diseases. Although phosphatases are challenging targets, it seems likely that drug-like inhibitors of this important enzyme family would complement the growing number of protein Tyr kinase inhibitors. Animal models are beginning to provide validation for PTP4A3 as a molecular target for cancer progression and metastasis. The authors posit that greater efforts should be directed towards identifying Tyr phosphatase inhibitors for lead optimization and tool compounds to assist in interrogating and validating phosphatase involvement in physiological and pathological processes.

  9. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to i...

  10. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses

    OpenAIRE

    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G; Foronjy, Robert F.

    2014-01-01

    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease.

  11. Alkaline phosphatase-polyresorcinol complex: characterization and application to seed coating.

    Science.gov (United States)

    Pilar, María C; Ortega, Natividad; Perez-Mateos, Manuel; Busto, María D

    2009-03-11

    An alkaline phosphatase (EC 3.1.3.1) from Escherichia coli ATCC27257 was immobilized by copolymerization with resorcinol. The phosphatase-polyresorcinol complex synthesized retained about 74% of the original enzymatic activity. The pH and temperature profile of the immobilized and free enzyme revealed a similar behavior. Kinetic parameters were determined: K(m) and K(i) values were 2.44 and 0.423 mM, respectively, for the phosphatase-polyresorcinol complex and 1.07 and 0.069 mM, respectively, for free phosphatase. The thermal and storage stabilities of the immobilized phosphatase were higher than those of the native one. On addition to soil, free enzyme was completely inactivated in 4 days, whereas the phosphatase-polyresorcinol complex was comparatively stable. Barley seed coated with the immobilized enzyme exhibited higher rhizosphere phosphatase activity. Under pot culture conditions, an increase in the soil inorganic phosphorus was detected when the seed was encapsulated with the phosphatase-polyresorcinol complex, and a positive influence on biomass and inorganic phosphorus concentration of shoot was observed.

  12. Phylogenetic characterization of phosphatase-expressing bacterial communities in Baltic Sea sediments

    NARCIS (Netherlands)

    Steenbergh, A.K.; Bodelier, P.L.E.; Hoogveld, H.L.; Slomp, Caroline; Laanbroek, Riks

    2015-01-01

    Phosphate release from sediments hampers the remediation of aquatic systems from a eutrophic state. Microbial phosphatases in sediments release phosphorus during organic matter degradation. Despite the important role of phosphatase-expressing bacteria, the identity of these bacteria in sediments is

  13. Phosphatase-triggered fusogenic liposomes for cytoplasmic delivery of cell-impermeable compounds.

    Science.gov (United States)

    Motion, J P Michael; Nguyen, Juliane; Szoka, Francis C

    2012-09-03

    License to fuse! A phosphorylated fusion peptide can mediate membrane fusion when the phosphates (green triangles, see scheme) are removed by phosphatases (blue spheres), delivering the contents of the liposome into the cytosol. This phosphatase-triggered approach may be useful to create target-specific lipid nanocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  15. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate

    NARCIS (Netherlands)

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R

    2015-01-01

    BACKGROUND AND PURPOSE: Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection by alkaline phosphatase presum

  16. Low molecular weight protein tyrosine phosphatases control antibiotic production in Streptomyces coelicolor A3(2)

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Lieder, Sarah; Bapat, Prashant Madhusudhan

    2014-01-01

    Streptomyces coelicolor A3(2) possesses a low molecular weight protein tyrosine phosphatase (LMW-PTP),PtpA, that affects the production of undecylprodigionsin (RED) and actinorhodin (ACT). In this study we identifiedanother LMW-PTP called sco3700. Tyrosine phosphatase activity of the purified Sco...

  17. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  18. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y.......-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, and J. Sap, Mol. Cell. Biol. 13:2942-2951, 1993). We report here that R-PTP-kappa can mediate homophilic intercellular interaction. Inducible expression of the R-PTP-kappa protein in heterologous cells results in formation of stable...... cellular aggregates strictly consisting of R-PTP-kappa-expressing cells. Moreover, the purified extracellular domain of R-PTP-kappa functions as a substrate for adhesion by cells expressing R-PTP-kappa and induces aggregation of coated synthetic beads. R-PTP-kappa-mediated intercellular adhesion does...

  19. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    Science.gov (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  20. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  1. Intestinal alkaline phosphatase prevents metabolic syndrome in mice.

    Science.gov (United States)

    Kaliannan, Kanakaraju; Hamarneh, Sulaiman R; Economopoulos, Konstantinos P; Nasrin Alam, Sayeda; Moaven, Omeed; Patel, Palak; Malo, Nondita S; Ray, Madhury; Abtahi, Seyed M; Muhammad, Nur; Raychowdhury, Atri; Teshager, Abeba; Mohamed, Mussa M Rafat; Moss, Angela K; Ahmed, Rizwan; Hakimian, Shahrad; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth; Warren, H Shaw; Bhan, Atul K; Malo, Madhu S; Hodin, Richard A

    2013-04-23

    Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.

  2. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status

    Science.gov (United States)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  3. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  4. Phosphatase and tensin homologue deleted on chromosome 10

    Directory of Open Access Journals (Sweden)

    Imran Haruna Abdulkareem

    2013-01-01

    Full Text Available Phosphatase and tensin homologue deleted on chromosome 10 (PTEN is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH for the PTEN gene on chromosome 10q23. Previous studies reported that various drugs, chemicals, and foods can up-regulate PTEN mRNA and protein expression in different cell lines, and they may be useful in the future prevention and/or treatment of these cancers. PTEN has also been observed to have prognostic significance and is gradually being accepted as an independent prognostic factor. This will help in monitoring disease progression and/or recurrence, with a view to improving treatment outcomes and reducing the associated morbidity and mortality from these cancers. Neprilysin (NEP is a zinc-dependent metallopeptidase that cleaves and inactivates some biologically active peptides thus switching off signal transduction at the cell surface. Decreased NEP expression in many cancers has been reported. NEP can form a complex with PTEN and enhance PTEN recruitment to the plasma membrane as well as stabilize its phosphatase activity. MicroRNA-21 (miR-21 post-transcriptionally down-regulates the expression of PTEN and stimulates growth and invasion in non-small cell lung cancer (NSCLC (lung Ca, suggesting that this may be a potential therapeutic target in the future treatment of NSCLC. PTEN is a tumor suppressor gene associated with many human cancers. This has diagnostic, therapeutic, and prognostic significance in the management of many human cancers, and may be a target for new drug development in the future.

  5. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism

    Science.gov (United States)

    Zhang, Eric E.; Chapeau, Emilie; Hagihara, Kazuki; Feng, Gen-Sheng

    2004-01-01

    Shp2, a Src homology 2-containing tyrosine phosphatase, has been implicated in a variety of growth factor or cytokine signaling pathways. However, it is conceivable that this enzyme acts predominantly in one pathway versus the others in a cell, depending on the cellular context. To determine the putative functions of Shp2 in the adult brain, we selectively deleted Shp2 in postmitotic forebrain neurons by crossing CaMKIIα-Cre transgenic mice with a conditional Shp2 mutant (Shp2flox) strain. Surprisingly, a prominent phenotype of the mutant (CaMKIIα-Cre:Shp2flox/flox or CaSKO) mice was the development of early-onset obesity, with increased serum levels of leptin, insulin, glucose, and triglycerides. The mutant mice were not hyperphagic but developed enlarged and steatotic liver. Consistent with previous in vitro data, we found that Shp2 down-regulates Jak2/Stat3 (signal transducer and activator of transcription 3) activation by leptin in the hypothalamus. However, Jak2/Stat3 down-regulation is offset by a dominant Shp2 promotion of the leptin-stimulated Erk pathway, leading to induction rather than suppression of leptin resistance upon Shp2 deletion in the brain. Collectively, these results suggest that a primary function of Shp2 in postmitotic forebrain neurons is to control energy balance and metabolism, and that this phosphatase is a critical signaling component of leptin receptor ObRb in the hypothalamus. Shp2 shows potential as a neuronal target for pharmaceutical sensitization of obese patients to leptin action. PMID:15520383

  6. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification

    Science.gov (United States)

    Chicote, Javier U.; DeSalle, Rob; García-España, Antonio

    2017-01-01

    Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins. PMID:28257417

  7. Measurement of bone alkaline phosphatase and relative study with osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiping; HUO Yanqing; SUN Guangzhi; LI Jianmin; LI Xin

    2007-01-01

    The objective of this paper is to explore the value of bone alkaline phosphatase (BALP) for diagnosing osteosarcoma,evaluating the effect of the chemotherapy,judging the prognosis and supervising the relapse and metastasis.The immunoassay was used to check the BALP of the blood serum that was from 42 primary osteosarcoma patients.Alkaline phosphatase (ALP) in blood serum was checked with auto biochemistry equipment.The biopsy tissue and the lesion resected in operation were treated with pathology and histological response was counted.The patients were followed up from five months to 49 months with an average of 24.3 months.Eighteen cases relapsed and transferred,among which,16 of them were dead,and others were survival to the end of the follow-up.BALP was more sensitive than ALP in diagnosing osteosarcoma (P = 0.015).Fifteen cases decreased to normal value in ALP after preoperative chemotherapy,and 34 cases decreased in BALP.Both ALP and BALP in all cases decreased to normal value in postoperative.There was significant difference in positive correlation between the decrease of BALP and the increase of histological response (P = 0.001,r = 0.642).In the followup,there was significant difference in BALP between the group of relapse and transfer and the group of free disease survival (P=0.000).As a check marker in blood serum,BALP,reflecting the process of ossification,has a higher sensitivity than ALP.It has applied value in the diagnosis of osteosarcoma,reflection of the effect of chemotherapy and forecast the prognosis.

  8. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk.

  9. Characterization of the Human LPIN1-encoded Phosphatidate Phosphatase Isoforms*

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M.

    2010-01-01

    The human LPIN1 gene encodes the protein lipin 1, which possesses phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase; EC 3.1.3.4) activity (Han, G.-S., Wu, W.-I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210–9218). In this work, we characterized human lipin 1 α, β, and γ isoforms that were expressed in Escherichia coli and purified to near homogeneity. PA phosphatase activities of the α, β, and γ isoforms were dependent on Mg2+ or Mn2+ ions at pH 7.5 at 37 °C. The activities were inhibited by concentrations of Mg2+ and Mn2+ above their optimums and by Ca2+, Zn2+, N-ethylmaleimide, propranolol, and the sphingoid bases sphingosine and sphinganine. The activities were thermally labile at temperatures above 40 °C. The α, β, and γ activities followed saturation kinetics with respect to the molar concentration of PA (Km values of 0.35, 0.24, and 0.11 mm, respectively) but followed positive cooperative (Hill number ∼2) kinetics with respect to the surface concentration of PA (Km values of 4.2, 4.5, and 4.3 mol %, respectively) in Triton X-100/PA-mixed micelles. The turnover numbers (kcat) for the α, β, and γ isoforms were 68.8 ± 3.5, 42.8 ± 2.5, and 5.7 ± 0.2 s−1, respectively, whereas their energy of activation values were 14.2, 15.5, and 18.5 kcal/mol, respectively. The isoform activities were dependent on PA as a substrate and required at least one unsaturated fatty acyl moiety for maximum activity. PMID:20231281

  10. Infrequent methylation of the DUSP6 phosphatase in endometrial cancer.

    Science.gov (United States)

    Chiappinelli, Katherine B; Rimel, B J; Massad, L Stewart; Goodfellow, Paul J

    2010-10-01

    Dual-specificity phosphatase six (DUSP6, MKP3, or PYST1) dephosphorylates phosphotyrosine and phosphothreonine residues on ERK-2 (MAPK1) to inactivate the ERK-2 kinase. DUSP6 is a critical regulator of the ERK signaling cascade and has been implicated as a tumor suppressor. DNA methylation in the first intron of DUSP6 abrogates expression in a subset of pancreatic cancers. We sought to determine whether DUSP6 was similarly silenced by methylation in endometrial cancer, a tumor type in which there is frequent activation of the ERK pathway. One hundred and nine endometrial cancers were analyzed for DUSP6 methylation using combined bisulfite restriction analysis (COBRA). The cohort included 70 primary endometrioid endometrial cancers, 21 primary endometrial tumors of adverse histological types, and 18 endometrial cancer cell lines. Primary tumors, cell lines, and normal endometrial tissues were analyzed for DUSP6 mRNA levels using quantitative RT-PCR and pERK levels by Western blots and/or immunohistochemistry. Methylation of the first intron of the DUSP6 gene was seen in 1/91 primary endometrial cancers investigated. The methylated tumor was also methylated at the more 5' regulatory region of DUSP6. Q-RT-PCR revealed that DUSP6 transcript levels varied widely in primary endometrial tumors. DUSP6 mRNA levels did not correlate with pERK status in primary tumors, consistent with the existence of negative feedback loops activated by pERK that result in transcription of DUSP6. DUSP6 methylation is a rare event in endometrial cancer. Silencing of the DUSP6 phosphatase is unlikely to contribute to constitutive activation of the ERK kinase cascade in endometrial cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases.

    Science.gov (United States)

    Violet, Pierre-Christian; Billon-Denis, Emmanuelle; Robin, Philippe

    2012-11-01

    The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.

  12. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  13. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5

    Directory of Open Access Journals (Sweden)

    Park Jung-Min

    2003-03-01

    Full Text Available Abstract Background Protein Ser/Thr phosphatase 5 (PP5 and its Saccharomyces cerevisiae homolog protein phosphatase T1 (Ppt1p each contain an N-terminal domain consisting of several tetratricopeptide repeats (TPRs and a C-terminal catalytic domain that is related to the catalytic subunits of protein phosphatases 1 and 2A, and calcineurin. Analysis of yeast Ppt1p could provide important clues to the function of PP5 and its homologs, however it has not yet been characterized at the biochemical or cellular level. Results The specific activity of recombinant Ppt1p toward the artificial substrates 32P-myelin basic protein (MBP and 32P-casein was similar to that of PP5. Dephosphorylation of 32P-MBP, but not 32P-casein, was stimulated by unsaturated fatty acids and by arachidoyl coenzyme A. Limited proteolysis of Ppt1p removed the TPR domain and abrogated lipid stimulation. The remaining catalytic fragment exhibited a two-fold increase in activity toward 32P-MBP, but not 32P-casein. Removal of the C terminus increased Ppt1p activity toward both substrates two fold, but did not prevent further stimulation of activity toward 32P-MBP by lipid treatment. Ppt1p was localized throughout the cell including the nucleus. Levels of PPT1 mRNA and protein peaked in early log phase growth. Conclusions Many characteristics of Ppt1p are similar to those of PP5, including stimulation of phosphatase activity with some substrates by lipids, and peak expression during periods of rapid cell growth. Unlike PP5, however, proteolytic removal of the TPR domain or C-terminal truncation only modestly increased its activity. In addition, C-terminal truncation did not prevent further activation by lipid. This suggests that these regions play only a minor role in controlling its activity compared to PP5. Ppt1p is present in both the nucleus and cytoplasm, indicating that it may function in multiple compartments. The observation that Ppt1p is most highly expressed during early log

  14. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.

  15. PP2A(Cdc55) Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation.

    Science.gov (United States)

    Godfrey, Molly; Touati, Sandra A; Kataria, Meghna; Jones, Andrew; Snijders, Ambrosius P; Uhlmann, Frank

    2017-02-02

    In the quantitative model of cell-cycle control, progression from G1 through S phase and into mitosis is ordered by thresholds of increasing cyclin-dependent kinase (Cdk) activity. How such thresholds are read out by substrates that respond with the correct phosphorylation timing is not known. Here, using the budding yeast model, we show that the abundant PP2A(Cdc55) phosphatase counteracts Cdk phosphorylation during interphase and delays phosphorylation of late Cdk substrates. PP2A(Cdc55) specifically counteracts phosphorylation on threonine residues, and consequently, we find that threonine-directed phosphorylation occurs late in the cell cycle. Furthermore, the late phosphorylation of a model substrate, Ndd1, depends on threonine identity of its Cdk target sites. Our results support a model in which Cdk-counteracting phosphatases contribute to cell-cycle ordering by imposing Cdk thresholds. They also unveil a regulatory principle based on the phosphoacceptor amino acid, which is likely to apply to signaling pathways beyond cell-cycle control. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Identification and characterization of novel membrane-bound PRL protein tyrosine phosphatases from Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Yadav, Smita; Rathaur, Sushma

    2015-11-01

    A significant amount of protein tyrosine phosphatase (PTP) activity was detected in the detergent-soluble membrane-bound fraction of Setaria cervi, a bovine filarial parasite. The membrane-bound PTP activity was significantly inhibited when the adult parasites were exposed to compounds having antifilarial activity like aspirin and SK7 as well as phenylarsine oxide, a specific PTP inhibitor suggesting that this activity is stress regulated. Further, this enzyme was purified as a single protein of apparently 21 kDa using two different chromatographic techniques. The MALDI-MS/MS analysis of its peptides showed closest match with protein tyrosine phosphatase PRL (Aedes aegypti). This purified enzyme (named as PRL) showed maximum activity at pH 5.5/37 °C and hydrolysed para nitro phenyl phosphate (pNPP) at the highest rate followed by O-P-L-tyrosine and O-P-L-threonine. It showed significant inhibition by specific inhibitors of PTP such as sodium orthovanadate, phenylarsine oxide and ammonium molybdate and was activated by dithiothreitol (DTT). The active site modification studies suggested involvement of cysteine, arginine, histidine and aspartic acid in the catalytic activity of PRL. The activity of S. cervi PRL was also found to be resistant towards the external oxidative stress. Thus, S. cervi PRL could be taken as a potential target for the management of human lymphatic filariasis.

  17. Serum sialic acid and CEA concentrations in human breast cancer.

    OpenAIRE

    Hogan-Ryan, A.; Fennelly, J J; Jones, M.; Cantwell, B; Duffy, M J

    1980-01-01

    The concentration of bound sialic acid in the sera of 56 normal subjects and 65 subjects with breast cancer was measured, in order to determine (1) whether serum sialic acid concentrations are raised in breast cancer and (2) whether the concentration of sialic acid in serum reflects tumour stage. The amount of sialic acid in serum was compared to serum carcinoembryonic antigen (CEA) values. Urinary hydroxyproline and serum alkaline phosphatase concentrations were used as indicators of bone an...

  18. Comparative evaluation of Schistosoma mansoni, Schistosoma intercalatum, and Schistosoma haematobium alkaline phosphatase antigenicity by the alkaline phosphatase immunoassay (APIA).

    Science.gov (United States)

    Cesari, I M; Ballén, D E; Mendoza, L; Ferrer, A; Pointier, J-P; Kombila, M; Richard-Lenoble, D; Théron, A

    2014-04-01

    To know if alkaline phosphatase (AP) from schistosomes other than Schistosoma mansoni can be used as diagnostic marker for schistosomiasis in alkaline phosphatase immunocapture assay (APIA), we comparatively tested n-butanol extracts of adult worm membranes from a Venezuelan (JL) strain of S. mansoni (Ven/AWBE/Sm); a Cameroonian (EDEN) strain of Schistosoma intercalatum (Cam/AWBE/Si) and a Yemeni strain of Schistosoma haematobium (Yem/AWBE/Sh). APIA was evaluated with sera of patients from Venezuela, Senegal, and Gabon infected with S. mansoni, from Gabon infected with S. intercalatum or S. haematobium, from Chine infected with Schistosoma japonicum and from Cambodian patients infected with Schistosoma mekongi. Results indicate that 92.5% (37/40) of Venezuela sera, 75% (15/20) of Senegal sera, 39.5% (17/43) of S. haematobium sera, and 19.2% (5/26) S. intercalatum sera were APIA-positive with the Ven/AWBE/Sm preparation. APIA with the Cam/AWBE/Si preparation showed that 53.8% of S. intercalatum-positive sera had anti-AP antibodies, and 51.2% S. haematobium-positive sera cross-immunocapturing the S. intercalatum AP. APIA performed with Yem/AWBE/Sh showed that 55.8% S. haematobium sera were positive. Only two out of nine S. japonicum sera were APIA-positive with the Ven/AWBE/Sm and Cam/AWBE/Si, and no reaction was observed with Cambodian S. mekongi-positive sera. AP activity was shown to be present in all the schistosome species/strains studied. The use of APIA as a tool to explore the APs antigenicity and the presence of Schistosoma sp. infections through the detection of anti-Schistosoma sp. AP antibodies in a host, allowed us to demonstrate the antigenicity of APs of S. mansoni, S. intercalatum, and S. haematobium.

  19. Proteínas tirosina fosfatases: propriedades e funções biológicas Protein tyrosine phosphatases: properties and biological functions

    Directory of Open Access Journals (Sweden)

    Hiroshi Aoyama

    2003-12-01

    Full Text Available Protein phosphorylation-dephosphorylation catalyzed by the opposing and dynamic action of protein kinases and phosphatases probably, is the most crucial chemical reaction taking place in living organisms. Protein phosphatases are classified according to their substrate specificity and sensitivity to inhibitory or activator agents, into two families of protein phosphatases: serine/threonine phosphatases and tyrosine phosphatases (PTPs. PTPs can be divided into 3 groups: tyrosine specific phosphatases, dual and low molecular weight phosphatases. The role of tyrosine phosphorylation in mitogenic signaling is well documented, and one would predict that vanadate, pervanadate and other oxidant agents (protein tyrosine phosphatase inhibitors may act as a growth stimulator.

  20. DMPD: DUSP meet immunology: dual specificity MAPK phosphatases in control of theinflammatory response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17114416 DUSP meet immunology: dual specificity MAPK phosphatases in control of theinfl...ml) (.csml) Show DUSP meet immunology: dual specificity MAPK phosphatases in control of theinflammatory resp...onse. PubmedID 17114416 Title DUSP meet immunology: dual specificity MAPK phospha...tases in control of theinflammatory response. Authors Lang R, Hammer M, Mages J. Publication J Immunol. 2006

  1. Real-Time Monitoring of the Dephosphorylating Activity of Protein Tyrosine Phosphatases Using Microarrays with 3-Nitrophosphotyrosine Substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M. J.

    2013-01-01

    Phosphatases and kinases regulate the crucial phosphorylation post-translational modification. In spite of their similarly important role in many diseases and therapeutic potential, phosphatases have received arguably less attention. One reason for this is a scarcity of high-throughput phosphatase a

  2. Gardenia jasminoides Encodes an Inhibitor-2 Protein for Protein Phosphatase Type 1

    Science.gov (United States)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Protein phosphatase-1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. Inhibitor-2 (I-2) can inhibit the activity of PP1 and has been found in diverse organisms. In this work, a Gardenia jasminoides fruit cDNA library was constructed, and the GjI-2 cDNA was isolated from the cDNA library by sequencing method. The GjI-2 cDNA contains a predicted 543 bp open reading frame that encodes 180 amino acids. The bioinformatics analysis suggested that the GjI-2 has conserved PP1c binding motif, and contains a conserved phosphorylation site, which is important in regulation of its activity. The three-dimensional model structure of GjI-2 was buite, its similar with the structure of I-2 from mouse. The results suggest that GjI-2 has relatively conserved RVxF, FxxR/KxR/K and HYNE motif, and these motifs are involved in interaction with PP1.

  3. Role of Phosphatases During Transport and Energy Matabolism in Labeo rohita After Exposure to Cypermethrin

    Institute of Scientific and Technical Information of China (English)

    G.H.PHILIP; J.ANURADHA

    1996-01-01

    Freshwater fish,Labeo rohita,were exposed to sublethal concentration(0.5μg·L-1)of cypermethrin for 7 and 15 days to examine the bioenergetics in functionally four differnt tissues,namely,gill,liver,brain and muscle.Whole animal oxygen consumption was measured first and it was found to decrease in both the exposure periods(EPs),mainifesting respiratory distress of the animal in both the exposure periods(EPs),manifesting respiratory distress of the animal in toxic environment,Ionic regulation and energy requirements were also found to be altered under stress,as observed by the inhibition of both Na+/K+and Mg2+ ATP ases at 7d EP and elevation at 15d EP.Increase in gluose-6 phosphate dehydrogenase(G-6-PDH) was consistent with the increase in exposure time.Attenuation of acid and alkaline phosphatases wer noticed in treated fish after 7 days but were cloase to normalcy at 15d EP.These results clearly indicate that the fish were affected at 7d EP but adapted to the toxic environment within 15 days.It shows that at this concentration cypermethrin is only moderately toxic and the animal has alternate pathways to derive energy and survive.

  4. EXPRESSION OF ALKALINE PHOSPHATASE DURING OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS

    Directory of Open Access Journals (Sweden)

    AKBARI M

    2001-01-01

    Full Text Available Introduction: Bone marrow contains a population of stem cells capable of differentiating to osteoblast and forming the bone nodule by dexamethasone. Material and Methods: The stromal cells of bone marrow obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for 7 days and subcultured for 18 days. The cells were cultured in either DMEM medium containing 15% fetal calf serum and antibiotics as the controls or the above medium supplemented with osteogenic supplements (OS: include 10 mM Na-beta glycerophosphate (Na-betaGp, 10 nM dexamethasone (Dex and 50 g/ml ascordic acid (AsA as the examined cultures. After 6, 12 and 18 days of grow up in subculture, the cultures were examined for mineralization and alkaline phosphatase (Apase expression. Results: Mesenchymal stem cells (MSCs in examined cultures underwent a dramatic change in cellular morphology and a significat increase in Apase activity by day 12. The deposition of a calcified matrix on the surface of the culture flasks became evident between days 12 and 18. Conclusion: The addition of osteogenic supplements (OS to MSCs cultures induced Apase expression that contributes to cellular differentiation and mineralization of extracellular matrix.

  5. H2O2 inhibits ABA-signaling protein phosphatase HAB1.

    Directory of Open Access Journals (Sweden)

    Madhuri Sridharamurthy

    Full Text Available Due to its ability to be rapidly generated and propagated over long distances, H2O2 is an important second messenger for biotic and abiotic stress signaling in plants. In response to low water potential and high salt concentrations sensed in the roots of plants, the stress hormone abscisic acid (ABA activates NADPH oxidase to generate H2O2, which is propagated in guard cells in leaves to induce stomatal closure and prevent water loss from transpiration. Using a reconstituted system, we demonstrate that H2O2 reversibly prevents the protein phosphatase HAB1, a key component of the core ABA-signaling pathway, from inhibiting its main target in guard cells, SnRK2.6/OST1 kinase. We have identified HAB1 C186 and C274 as H2O2-sensitive thiols and demonstrate that their oxidation inhibits both HAB1 catalytic activity and its ability to physically associate with SnRK2.6 by formation of intermolecular dimers.

  6. Identification and bioinformatics comparison of two novel phosphatases in monoecious and gynoecious cucumber lines

    Science.gov (United States)

    Pawełkowicz, Magdalena E.; Wojcieszek, Michał; Osipowski, Paweł; Krzywkowski, Tomasz; PlÄ der, Wojciech; Przybecki, Zbigniew

    2016-09-01

    Two Arabidopsis thaliana genes from the PP2C family of protein phosphatases (AtABI1 and AtABI2) were used to find orthologous genes in the Cucumis sativus L. cv. Borszczagowski (cucumber) genome. Cucumber has been used as a model plant for sex expression studies because although it has been defined as a monoecious species, numerous genotypes are known to produce only female, only male, or hermaphroditic flowers. We identified two new orthologous genes of AtABI1 and AtABI2 in the cucumber genome and named them CsABI1 and CsABI2. To determine the relationships between the regulation of CsABI1 and CsABI2 and flower morphogenesis in cucumber, we performed various computational analyses to define the structure of the genes, and to predict regulatory elements and protein motifs in their sequences. We also performed an expression analysis to identify differences in the e