WorldWideScience

Sample records for acid phosphatase activity

  1. Acid phosphatases activity in cheese and starters.

    Science.gov (United States)

    Andrews, A T; Alichanidis, E

    1975-06-01

    The acid phosphatase activity levels in a number of Greek cheeses and in Cheddar cheeses were found to be unaffected by storage for up to 18 months and 12 months respectively. In Cheddar cheese, starter organisms made an insignificant contribution to this activity. Studies of acid phosphatase prepared from Streptococcus cremoris-lactis NCDO 762 starter cultures showed that the enzyme was of high molecular weight and largely particle-bound. The pH of optimum activity was 5-2 and the enzyme was inhibited by F-minus,Al-3+, a number of heavy metals, oxidizing agents and sulphydryl-modifying reagents. Kinetic measurements at pH 5-2 gave a Km value for p-nitrophenyl phosphate of 1-2 mM. Orthophosphate, pyrophosphate and isoelectrically precipitated casein behaved as competitive inhibitors to the hydrolysis of p-nitrophenyl phosphate with Ki values of 1-2 mM, 1-0 mM, 1-0 MM and 1-1 mM respectively. In spite of this binding to the enzyme, casein provided a very poor substrate for the starter acid phosphatase. The properties of acid phosphatase present in Cheddar cheese made with Str. cremoris NCDO 924 starter were consistent with the enzyme being exclusively of milk origin and small differences between this and the acid phosphatase previously isolated from bovine milk were attributable to the binding of peptides produced during the cheese maturation to the enzyme molecules. It was concluded that in cheese, phosphatase action was due largely to the enzyme of milk origin, with that provided by the starter being of minor importance.

  2. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity.

    Science.gov (United States)

    Nuttleman, P R; Roberts, R M

    1990-07-25

    There is continuing controversy as to whether iron can be exchanged from the purple phosphatase, uteroferrin (Uf), to fetal transferrin (Tf) and whether this process might be of physiological relevance during pregnancy in the pig. Here, iron transfer from Uf to apoTf at pH 7.1 was followed by measuring the loss of acid phosphatase activity from native Uf as a function of incubation conditions and time. In the presence of apoTf and 1 mM ascorbate (but not in the presence of either agent alone), 50% of enzyme activity was lost in about 12 h. Loss of activity was accompanied by bleaching of Uf purple color and the appearance of the characteristic visual absorption spectrum of Fe-Tf. Citrate could replace ascorbate in the reaction. Loss of Uf iron did not occur at pH 5.3, at which pH Tf cannot bind Fe. [59Fe]Uf was prepared and shown to be identical in its enzymatic and physical properties with unmodified Uf. Transfer of 59Fe from Uf to apo-Tf was promoted by conditions identical to those which led to loss of purple color and acid phosphatase activity. However, the results suggested that only one of the two iron atoms at the bi-iron center on Uf was readily lost, and that exchange of the second iron occurred more slowly. Loss of iron made Uf more susceptible to denaturation. A third technique, quantitation of the g' = 4.3 signal of iron specifically bound to Tf by EPR, was also tested as a means assaying accumulation of Fe-Tf, but the method was too insensitive to measure the kinetics of iron transfer at physiological protein concentrations. We conclude that iron can be transferred directly from Uf to apoTf in the presence of low molecular weight chelators, and that the process is likely to be of physiological significance.

  3. Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase.

    Science.gov (United States)

    Mullaney, E J; Ullah, A H

    1998-02-13

    Aspergillus niger (ficuum) and the kidney bean purple acid phosphatases retained all the essential amino acids in the active site despite a low degree of total sequence homology. This high degree of homology in the sequence motif of A. niger fungal acid phosphatase (Apase6) active site with Kidney bean metallo phosphoesterase (KBPAP) and the absence of the RHG-XRXP sequence motif indicates Apase6 to be a metallophosphoesterase rather than a histidine acid phosphatase.

  4. Phosphatase activity of Poa pratensis seeds. II. Purification and characterization of acid phosphatase Ia2 and Ia3

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available Two acid phosphatases (Ia2, Ia3 have been isolated from Poa pratensis seeds and partially purified. Both enzymes showed maximal activity at pH 4,9. They exhibited high activity towards p-nitrophenyl phosphate, inorganic pyrophosphate and phenyl phosphate, much less activity towards glucose-6 phosphate, and mononucleotides. Phosphatases a2 and a3 differed in their activity towards ADP. Orthophosphate, fluoride and Zn2+ were effective inhibitors. EDTA, β-mercaptoethanol and Mg2+ activated phophatase a2 but had no effect on phosphatase a3. Zn2+ inhibited the activity of phosphatase a2 noncompetitively, whereas phosphatase a3 showed inhibition of mixed type. Trypsin, chymotrypsin and pronase had no effect on the enzyme activities of both molecular forms.

  5. Effect of salt and drought stress on acid phosphatase activities in ...

    African Journals Online (AJOL)

    Acid phosphatase is wildly found in plants. This enzyme has intra and extra cellular activity. For instance, it dephosphorylase organic phosphate and change it to inorganic phosphate. However, acid phosphatase activity is increased by salt and osmotic stress. In this experiments, calluses were produced from invitro grown ...

  6. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  7. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    OpenAIRE

    Huang, W; Liu, J.; Zhou, G.; Zhang, D; Deng, Q

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no pr...

  8. Influence of acid phosphatase activity on the saccharification of potato maltodextrins by Aspergillus niger glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Zyla, K. (Akademia Rolnicza, Cracow (Poland). Dept. of Biotechnology)

    1990-01-01

    A preparation of Aspergillus niger acid phosphatase, which had the temperature optimum 60deg C, pH optimum 1.8-3.0; good stability at pH 4-5, the ability to hydrolyze glucose-6-phosphate at a high rate, and substantial lack of glucogenic activities, was used simultaneously with a glucoamylase in order to learn its influence on the saccharification of potato maltodextrins. The addition of the acid phosphatase activity in amounts that gave the 50 fold increase, as compared to phosphatase activity which naturally occurs in the gluocoamylase (GA) preparation 'AMG-200', was found to influence on the DE level, mainly at the high substrate concentration (40% d.s.) and low glucoamylase dosage (60-100 GAU/kg d.s.). It may also be possible, when using the acid phosphatase addition, to shorten the saccharification time. (orig.).

  9. The effects of drought stress on the activity of acid phosphatase and ...

    African Journals Online (AJOL)

    ... avoid the influence of natural precipitation. The plants were sampled and detected every five days after the administration of drought stress. The results clearly demonstrated that the drought stress significantly enhanced the activity of acid phosphatase, membrane permeability and MDA contents; though the activity of acid ...

  10. Diminished activity of tartrate resistant acid phosphatase in alveolar macrophages from patients with active sarcoidosis.

    OpenAIRE

    Barth, J.; Kreipe, H.; Kiemle-Kallee, J; Radzun, H.J.; Parwaresch, M R; Petermann, W.

    1988-01-01

    Alveolar macrophages differ from their percursors in blood, monocytes, by expressing strong activity of the tartrate resistant variant of acid phosphatase (TAcP). A study was carried out to analyse the expression of this enzyme cytochemical marker by alveolar macrophages from bronchoalveolar lavage cells from 34 patients with sarcoidosis and 12 control subjects. Alveolar macrophages from control subjects displayed a strong and homogeneous staining pattern and only 0.1% of cells were negative ...

  11. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  12. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    Science.gov (United States)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  13. Effect of salt and drought stress on acid phosphatase activities in ...

    African Journals Online (AJOL)

    This enzyme has intra and extra cellular activity. For instance, it dephosphorylase organic phosphate and change it to inorganic phosphate. However, acid phosphatase activity is increased by salt and osmotic stress. In this experiments, calluses were produced from invitro grown explants of Medicago sativa cv. Yazdi and cv ...

  14. Histochemical demonstration of activity of acid phosphatase and beta-glucuronidase in bovine incisor tooth germs

    DEFF Research Database (Denmark)

    Kirkeby, S; Salling, E; Moe, D

    1983-01-01

    Activity of acid phosphatase and beta-glucuronidase was shown in bovine preodontoblasts and preameloblasts prior to the onset of secretion. In the preameloblasts the rather weak reaction consisted of small discrete granules dispersed in the cytoplasm apical, lateral, and proximal to the nucleus. ...

  15. The effects of drought stress on the activity of acid phosphatase and ...

    African Journals Online (AJOL)

    A model of drought was created on pigweed and the effects of drought stress on the activity of acid phosphatase and its protective enzymes were examined. The pot-cultured pigweeds were divided into 4 groups (ten plants per group) when they reached 6 leaves. (1) In the control group, the culture media contained 70 ...

  16. The effects of drought stress on the activity of acid phosphatase and ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... and function of plant cells membrane through the activity of its acid phosphatase and protective enzymes. This may provide a scientific evidence for understanding the mechanism of the drought-resistance in field crops. MATERIALS AND METHODS. Material. Pigweed (Chenopodium album L) was cultured ...

  17. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt

    Directory of Open Access Journals (Sweden)

    Eisuke Shibata

    2013-09-01

    Full Text Available Background/Aims: Accumulating evidence has suggested that free fatty acids (FFAs interact with protein kinases and protein phosphatases. The present study examined the effect of FFAs on protein phosphatases and Akt. Methods: Activities of protein phosphatase 1 (PP1, protein phosphatase 2A (PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Phosphorylation of Akt was monitored in MSTO-211H human malignant pleural mesothelioma cells without and with knocking-down phosphatidylinositol 3 kinase (PI3K or 3-phosphoinositide-dependent protein kinase-1 (PDK1. Results: In the cell-free assay, unsaturated FFAs (uFFAs such as oleic, linoleic and linolenic acid and saturated FFAs (sFFAs such as stearic, palmitic, myristic, and behenic acid markedly reduced PTP1B activity, with the potential for uFFAs greater than that for sFFAs. All the investigated sFFAs inhibited PP2A activity, but otherwise no inhibition was obtained with uFFAs. Both uFFAs and sFFAs had no effect on PP1 activity. Oleic acid phosphorylated Akt both on Thr308 and Ser473, while stearic acid phosphorylated Akt on Thr308 alone. The effects of oleic and stearic acid on Akt phosphorylation were abrogated by the PI3K inhibitor wortmannin or the PDK1 inhibitor BX912 and also by knocking-down PI3K or PDK1. Conclusion: The results of the present study indicate that uFFAs and sFFAs could activate Akt through a pathway along a PI3K/PDK1/Akt axis in association with PTP1B inhibition.

  18. Diminished activity of tartrate resistant acid phosphatase in alveolar macrophages from patients with active sarcoidosis.

    Science.gov (United States)

    Barth, J; Kreipe, H; Kiemle-Kallee, J; Radzun, H J; Parwaresch, M R; Petermann, W

    1988-11-01

    Alveolar macrophages differ from their percursors in blood, monocytes, by expressing strong activity of the tartrate resistant variant of acid phosphatase (TAcP). A study was carried out to analyse the expression of this enzyme cytochemical marker by alveolar macrophages from bronchoalveolar lavage cells from 34 patients with sarcoidosis and 12 control subjects. Alveolar macrophages from control subjects displayed a strong and homogeneous staining pattern and only 0.1% of cells were negative after staining. Macrophages from patients with sarcoidosis showed reduced TAcP activity and up to 7% of the cells were negative. The percentage of TAcP negative macrophages was correlated with the percentage of lymphocytes and with the ratio of CD4 to CD8 lymphocytes among cells recovered by bronchoalveolar lavage. The reduced TAcP activity in alveolar macrophages from patients with sarcoidosis may be due to an increased recruitment of immature precursors from blood.

  19. Phosphatidic acid phosphatase activity in subcellular fractions of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Olthoff, D; Jung, K

    1985-03-15

    Biopsy samples from normal and dystrophic human muscle (Duchenne type) were fractionated by differential centrifugation and microsomes, mitochondria and cytosol were assayed for phosphatidic acid phosphatase (EC 3.1.3.4) and marker enzymes of mitochondria and cytosol. The activity of phosphatidic acid phosphatase was significantly lower in microsomes and higher in cytosol and mitochondria of dystrophic muscle than in the corresponding subcellular fractions of normal muscle. The results support an explanation of earlier findings that there is reduced G3P incorporation into diglycerides and phosphatidylcholine and a qualitative and quantitative change in the amount of phosphatidylcholine in dystrophic microsomes. The possible reasons for the reduction in the activity of only microsomal PA-P-ase were discussed.

  20. Identification of active-site residues in Aspergillus ficuum extracellular pH 2.5 optimum acid phosphatase.

    Science.gov (United States)

    Ullah, A H; Dischinger, H C

    1993-04-30

    Primary structure elucidation of peptides generated by cyanogen bromide, endoproteinase Glu-C, and clostripain cleavage of an Aspergillus ficuum extracellular pH optimum 2.5 acid phosphatase identified a region which contains the active site of the enzyme. The 23-residue segment contains the fragment RHGXRXP, which is homologous to acid phosphatase from Saccharomyces spp., Aspergillus ficuum, mammals, and bacteria. Homologous or conservative substitutions are observed in the 10-amino acid fragment preceding this region.

  1. Localization of acid phosphatase activity in the apoplast of root nodules of pea (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Marzena Sujkowska

    2011-01-01

    Full Text Available Changes in the activity of acid phosphatase (AcPase in the apoplast of pea root nodule were investigated. The activity was determined using lead and cerium methods. The results indicated a following sequence of AcPase activity appearance during the development of the infection thread: 1 low AcPase activity appears in the outer part of cells of symbiotic bacteria; 2 bacteria show increased AcPase activity, and the enzyme activity appears in the thread walls; 3 activity exhibits also matrix of the infection thread; 4 bacteria just before their release from the infection threads show high AcPase activity; 5 AcPase activity ceases after bacteria transformation into bacteroids. The increase in bacterial AcPase activity may reflect a higher demand for inorganic phosphorus necessary for propagation of the bacteria within the infection threads and/or involved in bacteria release from the infection threads.

  2. Serum acid phosphatase activities in patients with lung cancer: a biochemical and immunohistochemical analysis of 25 cases.

    OpenAIRE

    Mortimer, G; Casey, M.

    1981-01-01

    A series of 25 cases of lung cancer are presented in which total (TAcP) and nonprostatic serum acid phosphatase (NPAcP) activities were measured. Of these cases, 36% had raised TAcP and NPAcP activities in their serum. However, the serum activities of TAcP and NPAcP did not correlate with either the presence of lung cancer nor with the morphological tumour type. This fact indicates that, despite isolated reports of raised serum acid phosphatase activities in cases of lung cancer, acid phospha...

  3. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  4. Effect of copper on acid phosphatase activity in yeast Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroyasu; Inouhe, Masahiro; Tohoyama, Hiroshi; Joho, Masanori [Ehime Univ., Matsuyama (Japan). Dept. of Biology

    2007-01-15

    Acid phosphatase (APase) activity of the yeast Yarrowia lipolytica increased with increasing Cu{sup 2+} concentrations in the medium. Furthermore, the enzyme in soluble form was stimulated in vitro by Cu{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Mn{sup 2+} and Mg{sup 2+} and inhibited by Ag{sup +} and Cd{sup 2+}. The most effective ion was Cu{sup 2+}, especially for the enzyme from cultures in medium containing Cu{sup 2+}, whereas APase activity in wall-bound fragments was only slightly activated by Cu{sup 2+}. The content of cellular phosphate involving polyphosphate was decreased by adding Cu{sup 2+}, regardless of whether or not the medium was rich in inorganic phosphate. Overproduction of the enzyme stimulated by Cu{sup 2+} might depend on derepression of the gene encoding the APase isozyme. (orig.)

  5. A novel fluorescent "Turn-Off/Turn-On" system for the detection of acid phosphatase activity.

    Science.gov (United States)

    Guo, Pu; Yan, Shengyong; Zhou, Yimin; Wang, Changcheng; Xu, Xiaowei; Weng, Xiaocheng; Zhou, Xiang

    2013-06-21

    Acid phosphatase (ACP) can be sensitively, conveniently and efficiently detected via a new fluorescent "Turn-Off/Turn-On" system. Inexpensive (NaPO(3))(6) is carefully introduced into this system as a quencher of the aggregation-caused quenching (ACQ) probe. In our method, the limit of detection (LOD) is quite low for detecting ACP, which is an important biomarker and indication of several diseases.

  6. Serum acid phosphatase activities in patients with lung cancer: a biochemical and immunohistochemical analysis of 25 cases.

    Science.gov (United States)

    Mortimer, G; Casey, M

    1981-09-01

    A series of 25 cases of lung cancer are presented in which total (TAcP) and nonprostatic serum acid phosphatase (NPAcP) activities were measured. Of these cases, 36% had raised TAcP and NPAcP activities in their serum. However, the serum activities of TAcP and NPAcP did not correlate with either the presence of lung cancer nor with the morphological tumour type. This fact indicates that, despite isolated reports of raised serum acid phosphatase activities in cases of lung cancer, acid phosphatase is of no value as a marker for lung cancer. We sought alternative explanations for the raised TAcP and NPAcP activities observed in our series in the hope that this enzyme might prove useful as a marker for early metastatic disease in lung cancer patients. This possibility is not substantiated, and the findings are analyzed and discussed. It is tentatively suggested that raised NPAcP activities in patients with lung cancer may relate to haemostasis.

  7. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Asgeirsson, Bjarni; Nielsen, Berit Noesgaard; Højrup, Peter

    2003-01-01

    Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid...... has the same variable residues as mammalian APs (His153 and His328 by E. coli AP numbering). General comparison of the amino acid composition with mammalian APs showed that cod AP contains fewer Cys, Leu, Met and Ser, but proportionally more Asn, Asp, Ile, Lys, Trp and Tyr residues. Three N......-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod...

  8. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India

    Directory of Open Access Journals (Sweden)

    B.C. Behera

    2017-06-01

    Full Text Available Phosphorus is an essential element for all life forms. Phosphate solubilizing bacteria are capable of converting phosphate into a bioavailable form through solubilization and mineralization processes. Hence in the present study a phosphate solubilizing bacterium, PSB-37, was isolated from mangrove soil of the Mahanadi river delta using NBRIP-agar and NBRIP-BPB broth containing tricalcium phosphate as the phosphate source. Based on phenotypic and molecular characterization, the strain was identified as Serratia sp. The maximum phosphate solubilizing activity of the strain was determined to be 44.84 μg/ml, accompanied by a decrease in pH of the growth medium from 7.0 to 3.15. During phosphate solubilization, various organic acids, such as malic acid (237 mg/l, lactic acid (599.5 mg/l and acetic acid (5.0 mg/l were also detected in the broth culture through HPLC analysis. Acid phosphatase activity was determined by performing p-nitrophenyl phosphate assay (pNPP of the bacterial broth culture. Optimum acid phosphatase activity was observed at 48 h of incubation (76.808 U/ml, temperature of 45 °C (77.87 U/ml, an agitation rate of 100 rpm (80.40 U/ml, pH 5.0 (80.66 U/ml and with glucose as a original carbon source (80.6 U/ml and ammonium sulphate as a original nitrogen source (80.92 U/ml. Characterization of the partially purified acid phosphatase showed maximum activity at pH 5.0 (85.6 U/ml, temperature of 45 °C (97.87 U/ml and substrate concentration of 2.5 mg/ml (92.7 U/ml. Hence the present phosphate solubilizing and acid phosphatase production activity of the bacterium may have probable use for future industrial, agricultural and biotechnological application.

  9. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo.Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice.Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  10. Extracellular release of acid phosphatase from blood stream forms ...

    African Journals Online (AJOL)

    Acid phosphatase (ACP) activity was demonstrated in blood stream form of Trypanosome brucei brucei harvested from infected Wister rats by Ion Exchange DEAE Cellulose 52 chromatography. Whole parasite extract (WPE) and Excretory Secretory Extract (ESE) were prepared and analyzed for acid phosphatase activity.

  11. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility.

    Science.gov (United States)

    Huang, Ziliang; Zhang, Chong; Chen, Shuo; Ye, Fengchun; Xing, Xin-Hui

    2013-03-14

    Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs.

  12. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanisław Flasiński

    2014-01-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  13. Changes of Available Phosphorus and phosphatase activity in the ...

    African Journals Online (AJOL)

    There were significant differences between phosphatase activities in rhizosphere of plant species. The highest and lowest means of alkaline phosphatase activity were found in rhizosphere of Trifolium repens and. Ocimum basilicum respectively. The highest and lowest means of acid phosphatase activity were found in ...

  14. Purification of acidic phosphatase from mustard seedlings

    OpenAIRE

    sprotocols

    2014-01-01

    ### INTRODUCTION Phosphate esters are widely distributed in any organism. Nucleic acids, metabolic intermediates like glucose-6-phosphate, energy-rich substrates (AMP, creatine phosphate) are some obvious examples. While many metabolic intermediates are activated through the transfer of phosphate groups (e.g., by kinases) it is equally important that phosphate esters can also be rapidly broken down. The hydrolytic removal of phosphate groups from phosphoesters is catalyzed by phosphatases...

  15. Low Soil Phosphorus Availability Increases Acid Phosphatases Activities and Affects P Partitioning in Nodules, Seeds and Rhizosphere of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Drevon

    2012-06-01

    Full Text Available The effect of phosphorus (P deficiency on phosphatases activities in N2-fixing legumes has been widely studied in hydroponic culture. However, the response of acid phosphatase (APase and phytase in rhizosphere, nodules and seeds of Phaseolus vulgaris to low soil’s P-availability is not yet fully understood. In this study, six genotypes of N2-fixing P. vulgaris were grown under contrasting soil P-availabilities; i.e., low  (4.3 mg P kg−1 and sufficient (16.7 mg P kg−1 in the Haouz region of Morocco. At flowering and maturity stages, plants were harvested and analyzed for their phosphatases activities, growth and P content. Results show that, low P decreased nodulation, growth, P uptake and N accumulation in all the genotypes, but to a greater extent in the sensitive recombinant inbreed line 147. In addition, while seed P content was slightly reduced under low P soil; a higher P was noticed in the Flamingo and Contender large seeded-beans (6.15 to 7.11 mg g−1. In these latter genotypes, high APase and phytase activities in seeds and nodules were associated with a significant decline in rhizosphere’s available P. APase activity was mainly stimulated in nodules, whereas phytase activity was highly induced in seeds (77%. In conclusion, the variations of APase and phytase activities in nodules and seeds depend on genotype and can greatly influence the internal utilization of P, which might result in low P soil tolerance in N2-fixing legumes.

  16. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia)

    OpenAIRE

    Irena Lorenc-Kubis

    2014-01-01

    Changes in protein content and acid phosphatase activity were followed during germination (imbition through seedlings development) in extracts from cotyledons of squash (Cucurbita ficifolia). It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition. Acid phosphates were isolated from cotyledons of seeds and from 6-, 10- and 22-days old seedlings by extraction the proteins with 0.1 M acetate buffer pH 5.1, precipitation ...

  17. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    Science.gov (United States)

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  18. Trypanosoma cruzi: experimental Chagas' disease in Rhesus monkeys. II. Ultraestructural and cytochemical studies of peroxidase and acid phosphatase activities

    Directory of Open Access Journals (Sweden)

    Maria de Nazareth Leal de Meirelles

    1990-06-01

    Full Text Available Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.

  19. Amylase and acid phosphatase activity in potato tubers treated with gibberellic acid and stored at 2°C and 8°C

    Directory of Open Access Journals (Sweden)

    M. Bielińska-Czarnecka

    2015-06-01

    Full Text Available Amylase activity was higher in tubers stored at 2°C and mare marked in the soaked ones (both in water and in GA3. In the late and difficult-sprouting cv. Uran, sokaing resulted in increased amylolytic activity also at 8°C stored tubers. On the contrary, the acid phosphatase activity was a little higher at 8°C than at 2°C stored tubers. At the former temperature two peaks of activity were marked:, in November–December and February–March.

  20. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia)

    National Research Council Canada - National Science Library

    Irena Lorenc-Kubis

    2014-01-01

    ... (imbition through seedlings development) in extracts from cotyledons of squash (Cucurbita ficifolia). It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition...

  1. Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring.

    Science.gov (United States)

    Qian, Zhaosheng; Chai, Lujing; Zhou, Qian; Huang, Yuanyuan; Tang, Cong; Chen, Jianrong; Feng, Hui

    2015-07-21

    A reversible fluorescence nanoswitch by integrating carbon quantum dots nanoassembly and pyrophosphate ion is developed, and a reliable real-time fluorescent assay for acid phosphatase (ACP) activity is established on the basis of the fluorescence nanoswitch. Carbon quantum dots (CQDs) abundant in carboxyl groups on the surface, nickel(II) ion and pyrophosphate ion comprise the fluorescent nanoswitch, which operates in the following way: the nanoassembly consisting of CQDs and nickel ions can be triggered by pyrophosphate ion serving as an external stimulus. At the same time, the fluorescence nanoswitch switches between two fluorescence states (OFF and ON) accompanying shifts in their physical states aggregation and disaggregation. Based on the nanoswitch, the introduction of ACP leads to breakdown of pyrophosphate ions into phosphate ions and resultant fluorescence quenching due to catalytic hydrolysis of ACP toward pyrophosphate ions (PPi). Quantitative evaluation of ACP activity in a broad range from 18.2 U/L to 1300 U/L, with a detection limit of 5.5 U/L, can be achieved in this way, which endows the assay with sufficiently high sensitivity for practical detection in human serum and seminal plasma.

  2. [ATPase and phosphatase activity of drone brood].

    Science.gov (United States)

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  3. Anti-thyroid and antifungal activities, BSA interaction and acid phosphatase inhibition of methimazole copper(II) complexes.

    Science.gov (United States)

    Urquiza, Nora M; Islas, María S; Ariza, Santiago T; Jori, Nadir; Martínez Medina, Juan J; Lavecchia, Martín J; López Tévez, Leonor L; Lezama, Luis; Rojo, Teófilo; Williams, Patricia A M; Ferrer, Evelina G

    2015-03-05

    It has been reported that various metal coordination compounds have improved some biological properties. A high activity of acid phosphatase (AcP) is associated to several diseases (osteoporosis, Alzheimer's, prostate cancer, among others) and makes it a target for the development of new potential inhibitors. Anti-thyroid agents have disadvantageous side effects and the scarcity of medicines in this area motivated many researchers to synthesize new ones. Several copper(II) complexes have shown antifungal activities. In this work we presented for a first time the inhibition of AcP and the anti-thyroid activity produced by methimazole-Cu(II) complexes. Cu-Met ([Cu(MeimzH)2(H2O)2](NO3)2·H2O) produces a weak inhibition action while Cu-Met-phen ([Cu(MeimzH)2(phen)(H2O)2]Cl2) shows a strong inhibition effect (IC50 = 300 μM) being more effective than the reported behavior of vanadium complexes. Cu-Met-phen also presented a fairly good anti-thyroid activity with a formation constant value, Kc=1.02 × 10(10)M(-1) being 10(6) times more active than methimazole (Kc = 4.16 × 10(4)M(-1)) in opposition to Cu-Met which presented activity (Kc=9.54 × 10(3)M(-1)) but in a lesser extent than that of the free ligand. None of the complexes show antifungal activity except Cu-phen (MIC = 11.71 μgmL(-1) on Candidaalbicans) which was tested for comparison. Besides, albumin interaction experiments denoted high affinity toward the complexes and the calculated binding constants indicate reversible binding to the protein. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  5. Effect of detergent ''solo'' and crude oil on the activities of cathepsin D and acid phosphatase in hemolymph of Crangon crangon L

    Energy Technology Data Exchange (ETDEWEB)

    Drewa, G.; Zbytnieski, Z.; Pautsch, F.

    1977-01-01

    Study was made of the activity of cathepsin D (EC 3.4.23.) and acid phosphatase (EC 3.1.3.2.) in hemolymph of Crangon crangon L. shrimp bred during 72 h in solutions of detergent ''Solo'' and crude oil at concentrations of 10, 50, and 100 mg/l. Both the detergent and crude oil at all concentrations reduced the activity of acid phosphatase after 12 h. On the other hand, the activity of cathepsin D increased after 12 h. After 72 h of the experiment the activities of both enzymes returned to the control levels. It is assumed that the detergent and crude oil cause a change in the permeability of the lysosomal membranes.

  6. High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity.

    Science.gov (United States)

    Ivanov, Delyan P; Grabowska, Anna M; Garnett, Martin C

    2017-01-01

    Mainstream adoption of physiologically relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price, and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily available reagents and open-source software to analyze spheroid volume, metabolism, and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination-for both single images and images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyze plate uniformity (such as edge effects and systematic seeding errors), detect outliers, and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time.

  7. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  8. EFEITO DE FATORES AMBIENTAIS DA FOSFATASE ÁCIDA NO FEIJOEIRO EFFECTS OF ENVIRONMENTAL FACTORS ON THE ACTIVITY OF ACID PHOSPHATASE IN COMMON BEAN

    Directory of Open Access Journals (Sweden)

    José Renato de Freitas

    2007-09-01

    Full Text Available

    Plantas com 15 dias após a germinação foram colhidas em experimentos de campo com a finalidade de conhecer o pH, temperatura e tempo necessários para melhor expressar a atividade da fosfatase ácida em três variedades do feijoeiro (Phaseolus vulgaris L., Carioca, EMP-84 e CNF-l0, na presença e na ausência de fósforo. Os maiores valores de atividade da fosfatase ácida foram observadas quando as plantas foram colocadas em solução em pH 5,5 durante 120 minutos à temperatura de 30°C. A utilização de substâncias tamponantes como PNPP + Triton X-100 expressaram melhor a atividade da fosfatase ácida. As condições de vácuo constituíram um fator positivo para a atividade da fosfatase ácida. As plantas desenvolvidas sob estresse hídrico apresentaram menor atividade da fosfatase ácida. A relação folha-raiz da atividade da fosfatase ácida atingiu 5,72 para a variedade Carioca, 4,91 para a variedade EMP-84 e 4,36 para a variedade CNF-10.

    PALAVRAS-CHAVE: pH; temperatura; solução tamponada; tempo de reação; Phaseolus vulgaris.

    Plants with 15 days after the germination were picked in field experiments with the purpose of knowing the best pH, temperature and the necessary time to express the activity of the phosphatase acid in three bean varieties (Phaseolus vulgaris L., Carioca, EMP-84 and CNF-10, in the presence and in the phosphorus absence. The largest values of activity of the phosphatase acid were observed when the plants were tested in pH 5.5 solution during 120 minutes at the temperature of 30°C. The use of buffer substances as PNPP + Triton X-100 expressed better the activity of the phosphatase acid. The vacuum condition constituted a positive factor to express the activity of the phosphatase acid. The plants

  9. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  10. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress.

    Science.gov (United States)

    Alarcón, Alejandro; Davies, Frederick T; Egilla, Johnatan N; Fox, Theodore C; Estrada-Luna, Arturo A; Ferrera-Cerrato, Ronald

    2002-01-01

    Arbuscular mycorrhizal fungi (AMF) are able to increase root enzymatic activity of acid and alkaline phosphatases. However, the role of AMF on phosphatase activity has not been reported in papaya (Carica papaya L.), which is frequently established at places with soil phosphorus (P) deficiencies. The goals of this research were to determine the effect of Glomus claroideum (Gc), and plant growth promoting rhizobacterium Azospirillum brasilense strain VS7 [Ab]) on root phosphatase activity and seedling growth of Carica papaya L. cv. Red Maradol under low P conditions. There were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab, and 4) non-inoculated seedlings. Plants were established in a coarse sand:sandy loam substrate under P-limitation (11 microg P ml(-1)), supplied with a modified Long Ashton Nutrient Solution. Seedling growth was severely reduced by low P. Gc+Ab inoculated plants had greater total dry matter and leaf area than non-colonized plants. Gc-inoculated plants had greater leaf area than non-colonized plants. Treatments did not differ in leaf area ratio, specific leaf area and, total chlorophyll content. There was a non-significant effect on stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal colonization enhanced the bacterial population 3.4-fold in the Gc+Ab treatment compared with the population quantified in Ab treatment. Soluble and extractable root acid phosphatase activity (RAPA) was higher in Gc inoculated plants. We discussed on the possible relation among both inoculated microorganisms and also with the P-limitation which plants were established.

  11. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent Mn(II)Mn(II) active site.

    Science.gov (United States)

    Mitić, Natasa; Noble, Christopher J; Gahan, Lawrence R; Hanson, Graeme R; Schenk, Gerhard

    2009-06-17

    The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in that it appears to have a specific requirement for manganese, forming a unique Fe(III)-mu-(O)-Mn(II) center under catalytically optimal conditions (Schenk et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 273). Herein, we demonstrate, with detailed electron paramagnetic resonance (EPR) spectroscopic and kinetic studies, that in this enzyme the chromophoric Fe(III) can be replaced by Mn(II), forming a catalytically active, unprecedented antiferromagnetically coupled homodivalent Mn(II)-mu-(H)OH-mu-carboxylato-Mn(II) center in a PAP. However, although the enzyme is still active, it no longer functions as an acid phosphatase, having optimal activity at neutral pH. Thus, PAPs may have evolved from distantly related divalent dinuclear metallohydrolases that operate under pH neutral conditions by stabilization of a trivalent-divalent metal-ion core. The present Mn(II)-Mn(II) system models these distant relatives, and the results herein make a significant contribution to our understanding of the role of the chromophoric metal ion as an activator of the nucleophile. In addition, the detailed analysis of strain broadened EPR spectra from exchange-coupled dinuclear Mn(II)-Mn(II) centers described herein provides the basis for the full interpretation of the EPR spectra from other dinuclear Mn metalloenzymes.

  12. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Changes in protein content and acid phosphatase activity were followed during germination (imbition through seedlings development in extracts from cotyledons of squash (Cucurbita ficifolia. It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition. Acid phosphates were isolated from cotyledons of seeds and from 6-, 10- and 22-days old seedlings by extraction the proteins with 0.1 M acetate buffer pH 5.1, precipitation with ethanol and by affinity chromatography on con A-Sepharose. Two glycoprotein enzymes AcPase Ba and AcPase Bb which differ in their affinity to immobilized con A were obtained. Both acid phosphatates retained the enzyme activity after binding to free con A. Rocket affinity electrophoresis of AcPase Ba and AcPase Bb, isolated from cotyledons of seeds and seedlings, revealed differences in their ability to bind to con A during seeds germination and seedling develop-ment indicating changes in their sugar component. Con A was found to activate both enzymes. The enzymes cross-reacted with monospecific antibodies raised against grass seed acid phosphatate Ba indicating an antigenic relationship between squash and grass acid phosphatases.

  13. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  14. Direct determination of phosphatase activity from physiological substrates in cells.

    Science.gov (United States)

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  15. An acid phosphatase from Aspergillus ficuum has homology to Penicillium chrysogenum PhoA.

    Science.gov (United States)

    Ehrlich, K C; Montalbano, B G; Mullaney, E J; Dischinger, H C; Ullah, A H

    1994-10-14

    Three secreted acid phosphatases had previously been characterized from Aspergillus ficuum grown under conditions of limited phosphate. One of these could not be readily separated from AFPhyB, a pH 2.5 optimum acid phosphatase with phytase activity. From extensive protein sequence analysis and subsequent cloning of the gene, we have shown that the AFPhyB protein fraction contains a fourth secreted acid phosphatase (AFPhoA) that has 64% homology to a phosphate-repressible acid phosphatase from Penicillium chrysogenum. Garnier plot analysis revealed that the putative phosphate catalytic domain of AFPhoA at His215Asp216 is similar to those of other acid phosphatases, but that AFPhoA lacks the phosphate-binding motif RHGXRXP of known histidine phosphatases.

  16. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  17. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    DEFF Research Database (Denmark)

    Madsen, Claus Krogh; Dionisio, Giuseppe; Holme, Inger

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley...... maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci...... on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding...

  18. [Localization of alkaline and acid phosphatases in the testes and epididymis of calves during postnatal development].

    Science.gov (United States)

    Semkov, M; Kovachev, K; Dzhurova, I

    1984-01-01

    A histochemical investigation was carried out after Gomori's method on the activity and localization of the alkaline and acid phosphatase in the testis and epididymis of 28 calves of the Black-and-white breed as dependent on their age--from the first day following birth to the age of 12 months, divided into 14 test groups. It was found that both enzymes had analogous localization in the testis as well as in the various portions of the epididymis, however, the activity of the alkaline phosphatase was higher as compared to that of the acid phosphatase. While in the interstitium of the testis and epididymis on the 1st, 15th, and 30th day following birth the alkaline phosphatase had low activity the acid phosphatase on the same dates was found in the epididymis only.

  19. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    Science.gov (United States)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  20. Metal-Ion Mutagenesis: Conversion of a Purple Acid Phosphatase from Sweet Potato to a Neutral Phosphatase with the Formation of an Unprecedented Catalytically Competent MnIIMnII Active Site

    OpenAIRE

    Mitic, Natasa; Noble, Christopher J.; Gahan, Lawrence R; Hanson, Graeme R.; Schenk,Gerhard

    2009-01-01

    The currently accepted paradigm is that the purple acid phosphatases (PAPs) require a heterovalent, dinuclear metal-ion center for catalysis. It is believed that this is an essential feature for these enzymes in order for them to operate under acidic conditions. A PAP from sweet potato is unusual in that it appears to have a specific requirement for manganese, forming a unique FeIII-μ-(O)-MnII center under catalytically optimal conditions (Schenk et al. Proc. Natl. Acad. Sci. U.S....

  1. Demonstration of multiple forms of acid phosphatase in hemolymph of the African snail, Archachatina marginata.

    Science.gov (United States)

    Ebong, B; Glew, R H

    1979-01-01

    1. Hemolymph from the giant African snail Archachatina marginata has been analyzed for its content of certain lysosomal hydrolases and shown to contain substantial quantities of acid phosphatase (285 units/ml) hexosaminidase (512 units per ml) and beta-glucuronidase (28 units/ml). 2. Hemolymph acid phosphatase can be fractionated into 6 active components by DEAE-Sephadex chromatography. 3. Some of the acid phosphatase species can be distinguished on the basis of heat stability, pH dependency and sensitivity to inhibitors including phosphate, L(+) tartrate, fluoride, formaldehyde and 1.10 phenanthroline.

  2. Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS.

    Science.gov (United States)

    Aguirre-García, M M; Cerbón, J; Talamás-Rohana, P

    2000-04-24

    Entamoeba histolytica contains and secretes acid phosphatase, which has been proposed as a virulence factor in some pathogenic microorganisms. In this work, we purified and characterised a membrane-bound acid phosphatase (MAP) from E. histolytica HM-1:IMSS and studied the effect of different chemical compounds on the secreted acid phosphatase and MAP activities. MAP purification was accomplished by detergent solubilisation, and affinity and ion exchange chromatographies. The enzyme showed a pI of 5.5-6.2, an optimum pH of 5.5, and a Km value of 1.14 mM with p-nitrophenyl phosphate.

  3. Fluorescence quenching based alkaline phosphatase activity detection.

    Science.gov (United States)

    Mei, Yaqi; Hu, Qiong; Zhou, Baojing; Zhang, Yonghui; He, Minhui; Xu, Ting; Li, Feng; Kong, Jinming

    2018-01-01

    Simple and fast detection of alkaline phosphatase (ALP) activity is of great importance for diagnostic and analytical applications. In this work, we report a turn-off approach for the real-time detection of ALP activity on the basis of the charge transfer induced fluorescence quenching of the Cu(BCDS)22- (BCDS = bathocuproine disulfonate) probe. Initially, ALP can enzymatically hydrolyze the substrate ascorbic acid 2-phosphate to release ascorbic acid (AA). Subsequently, the AA-mediated reduction of the Cu(BCDS)22- probe, which displays an intense photoluminescence band at the wavelength of 402nm, leads to the static quenching of fluorescence of the probe as a result of charge transfer. The underlying mechanism of the fluorescence quenching was demonstrated by quantum mechanical calculations. The Cu(BCDS)22- probe features a large Stokes shift (86nm) and is highly immune to photo bleaching. In addition, this approach is free of elaborately designed fluorescent probes and allows the detection of ALP activity in a real-time manner. Under optimal conditions, it provides a fast and sensitive detection of ALP activity within the dynamic range of 0-220mUmL-1, with a detection limit down to 0.27mUmL-1. Results demonstrate that it is highly selective, and applicable to the screening of ALP inhibitors in drug discovery. More importantly, it shows a good analytical performance for the direct detection of the endogenous ALP levels of undiluted human serum and even whole blood samples. Therefore, the proposed charge transfer based approach has great potential in diagnostic and analytical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Activities of alkaline phosphatase, glutamate oxaloacetate ...

    African Journals Online (AJOL)

    Alkaline phosphatase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities were assessed in rats highly infected with federe strain of Trypanosoma brucei and treated with honey. Therapeutic effect of honey on parasitaemia was also assessed. Results show an extension in the life span of ...

  5. Replica plate screening method for detecting phosphatase activity in ...

    African Journals Online (AJOL)

    ... of phosphatase activity with colony development, and the ability to distinguish between activity arising from cell-bound and cell-free enzyme. Phosphatase activity was confrrmed by staining the replica plate with fast blue RR salt. This enzyme probe was successfully used to detect phosphatase producing basidiomycetes.

  6. [Effects of infrasound on activities of 3beta hydroxysteroid dehydrogenase and acid phosphatase of polygonal cells in adrenal cortex zona fasciculate in mice].

    Science.gov (United States)

    Dang, Wei-min; Wang, Sheng; Tian, Shi-xiu; Chen, Bing; Sun, Fei; Li, Wei; Jiao, Yan; He, Li-hua

    2007-02-01

    To explore the biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation in mice. The biological effects of infrasound on the activities of 3beta hydroxysteroid dehydrogenase (3-betaHSDH) and acid phosphatase(ACP) of the polygonal cells in adrenal cortex zona fasciculate were observed when exposure to 8 and 16 Hz infrasound at 80, 90, 100, 110, 120 and 130 dB for 1 day, 7 days and 14 days or 14 days after the exposure. When exposure to 8 Hz infrasound, the enzyme activities of 3-betaHSDH increase as the sound pressure levels increase. Only when the sound pressure levels reach 130 dB, the enzyme activities began to decrease exceptionally. When exposure to 16 Hz, 80 dB infrasound, no significant difference between the treatment and control group in the activities of 3-betaHSDH could be observed, but the injury of the polygonal cells had appeared. When exposure to 16 Hz, 100 dB infrasound, the activities of 3-betaHSDH started to increase. The cell injury still existed. When exposed to 16 Hz, 120 dB infrasound, the local tissue damage represented. Fourteen days after the mice exposure to 8 Hz, 90 dB and 130 dB infrasound for 14 days continuously, the local tissue injury of the adrenal cortex zona fasciculation began to recover at certain extent, but the higher the exposure sound pressure level, the poorer the tissue recovery. The biological effects of infrasound on the polygonal cells in adrenal cortex zona fasciculation response to the frequency of the infrasound are found at certain action strength range, but this characteristic usually is covered by the severe tissue injury. When exposure to infrasound is stopped for a period of time, the local tissue injury of the adrenal cortex zona fasciculation could recovers at certain extent, but the higher the exposure sound pressure level, the more poorer the tissue recovery.

  7. [Alkaline phosphatase activity and properties in the organs of swine].

    Science.gov (United States)

    Antonov, S

    1980-01-01

    The activity and the physico-chemical properties of alkaline phosphatase in the liver, lung, spleen, kidney, intestine, bone and placenta of a total of 24 clinically healthy swine was investigated. Liver, spleen, kidney, lung, bone and placental alkaline phosphatase proved to be thermostable, not sensitive to 1-phenylalanine, but sensitive to 1-arginine, 1-homoarginine and imidazol. Intestinal alkaline phosphatase is thermostable, sensitive to 1-phenylalanine, 1-arginine, 1-homoarginine and imidazol resistant. Urea inhibits more bone alkaline phosphatase and less alkaline phosphatase of the remaining organs. Following electrophoresis on agarose gel alkaline phosphatase of swine liver and kidney is divided into two fractions, while alkaline phosphatase of the remaining organs has only one fraction. Liver alkaline phosphatase is fastest, while kidney alkaline phosphatase is the slowest.

  8. Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Seung Ho Baek

    2017-02-01

    Full Text Available Ginkgolic acid C 17:1 (GAC 17:1 extracted from Ginkgo biloba leaves, has been previously reported to exhibit diverse antitumor effect(s through modulation of several molecular targets in tumor cells, however the detailed mechanism(s of its actions still remains to be elucidated. Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that regulates various critical functions involved in progression of diverse hematological malignancies, including multiple myeloma, therefore attenuating STAT3 activation may have a potential in cancer therapy. We determined the anti-tumor mechanism of GAC 17:1 with respect to its effect on STAT3 signaling pathway in multiple myeloma cell lines. We found that GAC 17:1 can inhibit constitutive activation of STAT3 through the abrogation of upstream JAK2, Src but not of JAK1 kinases in U266 cells and also found that GAC can suppress IL-6-induced STAT3 phosphorylation in MM.1S cells. Treatment of protein tyrosine phosphatase (PTP inhibitor blocked suppression of STAT3 phosphorylation by GAC 17:1, thereby indicating a critical role for a PTP. We also demonstrate that GAC 17:1 can induce the substantial expression of PTEN and SHP-1 at both protein and mRNA level. Further, deletion of PTEN and SHP-1 genes by siRNA can repress the induction of PTEN and SHP-1, as well as abolished the inhibitory effect of drug on STAT3 phosphorylation. GAC 17:1 down-regulated the expression of STAT3 regulated gene products and induced apoptosis of tumor cells. Overall, GAC 17:1 was found to abrogate STAT3 signaling pathway and thus exert its anticancer effects against multiple myeloma cells.

  9. Identification of a histidine acid phosphatase (phyA)-like gene in Arabidopsis thaliana.

    Science.gov (United States)

    Mullaney, E J; Ullah, A H

    1998-10-09

    A close examination of the protein sequence encoded by the Arabidopsis thaliana gene F21M12.26 reveals the gene product to be a phosphomonoesterase, acid optimum (EC 3.1.3.2). A subclass of this broad acid phosphatase is also known as 'histidine acid phosphatase. ' This is the first sequence-based evidence for a 'histidine acid phosphatase' in a dicotyledon. One important member of this class of enzymes is Aspergillus niger (ficuum) phytase, which came into prominence for its commercial application as a feed additive. The putative protein from A. thaliana gene F21M12.26 shares many important features of Aspergillus phytase, namely, size, active-site sequence, catalytic dipeptide and ten cysteine residues located in the key areas of the molecule, but lacks all nine N-glycosylation sites. Copyright 1998 Academic Press.

  10. Proton shuttles and phosphatase activity in soluble epoxide hydrolase.

    Science.gov (United States)

    De Vivo, Marco; Ensing, Bernd; Dal Peraro, Matteo; Gomez, German A; Christianson, David W; Klein, Michael L

    2007-01-17

    Recently, a novel metal Mg2+-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein, we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. On the basis of experimental results, a two-step mechanism has been proposed and herein investigated: (1) phosphoenzyme intermediate formation and (2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water bridge (WB). These WB-mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases.

  11. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica.

    Science.gov (United States)

    Seshagiri, Swetha; Tallapragada, Padmavathi

    2017-01-02

    Phosphorus is an essential plant macronutrient present in the soil. Only a small portion of phosphorus in soil is taken up by plants and the rest of it becomes unavailable to plants as it is immobilized. Phosphate solubilizing microorganisms play a vital role in converting the insoluble form of phosphates to the soluble form. The present paper reports the solubilization of tricalcium phosphate, rock phosphate, single super phosphate, zinc phosphate and aluminum phosphate by Piriformospora indica with the production of organic acids as well as acid phosphatase. The amount of phosphate released (4.73 mg ml-1) and titratable acidity (0.12%) was found to be the highest in the case of single super phosphate as compared to other phosphate sources. High performance liquid chromatography (HPLC) revealed the presence of oxalic acid, lactic acid, citric acid and succinic acid in the media. Highest phosphatase activity was observed with the cell membrane extract of the organism in the presence of zinc phosphate.

  12. Biomarkers for the activation of calcium metabolism in dairy cows: elevation of tartrate-resistant acid phosphatase activity by lowering dietary cation-anion difference is associated with the prevention of milk fever.

    Science.gov (United States)

    Kurosaki, Naotoshi; Yamato, Osamu; Sato, Jun; Naito, Yoshihisa; Mori, Fuminobu; Imoto, Seiichi; Maede, Yoshimitsu

    2007-03-01

    In our previous study, it was demonstrated that the administration of anion salts, which slightly lower the dietary cation-anion difference (DCAD), in the prepartum period is safe and effective for preventing milk fever in multiparous cows. In the present study, several biomarkers, which might show activation of Ca metabolism, were analyzed using stored samples in the previous study to investigate the mechanism of the preventive effect on milk fever by lowering DCAD. Changes in bone-specific alkaline phosphatase activity, osteocalcin and insulin-like growth factor I concentrations in serum were almost the same among the three groups of multiparous cows with or without the oral administration of anion salts, while the levels of these serum biomarkers in the group of primiparous cows (heifer group) were much higher compared with those in the three multiparous groups throughout the experimental period. Urinary deoxypyridinoline excretion was not a useful biomarker for dairy cows because it hardly changed during the peripartum period in all groups. However, serum tartrate-resistant acid phosphatase (TRAP) activity, which is known as a biomarker of osteoclast activity, was well associated with the administration of anion salts lowering DCAD because among the three multiparous groups, only the group of multiparous cows fed the anion salts (anion group) showed an increased level, which rose to the level in the heifer group, and was markedly higher than those in the other control groups of multiparous cows. The increased activity of serum TRAP in the anion group suggested that Ca in the plasma pool was mobilized smoothly from bone-bound Ca via mature osteoclasts at parturition, which might be due to prior activation under mild acidosis induced by slightly lowering DCAD. Therefore, TRAP was the best biomarker to monitor the activation of Ca metabolism in dairy cows fed anion salts.

  13. Yeast Acid Phosphatase in a Student Laboratory.

    Science.gov (United States)

    Barbaric, Sloeodan; Ries, Blanka

    1988-01-01

    Examines the influence of enzyme and substrate concentrations, pH, temperature, and inhibitors on catalytic activity. Follows the influence of different phosphate concentrations in the growth medium on enzyme activity. Studies regulation of enzyme synthesis by repression. Includes methodology for six experiments. (MVL)

  14. Phosphatase activity as a criterion for differentiation of oral mycoplasmas.

    OpenAIRE

    Shibata, K.; Totsuka, M; Watanabe, T.

    1986-01-01

    Phosphatase activity was found to be applicable as a criterion for the differentiation of Mycoplasma salivarium and Mycoplasma orale, predominant constituents of oral mycoplasmal flora. Therefore, a simple procedure for the phosphatase activity assay was established as a screening test for the differentiation of oral mycoplasmas.

  15. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover

    2003-06-01

    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  16. [Biological profile of tartrate-resistant acid phosphatase as a marker of bone resorption].

    Science.gov (United States)

    Rico, H; Iritia, M; Arribas, I; Revilla, M

    1990-12-01

    Tartrate-resistant serum acid phosphatase was measured in 123 subjects, 80 of which were normal and the rest pathologic, in order to define the profile and value of this parameter as a biological marker of osteoclastic activity. Normal subjects were divided into age groups based on the period where skeletal growth ends (under 20 years), at the age of menopause in women (50 years, between 20 and 50 years) and those over 50 years. There was an increase in tartrate-resistant serum acid phosphatase coinciding with puberty and no sex differences were observed after the 50 year mark, when women showed higher values than men (p less than 0.001). Such tartrate-resistant serum acid phosphatase increase, is reflected as higher values in the 50 year group than in the 20 to 50 year group (p less than 0.001), the only age limit where a negative significant correlation between tartrate-resistant serum acid phosphatase values and age could be observed (p less than 0.05). Values were higher up to the age of 20 years (p less than 0.001) than in any other older age group. Levels increased significantly (p less than 0.001 for both groups) in post-menopausal osteoporosis (n = 20) and in Paget's disease of bone (n = 15), and decreased significantly (p less than 0.05) in imperfect osteogenesis (n = 8), thus revealing its value as a biological marker of osteoclastic activity.

  17. Email Changes of Available Phosphorus and phosphatase activity in ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: A large proportion of P is found in organic forms. Phosphatase, plays an essential role in the mineralization of organic phosphorus. Agronomy species can affect phosphatase activity in rhizosphere. The aim of our study was to determine the effects of some agronomy species (Gramineae, Leguminose, ...

  18. Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site.

    Science.gov (United States)

    Freeman, Ashalla M; Mole, Beth M; Silversmith, Ruth E; Bourret, Robert B

    2011-09-01

    Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  19. APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity.

    Science.gov (United States)

    Kaur, Parvinder; Lingner, Anja; Singh, Bijinder; Böer, Erik; Polajeva, Jelena; Steinborn, Gerhard; Bode, Rüdiger; Gellissen, Gerd; Satyanarayana, Tulasi; Kunze, Gotthard

    2007-01-01

    The extracellular acid phosphatase-encoding Arxula adeninivorans APHO1 gene was isolated using degenerated specific oligonucleotide primers in a PCR screening approach. The gene harbours an ORF of 1449 bp encoding a protein of 483 amino acids with a calculated molecular mass of 52.4 kDa. The sequence includes an N-terminal secretion sequence of 17 amino acids. The deduced amino acid sequence exhibits 54% identity to phytases from Aspergillus awamori, Asp. niger and Asp. ficuum and a more distant relationship to phytases of the yeasts Candida albicans and Debaryomyces hansenii (36-39% identity). The sequence contains the phosphohistidine signature and the conserved active site sequence of acid phosphatases. APHO1 expression is induced under conditions of phosphate limitation. Enzyme isolates from wild and recombinant strains with the APHO1 gene expressed under control of the strong A. adeninivorans-derived TEF1 promoter were characterized. For both proteins, a molecular mass of approx. 350 kDa, corresponding to a hexameric structure, a pH optimum of pH 4.8 and a temperature optimum of 60 degrees C were determined. The preferred substrates include p-nitrophenyl-phosphate, pyridoxal-5-phosphate, 3-indoxyl-phosphate, 1-naphthylphosphate, ADP, glucose-6-phosphate, sodium-pyrophosphate, and phytic acid. Thus the enzyme is a secretory acid phosphatase with phytase activity and not a phytase as suggested by strong homology to such enzymes.

  20. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Hume David A

    2008-09-01

    Full Text Available Abstract Background Tartrate-resistant acid phosphatases (TRAcPs, also known as purple acid phosphatases (PAPs, are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

  1. Phosphatase active antigens in sea urchin eggs and embryos. II. A comparison between the activities in unfertilized eggs and plutei.

    Science.gov (United States)

    Westin, M

    1975-06-01

    Phosphatase activities in sea urchin eggs and plutei were investigated by means of histochemical staining of immunoprecipitates. Two protein fractions were obtained by extraction in a hypotonic medium and by detergent treatment of the residual pellet. Three distinctly different phosphatase activities were discerned, nucleoside diphosphatase (EC 3.6.1.6.), acid phosphatase (EC 3.1.3.2.) and alkaline phosphatase (EC 3.1.3.1.). The nucleoside diphosphatase activity, which was confined to one antigen, was present in both water soluble and detergent extracts and at roughly the same concentration in eggs and plutei. By means of a monospecific antiserum the immunological identify of this antigen was established in all instances. The acid phosphatase activity, which was displayed by ten detergent extracted antigens in eggs, was only found in five detergent extracted antigens in plutei. This decrease in number of enzyme active antigens was also reflected by a general decrease in number of enzyme active antigens was also reflected by a general decrease in activity as assessed by quantitative determinations. Furthermore, by means of absorbed antisera it was established that two or three of the acid phosphatase active antigens were "egg specific". Another acid phosphatase active antigen, which was common to both developmental stages, was investigated by a monospecific antiserum. While this antigen was found in both soluble fractions, it was only enzymatically active when extracted with detergent. Alkaline phosphatase active antigens were only found in the detergent extract of plutei. However, immunoprecipitates with this activity appeared both with antiserum against unfertilized eggs and with antiserum against plutei. This suggests that the egg contained the antigens in an enzymatically inactive form.

  2. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  3. [Comparative-enzymologic study of phosphatase activity of hydrobionts from Pacific Ocean].

    Science.gov (United States)

    Rozengart, E V; Basova, N E

    2009-01-01

    Activities of acid phosphatase are studied with use as substrates of phenyl phosphate, alpha- and beta-glycerophosphates in various organs and tissues of a large group of industrial hydrobionts of the Pacific basin (12 fish species, 7 invertebrate species. and one mammalian species) and of alkaline phosphatase in various organs of the Commander (Berryteuthis magister) and the New Zealand (Nototodarus sloani sloani) squids. Intertissue and interspecies differences have been revealed in the substrate and inhibitory specificity of the studied enzyme preparations. The method of isolation and a partial purification of preparations of acid phosphatase from tissue of gonads and of alkaline phosphatase from tissues of kidney and liver of individuals of industrial squid species is described.

  4. Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Atlung, Tove

    1996-01-01

    as during entry into stationary phase. During oxygen limiting conditions the stationary phase induction is partially dependent on ArcA. The alternative sigma factor SigmaS has limited influence on the transcription of the appY gene during entry into stationary phase, and no effect on the induction.......ArcA and AppY activated transcription of the cyx-appA operon during entry into stationary phase and under anaerobic growth conditions. The expression of the cyx-appA operon was affected by the anaerobic energy metabolism.The presence of the electron acceptors nitrate and fumarate repressed the expression...... by phosphate starvation.Lone Brøndsted and Tove Atlung. 1996. Effect of growth conditions on the expression of the acid phosphatase operon (cyx-appA) and the appY gene, which encodes a transcriptional activator for expression of the anaerobic and growth phase activator AppY of Escherichia coli. J. Bacteriol...

  5. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  6. Retrieval of lysosomal membrane and acid phosphatase from phagolysosomes of Paramecium caudatum

    Science.gov (United States)

    1984-01-01

    Little is known about the fate of lysosomal membrane in phagocytic cells. Because the age of the digestive vacuoles in Paramecium caudatum can be easily determined, we have been able to study the dynamic membrane events in the older vacuoles. Late in the phagolysosomal stage (DV-III) the vacuole membrane undergoes a burst of tubule formation. The tubules expand into vesicles which have characteristics resembling lysosomes in both thin sections and freeze-fracture replicas. The tubules also contain acid phosphatase activity when they arise from acid phosphatase-reactive vacuoles. We conclude that after active digestion lysosomal membrane is retrieved in whole or in part along with some membrane-associated hydrolases. A logical extension of these results is that the lysosome-like vesicles, after being recharged with hydrolases by fusing with primary lysosomes, are recycled back to DV-II for reuse. PMID:6501410

  7. Biochemical Investigation on the activities of Acid and Alkaline ...

    African Journals Online (AJOL)

    The activities of acid phosphatase and alkaline phosphatase were investigated in two varieties of ripening Carica papaya fruit; Oblong-shaped variety which is also known as 'Agric pawpaw' and Pear-shaped variety which is also known as 'Local pawpaw'. Acid phosphatase activity decreased significantly (p < 0.01) ...

  8. Acid phosphatase activity and leaf phosphorus content in soybean cultivars Atividade da fosfatase ácida e concentração foliar de fósforo em cultivares de soja

    Directory of Open Access Journals (Sweden)

    Roberto Wagner Cavalcanti Raposo

    2004-01-01

    Full Text Available The phosphate fertilization represents the most costly fraction of soybean crop production. Efficient soybean cultivars for P absorption and utilization in soils of medium available P are highly desirable and might contribute for increasing crop production potential. Thirty two soybean [Glycine max (L. Merr.] cultivars recommended for 'Cerrado' and differing in growth cycle (early, semi-early, semi-late, and late were grown in a dystrophic Typic Haplustox Cerrado soil to evaluate the acid phosphatase activity, P content in the diagnostic leaf, and shoot biomass. There were differences among the soybean cultivars within all maturation groups in acid phosphatase activity and shoot biomass. The diagnostic-leaf P-content showed significant differences on semi-late and late maturation groups' cultivars. The acid phosphatase activity correlated positively with the plant shoot biomass from semi-early (r = 0.46 and late (r = 0.47 cultivars, and negatively (r = -0.40 with the P content in the diagnostic leaf of late maturation cultivars. The occurrence of soybean cultivars with high and low acid phosphatase activity within the same maturation groups indicates the existence of different mechanisms involving P mobilization in the soil and internal plant P remobilization.A adubação fosfatada corresponde à fração mais onerosa do custo de produção da cultura da soja. A obtenção de cultivares de soja eficientes na absorção e utilização de fósforo (P em condição de média disponibilidade deste nutriente pode contribuir para aumentar o potencial produtivo da cultura. Trinta e dois cultivares de soja [Glycine max (L. Merr.], de ciclo precoce, semiprecoce, semitardio e tardio, recomendados para o cerrado, foram cultivados em Latossolo Vermelho-Amarelo distrófico típico, do cerrado, objetivando avaliar a atividade da fosfatase ácida, concentração de P na folha diagnóstico e biomassa da parte aérea. Ocorreram diferenças entre os cultivares

  9. Demonstration of acid phosphatase-containing vacuoles in hyphal tip cells of Sclerotium rolfsii.

    Science.gov (United States)

    Hänssler, G; Maxwell, D P; Maxwell, M D

    1975-01-01

    A lysosomal system was demonstrated in hyphal tip cells of Sclerotium rolfsii by light and electron microscopy observations of the sites of acid phosphatase activity visualized by a modified Gomori lead nitrate method. The cytochemical reaction product was found to be present in numerous vacuoles, each aout 0.5 mum in diameter, which were seen as chains of spheres when viewed with the light microscope. They usually did not occur in the first 30 to 40 mum of the hyphal tip cell, but were concentrated in a zone extending from 30 to 200 mum from the hyphal apex. As shown by the electron microscope, the vacuoles were sometimes interconnected by narrow channels. Acid phosphatase reaction product was also occasionally localized in vacuoles of the older hyphal cells, but never in apical vesicles, lipid bodies, or microbodies. It is proposed that this vacuolar system may orginate from the endoplasmic reticulum. Images PMID:171255

  10. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    OpenAIRE

    Mohammad Farahani; Seyed Mohammadreza Safavi; Omid Dianat; Somayeh Khoramian Tusi; Farnaz Younessian

    2015-01-01

    Statement of the Problem: The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose: The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials...

  11. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    Science.gov (United States)

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  12. Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase.

    Science.gov (United States)

    Maccari, Rosanna; Ottanà, Rosaria; Ciurleo, Rosella; Paoli, Paolo; Manao, Giampaolo; Camici, Guido; Laggner, Christian; Langer, Thierry

    2009-06-01

    We have optimized previously discovered benzoic acids 1, which are active as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases that have emerged as attractive targets for the development of novel therapeutic agents for the treatment of diabetes, obesity, and cancer. Our efforts led to the identification of new and more potent analogues with appreciable selectivity toward human PTP1B and the IF1 isoform of human LMW-PTP.

  13. Enzymatic Production of Ascorbic Acid-2-phosphate by Recombinant Acid Phosphatase.

    Science.gov (United States)

    Zheng, Kai; Song, Wei; Sun, Anran; Chen, Xiulai; Liu, Jia; Luo, Qiuling; Wu, Jing

    2017-05-24

    In this study, an environmentally friendly and efficient enzymatic method for the synthesis of l-ascorbic acid-2-phosphate (AsA-2P) from l-ascorbic acid (AsA) was developed. The Pseudomonas aeruginosa acid phosphatase (PaAPase) was expressed in Escherichia coli BL21. The optimal temperature, optimal pH, K m , k cat , and catalytic efficiency of recombinant PaAPase were 50 °C, 5.0, 93 mM, 4.2 s -1 , and 2.7 mM -1 min -1 , respectively. The maximal dry cell weight and PaAPase phosphorylating activity reached 8.5 g/L and 1127.7 U/L, respectively. The highest AsA-2P concentration (50.0 g/L) and the maximal conversion (39.2%) were obtained by incubating 75 g/L intact cells with 88 g/L AsA and 160 g/L sodium pyrophosphate under optimal conditions (0.1 mM Ca 2+ , pH 4.0, 30 °C) for 10 h; the average AsA-2P production rate was 5.0 g/L/h, and the AsA-2P production system was successfully scaled up to a 7.5 L fermenter. Therefore, the enzymatic process showed great potential for production of AsA-2P in industry.

  14. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction.

    Science.gov (United States)

    Batra, P; Kharbanda, Op; Duggal, R; Singh, N; Parkash, H

    2006-02-01

    The aim of the study was to investigate alkaline phosphatase activity in the gingival crevicular fluid (GCF) during orthodontic tooth movement in humans. Postgraduate orthodontic clinic. Ten female patients requiring all first premolar extractions were selected and treated with standard edgewise mechanotherapy. Canine retraction was done using 100 g sentalloy springs. Maxillary canine on one side acted as experimental site while the contralateral canine acted as control. Gingival crevicular fluid was collected from mesial and distal of canines before initiation of canine retraction (baseline), immediately after initiation of retraction, and on 1st, 7th, 14th and 21st day and the alkaline phosphatase activity was estimated. The results show significant (p alkaline phosphatase activity on the 7th, 14th and 21st day on both mesial and distal aspects of the compared experimental and control sides. The peak in enzyme activity occurred on the 14th day of initiation of retraction followed by a significant fall in activity especially on the mesial aspect. The study showed that alkaline phosphatase activity could be successfully estimated in the GCF using calorimetric estimation assay kits. The enzyme activity showed variation according to the amount of tooth movement.

  15. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    Science.gov (United States)

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-05

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity.

  16. Detection of Extant Life in Extreme Environmentsby Phosphatase ActivitiesDetection of Extant Life in Extreme Environments by Measuring Phosphatase Activities

    Science.gov (United States)

    Kobayashi, Kensei; Sato, Shuji; Naganawa, Kazuki; Itoh, Yuki; Kurihara, Hironari; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka; Kawasaki, Yukishige

    Since phosphate esters are essential for the terrestrial life, phosphatase activity can be a candidate for biosignatures of biological activity. It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere, high temperature hot springs and stratosphere. We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and Antarctica soils, and discussed whether they can be used as biosignatures for extant life. Core samples and chimney samples were collected at the Suiyo Seamount, Izu-Bonin Arc, the Pacific Ocean in 2001 and 2002, and in South Mariana hydrothermal systems, the Pacific Ocean in 2003, both in a part of the Archaean Park Project. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Alkaline (or acid) Phosphatase activity in solid samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate (pH 8.0 (or pH 6.5)) as a substrate. Phosphatase activities in extracts were measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate. Concentration of amino acids and their enantiomeric ratios were also determined by HPLC and GC/MS. Significant enzymatic activities were revealed in both some of the hydrothermal sub-vent systems and Antarctica soils, which is crucial evidence of vigorous microbial oasis. It is consistent with the fact that large enantiomeric excess of L-form amino acids were found in the same core sequences. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes are present in such environments as hydrothermal vent chimneys and Antarctica soils. Optimum temperatures of ALP in the chimney, Antarctica soil and YNU campus soil were 353 K, 313 K, and 333 K, respectively. The present results suggested that phosphatase

  17. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    Full Text Available ABSTRACT: Arbuscular mycorrhizal fungi (AMF are very important to plant nutrition, mostly in terms of acquisition of P and micronutrients. While Acacia mangium is closely associated with AMF throughout the whole cycle, Eucalyptus grandis presents this symbiosis primarily at the seedling stage. The aim of this study was to evaluate the dynamics of AMF in these two tree species in both pure and mixed plantations during the first 20 months after planting. We evaluated the abundance, richness and diversity of AMF spores, the rate of AMF mycorrhizal root colonization, enzymatic activity and soil and litter C, N and P. There was an increase in AMF root colonization of E. grandis when intercropped with A. mangium as well as an increase in the activity of acid and alkaline phosphatase in the presence of leguminous trees. AMF colonization and phosphatase activities were both involved in improvements in P cycling and P nutrition in soil. In addition, P cycling was favored in the intercropped plantation, which showed negative correlation with litter C/N and C/P ratios and positive correlation with soil acid phosphatase activity and soil N and P concentrations. Intercropping A. mangium and E. grandis maximized AMF root colonization of E. grandis and phosphatase activity in the soil, both of which accelerate P cycling and forest performance.

  18. [Alkaline phosphatase activity and properties in the organs of cattle and sheep].

    Science.gov (United States)

    Antonov, S

    1979-01-01

    Alkaline-phosphatase activity and the physico-chemical properties of the liver, lung, spleen, kidney, intestine, bone and placenta of 25 clinically healthy cattle and 30 clinically healthy sheep were investigated. High alkaline phosphatase activity was detected in kidneys and intestines. The alcaline phosphatase of cattle and sheep liver, spleen, kidney, lung, bone and placenta was thermo-labile and sensitive to l-arginine, l-homoarginine and imidazole, but was not sensitive to l-phenylalanine. Bone phosphatase of cattle and sheep was sensitive to urea. Intestinal phosphatase of cattle proved thermostable, sensitive to l-phenylalanine and not sensitive to l-arginine, l-homoarginine, imidasol and urea. Agarose gel electrophoresis of alkaline phosphatase indicated the presence of one fraction only and liver alkaline phosphatase proved to be the fastest. Sheep liver alkaline phosphatase had two fractions while sheep intestinal and placental alkaline phosphatase had three fractions and some of them were faster than liver alkaline phosphatase.

  19. Phosphatase and microbial activity with biochemical indicators in semi-permafrost active layer sediments over the past 10,000 years

    OpenAIRE

    Yoshinori TAKANO; Mori, Hideaki; Kaneko, Takeo; Ishikawa, Yoji; Marumo, Katsumi; Kensei KOBAYASHI

    2006-01-01

    Core samples of boreal terrestrial sediments from depths of 0–300 cm at Rikubetsu, Hokkaido, Japan were analyzed for alkaline and acid phosphatase enzymatic activities. Enzymatic activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) were greatest at the surface and decreased with depth; ALP and ACP activities were 25.5 and 22.0 nmol min(−1) g(−1), respectively, within the top 5 cm. These biological indicators were compared with measurements of microbial cell density and chemical...

  20. Salvianolic acid B promotes bone formation by increasing activity of alkaline phosphatase in a rat tibia fracture model: a pilot study.

    Science.gov (United States)

    He, Xufeng; Shen, Qiang

    2014-12-15

    Radix Salviae miltiorrhizae is a herb frequently used within traditional Chinese medicine for the treatment of cardiovascular- and trauma-related diseases. Danshen is the dried root of Salviae miltiorrhizae, from which the polyphenolic compound Salvianolic acid B (Sal B) can be obtained. Sal B is a key component of Danshen. The aim of this study was to determine the effect of Sal B on the healing of long bones following trauma in a rat tibia fracture model. Tibia fractures were created in 20 male Sprague Dawley rats. The animals were divided into two groups: (1) experimental group (n = 10); and (2) control group (n = 10). Rats in the experimental group were intraperitoneally administered with Sal B (40 mg/kg/d) for 3 weeks, while rats in the control group received an identical volume of physiological saline solution, administered in the same way. X-ray photographs were taken of all animals at the time points. Rats were euthanized at weeks 1, 3, 8 and 12 post-fracture. Fracture calluses were measured and callus sections were obtained and stained using hematoxylin and eosin (HE) and the calcium cobalt method. HE stained sections were observed and evaluated according to different grades of bone remodeling. Sections stained using the calcium cobalt method were analyzed with an imagine analysis system. Data showed that callus growth was significantly greater in the experimental group compared with the control group (P fracture (P fracture (P fracture healing. Increased activity of ALP may be one factor which promotes the healing process. This pilot study provides brief insight into the effect of Sal B in fracture healing. These findings will contribute to the development of more and enhanced treatment options for trauma fracture patients.

  1. Tartrate-resistant acid phosphatase as a differentiation marker for the human mononuclear phagocyte system.

    Science.gov (United States)

    Radzun, H J; Kreipe, H; Parwaresch, M R

    1983-01-01

    Human blood monocytes (BM) were stimulated with various immune modulators in short-term cultures. Tartrate-resistant acid phosphatase (TAcP) activity was demonstrated with an enzyme cytochemical method. Other members of the mononuclear phagocyte system (MPS), such as peritoneal (PM) and alveolar macrophages (AM), were also tested. Unstimulated BM and physiologic functional forms of macrophages, with the exception of AM, were invariably TAcP negative. On appropriate stimulation, particularly with media containing lymphokines, cultured BM became TAcP positive. The results suggest that TAcP is an inducible differentiation marker that indicates transformation of monocytes into cells belonging to a distinct subset of the MPS.

  2. Extracellular PH 2.5 optimum acid phosphatase from Aspergillus ficuum: immobilization on modified fractogel.

    Science.gov (United States)

    Ullah, A H; Cummins, B J

    1988-01-01

    Aspergillus ficuum pH 2.5 optimum acid phosphatase (orthophosphoric monoesters phosphohydrolase, E.C.3.1.3.2) was covalently immobolized on 2-fluoro-1-methylpyridinium toluene-4-sulfonate (FMP)-activated Fractogel TSK HW-50F. The catalytic parameters and stability of the immobilized enzyme were compared with those of the free enzyme. While the Km and the temperature optima were unchanged, the Ki for orthophosphate was changed from 185 microM to 422 microM and greater stability was observed against heat treatment.

  3. TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dubots

    Full Text Available The evolutionarily conserved target of rapamycin complex 1 (TORC1 controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.

  4. Control of Acid Phosphatases Expression from Aspergillus niger by Soil Characteristics

    Directory of Open Access Journals (Sweden)

    Ely Nahas

    2015-10-01

    Full Text Available ABSTRACTThis work studied the acid phosphatase (APase activity from culture medium (extracellular, eAPase and mycelial extract (intracellular, iAPase ofAspergillus niger F111. The influence of fungus growth and phosphate concentration of the media on the synthesis and secretion of phosphatase was demonstrated. The effects of pH, substrate concentration and inorganic and organic compounds added to the reaction mixture on APase activity were also studied. Both enzymes were repressed by high concentrations of phosphate. Overexpression of iAPase in relation to eAPase was detected; iAPase activity was 46.1 times higher than eAPase. The maximal activity of eAPase was after 24h of fungus growth and for iAPase was after 96h. Optimal pH and substrate concentrations were 4.5 and 8.0 mM, respectively. Michaelis-Menten constant (Km for the hydrolysis of p-nitrophenyl phosphate was 0.57 mM with Vmax = 14,285.71 U mg-1 mycelium for the iAPase and 0.31 mM with V max = 147.06 U mg-1 mycelium for eAPase. Organic substances had little effect on acid phosphatases when compared with the salts. Both the APases were inhibited by 10 mM KH 2PO4 and 5 mM (NH42MoO4; eAPase was also inhibited by 1 mM CoCl2.

  5. Protein phosphatase 2A regulates deoxycytidine kinase activity via Ser-74 dephosphorylation.

    Science.gov (United States)

    Amsailale, Rachid; Beyaert, Maxime; Smal, Caroline; Janssens, Veerle; Van Den Neste, Eric; Bontemps, Françoise

    2014-03-03

    Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn(2+)-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest

    NARCIS (Netherlands)

    Sardans, J.; Penuelas, J.; Ogaya, R.

    2008-01-01

    A six-year (1999-2005) experiment of drought manipulation was conducted in a Quercus ilex Mediterranean forest (Southern Catalonia) to simulate predicted climatic conditions projected for the decades to come. The aim was to investigate the direct and indirect effects of drought conditions on acid

  7. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    OpenAIRE

    Ferrell, R. E.; Chakravarti, A; Hittner, H M; Riccardi, V. M.

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic ...

  8. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.

    1995-01-01

    was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite...... of increased phosphatase activity in soil influenced by roots. Phosphatase activity at both pH values was highest in soil influenced by uncolonized roots, but this was attributed to higher root length densities as compared to mycorrhizal roots. Mycorrhizal hyphae showed no influence on soil phosphatase...... activity in spite of high hyphal length densities ( gt 22 m cm-3). Hyphae were also able to deplete soil of P-i beyond the membrane interface....

  9. Tartrate-resistant acid phosphatase as a biomarker of bone turnover in dog

    Directory of Open Access Journals (Sweden)

    C.P Sousa

    2011-02-01

    Full Text Available Values of serum tartrate-resistant acid phosphatase ( TRAP activity were obtained in adult dogs and its biological variability was assessed. Nine healthy skeletally mature Portuguese Podengo dogs were used for the determination of TRAP, total and bone alkaline phosphatase serum activities, and also to study their relationship with serum minerals, namely calcium (Ca, phosphorous (P, and magnesium (Mg. The serum TRAP activity was 2.19±0.56IU/mL, with intra-individual variation of 18.3% and inter-individual variation of 25.6%. Significant correlations were observed between serum TRAP activity and Ca (r=-0.3431; P<0.05, Ca and Mg (r=-0.787; P<0.01, and TRAP and Mg (r=0.397; P<0.05. The results indicate that serum TRAP activity in dog could be of great value in research and in clinical practice, providing complementary non-invasive information on bone metabolism

  10. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  11. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  12. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    K. KOSINIAK-KAMYSZ

    2007-05-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  13. Human prostatic acid phosphatase: purification, characterization, and optimization of conditions for radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, R.C.; Jakubowski, H.V.; Markowitz, H. (Mayo Clinic, Rochester, MN (USA))

    1983-08-31

    Prostatic acid phosphatase was isolated from benign hypertrophic prostate tissue by ammonium sulfate precipitation and affinity chromatography procedures. The purified enzyme was characterized by two-dimensional gel electrophoresis and shown to have a cluster of protein spots with an apparent molecular weight of 48000 at pI 5.9 to 6.3 in 9 mol/l urea. The specific activity of the purified enzyme was 723 and 659 U/mg protein with ..cap alpha..-naphthyl phosphate at 30/sup 0/C and para-nitrophenyl phosphate at 37/sup 0/C respectively. An antibody to the purified enzyme was raised in rabbits and used in a radioimmunoassay (RIA). The use of a phosphate buffer, pH 6.6, and iodination of prostatic acid phosphatase (PAP) by the Bolton-Hunter procedure improved the precision of the assay when compared to RIA's using a phosphate buffer, pH 7.0 or 7.3, or PAP iodinated by a chloramine-T procedure. The former RIA displaced 50% of the tracer at 2 ..mu..g of enzyme per liter of serum. The between-run coefficient of variation for 11 assays ranged from 3.9-7.7% with serum at 1.3 to 5.6 ..mu..g PAP/l.

  14. Evaluation of a monoclonal antibody-based immunoradiometric assay for prostatic acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Davies, S.N.; Gochman, N.

    1983-01-01

    This report evaluates a new immunoradiometric assay for prostatic acid phosphatase in serum, based on a dual monoclonal antibody reaction system (Hybritech-TANDEM). A solidphase antibody binds the acid phosphatase molecule and a second monoclonal antibody to a different antigenic site serves as the /sup 125/I-radiolabel. The method was tested on 67 patients with various stages of prostatic carcinoma and 134 patients without the disease. It also was compared with a conventional polyclonal radioimmunoassay (NEN) and an enzymatic activity method (duPont aca). The upper limit for the TANDEM assay on nondiseased male patients was found to be 2.0 microgram/L. Based on this upper limit of normal, the diagnostic sensitivity of the method for all cases of prostatic carcinoma was 60%. Researchs could not distinguish the enzyme released in abnormal amounts due to benign prostatic hypertrophy and certain nonprostatic malignant diseases from that of prostatic carcinoma. The diagnostic specificity was calculated at 95%. For the clinically undetectable Stage 1 disease, sensitivity was 44% (four abnormal values out of nine cases). The TANDEM procedure is simple to use and reproducible.

  15. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  16. Par-4: A New Activator of Myosin Phosphatase

    Science.gov (United States)

    Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H.; Tao, Terence C.; Preuss, Ute

    2010-01-01

    Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

  17. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    Science.gov (United States)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with

  18. The complete primary structure elucidation of Aspergillus ficuum (niger), pH 6.0, optimum acid phosphatase by Edman degradation.

    Science.gov (United States)

    Ullah, A H; Mullaney, E M; Dischinger, H C

    1994-08-30

    The primary structure of the Aspergillus ficuum (niger) NRRL 3135 extracellular, pH 6.0, optimum acid phosphatase (E.C.3.1.3.2) was elucidated by gas phase sequencing. It was deduced by sequence overlap of peptides obtained from trypsin, chymotrypsin, clostripain, and cyanogen bromide digests of the pyridylethylated protein. The mature, active protein is composed of 583 amino acids, including 13 glycosylated Asn residues. The unglycosylated protein has a MW of 64,245-KDa and a pI of 4.97. Two putative metal binding sites were identified in the molecule. This enzyme may represent a special class of high molecular weight acid phosphatase, since it lacks the active site sequence RHGXRXP and shows no significant homology with known acid phosphatases containing this active site. Homology to human type 5 and A.niger APases was detected, however.

  19. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.

    Science.gov (United States)

    Lu, Gang; Sun, Haipeng; She, Pengxiang; Youn, Ji-Youn; Warburton, Sarah; Ping, Peipei; Vondriska, Thomas M; Cai, Hua; Lynch, Christopher J; Wang, Yibin

    2009-06-01

    The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-alpha-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1alpha subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1alpha dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

  20. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    Science.gov (United States)

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  2. Enzymatic activity toward poly(L-lactic acid) implants

    NARCIS (Netherlands)

    Schakenraad, J.M.; Hardonk, M.J.; Feijen, Jan; Molenaar, I.; Nieuwenhuis, P.

    1990-01-01

    Tissue reactions toward biodegradable poly(L-lactic acid) implants were monitored by studying the activity pattern of seven enzymes as a function of time: alkaline phosphatase, acid phosphatase, -naphthyl acetyl esterase, -glucuronidase, ATP-ase, NADH-reductase, and lactate dehydrogenase. Cell types

  3. Ontogeny and distribution of alkaline and acid phosphatases in the digestive system of California halibut larvae (Paralichthys californicus).

    Science.gov (United States)

    Zacarias-Soto, Magali; Barón-Sevilla, Benjamín; Lazo, Juan P

    2013-10-01

    Studies aimed to assess the digestive physiology of marine fish larvae under culture conditions are important to further understand the functional characteristics and digestive capacities of the developing larvae. Most studies to date concentrate on intestinal lumen digestion and little attention to the absorption process. Thus, the objectives of this study were to histochemically detect and quantify some of the enzymes responsible for absorption and intracellular digestion of nutrients in the anterior and posterior intestine of California halibut larvae. Alkaline and acid phosphatases were detected from the first days post-hatch (dph). Alkaline phosphatase maintained a high level of activity during the first 20 dph in both intestinal regions. Thereafter, a clear intestinal regionalization of the activity was observed with the highest levels occurring in the anterior intestine. Acid phosphatase activity gradually increased in both intestinal regions during development, and a regionalization of the activity was not observed until late in development, once the ocular migration began. Highest levels were observed in the anterior intestine at the end of metamorphosis concomitant with the stomach development. The results from this study show some morphological and physiological changes are occurring during larval development and a clear regionalization of the absorption process as the larvae develops. These ontological changes must be considered in the elaboration of diets according to the digestive capacity of the larvae.

  4. Influencia de especies forestales sobre la actividad de las enzimas fosfatasa ácida y proteasas en un suelo de bosque Influence of tree species on the activity of acid phosphatase and protease in a forest soil

    Directory of Open Access Journals (Sweden)

    Rl Defrieri

    2008-12-01

    reflejaron mejor los cambios debidos a la influencia de las diferentes especies y de la época del año que otros parámetros químicos del suelo.Plant cover and especially the dominant tree species affect biological and chemical properties of the soil. Litter decomposition rate is affected by its N and P concentration. The aim of this work was to determine the different effects of forest tree species on some biochemical properties of the soil. The study site was located at the Reserva Natural Estricta Colonia Benítez, Chaco, Argentina. Soil samples were taken under trees of the four dominant species in the area and at two depths (0-10 cm and 10-20cm and moments: in summer and in winter. Activities of acid phosphatase and protease enzymes and some edaphic parameters were determined. The results obtained for all studied variables were significantly lower at the 10-20 cm depth, for all forest species and in both seasons. Values of enzyme activities showed significant differences between species only in surface samples where the incorporation of organic matter is greater and in summer. In these conditions, the values of enzymatic activities obtained in soils under each species ranged between 1,600 and 900 μg p-nitrophenol g-1 h-1 for acid phosphatase and between 850 y 450 g tyrosine g-1h-1 for protease. For two of the studied species, a relationship was found between the amount of litter produced, the different decomposition rates and the N and P concentrations in senescent leaves with the enzyme activities in soils. Inorganic N and available P concentrations in soils did not show significant differences between species. In this study, soil enzyme activities were more related to the overlying species than some measured soil parameters.

  5. Alkaline phosphatase activity in normal and inflamed dental pulps.

    Science.gov (United States)

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Di Stilio, M; Piattelli, A

    2001-03-01

    Alkaline phosphatase (ALP) seems to be important in the formation of mineralized tissues. High levels of ALP have been demonstrated in dental pulp cells. In the present study ALP activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic ALP control values for the normal healthy pulps were 110.96+/-20.93. In the reversible pulpitis specimens the ALP activity increased almost eight times to 853.6+/-148.27. In the irreversible pulpitis specimens the values decreased sharply to 137.15+/-21.28 and were roughly equivalent to those seen in normal healthy pulps. The differences between the groups (control vs. reversible pulpitis and reversible pulpitis vs. irreversible pulpitis) were statistically significant. These results could point to a role of ALP in the initial pulp response after injury.

  6. CERVICAL ACID PHOSPHATASE: EVALUATION AS AN ADJUVANT TO PAPANICOLAOU SMEAR SCREENING IN CERVICAL CANCER DETECTION

    Directory of Open Access Journals (Sweden)

    Niranjan

    2015-02-01

    Full Text Available INTRODUCTION: Carcinoma of cervix accounts for 15% of all cancers diagnosed worldwide and is the second most common cancer in women. In the year 2000 there were over 4,71,000 new cases diagnosed and 2,88,000 deaths from cervical cancer. (1 Approximately 79% of these deaths occurred in developing countries. (2 Cervical cancer is preventable, but most women in poorer countries do not have access to effective screening programs. In India it is estimated that approximately 100,000 women develop cervical cancer each year. (3 Cancer cervix occupies either the top r ank or second among cancers in women in developing countries, whereas, in the developed countries cancer cervix does not find a place even in top five leading cancers in women. This is due to routine screening by cervical smear. Cervical smear cytology scr eening by Papanicolaou (Pap stained smears is the most efficacious and cost - effective method of cancer screening, decreasing the incidence and mortality from cervical cancer. (4 However, cervical smear screening has significant rates of false - positive and false - negative results, ranging from 10.3% for false positive cases to 5.6% for false negative cases. (5,6 To improve the detection and screening of cancerous and precancerous lesions of the cervix a number of sophisticated tests are available which are e xpensive and can be done only in a tertiary laboratory. To over - come this problems a cost effective cytochemical stain was introduced to measure the acid phosphatase activity in the cervical epithelium. (7 Since the description of the new Cervical Acid Phosphatase Test (CAP Test for visualization of cervical acid phosphatase activity (CAP inside abnormal cervical cells on smears, it has become possible to explore this enzyme as a biomarker for cervical dys plasia, and as a possible surrogate for PAP smear in detection of cervical intraepithelial neoplasia (CIN. AIMS AND OBJECTIVES: To assess the utility of Cervical Acid

  7. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    Science.gov (United States)

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  8. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    Science.gov (United States)

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  9. Optimization of the tartrate-resistant acid phosphatase detection by histochemical method

    Directory of Open Access Journals (Sweden)

    M. J. Galvão

    2011-02-01

    Full Text Available According to the new KDIGO (Kidney Disease Improving Global Outcomes guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae. Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be

  10. Optimization of the tartrate-resistant acid phosphatase detection by histochemical method

    Science.gov (United States)

    Galvão, M.J.; Santos, A. R.; Ribeiro, M.D.; Ferreira, A.; Nolasco, F.

    2011-01-01

    According to the new kidney disease improving global outcomes (KDIGO) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling, the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 µm were stained to identify TRACP at different incubation temperatures (37°, 45°, 60°, 70° and 80°C) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60°C and 70°C. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 min, the reaction should be carried out at 60

  11. Alkaline phosphatase activity in dental pulp of orthodontically treated teeth.

    Science.gov (United States)

    Perinetti, Giuseppe; Varvara, Giuseppe; Salini, Luisa; Tetè, Stefano

    2005-10-01

    The aim of this study was to examine alkaline phosphatase (ALP) activity in the dental pulp of orthodontically treated teeth. Sixteen healthy subjects (mean age 17.0 +/-1.6 years) who required extraction of 4 first premolars for orthodontic reasons participated. One maxillary first premolar subjected to orthodontic force was the test tooth. The contralateral first premolar, bracketed but not subjected to mechanical stress, was the control tooth. After a week of treatment, the first premolars were extracted and the dental pulp removed from the teeth. ALP activity was determined spectrophotometrically and the results expressed as units/liter per milligram of pulp tissue [U/(L x mg)]. ALP activity was 89 +/- 26 U/(L x mg) in the test teeth and 142 +/- 33 U/(L x mg) in the control teeth. The difference between the groups was statistically significant (P < .01). Orthodontic treatment can lead to significant early-phase reduction in ALP activity in human dental pulp tissue.

  12. Imaging of alkaline phosphatase activity in bone tissue.

    Directory of Open Access Journals (Sweden)

    Terence P Gade

    Full Text Available The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP using a small imaging molecule in combination with (19Flourine magnetic resonance spectroscopic imaging ((19FMRSI. 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP, a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19Fluorine magnetic resonance spectroscopy ((19FMRS and (19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19FMRS and (19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.

  13. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  14. Phosphorylase phosphatase. Interconversion of active and inactive forms.

    Science.gov (United States)

    Villa-Moruzzi, E; Ballou, L M; Fischer, E H

    1984-05-10

    Phosphorylase phosphatase is isolated as an inactive Mr = 70,000 complex made up of a catalytic and a regulatory subunit (inhibitor 2). Separation of the two components yields the free catalytic subunit in a completely inactive state. It can be activated by Mn2+ or Co2+, not Mg2+ or Ca2+. No metal ion is incorporated during this process, as shown by the use of 54Mn2+. The inactive complex, but not the isolated catalytic subunit, can be activated by the protein kinase FA (Vandenheede, J.R., Yang, S.-D., Goris, J., and Merlevede, W. (1980) J. Biol. Chem. 255, 11768-11774), which causes the simultaneous phosphorylation of inhibitor 2 and conversion of the catalytic subunit to an active conformation. The activated enzyme undergoes autodephosphorylation to produce a complex that is inactive even though the catalytic subunit is still in the active form; in a slower step, it returns to its original inactive state. No such conversion occurs in the absence of inhibitor 2, indicating that the regulatory subunit is required for both the activation and inactivation reactions. Complexes were prepared by adding inhibitor 2 to various isolated catalytic subunits. Only the one reconstituted with the FA-activated species behaved like the native enzyme in that the catalytic subunit underwent transformation to the inactive form, then could be reactivated by FA. These data suggest that the two subunits must interact in a highly specific manner to allow the structural changes accompanying the activation-inactivation process. Models are proposed for the changes in conformation induced by Mn2+ or FA.

  15. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  16. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Science.gov (United States)

    Martinez, R.; Wu, C. H.; Beazley, M. J.; Andersen, G. L.; Hazen, T. C.; Taillefert, M.; Sobecky, P. A.

    2011-12-01

    Soils and groundwater contaminated with heavy metals and radionuclides remain a legacy of Cold War nuclear weapons development. Due to the scale of environmental contamination, in situ sequestration of heavy metals and radionuclides remain the most cost-effective strategy for remediation. We are currently investigating a remediation approach that utilizes periplasmic and extracellular microbial phosphatase activity of soil bacteria capable promoting in situ uranium phosphate sequestration. Our studies focus on the contaminated soils from the DOE Field Research Center (ORFRC) in Oak Ridge, TN. We have previously demonstrated that ORFRC strains with phosphatase-positive phenotypes were capable of promoting the precpitation of >95% U(VI) as a low solubility phosphate mineral during growth on glycerol phosphate as a sole carbon and phosphorus source. Here we present culture-independent soil slurry studies aimed at understanding microbial community dynamics resulting from exogenous organophosphate additions. Soil slurries containing glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P) and nitrate as the sole C, P and N sources were incubated under oxic growth conditions at pH 5.5 or pH 6.8. Following treatments, total DNA was extracted and prokaryotic diversity was assessed using high-density 16S oligonucleotide microarray (PhyloChip) analysis. Treatments at pH 5.5 and pH 6.8 amended with G2P required 36 days to accumulate 4.8mM and 2.2 mM phosphate, respectively. In contrast, treatments at pH 5.5 and pH 6.8 amended with G3P accumulated 8.9 mM and 8.7 mM phosphate, respectively, after 20 days. A total of 2120 unique taxa representing 46 phyla, 66 classes, 110 orders, and 186 families were detected among all treatment conditions. The phyla that significantly (PCrenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria. Members from the classes Bacteroidetes, Sphingobacteria, α-proteobacteria, and γ-proteobacteria increased in relative abundance by 10 to 406

  17. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    , it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic......Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here...... analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b...

  18. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  19. Identification of bone and liver metastases from breast cancer by measurement of plasma alkaline phosphatase isoenzyme activity.

    OpenAIRE

    Mayne, P D; Thakrar, S; Rosalki, S B; Foo, A Y; Parbhoo, S

    1987-01-01

    Plasma alkaline phosphatase isoenzyme activities were determined in patients with breast cancer to diagnose and monitor bone and liver metastases. Bone alkaline phosphatase activity was increased in 21 of 50 patients (42%) with radiologically confirmed bone metastases, while total alkaline phosphatase activity was increased in only 10 of 50 (20%); liver alkaline phosphatase activity was raised in 12 of 25 patients (48%) with liver metastases. All patients with liver metastases had bone metast...

  20. Changes phosphorus associated to phosphatase activity because of application of carbon, nitrogen and manure

    Science.gov (United States)

    Paredes, Cecilia; Gianfreda, Liliana; Mora, María de la Luz

    2015-04-01

    The Chilean Andisols are of great importance in the economy of southern Chile supporting the bulk of agricultural production. The major characteristics of Chilean volcanic soils are the high adsorption capacity of P with a concomitant low P availability to plants. Studies preliminary using dairy cattle dung suggest that we can improve P availability using organic P sources within the soil because of microorganism. Phosphorous solubilization by microorganisms is a complex phenomenon, which depends on many factors such as nutritional, physiological and growth condition of the culture. The principal mechanism for mineral phosphate solubilization is the production of organic acids where the enzyme phosphatases play a major role in the mineralization of organic phosphorous in soil. The objective of this study was to evaluate changes in soil phosphorus fractions due to application the cattle dung, glucose, nitrogen (N) and phosphorus (P). In this experiment we incubated soil samples with 300 g of cattle dung, 30 mg kg-1 of N and P and 1000 mg glucose kg-1. The soil samples were moistened to field capacity and incubated in plastic bags to room temperature by different time. The changes in P forms in soil were monitored through the Hedley fractionation procedure and phosphatase activity. Our preliminary results indicated that the application of cattle dung, glucose nitrogen and phosphorus, caused the increased phosphatase activity until to 7 days and then apparently return to normal values. Interestingly, we observed a rise in the inorganic P fraction extracted by NaHCO3 in the same period. In summary, the increase biological activity by carbon and nitrogen increase P availability. Acknowledgements: The authors thank Fondecyt 1141247 Project.

  1. Cervical acid phosphatase detection: A guide to abnormal cells in cytology smear screening for cervical cancer

    Directory of Open Access Journals (Sweden)

    Deb Prabal

    2008-01-01

    Full Text Available Background: Cervical acid phosphatase-Papanicolaou (CAP-PAP test has recently been described for detection of acid phosphatase enzyme in abnormal squamous cells, and has been proposed as a biomarker-based technology for the screening of cervical cancer. Materials and Methods: Eighty-one consecutive cervical smears were subjected to routine Papanicolaou (Pap staining as well as CAP-PAP, which combined cytochemical staining for acid phosphatase with modified Pap stain. Statistical evaluation of its utility was examined. Results: Of 81 smears, 16 (19.75% showed the presence of mature squamous cells with acid phosphatase by CAP-PAP technique and were considered positive. Of these 16, atypical squamous cells of undetermined significance (ASCUS or above were initially diagnosed in five of the corresponding routine Pap smears. After re-evaluation with CAP-PAP, eight of the routine Pap smears were considered to have ASCUS or above. Of these eight, three were reported as low-grade squamous intraepithelial lesions and five as ASCUS on conventional Pap smears. The remaining 8/16 CAP-PAP-positive cases were negative for atypical squamous cells on the corresponding Pap smears. None of the CAP-PAP-negative smears were positive on routine Pap smear screening. Conclusions: This study highlights the efficacy of CAP-PAP in quality assurance of cervical smear screening. It is also an inexpensive method for segregating smears for subsequent re-screening. In the absence of trained cytologists in peripheral laboratories, this technique can be adopted for identifying smears that would require proper evaluation.

  2. Trichinella spp.: differential expression of acid phosphatase and myofibrillar proteins in infected muscle cells.

    Science.gov (United States)

    Jasmer, D P; Bohnet, S; Prieur, D J

    1991-04-01

    Major alterations are induced in muscle cells infected by either Trichinella spiralis or Trichinella pseudospiralis. To investigate the response of muscle to these infections we have analyzed the expression of acid phosphatase (ACP, EC 3.1.3.2), adult skeletal muscle myosin heavy chain, and muscle tropomyosin proteins in infected mouse skeletal muscle cells. Using T. spiralis-infected cells, we provide strong evidence that the tartrate-sensitive ACP of these cells was synthesized by the infected cell and localized in lysosomes. Isoenzyme analysis indicated that the ACP activity was of host muscle cell origin and the specific activity of this ACP was 2.5 times greater than that in associated inflammatory cells. Increased ACP activity was also demonstrated in muscle cells infected by T. pseudospiralis. In synchronized muscle infections, increased ACP activity was detected at 5 days post-muscle infection for both parasites. ACP activity was further increased in infected muscle cells at later times tested. This increased infected cell ACP activity represents the earliest positive enzyme marker yet described indicating expression of the infected cell phenotype. In contrast, myofibrillar proteins were not detected in muscle cells chronically infected by T. spiralis but were detected in muscle cells infected by T. pseudospiralis. Decrease in myofibrillar protein levels was detected by 10 days post-muscle infection by T. spiralis. The data presented demonstrate significant differences and similarities in the phenotypes of muscle cells infected by these two parasites and establish criteria that could facilitate identification of parasite factors that may be involved in these phenomena.

  3. Cysteine proteases and acid phosphatases contribute to Tetrahymena spp. pathogenicity in guppies, Poecilia reticulata.

    Science.gov (United States)

    Leibowitz, M Pimenta; Ofir, R; Golan-Goldhirsh, A; Zilberg, D

    2009-12-03

    Systemic tetrahymenosis caused by the protozoan parasite Tetrahymena spp. is a serious problem in guppy (Poecilia reticulata) farms worldwide. There is no therapeutic solution for the systemic form of this disease. Guppies severely infected with Tetrahymena spp. were imported by a commercial ornamental fish farm and brought to our laboratory. Tetrahymena sp. (Tet-NI) was isolated and in vitro cultured. Isolates maintained in culture for different time periods (as reflected by different numbers of passages in culture) were analyzed-Tet-NI 1, 4, 5 and 6, with Tet-NI 1 being cultured for the longest period (about 15 months, 54 passages) and Tet-NI 6 for the shortest (2.5 months, 10 passages). Controlled internal infection was successfully achieved by IP injection with most isolates, except for Tet-NI 1 which produced no infection. The isolate Tet-NI 6 induced the highest infection rates in internal organs (80% vs. 50% and 64% for Tet-NI 4 and 5, respectively) and mortality rates (67% vs. 20% and 27% for Tet-NI 4 and 5, respectively, and 6.7% for Tet-NI 1). The correlation between pathogenicity and Tetrahymena enzymatic activity was studied. Electrophoretic analyses revealed at least two bands of gelanolytic activity in Tet-NI 4 and 5, three bands in Tet-NI 6, and no activity in Tet-NI 1. Total inhibition of gelanolytic activity was observed after pretreatment of Tet-NI 6 with E-64, a highly selective cysteine protease inhibitor. Using hemoglobin as a substrate, Tet-NI 6 had two bands of proteolytic activity and no bands were observed in Tet-NI 1. A correlation was observed between pathogenicity and acid phosphatase activities (analyzed by commercial fluorescence kit) for Tet-NI 1 and Tet-NI 6.

  4. Do distinct water chemistry, reservoir age and disturbance make any difference on phosphatase activity?

    Directory of Open Access Journals (Sweden)

    Maria-José BOAVIDA

    2003-08-01

    Full Text Available Alkaline phosphatase activity was assessed concomitantly with total phosphorus, orthophosphate and phosphomonoester concentrations in two meso-eutrophic reservoirs with distinct age and subjected to different kinds of environmental influence. Differences in conductivity, temperature and pH were found. However, during the study period alkaline phosphatase activity was similar in both reservoirs. Water colour was higher in S. Serrada Reservoir. This fact can be related to (1 reservoir age (2 high internal disturbance (3 large imputs of allochthonous detritus, resulting from the combined effect of grazing, fire and catchment slope. Despite the high water colour recorded in S. Serrada, alkaline phosphatase activity was apparently not inactivated by humic substances. Besides, the obtained results demonstrated that hydrolysis of phosphomonoesters by alkaline phosphatase was not important for orthophosphate regeneration in these reservoirs. Probably orthophosphate was always available to biota. In fact, in the experiments based on Selenastrum capricornutum Printz algal test, similar phytoplankton growth responses were obtained for different phosphorus concentrations. Thus, these results seem to indicate that phosphorus was not a limiting nutrient in either reservoir. Although phosphatase activity was significantly correlated with some phytoplankton genera in both reservoirs, no significant correlations were found between enzyme activity and chlorophyll-a. Significant correlations between phosphatase activity and crustacean zooplankton were only recorded in S. Serrada. In spite of these results there was some indication that the main source of phosphatase might have been bacteria involved in decomposition processes instead of phyto- and zooplankton taxa

  5. Dual specificity phosphatase 15 regulates Erk activation in Schwann cells.

    Science.gov (United States)

    Rodríguez-Molina, José F; Lopez-Anido, Camila; Ma, Ki H; Zhang, Chongyu; Olson, Tyler; Muth, Katharina N; Weider, Matthias; Svaren, John

    2017-02-01

    Schwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia. However, other factors are divergent as Schwann cells need the transcription factor early growth response 2/Krox20 and oligodendrocytes require Myrf. Likewise, some signaling pathways, like the Erk1/2 kinases, are necessary in both cell types for proper myelination. Nonetheless, the molecular mechanisms that control this shared signaling pathway in myelinating cells remain only partially characterized. The hypothesis of this study is that signaling pathways that are similarly regulated in both Schwann cells and oligodendrocytes play central roles in coordinating the differentiation of myelinating glia. To address this hypothesis, we have used genome-wide binding data to identify a relatively small set of genes that are similarly regulated by Sox10 in myelinating glia. We chose one such gene encoding Dual specificity phosphatase 15 (Dusp15) for further analysis in Schwann cell signaling. RNA interference and gene deletion by genome editing in cultured RT4 and primary Schwann cells showed Dusp15 is necessary for full activation of Erk1/2 phosphorylation. In addition, we show that Dusp15 represses expression of several myelin genes, including myelin basic protein. The data shown here support a mechanism by which early growth response 2 activates myelin genes, but also induces a negative feedback loop through Dusp15 to limit over-expression of myelin genes. © 2016 International Society for Neurochemistry.

  6. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    Directory of Open Access Journals (Sweden)

    Kayla A Boortz

    Full Text Available Elevated fasting blood glucose (FBG has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln, rs149663725 (Gly114Arg and rs2232326 (Ser324Pro SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu, rs138726309 (His177Tyr, rs2232323 (Tyr207Ser rs374055555 (Arg293Trp, rs2232326 (Ser324Pro, rs137857125 (Pro313Leu and rs2232327 (Pro340Leu SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.

  7. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  8. Trypanosoma rangeli: an alkaline ecto-phosphatase activity is involved with survival and growth of the parasite.

    Science.gov (United States)

    Dos-Santos, André L A; Dick, Claudia F; Silveira, Thaís S; Fonseca-de-Souza, André L; Meyer-Fernandes, José R

    2013-10-01

    The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using β-glycerophosphate (β-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of β-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of β-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca(2+) present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. β-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when β-GP was the sole source of Pi and stopped it in the absence of β-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Calcineurin phosphatase activity and immunosuppression. A review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Anker; Koefoed-Nielsen, P.B.; Karamperis, N.

    2003-01-01

    The mode of immunosuppressive action of tacrolimus (FK506) and cyclosporin A has been elucidated. Both drugs bind to proteins in the cytoplasm to form complexes, which in turn inhibit the phosphatase activity of calcineurin, an important limiting step in the activation of T cells. The association...

  10. Lipid accumulation and alkaline phosphatase activity in human ...

    African Journals Online (AJOL)

    Background: Alkaline phosphatase (ALP) controls intracellular lipid accumulation in human preadipocytes, but it is not known whether ALP is expressed in all body fat depots, or whether it has a similar role at all sites. Design: Cross-sectional. Setting and subjects: Subjects undergoing breast reduction and abdominal fat ...

  11. Ellagic Acid Increases Osteocalcin and Alkaline Phosphatase After Tooth Extraction in Nicotinic-Treated Rats.

    Science.gov (United States)

    Al-Obaidi, Mazen M Jamil; Al-Bayaty, Fouad Hussain; Al Batran, Rami; Ibrahim, Omar Emad; Daher, Aqil M

    2016-01-01

    -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat. Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers. Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (pextraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

  12. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  13. FAS activation induces dephosphorylation of SR proteins - Dependence on the de novo generation of ceramide and activation of protein phosphatase 1

    NARCIS (Netherlands)

    Chalfant, CE; Ogretmen, B; Galadari, S; Kroesen, BJ; Pettus, BJ; Hannun, YA

    2001-01-01

    The search for potential targets for ceramide action led to the identification of ceramide-activated protein phosphatases (CAPP). To date, two serine/threonine protein phosphatases, protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), have been demonstrated to function as

  14. The Effects of Malathion Alkaline Phosphatase Activity in the Liver, Kidney and Small Intestine in Mice

    OpenAIRE

    Dere, Egemen

    1998-01-01

    The effects of malathion on alkaline phosphatase activity in the liver, kidney and small intestine was investigated. Malathion doses of 40 mg kg-1 were injected intreperitonally (I:P) into mice. At 0, 4, 8, 16 and 24 hours after treatment with malathion, mice were decapitated and tissues were removed. Homogenate of the tissues was centrifugated at 48000xg for 30 minutes. The supernatant was used as an enzyme source. It was found that the malathion increased alkaline phosphatase activity in th...

  15. Determination of Alkaline Phosphatase Activity in Patients with Different Zinc Metabolic Disorders

    OpenAIRE

    KECHRID, Zine; KENOUZ, Rabah

    2003-01-01

    Our purpose was to investigate the effect of different zinc metabolic disorders on alkaline phosphatase activity. Serum zinc, glucose and alkaline phosphatase activity were studied in 32 patients with liver cirrhosis, 30 with chronic renal failure and 42 with insulin-dependent diabetes mellitus (IDDM) compared to 42 healthy volunteers. Serum glucose concentration was significantly higher (P < 0.001) in IDDM and liver cirrhosis patients (P < 0.05) compared to the controls. Serum ...

  16. Comparison of phosphorus fractions and phosphatase activities in coastal wetland soils along vegetation zones of Yancheng National Nature Reserve, China

    Science.gov (United States)

    Huang, Lidong; Zhang, Yaohong; Shi, Yiming; Liu, Yibo; Wang, Lin; Yan, Ning

    2015-05-01

    Phosphorus (P) fractions and phosphatase activities were measured in 22 coastal wetland soils with typical vegetation successions in Yancheng National Nature Reserve, China. P forms and phosphatase activities varied greatly from site to site even under the same vegetation cover. NH4Cl-P, bicarbonate/dithionite extracted P and NaOH-P were remarkably higher (p alkaline phosphatase (ALAP) or acid phosphatase (ACAP) among the soils. All of the above properties were much higher in soils with plant growth compared to bare flat soils. Regression analysis demonstrated that organic matter (OM), Al, Ca, Fe and total P (TP) were able to explain more than 70% of the variations in the P fractions (except 29% of NH4Cl-P), and OM was the most important contributing factor. ALAP and ACAP were irrelevant to P but were significantly related to TOC, suggesting that carbon was a limiting factor for P mineralization in this area. Owing to its huge biomass and densities, Spartina alterniflora displayed great potential for carbon input, thus facilitating P mineralization and cycling. The results enhance our understanding of P availability differences in this area covered by invasive and native vegetation.

  17. The LAR protein tyrosine phosphatase enables PDGF beta-receptor activation through attenuation of the c-Abl kinase activity.

    NARCIS (Netherlands)

    Zheng, W.; Lennartsson, J.; Hendriks, W.J.A.J.; Heldin, C.H.; Hellberg, C.

    2011-01-01

    The receptor tyrosine phosphatase (RPTP) LAR negatively regulates the activity of several receptor tyrosine kinases. To investigate if LAR affects the platelet-derived growth factor (PDGF) receptor signaling, mouse embryonic fibroblasts (MEFs) from mice where the LAR phosphatase domains were deleted

  18. The maize (Zea mays ssp. mays var. B73 genome encodes 33 members of the purple acid phosphatase gene family

    Directory of Open Access Journals (Sweden)

    Eliécer eGonzález Muñoz

    2015-05-01

    Full Text Available Purple acid phosphatases (PAPs play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73 reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members.

  19. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    precipitation leached through the soil, or indoor at constant moisture) with or without 9% (w/w) chopped wheat straw plus mineral N. Then the soils were partially sterilized and placed in two-compartment pots where mycorrhizal or non-mycorrhizal cucumber plants were grown in one root compartment (RC), and soils...... have influenced alkaline phosphatase excreted by other microorganisms, probably through competition for nutrients. Phosphatase activity was not correlated with the concentration of labile organic P in soil extracts....

  20. Negative control in two-component signal transduction by transmitter phosphatase activity

    Science.gov (United States)

    Huynh, TuAnh Ngoc; Stewart, Valley

    2011-01-01

    Bifunctional sensor transmitter modules of two-component systems exert both positive and negative control on the receiver domain of the cognate response regulator. In negative control, the transmitter module accelerates the rate of phospho-receiver dephosphorylation. This transmitter phosphatase reaction serves the important physiological functions of resetting response regulator phosphorylation level and suppressing cross talk. Although the biochemical reactions underlying positive control are reasonably well-understood, the mechanism for transmitter phosphatase activity has been unknown. A recent hypothesis is that the transmitter phosphatase reaction is catalyzed by a conserved Gln, Asn or Thr residue, via a hydrogen bond between the amide or hydroxyl group and the nucleophilic water molecule in acyl-phosphate hydrolysis. This hypothetical mechanism closely resembles the established mechanisms of auxiliary phosphatases such as CheZ and CheX, and may be widely conserved in two-component signal transduction. In addition to the proposed catalytic residues, transmitter phosphatase activity also requires the correct transmitter conformation and appropriate interactions with the receiver. Evidence suggests that the phosphatase-competent and autokinase-competent states are mutually exclusive, and the corresponding negative and positive activities are likely to be reciprocally regulated through dynamic control of transmitter conformations. PMID:21895797

  1. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    Science.gov (United States)

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity.

  2. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement.

    Science.gov (United States)

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-09-01

    The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively.

  3. Regulation of the Formation of Acid Phosphatases by Inorganic Phosphate in Aspergillus ficuum1

    Science.gov (United States)

    Shieh, T. R.; Wodzinski, R. J.; Ware, J. H.

    1969-01-01

    Two types of extracellular acid phosphatases are synthesized by Aspergillus ficuum NRRL 3135: a nonspecific orthophosphoric monoester phosphohydrolase (EC 3.1.3.2) with an optimum pH of 2.0, and an enzyme with restricted specificity, a mesoinositol-hexaphosphate phosphohydrolase (EC 3.1.3.8; phytase) with an optimum pH of 5.5. Although the pH 5.5 enzyme is termed a phytase, both enzymes hydrolyze phytin. Synthesis of the enzymes is repressed by high orthophosphate concentrations in the fermentation medium. The highest total level for each enzyme is synthesized in low orthophosphate medium. In high orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme. In low orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme during the early stages of growth, but the reverse occurs after 5 days. The enzymes are differentiated by heat denaturation at acid and alkaline pH levels. They are separated into two distinct fractions on Sephadex G-100 followed by carboxymethylcellulose column chromatography. This indicates that the two enzymes are structurally different. The Km for both enzymes is 1.25 mm when calcium phytate is the substrate. Orthophosphate competitively inhibits the pH 2.0 (Ki = 1.1 × 10−2m) but not the pH 5.5 phosphatase. Neither enzyme is denatured by 50% (w/v) urea or inhibited by 0.01 m tartrate. Thus, they differ from human prostatic phosphatase. PMID:4311867

  4. Regulation of the formation of acid phosphatases by inorganic phosphate in Aspergillus ficuum.

    Science.gov (United States)

    Shieh, T R; Wodzinski, R J; Ware, J H

    1969-12-01

    Two types of extracellular acid phosphatases are synthesized by Aspergillus ficuum NRRL 3135: a nonspecific orthophosphoric monoester phosphohydrolase (EC 3.1.3.2) with an optimum pH of 2.0, and an enzyme with restricted specificity, a mesoinositol-hexaphosphate phosphohydrolase (EC 3.1.3.8; phytase) with an optimum pH of 5.5. Although the pH 5.5 enzyme is termed a phytase, both enzymes hydrolyze phytin. Synthesis of the enzymes is repressed by high orthophosphate concentrations in the fermentation medium. The highest total level for each enzyme is synthesized in low orthophosphate medium. In high orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme. In low orthophosphate medium, more pH 5.5 enzyme is produced than pH 2.0 enzyme during the early stages of growth, but the reverse occurs after 5 days. The enzymes are differentiated by heat denaturation at acid and alkaline pH levels. They are separated into two distinct fractions on Sephadex G-100 followed by carboxymethylcellulose column chromatography. This indicates that the two enzymes are structurally different. The K(m) for both enzymes is 1.25 mm when calcium phytate is the substrate. Orthophosphate competitively inhibits the pH 2.0 (K(i) = 1.1 x 10(-2)m) but not the pH 5.5 phosphatase. Neither enzyme is denatured by 50% (w/v) urea or inhibited by 0.01 m tartrate. Thus, they differ from human prostatic phosphatase.

  5. Comparative Evaluation of Efficacy of Three Different Herbal Toothpastes on Salivary Alkaline Phosphatase and Salivary Acid Phosphatase - A Randomized Controlled Trial

    Science.gov (United States)

    Dodamani, Arun; Karibasappa, G. N.; Deshmukh, Manjiri; Naik, Rahul

    2016-01-01

    Introduction Very few researches in the past have tried to evaluate the effect of herbal toothpaste on saliva and salivary constituents like alkaline phosphatase and acid phosphatase which play an important role in maintaining oral health. Aim To evaluate and compare the effect of three different herbal toothpastes on Salivary Alkaline Phosphatase (ALP) and salivary Acid Phosphatase (ACP). Material and Methods The present study was a preliminary study conducted among 45 dental students (15 subjects in each group) in the age group of 19-21 years. Subjects in each group were randomly intervened with three different herbal toothpastes respectively (Group A – Patanjali Dant Kanti, Group B - Himalaya Complete Care and Group C – Vicco Vajradanti). Unstimulated saliva sample were collected before and after brushing and salivary ACP and salivary ALP levels were assessed at an interval of one week each for a period of four weeks starting from day one. Compiled data was analyzed using chi square test, paired t-test and ANOVA based on the nature of the obtained data. Results All the three toothpastes showed significant (ptoothpaste, the mean reduction was in the range of 2.55 – 2.62 IU/L for ACP and 2.94 – 2.99 IU/L for ALP. For Himalaya toothpaste, the mean reduction was in the range of 1.39 – 1.47 IU/L for ACP and 1.55 – 1.61 IU/L for ALP. For Vicco toothpaste, the mean reduction was in the range of 2.46 – 2.50 IU/L for ACP and 2.64 – 2.77 IU/L for ALP. Patanjali and Vicco toothpaste were significantly effective in reducing the levels of salivary ACP and ALP more than Himalaya toothpaste (ptoothpastes, especially Dant Kanti and Vicco Vajradanti, showed significant reduction in levels of ACP and ALP resulting in overall improvement towards the oral health. PMID:27790584

  6. Protein kinase and phosphatase activities of thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  7. The genetics of feto-placental development: A study of acid phosphatase locus 1 and adenosine deaminase polymorphisms in a consecutive series of newborn infants

    Directory of Open Access Journals (Sweden)

    Bergamaschi Antonio

    2008-09-01

    Full Text Available Abstract Background Acid phosphatase locus 1 and adenosine deaminase locus 1 polymorphisms show cooperative effects on glucose metabolism and immunological functions. The recent observation of cooperation between the two systems on susceptibility to repeated spontaneous miscarriage prompted us to search for possible interactional effects between these genes and the correlation between birth weight and placental weight. Deviation from a balanced development of the feto-placental unit has been found to be associated with perinatal morbidity and mortality and with cardiovascular diseases in adulthood. Methods We examined 400 consecutive newborns from the Caucasian population of Rome. Birth weight, placental weight, and gestational length were registered. Acid phosphatase locus 1 and adenosine deaminase locus 1 phenotypes were determined by starch gel electrophoresis and correlation analysis was performed by SPSS programs. Informed verbal consent to participate in the study was obtained from the mothers. Results Highly significant differences in birth weight-placental weight correlations were observed among acid phosphatase locus 1 phenotypes (p = 0.005. The correlation between birth weight and placental weight was markedly elevated in subjects carrying acid phosphatase locus 1 phenotypes with medium-low F isoform concentration (A, CA and CB phenotypes compared to those carrying acid phosphatase locus 1 phenotypes with medium-high F isoform concentration (BA and B phenotypes (p = 0.002. Environmental and developmental variables were found to exert a significant effect on birth weight-placental weight correlation in subjects with medium-high F isoform concentrations, but only a marginal effect was observed in those with medium-low F isoform concentrations. The correlation between birth weight and placental weight is higher among carriers of the adenosine deaminase locus 1 allele*2, which is associated with low activity, than in homozygous adenosine

  8. Heterogeneity of the acid phosphatase and ribonuclease from protocorms of the orchids Cymbidium Sw. and changes occurring after treatment with streptomycin

    Directory of Open Access Journals (Sweden)

    B. Morawiecka

    2015-01-01

    Full Text Available The molecular forms of the acid phosphatase and RNase in protocorms of Cymbidium Sw. were studied by disc electrophoresis. The effect of streptomycin added to the culture medium on both enzymes was investigated. Significant changes in enzyme activity and electrophoretic patterns occured after addition of streptomycin at the beginning of culture growth. This indicates that the enzymes are affected by streptomycin in early stages of development of the protocorms.

  9. Localization of some phosphatases in yeast

    NARCIS (Netherlands)

    Tonino, G.J.M.; Steyn-Parvé, Elizabeth P.

    1963-01-01

    1. 1. The localization of some phosphatases has been studied in yeast cells that were either fragmented by shaking intact cells with glass beads or by hypotonic or isotonic disruption of protoplasts prepared from intact cells. 2. 2. The non-specific acid phosphatase with optimum activity at pH

  10. INFLUENCE OF LIMING AND WASTE ORGANIC MATERIALS ON THE ACTIVITY OF PHOSPHATASE IN SOIL CONTAMINATED WITH NICKEL

    Directory of Open Access Journals (Sweden)

    Beata Kuziemska

    2014-10-01

    Full Text Available A study was carried out on soil following a two-year pot experiment that was conducted in 2009–2010, in three repetitions in Siedlce. The experiment included the following factors: 1 – amount of Ni in soil (0, 75, 150 and 225 mg·kg-1 soil by applying an aqueous NiSO4·7H2O solution; 2 – liming (0 and Ca according to 1 Hh as CaCO3; 3 – organic waste products (rye straw at a dose of 4 t·ha-1 and brown coal at a dose of 40 t·ha-1. In each experimental year, orchard grass was the test plant and four swaths were harvested. The activities of acidic and alkaline phosphatase, pH and the content of carbon in organic compounds were determined in the soil samples collected after each grass swath and in each experimental year. It was found that Ni at 75 mg·kg-1 soil activated the enzymes under study, whereas higher doses caused their statistically-confirmed inactivation. The lowest activity of the investigated enzymes was detected in soil supplemented with 225 Ni·kg-1 soil. Liming caused an increase in the activity of alkaline phosphatase and a reduction in the activity of acidic phosphatase. Straw and brown coal induced a substantial increase in the activity of both enzymes in the tested soil samples. Both liming and straw and carbon eliminated the negative effect of higher nickel doses on the activity of the enzymes under study.

  11. RHIZOSPHERE pH AND PHOSPHATASE ACTIVITY IN ORTHIC ALLOPHANIC SOIL UNDER Pinus radiata SEEDLINGS GROWN WITH BROOM AND RYEGRASS

    Directory of Open Access Journals (Sweden)

    Achmad A. Rivaie

    2009-06-01

    Full Text Available Under  Pinus radiata plantations  where  the tree spacing  is wider  and most soils are phosphorus  (P deficient,  the radiata  tree response to P fertilizer is expected  to be more influenced  by  the interaction between  the applied  P fertilizer, the tree and understorey vegetation.  Therefore,  a better understanding of the soil P chemistry under radiata pine trees in association  with  other  plants  is required.  We investigated  the effect of broom  (Cytisus scoparius L. and ryegrass  (Lolium multiflorum grown  with  radiata  seedlings  in Orthic Allophanic Soil treated with  0, 50, and 100 μg P g-1  soil of TSP on the pH and phosphatase activity in the rhizosphere soils under glasshouse condition. The pHs of radiata rhizosphere soils either grown with broom or grass were lower than  those in the  bulk soils and the bulk and rhizosphere soils of grass and broom,  whether  they  were grown  alone or grown  with radiata at the  applications of 50 and 100 μg P g-1 soil. These results suggest that P application enhanced root induced acidification  in a P-deficient Allophanic Soil under radiata.  The soils in the rhizosphere of grass and broom, grown in association with radiata, were also acidified by  the effect of radiata  roots.  Acid  phosphatase  activity in soils under  radiata,  grass and broom  decreased with  an increased  rate of P application. At all P rates,  acid phosphatase activity was higher in the rhizosphere of radiata  grown  with  broom than in the bulk soils. The phosphatase activity in the rhizosphere soil of radiata grown with broom was also higher than that of radiata grown with grass, but it was slightly lower than that in the rhizosphere of broom grown  alone. These results suggest that broom may have also contributed to the higher  phosphatase  activity in the rhizosphere soils than  in the bulk  soils of broom  and radiata when they were grown  together

  12. Induction of a Major Leaf Acid Phosphatase Does Not Confer Adaptation to Low Phosphorus Availability in Common Bean1

    Science.gov (United States)

    Yan, Xiaolong; Liao, Hong; Trull, Melanie C.; Beebe, Steve E.; Lynch, Jonathan P.

    2001-01-01

    Acid phosphatase is believed to be important for phosphorus scavenging and remobilization in plants, but its role in plant adaptation to low phosphorus availability has not been critically evaluated. To address this issue, we compared acid phosphatase activity (APA) in leaves of common bean (Phaseolus vulgaris) in a phosphorus-inefficient genotype (DOR364), a phosphorus-efficient genotype (G19833), and their F5.10 recombinant inbred lines (RILs). Phosphorus deficiency substantially increased leaf APA, but APA was much higher and more responsive to phosphorus availability in DOR364 than in G19833. Leaf APA segregated in the RILs, with two discrete groups having either high (mean = 1.71 μmol/mg protein/min) or low (0.36 μmol/mg protein/min) activity. A chi-square test indicated that the observed difference might be controlled by a single gene. Non-denaturing protein electrophoresis revealed that there are four visible isoforms responsible for total APA in common bean, and that the difference in APA between contrasting genotypes could be attributed to the existence of a single major isoform. Qualitative mapping of the APA trait and quantitative trait loci analysis with molecular markers indicated that a major gene contributing to APA is located on linkage group B03 of the unified common bean map. This locus was not associated with loci conferring phosphorus acquisition efficiency or phosphorus use efficiency. RILs contrasting for APA had similar phosphorus pools in old and young leaves under phosphorus stress, arguing against a role for APA in phosphorus remobilization. Our results do not support a major role for leaf APA induction in regulating plant adaptation to phosphorus deficiency. PMID:11299369

  13. Differentiating Intracellular from Extracellular Alkaline Phosphatase Activity in Soil by Sonication

    NARCIS (Netherlands)

    Qin, S.P.; Hu, C.S.; Oenema, O.

    2013-01-01

    Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio

  14. Combination of acid phosphatase positivity and rimmed vacuoles as useful markers in the diagnosis of adult-onset Pompe disease lacking specific clinical and pathological features

    Directory of Open Access Journals (Sweden)

    Claire Dolfus

    2016-10-01

    Full Text Available Introduction: The clinical and histological presentations of the adult form of Pompe disease may be atypical. In such cases, identifying histological signs that point to the diagnosis would be crucial to avoid a delay in care. The aim of our study was to investigate the presence of rimmed vacuoles and acid phosphatase positivity in muscle biopsies of patients with late-onset Pompe disease. Material and methods: We retrospectively studied muscle biopsies of all cases of the adult form of Pompe disease diagnosed at the University Hospital of Caen. Three of these four cases showed atypical clinical signs, and diagnosis was established tardily based on family history or systematic analysis of acid maltase activity. Results: All biopsies showed some rimmed vacuoles. The acid phosphatase reaction showed positive inclusions and labelled vacuoles in biopsies of all patients. Conclusions: The presence of rimmed vacuoles and acid phosphatase positivity in muscle biopsy should suggest the diagnosis of the adult form of Pompe disease, this is decisive since effective therapy is available.

  15. Tubulin polymerization by paclitaxel (taxol) phosphate prodrugs after metabolic activation with alkaline phosphatase.

    Science.gov (United States)

    Mamber, S W; Mikkilineni, A B; Pack, E J; Rosser, M P; Wong, H; Ueda, Y; Forenza, S

    1995-08-01

    Paclitaxel (taxol) phosphate derivatives BMY46366, BMY-46489, BMS180661 and BMS180820 were used to determine the ability of alkaline phosphatase to convert these water-soluble potential prodrugs to tubulin-polymerizing metabolites (i.e., paclitaxel). Compounds were treated up to 180 min with an in vitro metabolic activation system composed of 10% bovine alkaline phosphatase in 0.2 M tris, pH 7.4, or in 0.2 M glycine, pH 8.8, plus 0.05 M MgCl2. Samples were tested (either by direct addition or after methylene chloride extraction/dimethyl-sulfoxide resuspension) in spectrophotometric tubulin polymerization assays utilizing bovine-derived microtubule protein. Pretreatment of 2'- and 7-phosphonoxyphenylpropionate prodrugs BMS180661 and BMS180820 with alkaline phosphatase for 30 to 120 min yielded relative initial slopes of about 20 to 100% at test concentrations equimolar to paclitaxel. High-performance liquid chromatography/mass spectrometry of BMS180661 treated with alkaline phosphatase confirmed the production of paclitaxel from the prodrug. In contrast, 2'- and 7-phosphate analogs BMY46366 and BMY46489 treated with alkaline phosphatase were not active in tubulin assays. None of the paclitaxel phosphate prodrugs polymerized tubulin in the absence of metabolic activation. The differences in tubulin polymerization with metabolic activation may be related both to accessibility of the phosphate group to the enzyme and to anionic charge effects. These results demonstrate that certain paclitaxel phosphate prodrugs can be metabolized by alkaline phosphatase to yield effective tubulin polymerization.

  16. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots.

    Science.gov (United States)

    Qu, Zhengyi; Na, Weidan; Liu, Xiaotong; Liu, Hua; Su, Xingguang

    2018-01-02

    In this paper, we developed a sensitive fluorescence biosensor for tyrosinase (TYR) and acid phosphatase (ACP) activity detection based on nitrogen-doped graphene quantum dots (N-GQDs). Tyrosine could be catalyzed by TYR to generate dopaquinone, which could efficiently quench the fluorescence of N-GQDs, and the degree of fluorescence quenching of N-GQDs was proportional to the concentration of TYR. In the presence of ACP, l-Ascorbic acid-2-phosphate (AAP) was hydrolyzed to generate ascorbic acid (AA), and dopaquinone was reduced to l-dopa, resulting in the fluorescence recovery of the quenched fluorescence by dopaquinone. Thus, a novel fluorescence biosensor for the detection of TYR and ACP activity based on N-GQDs was constructed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of TYR and ACP in the range of 0.43-3.85 U mL-1 and 0.04-0.7 mU mL-1 with a detection limit of 0.15 U mL-1 and 0.014 mU mL-1, respectively. The feasibility of the proposed biosensor in real samples assay was also studied and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  18. Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline

    DEFF Research Database (Denmark)

    Hardies, Katia; Cai, Yiying; Jardel, Claude

    2016-01-01

    with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid...... function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients...

  19. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    Science.gov (United States)

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  20. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins.

    Science.gov (United States)

    Nichols, Charles D; Sanders-Bush, Elaine

    2004-08-01

    We recently demonstrated that the potent hallucinogenic drug lysergic acid diethylamide (LSD) dynamically influences the expression of a small collection of genes within the mammalian prefrontal cortex. Towards generating a greater understanding of the molecular genetic effects of hallucinogens and how they may relate to alterations in behavior, we have identified and characterized expression patterns of a new collection of three genes increased in expression by acute LSD administration. These genes were identified through additional screens of Affymetrix DNA microarrays and examined in experiments to assess dose-response, time course and the receptor mediating the expression changes. The first induced gene, C/EBP-beta, is a transcription factor. The second gene, MKP-1, suggests that LSD activates the MAP (mitogen activated protein) kinase pathway. The third gene, ILAD-1, demonstrates sequence similarity to the arrestins. The increase in expression of each gene was partially mediated through LSD interactions at 5-HT2A (serotonin) receptors. There is evidence of alternative splicing at the ILAD-1 locus. Furthermore, data suggests that various splice isoforms of ILAD-1 respond differently at the transcriptional level to LSD. The genes thus far found to be responsive to LSD are beginning to give a more complete picture of the complex intracellular events initiated by hallucinogens.

  1. [Serum calcium and phosphorus concentration and alkaline phosphatase activity in healthy children during growth and development].

    Science.gov (United States)

    Savić, Ljiljana; Savić, Dejan

    2008-01-01

    Many changes happen during growth and development in an organism as a result of important hormon changes, especially biohumoral ones. These changes make a problem when interpreting biochemical results in pediatric population. The most important changes are intensive calcium and phosphorus metabolic turnover in bone tissue with changes in alkaline phosphatase activity as a result of osteoblast activity. The aim of this study was to follow the serum calcium and phosphorus concentration and alkaline phosphatase activity in children 1-15 years old in different growth and development period and of different sexes and to fortify the influence of growth and development dynamics on biohumoral status in healthy male and female children. We evaluated 117 healthy children of both sexes from 1-15 years of age and divided them into three age groups: 1-5, 6-10 and 11-15 years. We followed the serum calcium and phosphorus concentration and alkaline phosphatase activity in different groups and in different sexes. Our investigation found significantly higher values of serum calcium in boys than in girls with no important changes between the age groups and significantly higher values of serum phosphorus in the youngest age group in all children and in different sexes with no important sex differences. Alkaline phosphatase activity followed the growth spurt and was the biggest in 6-10 years group in girls and in 11-15 years group in boys.

  2. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28.

    Directory of Open Access Journals (Sweden)

    Bonsu Ku

    Full Text Available Dual-specificity phosphatases (DUSPs constitute a subfamily of protein tyrosine phosphatases, and are intimately involved in the regulation of diverse parameters of cellular signaling and essential biological processes. DUSP28 is one of the DUSP subfamily members that is known to be implicated in the progression of hepatocellular and pancreatic cancers, and its biological functions and enzymatic characteristics are mostly unknown. Herein, we present the crystal structure of human DUSP28 determined to 2.1 Å resolution. DUSP28 adopts a typical DUSP fold, which is composed of a central β-sheet covered by α-helices on both sides and contains a well-ordered activation loop, as do other enzymatically active DUSP proteins. The catalytic pocket of DUSP28, however, appears hardly accessible to a substrate because of the presence of nonconserved bulky residues in the protein tyrosine phosphatase signature motif. Accordingly, DUSP28 showed an atypically low phosphatase activity in the biochemical assay, which was remarkably improved by mutations of two nonconserved residues in the activation loop. Overall, this work reports the structural and biochemical basis for understanding a putative oncological therapeutic target, DUSP28, and also provides a unique mechanism for the regulation of enzymatic activity in the DUSP subfamily proteins.

  3. Serum proteins, trace metals and phosphatases in psoriasis

    Directory of Open Access Journals (Sweden)

    Bhatnagar M

    1994-01-01

    Full Text Available Serum proteins, zinc, copper, acid phosphatase (AcPase and alkaline phosphatase (AlPase were studied in both active and remission phases of psoriasis. Data were compared with healthy controls, ?1, ? and ? globulins were high in active phase while ?1 and ? globulins were at par in remission phase. Serum copper was low but zinc and alkaline phosphatase were significantly high in both active and remission phases of the disease. Acid phosphatase level was at par in all the experimental groups. Study suggests a positive correlation of globulin, zinc and Alpase in active and remission phase of psoriasis.

  4. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease

    Science.gov (United States)

    López-Valverde, Antonio; Gómez-de-Diego, Rafel; Arias-Santiago, Salvador; de Vicente-Jiménez, Joaquín

    2013-01-01

    Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin. Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation. Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth. Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin. Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin. PMID:23524437

  5. Fluorescence-based staining for tartrate-resistant acidic phosphatase (TRAP) in osteoclasts combined with other fluorescent dyes and protocols.

    Science.gov (United States)

    Filgueira, Luis

    2004-03-01

    Osteoclasts are the only bone-resorbing cells. In addition to other specific properties, osteoclasts are characterized by their expression of tartrate-resistant acidic phosphatase (TRAP), which is usually detected using a histochemical method for light microscopy. Using ELF97 phosphatase substrate, this study describes a new fluorescence-based method for TRAP detection. The fluorescence-based ELF97 TRAP stain not only results in a better resolution of the TRAP-positive granules, because confocal microscopy can be applied for image acquisition and analysis, but it reveals additional and more specific information about osteoclasts because it can be combined with other fluorescence-based methods.

  6. Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1.

    Science.gov (United States)

    Kurita, Souichi; Watanabe, Yosuke; Gunji, Emi; Ohashi, Kazumasa; Mizuno, Kensaku

    2008-11-21

    Slingshot-1 (SSH1), a member of a dual-specificity protein phosphatase family, regulates actin dynamics by dephosphorylating and reactivating cofilin, an actin-depolymerizing factor. SSH1 has the SSH family-specific, N-terminal, noncatalytic (SSH-N) domain, consisting of the A and B subdomains. SSH1 is activated by binding to actin filaments. In this study, we examined the mechanisms of SSH1 substrate recognition of phospho-cofilin (P-cofilin) and SSH1 activation by F-actin. We found that P-cofilin binds to a phosphatase-inactive mutant, SSH1(CS), in which the catalytic Cys-393 is replaced by Ser. Using a series of deletion mutants, we provided evidence that both the phosphatase (P) domain and the adjacent B domain are indispensable for P-cofilin binding of SSH1(CS) and cofilin-phosphatase activity of SSH1. In contrast, the A domain is required for the F-actin-mediated activation of SSH1, but not for P-cofilin binding or basal cofilin-phosphatase activity. The P domain alone is sufficient for the phosphatase activity toward p-nitrophenyl phosphate (pNPP), indicating that the SSH-N domain is not essential for the basal phosphatase activity of SSH1. Addition of F-actin increased the cofilin-phosphatase activity of SSH1 more than 1200-fold, but the pNPP-phosphatase activity only 2.2-fold, which suggests that F-actin principally affects the cofilin-specific phosphatase activity of SSH1. When expressed in cultured cells, SSH1, but not its mutant deleted of SSH-N, accumulated in the rear of the lamellipodium. Together, these findings suggest that the conserved SSH-N domain plays critical roles in P-cofilin recognition, F-actin-mediated activation, and subcellular localization of SSH1.

  7. Bezafibrate normalizes alkaline phosphatase in primary biliary cirrhosis patients with incomplete response to ursodeoxycholic acid.

    Science.gov (United States)

    Lens, Sabela; Leoz, María; Nazal, Leyla; Bruguera, Miguel; Parés, Albert

    2014-02-01

    Ursodeoxycholic acid (UDCA) is the standard treatment for primary biliary cirrhosis (PBC) but excellent response is not observed in all cases. Since potential favourable effects of fibrates have been reported in short series with inconclusive results, we have carried out a pilot study to analyse the effects of bezafibrate in patients with suboptimal response to UDCA. Thirty women (age 52.3 ± 2.3 years) treated with UDCA and abnormal alkaline phosphatase (AP) levels received bezafibrate (400 mg/d) for 1 year. Changes were measured every 3 months during the study period of 12 months, 3 months after discontinuation and 3 months after resuming bezafibrate. Two patients discontinued the treatment after few days, three at 6 and one at 9 months. Bezafibrate treatment resulted in a significant decrease in AP as early as 3 months. Normalization or decrease of AP below 1.5 times normal levels was observed in 13 and 4 patients respectively. There was also a significant decrease in γ-glutamyl transferase and alanine aminotransferase, cholesterol and triglyceride levels. Bezafibrate treatment resulted in significant improvement of pruritus. A rebound in liver biochemistries and pruritus occurred upon drug discontinuation, changes which improved again after resuming bezafibrate. Response to bezafibrate was associated with lower liver stiffness and severity of cholestasis. No severe adverse effects were observed. Combination treatment of bezafibrate and UDCA is associated with marked decrease or normalization of alkaline phosphatase as early as 3 months in patients with PBC. Better biochemical response was observed in patients with early disease and lower cholestasis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone.

    Science.gov (United States)

    Ylilauri, Mikko; Mattila, Elina; Nurminen, Elisa M; Käpylä, Jarmo; Niinivehmas, Sanna P; Määttä, Juha A; Pentikäinen, Ulla; Ivaska, Johanna; Pentikäinen, Olli T

    2013-10-01

    T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics. © 2013.

  9. Biochemical characterization and inhibitory effects of dinophysistoxin-1, okadaic acid and microcystine l-r on protein phosphatase 2a purified from the mussel Mytilus chilensis.

    Directory of Open Access Journals (Sweden)

    MARIELLA RIVAS

    2000-01-01

    Full Text Available Protein phosphatases are involved in many cellular processes. One of the most abundant and best studied members of this class is protein phosphatase type-2A (PP2A. In this study, PP2A was purified from the mussel Mytilus chilensis. Using both SDS-PAGE and size exclusion gel filtration under denaturant conditions, it was confirmed that the PP2A fraction was essentially pure. The isolated enzyme is a heterodimer and the molecular estimated masses of the subunits are 62 and 28 kDa. The isolated PP2A fraction has a notably high p-NPP phosphatase activity, which is inhibited by NaCl. The hydrolytic p-NPP phosphatase activity is independent of the MgCl2 concentration. The time courses of the inhibition of the PP2A activity of p-NPP hydrolysis by increasing concentrations of three phycotoxins that are specific inhibitors of PP2A are shown. Inhibitions caused by Okadaic acid, dinophysistoxin-1 (DTX1, 35-methylokadiac acid and Microcystine L-R are dose-dependent with inhibition constants (Ki of 1.68, 0.40 and 0.27 nM respectively. Microcystine L-R, the most potent phycotoxin inhibitor of PP2A isolated from Mytilus chilensis with an IC50 = 0.25 ng/ml, showed the highest specific inhibition effect an the p-NPP hydrolisis. The calculated IC50 for DTX1 and OA was 0.75 ng/ml and 1.8 ng/ml respectively.

  10. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo

    Directory of Open Access Journals (Sweden)

    M. P. Patil

    2015-03-01

    Full Text Available Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade, (+2 Grade, (+3 Grade, and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×105 cells/ml and alkaline phosphatase (U/L in different groups were viz. normal (3.21±0.179, 16.48±1.432, subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013, with +2 Grade (6.34±0.183, 34.50±1.034, with +3 Grade (7.96±0.213, 37.73±0.737 and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907 respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes.

  11. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling.

    Science.gov (United States)

    Paul, Surojit; Nairn, Angus C; Wang, Ping; Lombroso, Paul J

    2003-01-01

    The intracellular mechanism(s) by which a cell determines the duration of extracellular signal-regulated kinase (ERK) activation is not well understood. We have investigated the role of STEP, a striatal-enriched tyrosine phosphatase, in the regulation of ERK activity in rat neurons. Glutamate-mediated activation of NMDA receptors leads to the rapid but transient phosphorylation of ERK in cultured neurons. Here we show that activation of NMDA receptors led to activation of STEP, which limited the duration of ERK activity as well as its translocation to the nucleus and its subsequent downstream nuclear signaling. In neurons, STEP is phosphorylated and inactive under basal conditions. NMDA-mediated influx of Ca(2+), but not increased intracellular Ca(2+) from other sources, leads to activation of the Ca(2+)-dependent phosphatase calcineurin and the dephosphorylation and activation of STEP. We have identified an important mechanism involved in the regulation of ERK activity in neurons that highlights the complex interplay between serine/threonine and tyrosine kinases and phosphatases.

  12. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase.

    Science.gov (United States)

    Liu, JingJing; Tang, Duosi; Chen, Zhitao; Yan, Xiaomei; Zhong, Zhou; Kang, Longtian; Yao, Jiannian

    2017-08-15

    Alkaline phosphatase (ALP) as an essential enzyme plays an important role in clinical diagnoses and biomedical researches. Hence, the development of convenient and sensitivity assay for monitoring ALP is extremely important. In this work, on the basis of chemical redox strategy to modulate the fluorescence of nitrogen-doped graphene quantum dots (NGQDs), a novel label-free fluorescent sensing system for the detection of alkaline phosphatase (ALP) activity has been developed. The fluorescence of NGQDs is firstly quenched by ultrathin cobalt oxyhydroxide (CoOOH) nanosheets, and then restored by ascorbic acid (AA), which can reduce CoOOH to Co2+, thus the ALP can be monitored based on the enzymatic hydrolysis of L-ascorbic acid-2-phosphate (AAP) by ALP to generate AA. Quantitative evaluation of ALP activity in a range from 0.1 to 5U/L with the detection limit of 0.07U/L can be realized in this sensing system. Endowed with high sensitivity and selectivity, the proposed assay is capable of detecting ALP in biological system with satisfactory results. Meanwhile, this sensing system can be easily extended to the detection of various AA-involved analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Histochemical and electrophoretic studies on phosphatases of some Indian trematodes.

    Science.gov (United States)

    Haque, M; Siddiqi, A H

    1982-06-01

    The isoenzymes of acid and alkaline phosphatases and their histochemical localization were studied by polyacrylamide disc gel electrophoresis in four species of trematodes: Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of water buffalo (Bubalus bubalis) and Echinostoma malayanum and Fasciolopsis buski from the small intestine of the pig (Sus scrofa). Both acid and alkaline phosphatases were present in the tegument, gastrodermis, suckers, testes, ovary, eggs, vitellaria and uterus but alkaline phosphatase activity was demonstrated only in the parenchyma and excretory ducts. Polyacrylamide gel electrophoresis revealed two to four isoenzymes for both acid and alkaline phosphatase.

  14. 24-h monitoring of calcineurin phosphatase activity in healthy subjects

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, P.B.; Karamperis, N.; Jørgensen, Kaj Anker

    2005-01-01

    remain to be described. The aim of this study was to investigate whether CaN displays circadian variation or sex difference is present in healthy subjects. Twenty subjects had blood samples drawn every 4 h for a 24-h period. CaN activity was determined in whole blood as the release of 32P from...... a phosphorylated peptide. Activity of the 32P was quantitated by liquid scintillation and results converted to units CaN utilizing a calibration curve. We found no circadian variation in CaN activity and no difference between the two sexes. The clinical importance of these findings is that blood samples...... for calcineurin activity can be drawn without taking the exact time of day into consideration, but only considering the time of drug intake Udgivelsesdato: 2005/9...

  15. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Ali, Md Yousof; Jannat, Susoma; Jung, Hyun Ah; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-05-25

    In the present study, we investigated the anti-diabetic potential of six natural coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), decursinol (3), decursidin (4), umbelliferone 6-carboxylic acid (5), and 2'-isopropyl psoralene (6) isolated from Angelica decursiva and evaluated their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO(-)-mediated protein tyrosine nitration. Coumarins 1-6 showed potent PTP1B and α-glucosidase inhibitory activities with ranges of IC50 values of 5.39-58.90 μM and 65.29-172.10 μM, respectively. In the kinetic study for PTP1B enzyme inhibition, compounds 1, 5, and 6 were competitive, whereas 2 and 4 showed mixed type, and 3 displayed noncompetitive type inhibition. For α-glucosidase enzyme inhibition, compounds 1 and 3 exhibited good mixed-type, while 2, 5, and 6 showed noncompetitive and 4 displayed competitive type inhibition. Furthermore, these coumarins also effectively suppressed ONOO(-)-mediated tyrosine nitration in a dose-dependent manner. To further investigate PTP1B inhibition, we generated a 3D structure of PTP1B using Autodock 4.2 and simulated the binding of compounds 1-6. Docking simulations showed that different residues of PTP1B interacted with different functional groups of compounds 1-6 through hydrogen and hydrophobic interactions. In addition, the binding energies of compounds 1-6 were negative, suggesting that hydrogen bonding may stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, thereby resulting in more effective PTP1B inhibition. These results demonstrate that the whole plant of A. decursiva and its coumarins are useful as potential functional food ingredients for the prevention and treatment of type 2 diabetes. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. Discovery of 4-[(5-arylidene-4-oxothiazolidin-3-yl)methyl]benzoic acid derivatives active as novel potent allosteric inhibitors of protein tyrosine phosphatase 1B: In silico studies and in vitro evaluation as insulinomimetic and anti-inflammatory agents.

    Science.gov (United States)

    Ottanà, Rosaria; Paoli, Paolo; Naß, Alexandra; Lori, Giulia; Cardile, Venera; Adornato, Ilenia; Rotondo, Archimede; Graziano, Adriana Carol Eleonora; Wolber, Gerhard; Maccari, Rosanna

    2017-02-15

    New 4-{[5-arylidene-2-(4-fluorophenylimino)-4-oxothiazolidin-3-yl]methyl}benzoic acids (5) and 2-thioxo-4-thiazolidinone analogues (6) were synthesised as a part of a continuing search for new inhibitors of protein tyrosine phosphatase 1B (PTP1B), an enzyme which is implicated in metabolic disorders and inflammatory signaling. Most of the tested compounds were shown to be potent PTP1B inhibitors. Moreover, their inhibition mechanism was markedly influenced by the substituents in the positions 2 and 5, as kinetic studies indicated. Docking experiments suggested that certain derivatives 5 and 6 may efficiently fit into an allosteric site positioned between the β-sheet including Leu71 and Lys73 and a lipophilic pocket closed by the loop consisting of Pro210 to Leu 204. In cellular assays, several of these new 4-thiazolidinone derivatives showed insulinomimetic and anti-inflammatory properties. Out of them, compound 5b exhibited the most promising profile, being able to promote the activation of both insulin receptor and downstream Akt protein as well as to increase 2-deoxyglucose cellular uptake. Interestingly, compound 5b was also able to interrupt critical events in inflammatory signaling. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Haemoglobin and Lung Total and Lysosomal Phosphatase Activity ...

    African Journals Online (AJOL)

    Smoking of ordinary cigarette exposes its active smokers to health hazards and the filter-tipped cigarette, is said to reduce the hazards. However, it is not certain if the filter-tipped cigarette reduces the hazards in passive smokers since they inhail the cigarette smoke through their nostrils regardless of whether the cigarette is ...

  18. Activation of Rat Intestinal Alkaline Phosphatase by Taurine May be ...

    African Journals Online (AJOL)

    Dr. K.J. Umar

    responses to xenobiotics (Roth et al., 1997). Circulating endotoxins of intestinal origin have been found to create a positive feedback on endotoxin translocation from the. 1 .... pig kidney: Mechanism of activation by magnesium ions. Biochemical Journal, 141: 257-263. Ahlers, J. (1975). The mechanism of hydrolysis of beta.

  19. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  20. Effect of PUFAs from Pteleopsis suberosa stem bark on androgenic enzymes, cellular ATP and prostatic acid phosphatase in mercury chloride – Exposed rat

    Directory of Open Access Journals (Sweden)

    J.K. Akintunde

    2017-09-01

    Full Text Available Occupational and environmental exposure to mercury causes varieties of adverse reproductive disorders in mammals. The present study was designed to investigate the unsaturated fatty acids of Pteleopsis suberosa stem bark extract (PTSSBE, evaluate its antioxidant properties and examine its biochemical targets on sub-acute mercury-induced testicular dysfunctions. Rats were divided into five groups of 10 animals each. Group I was given distilled water; group II, III, IV and V was orally administered with mercury at a dose of 3.75 mg/kg body weight. Group III, IV and V were co-treated with PTSSBE of 25, 50 and 100 mg/kg body weight respectively, for 10 days. Rats exposed to mercury significantly decreased the activities of catalase (CAT, lactate dehydrogenase (LDH, and the level of reduced glutathione (GSH, while the formation of malondialdehyde (MDA was increased. There was also a marked significant decrease (p < 0.05 in testicular activities of Δ5-3β-hydroxysteroid dehydrogenase and Δ5 17β-hydroxysteroid dehydrogenase. Moreover, the activities of prostatic acid phosphatase, total acid phosphatase and prostatic alkaline phosphatase, were significantly (p < 0.05 elevated in mercury treated rats. These effects were prevented by co-treatment with PTSSBE in mercury-induced testicular toxicity in rats. Aphrosidiac effects of Pteleopsis suberosa, may find clinical application in reproductive abnormalities. Isolation and translation of individual active ingredient would help to find new drugs to cure and/or prevent male infertility among mercury exposed workers.

  1. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  2. Blood groups and red cell acid phosphatase types in a Mixteca population resident in Mexico City.

    Science.gov (United States)

    Buentello, L.; García, P.; Lisker, R.; Salamanca, F.; Peñaloza, R.

    1999-01-01

    Several blood groups, ABO, Rh, Ss, Fy, Jk, and red cell acid phosphatase (ACP) types were studied in a native Mixteca population that has resided in Mexico City since 1950. Gene frequencies were obtained and used to establish admixture estimates with blacks and whites. The subjects came from three different geographical areas: High Mixteca, Low Mixteca, and Coast Mixteca. All frequencies were in Hardy-Weinberg equilibrium. The difference in the ABO frequencies was statistically significant when subjects from the three areas were compared simultaneously. Rh frequencies differed only between the High and the Low Mixteca populations. The ACP frequencies were similar between the Low Mixteca population and a previously reported Mestizo population. However, there were significant differences between the High Mixteca group and a Mestizo population, all the subjects being from Oaxaca. This is the first report of Ss, Fy, Jk, and ACP frequencies in a Mixteca population. Am. J. Hum. Biol. 11:525-529, 1999. Copyright 1999 Wiley-Liss, Inc.

  3. Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Natela Dushukyan

    2017-11-01

    Full Text Available The serine/threonine protein phosphatase 5 (PP5 regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90, promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an “on/off switch” mechanism for PP5 regulation. The casein kinase 1δ (CK1δ phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.

  4. Use of polyethylene glycol and high-performance liquid chromatography for preparative separation of Aspergillus ficuum acid phosphatases.

    Science.gov (United States)

    Hamada, J S

    1994-01-14

    Proteins of Aspergillus ficuum culture filtrate were sequentially fractionated with 4, 9, 15, 19, 24, 30 and 36% polyethylene glycol (PEG) into seven acid phosphatases (APases) with 93% and 52% overall recoveries of activity and protein, respectively. Crude extract was also separated into seven APase peaks on a 30 cm x 2.5 cm I.D. anion-exchange column using 0.1 M Tris-HCl (pH 8.0) and a 0-0.4 M KCl gradient as the eluent, but their resolution was incomplete. However, when individual PEG precipitates were injected on to the column, each APase was eluted in a single, large peak resulting in 85% recovery and fifteen-fold purification of APase activity over the PEG precipitates. Use of PEG prior to HPLC separations also reduced the separation time to half and allowed a tenfold increase in sample load with complete resolution. The APases in PEG fractions and their corresponding HPLC peaks varied significantly in their kinetic parameters, including substrate specificity and pH optimum. The method developed is most beneficial for the isolation of these closely related APases from microbial or other sources for further molecular biology studies.

  5. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    Directory of Open Access Journals (Sweden)

    M. Stibal

    2009-05-01

    Full Text Available Arctic glacier surfaces harbour abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P is deficient in the supraglacial environment on a Svalbard glacier, we quantify the enzymatic activity of phosphatases in the system and we estimate the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19–67 nmol MUP g−1 h−1. It was inhibited by inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity measured at near-in situ temperature and substrate concentration suggests that the available dissolved organic P can be turned over by microbes within ~3–11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes.

  6. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Antonyuk

    2014-03-01

    Full Text Available Phosphatases function in the production, transport and recycling of inorganic phosphorus, which is crucial for cellular metabolism and bioenergetics, as well as in bacterial killing, since they are able to generate reactive oxygen species via Fenton chemistry. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1, a glycoprotein plant purple acid phosphatase (PAP from yellow lupin seeds, contains a bimetallic Fe–Mn catalytic site which is most active at acidic pH. Unlike other plant PAPs, PPD1 cleaves the pyrophosphate bond in diphosphonucleotides and the phosphodiester bond in various phosphodiesters. The homohexameric organization of PPD1, as revealed by a 1.65 Å resolution crystal structure and confirmed by solution X-ray scattering, is unique among plant PAPs, for which only homodimers have previously been reported. A phosphate anion is bound in a bidentate fashion at the active site, bridging the Fe and Mn atoms in a binding mode similar to that previously reported for sweet potato PAP, which suggests that common features occur in their catalytic mechanisms. The N-terminal domain of PPD1 has an unexpected and unique fibronectin type III-like fold that is absent in other plant PAPs. Here, the in vitro DNA-cleavage activity of PPD1 is demonstrated and it is proposed that the fibronectin III-like domain, which `overhangs' the active site, is involved in DNA selectivity, binding and activation. The degradation of DNA by PPD1 implies a role for PPD1 in plant growth and repair and in pathogen defence.

  7. Cloning, expression, and characterization of a thermostable PAP2L2, a new member of the type-2 phosphatidic acid phosphatase family from Geobacillus toebii T-85.

    Science.gov (United States)

    Zhang, Yong; Yang, Zhenxing; Huang, Xiaodong; Peng, Jing; Fei, Xiangwei; Gu, Shaohua; Xie, Yi; Ji, Chaoneng; Mao, Yumin

    2008-12-01

    Most members of the type-2 phosphatidic acid phosphatase (PAP2) superfamily are integral membrane phophatases involved in lipid-related signal transduction and metabolism. Here we describe the cloning of a novel gene from Geobacillus toebii T-85, encoding a PAP2-like protein, Gtb PAP2L2, which contains 212 amino acids and shows a limited homology to other known PAP2s, especially at conserved phosphatase motifs, and a similar six-transmembrane topology structure. This enzyme was expressed, and purified in Escherichia coli. Recombinant Gtb PAP2L2s from the membrane fractions were solublized with 0.3% (v/v) Triton X-100 and purified by Ni(2+) affinity chromatography. The purified enzyme showed broad substrate specificity to phosphatidic acid, diacylglycerol pyrophosphate, and lysophosphatidic, but preferred phosphatidic acid and diacylglycerol pyrophosphate in vitro. Gtb PAP2L2 is a thermal stable enzyme with a half-life of 30 min at 60 degrees C. The enzyme was strongly inhibited by 1% SDS, 10 mM veranda, and Zn(2+), whereas it was independent of the Mg(2+) ion, and insensitive to N-ethylmaleimide. The purified recombinant Gtb PAP2L2 was catalytically active and highly stable, making it ideal as a candidate on which to base further PAP2 structure/function studies.

  8. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Yung, M C [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiao, Y [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-22

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown to confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria.

  9. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    Science.gov (United States)

    Castermans, Dries; Somers, Ils; Kriel, Johan; Louwet, Wendy; Wera, Stefaan; Versele, Matthias; Janssens, Veerle; Thevelein, Johan M

    2012-01-01

    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein

  10. Serum total acid phosphatase for monitoring the clinical course of giant cell tumors of bone26 patients with 5 local recurrences

    National Research Council Canada - National Science Library

    Akahane, Tsutomu; Isobe, Ken'ichi; Shimizu, Tominaga

    2005-01-01

    .... A recent study showed increased levels of serum total acid phosphatase (TACP). Methods We assessed TACP in the serum of 26 patients with primary GCT, and in 5 of them who developed a local recurrence. Results...

  11. Serum total acid phosphatase for monitoring the clinical course of giant cell tumors of bone-26 patients with 5 local recurrences

    National Research Council Canada - National Science Library

    Akahane, Tsutomu; Isobe, Ken'ichi; Shimizu, Tominaga

    2005-01-01

    .... A recent study showed increased levels of serum total acid phosphatase (TACP). Methods We assessed TACP in the serum of 26 patients with primary GCT, and in 5 of them who developed a local recurrence. Results...

  12. NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator.

    Science.gov (United States)

    Perchat, Stéphane; Talagas, Antoine; Zouhir, Samira; Poncet, Sandrine; Bouillaut, Laurent; Nessler, Sylvie; Lereclus, Didier

    2016-11-04

    Regulation of biological functions requires factors (proteins, peptides or chemicals) able to sense and translate environmental conditions or any circumstances in order to modulate the transcription of a gene, the stability of a transcript or the activity of a protein. Quorum sensing is a regulation mechanism connecting cell density to the physiological state of a single cell. In bacteria, quorum sensing coordinates virulence, cell fate and commitment to sporulation and other adaptation properties. The critical role of such regulatory systems was demonstrated in pathogenicity and adaptation of bacteria from the Bacillus cereus group (i.e. B. cereus and Bacillus thuringiensis). Furthermore, using insects as a model of infection, it was shown that sequential activation of several quorum sensing systems allowed bacteria to switch from a virulence state to a necrotrophic lifestyle, allowing their survival in the host cadaver, and ultimately to the commitment into sporulation. The chronological development of these physiological states is directed by quorum sensors forming the RNPP family. Among them, NprR combines two distinct functions connecting sporulation to necrotrophism in B. thuringiensis. In the absence of its cognate signaling peptide (NprX), NprR negatively controls sporulation by acting as a phosphatase. In the presence of NprX, it acts as a transcription factor regulating a set of genes involved in the survival of the bacteria in the insect cadaver.

  13. NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator

    Directory of Open Access Journals (Sweden)

    Stéphane Perchat

    2016-11-01

    Full Text Available Regulation of biological functions requires factors (proteins, peptides or chemicals able to sense and translate environmental conditions or any circumstances in order to modulate the transcription of a gene, the stability of a transcript or the activity of a protein. Quorum sensing is a regulation mechanism connecting cell density to the physiological state of a single cell. In bacteria, quorum sensing coordinates virulence, cell fate and commitment to sporulation and other adaptation properties. The critical role of such regulatory systems was demonstrated in pathogenicity and adaptation of bacteria from the Bacillus cereus group (i.e. B. cereus and Bacillus thuringiensis. Furthermore, using insects as a model of infection, it was shown that sequential activation of several quorum sensing systems allowed bacteria to switch from a virulence state to a necrotrophic lifestyle, allowing their survival in the host cadaver, and ultimately to the commitment into sporulation. The chronological development of these physiological states is directed by quorum sensors forming the RNPP family. Among them, NprR combines two distinct functions connecting sporulation to necrotrophism in B. thuringiensis. In the absence of its cognate signaling peptide (NprX, NprR negatively controls sporulation by acting as a phosphatase. In the presence of NprX, it acts as a transcription factor regulating a set of genes involved in the survival of the bacteria in the insect cadaver.

  14. Application of Scharer's quantitative method for the determination of residual alkaline phosphatase activity in standard Minas

    Directory of Open Access Journals (Sweden)

    C.F. Soares

    2013-08-01

    Full Text Available Milk pasteurization is a critical issue in the dairy industry, and failures in this process can affect final product safety. Scharer's enzymatic method is still traditionally used to verify pasteurization efficiency compliance, and it is based on screening for residual alkaline phosphatase in milk. Although several methods are used to quantify enzymatic activity to assess milk pasteurization efficiency, there is a small amount of published data regarding the use of these methods to quantify alkaline phosphatase in cheese. In this study, the Scharer's modified method was used to determine the levels of residual alkaline phosphatase in standard minas cheese, before and after 20 days of ripening. The cheeses were made using raw or pasteurized milk with the addition of different concentrations of raw milk (0; 0.05%; 0.10%; 0.20%; and 0.50%. In the fresh cheese samples, the method showed a sensitivity of only 0.50% with the addition of raw milk to the pasteurized milk used to make cheese. In addition, levels of up 0.20% of raw milk in pasteurized milk, the concentrations of phenol was inferior to 1μg phenol/g of dairy product which is the preconized indicator value for adequate pasteurization.

  15. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    Directory of Open Access Journals (Sweden)

    Kristine G. Cabugao

    2017-10-01

    Full Text Available Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P, often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05. These results indicate that although root and bacterial phosphatase activity were influenced by tree species

  16. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis.

    Science.gov (United States)

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-09-13

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)-A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals.

  17. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  18. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jun [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Ni, Lisheng [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Osinski, Adam [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Tomchick, Diana R. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Brautigam, Chad A. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States; Luo, Xuelian [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States

    2017-10-24

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.

  19. Elevated serum tartrate-resistant acid phosphatase isoform 5a levels in metabolic syndrome.

    Science.gov (United States)

    Huang, Yi-Jhih; Huang, Tsai-Wang; Chao, Tsu-Yi; Sun, Yu-Shan; Chen, Shyi-Jou; Chu, Der-Ming; Chen, Wei-Liang; Wu, Li-Wei

    2017-09-29

    Tartrate-resistant phosphatase isoform 5a is expressed in tumor-associated macrophages and is a biomarker of chronic inflammation. Herein, we correlated serum tartrate-resistant phosphatase isoform 5a levels with metabolic syndrome status and made comparisons with traditional markers of inflammation, including c-reactive protein and interleukin-6. One hundred healthy volunteers were randomly selected, and cut-off points for metabolic syndrome related inflammatory biomarkers were determined using receiver operating characteristic curves. Linear and logistic regression models were subsequently used to correlate inflammatory markers with the risk of metabolic syndrome. Twenty-two participants met the criteria for metabolic syndrome, and serum tartrate-resistant phosphatase isoform 5a levels of >5.8 μg/L were associated with metabolic syndrome (c-statistics, 0.730; p = 0.001; 95% confidence interval, 0.618-0.842). In addition, 1 μg/L increases in tartrate-resistant phosphatase isoform 5a levels were indicative of a 1.860 fold increase in the risk of metabolic syndrome (p = 0.012). Elevated serum tartrate-resistant phosphatase isoform 5a levels are associated with the risk of metabolic syndrome, with a cut-off level of 5.8 μg/L.

  20. The PP1 phosphatase flapwing regulates the activity of Merlin and Moesin in Drosophila.

    Science.gov (United States)

    Yang, Yang; Primrose, David A; Leung, Albert C; Fitzsimmons, Ross B; McDermand, Matt C; Missellbrook, Alison; Haskins, Julie; Smylie, AnneLiese S; Hughes, Sarah C

    2012-01-15

    The signalling activities of Merlin and Moesin, two closely related members of the protein 4.1 Ezrin/Radixin/Moesin family, are regulated by conformational changes. These changes are regulated in turn by phosphorylation. The same sterile 20 kinase-Slik co-regulates Merlin or Moesin activity whereby phosphorylation inactivates Merlin, but activates Moesin. Thus, the corresponding coordinate activation of Merlin and inactivation of Moesin would require coordinated phosphatase activity. We find that Drosophila melanogaster protein phosphatase type 1 β (flapwing) fulfils this role, co-regulating dephosphorylation and altered activity of both Merlin and Moesin. Merlin or Moesin are detected in a complex with Flapwing both in-vitro and in-vivo. Directed changes in flapwing expression result in altered phosphorylation of both Merlin and Moesin. These changes in the levels of Merlin and Moesin phosphorylation following reduction of flapwing expression are associated with concomitant defects in epithelial integrity and increase in apoptosis in developing tissues such as wing imaginal discs. Functionally, the defects can be partially recapitulated by over expression of proteins that mimic constitutively phosphorylated or unphosphorylated Merlin or Moesin. Our results suggest that changes in the phosphorylation levels of Merlin and Moesin lead to changes in epithelial organization. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Different in vitro and in vivo activity of low Mr phosphotyrosine protein phosphatase on epidermal growth factor receptor.

    Science.gov (United States)

    Rigacci, S; Marzocchini, R; Bucciantini, M; Berti, A

    1998-09-29

    Low Mr phosphotyrosine protein phosphatase is a cytosolic enzyme which dephosphorylates platelet-derived growth factor and insulin receptor in vivo, thus reducing cellular mitogenic response to such growth factors. Following cell stimulation with platelet-derived growth factor the phosphatase undergoes a redistribution from the citosol to the Triton X-100-insoluble fraction where its activity upon the growth factor receptor is intense. Previous research uncovered evidence that low Mr phosphotyrosine protein phosphatase dephosphorylates the epidermal growth factor receptor in vitro. Here we demonstrate that in vivo the enzyme is not active on the phosphorylated epidermal growth factor receptor and it does not influence the mitogenic response of cells. Since the enzyme distribution is not affected by epidermal growth factor stimulation, involvement of a recruitment mechanism in the definition of low Mr phosphotyrosine protein phosphatase substrate specificity is hypothesized. Copyright 1998 Academic Press.

  2. Aspergillus ficuum extracellular pH 6.0 optimum acid phosphatase: purification, N-terminal amino acid sequence, and biochemical characterization.

    Science.gov (United States)

    Ullah, A H; Cummins, B J

    1988-01-01

    An extracellular acid phosphatase, pH optimum 6.0 from crude culture filtrate of Aspergillus ficuum was purified to homogeneity using cation exchange chromatography and chromatofocusing steps. SDS-PAGE of the purified enzyme exhibited two stained bands at approximately 82-KDa and 70-KDa. The mobility of the active enzyme in gel permeation chromatography indicated the molecular mass to be about 85-KDa. In the concentrated form the enzyme appeared to be purple, the visible absorption spectrum shows a lambda max at 580 nm. On the basis of molecular mass of 82-KDa, the molar extinction coefficient of the enzyme at 280 nm and 580 nm was estimated to be 1.2 x 10(5) M-1 cm-1 and 1.3 x 10(3) M-1 cm-1 respectively. Judging by chromatofocusing, the isoelectric point of the enzyme was about 4.9. The purified enzyme was unstable at 70 degrees C. The enzyme was catalytically very active from 55 degrees to 65 degrees C with a maximum activity at 63 degrees C. The Michaelis constant of the enzyme for p-nitrophenylphosphate was 200 microM with a computed Kcat of 260 per sec. Although the enzyme was insensitive to fluoride, tartrate, and N-ethylmaleimide (NEM), it was competitively inhibited by phosphomycin (Ki = 1.00 mM) and inorganic orthophosphate (Ki = 165 microM). While the enzyme was relatively insensitive to Mn++, Cu++ and Zn++ inhibited the activity 540 fold at a concentration of 100 microM. The enzyme showed positive PAS staining and hence is a glycoprotein (28% glycosylation); the sugar composition suggests the presence of N-linked high mannose-oligosaccharides and galactose. A partial N-terminal amino acid sequence up to the thirty-fourth residue was elucidated.

  3. Staphylococcal acid phosphatase binds to endothelial cells via charge interaction; a pathogenic role in Wegener’s granulomatosis?

    Science.gov (United States)

    Brons, R H; Bakker, H I; Van Wijk, R T; Van Dijk, N W; Muller Kobold, A C; Limburg, P C; Manson, W L; Kallenberg, C G M; Cohen Tervaert, J W

    2000-01-01

    The majority of patients with Wegener’s granulomatosis (WG) are chronic nasal carriers of Staphylococcus aureus. Chronic nasal carriage of S. aureus is associated with an increased risk of developing a relapse of the disease. The mechanism by which this occurs is still unknown. We hypothesized that a cationic protein of S. aureus, staphylococcal acid phosphatase (SAcP), acts as a planted antigen and initiates glomerulonephritis and vasculitis in patients with WG. In order to test the hypothesis that SAcP can act as a planted antigen in WG, we studied the ability of SAcP to bind to human umbilical vein endothelial cells (HUVEC) and human glomerular endothelial cells. We also studied whether this binding can be prevented by preincubation with an anionic protein, and whether binding of SAcP activates endothelial cells. We also evaluated whether antibodies in sera of patients with WG are able to bind to endothelial cell-bound SAcP. The results show that SAcP can act as a planted antigen by binding to both types of endothelial cells in a concentration-dependent manner. Binding of concentrations as low as 4 μ g/ml can be detected on HUVEC within 5 min of incubation. Binding of SAcP to endothelial cells was charge-dependent but did not activate endothelial cells. Finally, endothelial cell-bound SAcP was recognized by sera of patients with WG. The data suggest a possible pathogenic role for SAcP by acting as a planted antigen thereby initiating glomerulonephritis and vasculitis in patients with WG. PMID:10691932

  4. A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis

    OpenAIRE

    Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2012-01-01

    DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA pol...

  5. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    Science.gov (United States)

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value tree species; bacterial community composition was chiefly influenced by P availability. Although the sample size is limited given the

  6. Protein Phosphatase 1 Recruitment by Rif1 Regulates DNA Replication Origin Firing by Counteracting DDK Activity

    Directory of Open Access Journals (Sweden)

    Anoushka Davé

    2014-04-01

    Full Text Available The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing.

  7. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly.

    Directory of Open Access Journals (Sweden)

    Hans Hombauer

    2007-06-01

    Full Text Available Protein phosphatase 2A (PP2A is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.

  8. Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone.

    Science.gov (United States)

    Puri, Basant K; Hakkarainen-Smith, Jaana S; Derham, Anne; Monro, Jean A

    2015-09-01

    While pharmacotherapy with intravenous ceftriaxone, a third-generation cephalosporin, is a potential treatment of Lyme neuroborreliosis, there is concern that it can cause the formation of biliary sludge, leading to hepatobiliary complications such as biliary colic, jaundice and cholelithiasis, which are reflected in changes in serum levels of bilirubin and markers of cholestatic liver injury (alkaline phosphatase and γ-glutamyltranspeptidase). It has been suggested that the naturally occurring substances α-lipoic acid and glutathione may be helpful in preventing hepatic disease. α-Lipoic acid exhibits antioxidant, anti-inflammatory and anti-apoptotic activities in the liver, while glutathione serves as a sulfhydryl buffer. The aim of this study was to determine whether co-administration of α-lipoic acid and glutathione is associated with significant changes in serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase during the treatment of Lyme neuroborreliosis with long-term intravenous ceftriaxone. Serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase were measured in 42 serologically positive Lyme neuroborreliosis patients before and after long-term treatment with intravenous ceftriaxone (2-4 g daily) with co-administration of oral/intravenous α-lipoic acid (600 mg daily) and glutathione (100 mg orally or 0.6-2.4 g intravenously daily). None of the patients developed biliary colic and there were no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels over the course of the intravenous ceftriaxone treatment (mean length 75.0 days). Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone.

  9. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...... the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active......-site pocket of the enzyme; hence, the active site is highly solvated in the apo state. Three of the water molecules are located at positions that approximately correspond to the positions of the phosphate O atoms of the natural substrate phosphotyrosine and form a similar network of hydrogen bonds. The active...

  10. The Aspergillus niger (ficuum) aphA gene encodes a pH 6.0-optimum acid phosphatase.

    Science.gov (United States)

    Mullaney, E J; Daly, C B; Ehrlich, K C; Ullah, A H

    1995-08-30

    We have used the Aspergillus niger (An) aphA gene as a probe and cloned the A. ficuum (Af) SRRC 265 gene encoding an extracellular pH 6.0-optimum acid phosphatase (APase6) from a genomic library. The identity of the Af aphA gene was confirmed and its nucleotide (nt) sequence verified by comparing its deduced amino acid (aa) sequence to that of purified Af APase6. A comparison of the nt sequences of the An and Af genes suggested that errors were made in the previously reported An aphA sequence. Several regions of the An aphA were resequenced and the mistakes corrected. With its nt sequence corrected, the An aphA is nearly identical to the cloned Af gene encoding APase6, and in 90.4% agreement in the coding regions. Both genes have three conserved introns and when translated, both nt sequences code for a polypeptide of 614 aa. There is now evidence that the two cloned genes are homologous and code for acid phosphatases that are 96% identical.

  11. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    Science.gov (United States)

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.

  12. A novel transcription factor involved in plant defense endowed with protein phosphatase activity

    Science.gov (United States)

    Carrasco, José L.; Ancillo, Gema; Mayda, Esther; Vera, Pablo

    2003-01-01

    In plants, expression of a disease-resistance character following perception of a pathogen involves massive deployment of transcription-dependent defenses. Thus, if rapid and effective defense responses have to be achieved, it is crucial that the pathogenic signal is transduced and amplified through pre-existing signaling pathways. Reversible phosphorylation of specific transcription factors, by a concerted action of protein kinases and phosphatases, may represent a mechanism for rapid and flexible regulation of selective gene expression by environmental stimuli. Here we identified a novel DNA-binding protein from tobacco plants, designated DBP1, with protein phosphatase activity, which binds in a sequence-specific manner to a cis- acting element of a defense-related gene and participates in its transcriptional regulation. This finding helps delineate a terminal event in a signaling pathway for the selective activation of early transcription-dependent defense responses in plants, and suggests that stimulus-dependent reversible phosphorylation of regulatory proteins may occur directly in a transcription protein–DNA complex. PMID:12839999

  13. Activity of alkaline phosphatase in uterine flushings of dairy cows affected with ovarian cysts or endometritis.

    Science.gov (United States)

    Boos, A; Wittkowski, G; Schwarz, R

    1988-08-01

    Both uterine horns of 14 dairy cows with ovarian follicular cysts, and four animals affected with purulent endometritis were flushed via catheter using 30 ml phosphate buffered saline, following evisceration at a local abattori. Activity in the flushing media of alkaline phosphatase (ALP) and aspartate aminotransferase (GOT) were examined. Ovaries were prepared for light microscopy. Amount and morphological integrity of luteinized tissue found on the ovaries were reflected by correspondent levels in ALP activity, which was higher in the media taken from the ipsilateral to the luteal tissue situated uterine horns (651 +/- 228 vs 244 +/- 62 u/l, n = 3). Only cows having relatively large amounts of luteal tissue on the cystic ovaries (as in luteinized follicular cysts) exhibited very high ALP activity in uterine flushings (2693 +/- 1348 u/l, n = 2). Results suggest the existence of local relationships between luteal tissue in the ovary and the ipsilateral uterine horn in cows with ovarian follicular cysts.

  14. Insights into the phosphatase and the synthase activities of human bisphosphoglycerate mutase: a quantum mechanics/molecular mechanics simulation.

    Science.gov (United States)

    Chu, Wen-Ting; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2014-03-07

    Bisphosphoglycerate mutase (BPGM) is a multi-activity enzyme. Its main function is to synthesize the 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. This enzyme can also catalyze the 2,3-bisphosphoglycerate to the 3-phosphoglycerate. In this study, the reaction mechanisms of both the phosphatase and the synthase activities of human bisphosphoglycerate mutase were theoretically calculated by using the quantum mechanics/molecular mechanics method based on the metadynamics and umbrella sampling simulations. The simulation results not only show the free energy curve of the phosphatase and the synthase reactions, but also reveal the important role of some residues in the active site. Additionally, the energy barriers of the two reactions indicate that the activity of the synthase in human bisphosphoglycerate mutase is much higher than that of the phosphatase. The estimated reaction barriers are consistent with the experimental data. Therefore, our work can give important information to understand the catalytic mechanism of the bisphosphoglycerate mutase family.

  15. Age-related Changes in the Alkaline Phosphatase Activity of Healthy and Inflamed Human Dental Pulp.

    Science.gov (United States)

    Aslantas, Eda E; Buzoglu, Hatice Dogan; Karapinar, Senem Pinar; Cehreli, Zafer C; Muftuoglu, Sevda; Atilla, Pergin; Aksoy, Yasemin

    2016-01-01

    Alkaline phosphatase (ALP) plays an important role in inducing mineralization events in the dental pulp. This study investigated and compared the ALP levels in healthy and inflamed pulp in young and old human pulp. Tissue samples were collected from young (60 years) donors. In both age groups, healthy human pulp (n = 18) were collected from extracted wisdom teeth. For reversible and irreversible pulpitis, pulp samples (n = 18 each) were obtained during endodontic treatment. ALP activity was assessed by spectrophotometry and immunhistochemistry. Regardless of age, reversible pulpitis group samples showed a slight elevation in ALP activity compared with normal healthy pulp. In elderly patients, ALP expression with irreversible pulpitis was significantly higher than those with a healthy pulp (P irreversible pulpitis, only the old pulp shows significantly elevated ALP levels. Such an increase may trigger calcification events, which may eventually cause difficulties in endodontic treatment procedures in elderly individuals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.

    Science.gov (United States)

    Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-01-21

    In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver.

    Directory of Open Access Journals (Sweden)

    Sven Stadlbauer

    Full Text Available Natural polyphenols like oligomeric catechins (procyanidins derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs. The three phosphatases of regenerating liver (PRLs are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.

  18. The Phosphatase Inhibitor Calyculin-A Impairs Clot Retraction, Platelet Activation, and Thrombin Generation

    Directory of Open Access Journals (Sweden)

    Renáta Hudák

    2017-01-01

    Full Text Available The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA, on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1 activator, thrombin receptor activating peptide (TRAP. Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS- expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+ assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+ response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.

  19. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  20. An Experimental Insight into Extracellular Phosphatases – Differential Induction of Cell-Specific Activity in Green Algae Cultured under Various Phosphorus Conditions

    Directory of Open Access Journals (Sweden)

    Jaroslav Vrba

    2018-02-01

    Full Text Available Extracellular phosphatase activity (PA has been used as an overall indicator of P depletion in lake phytoplankton. However, detailed insights into the mechanisms of PA regulation are still limited, especially in the case of acid phosphatases. The novel substrate ELF97 phosphate allows for tagging PA on single cells in an epifluorescence microscope. This fluorescence-labeled enzyme activity (FLEA assay enables for autecological studies in natural phytoplankton and algal cultures. We combined the FLEA assay with image analysis to measure cell-specific acid PA in two closely related species of the genus Coccomyxa (Trebouxiophyceae, Chlorophyta isolated from two acidic lakes with distinct P availability. The strains were cultured in a mineral medium supplied with organic (beta-glycerol phosphate or inorganic (orthophosphate P at three concentrations. Both strains responded to experimental conditions in a similar way, suggesting that acid extracellular phosphatases were regulated irrespectively of the origin and history of the strains. We found an increase in cell-specific PA at low P concentration and the cultures grown with organic P produced significantly higher (ca. 10-fold PA than those cultured with the same concentrations of inorganic P. The cell-specific PA measured in the cultures grown with the lowest organic P concentration roughly corresponded to those of the original Coccomyxa population from an acidic lake with impaired P availability. The ability of Coccomyxa strains to produce extracellular phosphatases, together with tolerance for both low pH and metals can be one of the factors enabling the dominance of the genus in extreme conditions of acidic lakes. The analysis of frequency distribution of the single-cell PA documented that simple visual counting of ‘active’ (labeled and ‘non-active’ (non-labeled cells can lead to biased conclusions regarding algal P status because the actual PA of the ‘active’ cells can vary from

  1. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  2. Spatial variability of dissolved phosphorous concentrations and alkaline phosphatase activity in the East China Sea

    Science.gov (United States)

    Liu, H.; Chang, J.; Ho, T.; Gong, G.

    2010-12-01

    The concentrations of dissolved inorganic phosphorus (DIP) and alkaline phosphatase activity (APA) have been determined at about 25 sampling stations in the East China Sea since 2003. The stations are mainly distributed from the Changjiang river mouth to northern Taiwan and east to the shelf break. In addition to the Changjiang discharge, we have found a specific nutrient source around a coastal site (122° 2’30’’ E, 28° 40’ N). Elevated DIP and nitrate concentrations have been constantly observed around the sampling station for 8 years, where the surface DIP concentrations are generally around 0.3 µM. The nutrient source may either originate from ground water discharge or coastal upwelling, where lower temperature has been observed in the water column around the station. In general, APA has been negatively correlated with DIP concentrations in the studies sites, with lowest APA around the high DIP station and the Changjiang river mouth.

  3. The ubiquitin E3 ligase NOSIP modulates protein phosphatase 2A activity in craniofacial development.

    Directory of Open Access Journals (Sweden)

    Meike Hoffmeister

    Full Text Available Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans.

  4. Correlation of alkaline phosphatase activity to clinical parameters of inflammation in smokers suffering from chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Vishakha Grover

    2016-01-01

    Full Text Available Context: Current clinical periodontal diagnostic techniques emphasize the assessment of clinical and radiographic signs of periodontal diseases which can provide a measure of history of disease. Hence, new methodologies for early identification and determination of periodontal disease activity need to be explored which will eventually result in expedited treatment. Aim: To evaluate the correlation of alkaline phosphatase (ALP activity in gingival crevicular fluid (GCF to clinical parameters of periodontal inflammation in smokers with chronic periodontitis. Materials and Methods: Study population included 15 smoker male patients in the age group of 35–55 years suffering from moderate generalized chronic periodontitis with history of smoking present. Following parameters were evaluated at baseline, 1 month and 3 months after scaling and root planing: plaque index, bleeding index, probing pocket depth (PD, relative attachment level (RAL, and GCF ALP activity. Statistical Analysis Used: Independent variables for measurements over time were analyzed by using Wilcoxon signed rank test. Results: A statistically significant reduction in all the clinical parameters and GCF ALP activity was observed from baseline to 1 month and 3 months. A correlation was observed between change in GCF ALP activity and PD reduction as well as gain in RAL at 3 months. Conclusion: The present study emphasizes that total ALP activity could be used as a marker for periodontal disease activity in smokers. Estimation of changes in the levels of this enzyme has a potential to aid in the detection of progression of periodontal disease and monitoring the response to periodontal therapy.

  5. Single Laboratory Validation of A Ready-to-Use Phosphatase Inhibition Assay for Detection of Okadaic Acid Toxins

    Directory of Open Access Journals (Sweden)

    Luis Mata

    2012-04-01

    Full Text Available A phosphatase inhibition assay for detection of okadaic acid (OA toxins in shellfish, OkaTest, was single laboratory validated according to international recognized guidelines (AOAC, EURACHEM. Special emphasis was placed on the ruggedness of the method and stability of the components. All reagents were stable for more than 6 months and the method was highly robust under normal laboratory conditions. The limit of detection and quantification were 44 and 56 µg/kg, respectively; both below the European legal limit of 160 µg/kg. The repeatability was evaluated with 2 naturally contaminated samples. The relative standard deviation (RSD calculated was 1.4% at a level of 276 µg/kg and 3.9% at 124 µg/kg. Intermediate precision was estimated by testing 10 different samples (mussel and scallop on three different days and ranged between 2.4 and 9.5%. The IC50 values of the phosphatase used in this assay were determined for OA (1.2 nM, DTX-1 (1.6 nM and DTX-2 (1.2 nM. The accuracy of the method was estimated by recovery testing for OA (mussel, 78–101%; king scallop, 98–114%, DTX-1 (king scallop, 79–102% and DTX-2 (king scallop, 93%. Finally, the method was qualitatively compared to the mouse bioassay and LC-MS/MS.

  6. Single laboratory validation of a ready-to-use phosphatase inhibition assay for detection of okadaic acid toxins.

    Science.gov (United States)

    Smienk, Henry G F; Calvo, Dolores; Razquin, Pedro; Domínguez, Elena; Mata, Luis

    2012-05-01

    A phosphatase inhibition assay for detection of okadaic acid (OA) toxins in shellfish, OkaTest, was single laboratory validated according to international recognized guidelines (AOAC, EURACHEM). Special emphasis was placed on the ruggedness of the method and stability of the components. All reagents were stable for more than 6 months and the method was highly robust under normal laboratory conditions. The limit of detection and quantification were 44 and 56 µg/kg, respectively; both below the European legal limit of 160 µg/kg. The repeatability was evaluated with 2 naturally contaminated samples. The relative standard deviation (RSD) calculated was 1.4% at a level of 276 µg/kg and 3.9% at 124 µg/kg. Intermediate precision was estimated by testing 10 different samples (mussel and scallop) on three different days and ranged between 2.4 and 9.5%. The IC(50) values of the phosphatase used in this assay were determined for OA (1.2 nM), DTX-1 (1.6 nM) and DTX-2 (1.2 nM). The accuracy of the method was estimated by recovery testing for OA (mussel, 78-101%; king scallop, 98-114%), DTX-1 (king scallop, 79-102%) and DTX-2 (king scallop, 93%). Finally, the method was qualitatively compared to the mouse bioassay and LC-MS/MS.

  7. Caffeine alters mitochondrial dehydrogenase and alkaline phosphatase activity of human gingival fibroblasts in vitro.

    Science.gov (United States)

    Bozchaloei, Shabnam Soltani; Gong, Siew-Ging; Dehpour, Ahmad R; Farrokh, Parisa; Khoshayand, Mohammad R; Oskoui, Mahvash

    2013-11-01

    Caffeine is one of the most widely consumed behaviorally active substances in the world. Although its effects on the central nervous system and bone metabolism have been documented, as yet there is no report on its effect on tissues in the oral cavity. In this study we analyzed the viability of human gingival fibroblasts (HGF) and alkaline phosphatase (ALP) enzyme activity after exposure to different concentrations of caffeine for different exposure time periods. The HGF were cultured with different concentrations of caffeine. Viability of cells exposed to caffeine was analyzed by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay to assess mitochondrial dehydrogenase activity. The activity of ALP was analyzed at specific time intervals after caffeine addition. Our results showed that caffeine of concentrations caffeine at 5 and 10 mm dramatically decreased the viability and ALP activity of the cells after 4 days such that, by day 9, the viability of cells declined to near zero in the 10 mm group. These results provided evidence that caffeine in high concentrations can decrease cellular viability and ALP activity in HGF. © 2012 Wiley Publishing Asia Pty Ltd.

  8. The rate of bone mineralization in birds is directly related to alkaline phosphatase activity.

    Science.gov (United States)

    Tilgar, Vallo; Kilgas, Priit; Viitak, Anu; Reynolds, S James

    2008-01-01

    Recent studies have suggested that a biochemical marker, plasma alkaline phosphatase (ALP), can be used as a general indicator of skeletal development in vertebrate animals. In birds, age-related variation in ALP activity, presumably due to bone formation processes, has been demonstrated, but to date, a direct connection between bone mineralization and enzyme activity has been elusive. In this study, we show that the activity of a bone isoform of ALP (bone ALP) is closely related to the overall rate of skeletal mineralization in nestlings of a small passerine bird, the great tit (Parus major L). Moreover, bone ALP activity predicted the rate of mineralization of leg and wing bones but not that of the skull. Liver isoform of ALP was only marginally related to the overall rate of skeletal mineralization, while no association with the mineralization of long bones was found. We conclude that bone ALP activity in the blood plasma is a reliable biomarker for skeletal mineralization in birds. This marker enables detection of subtle developmental differences between chicks of similar structural size, potentially facilitating the prediction of offspring mid- and long-term survival.

  9. Mitogen-activated Protein Kinase Phosphatase (Mkp)-1 Protects Mice against Acetaminophen-induced Hepatic Injury

    Science.gov (United States)

    Wancket, Lyn M.; Meng, Xiaomei; Rogers, Lynette K.; Liu, Yusen

    2012-01-01

    c-Jun N-terminal kinase (JNK) activation promotes hepatocyte death during acetaminophen overdose, a common cause of drug-induced liver failure. While mitogen-activated protein kinase (MAPK) phosphatase (Mkp)-1 is a critical negative regulator of JNK MAPK, little is known about the role of Mkp-1 during hepatotoxicity. In this study, we evaluated the role of Mkp-1 during acute acetaminophen toxicity. Mkp-1+/+ and Mkp-1−/− mice were dosed ip with vehicle or acetaminophen at 300 mg/kg (for mechanistic studies) or 400 mg/kg (for survival studies). Tissues were collected 1–6 hr post 300 mg/kg dosing to assess glutathione levels, organ damage, and MAPK activation. Mkp-1−/− mice exhibited more rapid plasma clearance of acetaminophen than did Mkp-1+/+ mice, indicated by a quicker decline of plasma acetaminophen level. Moreover, Mkp-1−/− mice suffered more severe liver injury, indicated by higher plasma alanine transaminase activity and more extensive centrilobular apoptosis and necrosis. Hepatic JNK activity in Mkp-1−/− mice was higher than in Mkp-1+/+ mice. Finally, Mkp-1−/− mice displayed a lower overall survival rate and shorter median survival time after dosing with 400 mg/kg acetaminophen. The more severe phenotype exhibited by Mkp-1−/− mice indicates that Mkp-1 plays a protective role during acute acetaminophen overdose, potentially through regulation of JNK. PMID:22623522

  10. Mitogen-activated protein kinase phosphatase-1 (MKP-1) in retinal ischemic preconditioning.

    Science.gov (United States)

    Dreixler, John C; Bratton, Anthony; Du, Eugenie; Shaikh, Afzhal R; Savoie, Brian; Alexander, Michael; Marcet, Marcus M; Roth, Steven

    2011-10-01

    We previously described the phenomenon of retinal ischemic pre-conditioning (IPC) and we have shown the role of various signaling proteins in the protective pathways, including the mitogen-activated protein kinase p38. In this study we examined the role in IPC of mitogen-activated protein kinase phosphatase-1 (MKP-1), which inactivates p38. Ischemia was produced by elevation of intraocular pressure above systolic arterial blood pressure in adult Wistar rats. Preconditioning was produced by transient retinal ischemia for 5 min, 24 h prior to ischemia. Small interfering RNA (siRNA) to MKP-1 or a control non-silencing siRNA, was injected into the vitreous 6 h prior to IPC. Recovery was assessed by electroretinography (ERG) and histology. The a-and b-waves, and oscillatory potentials (OPs), measured before and 1 week after ischemia, were then normalized relative to pre-ischemic baseline, and corrected for diurnal variation in the normal non-ischemic eye. The P2, or post-photoreceptor component of the ERG (which reflects function of the rod bipolar cells in the inner retina), was derived using the Hood-Birch model. MKP-1 was localized in specific retinal cells using immunohistochemistry; levels of mitogen-activated protein kinases were measured using Western blotting. Injection of siRNA to MKP-1 significantly attenuated the protective effect of IPC as reflected by decreased recovery of the electroretinogram a and b-waves and the P2 after ischemia. The injection of siRNA to MKP-1 reduced the number of cells in the retinal ganglion cell and outer nuclear layers after IPC and ischemia. Blockade of MKP-1 by siRNA also increased the activation of p38 at 24 h following IPC. MKP-1 siRNA did not alter the levels of phosphorylated jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) after IPC. The results suggest the involvement of dual-specificity phosphatase MKP-1 in IPC and that MKP-1 is involved in IPC by regulating levels of activated MAPK p38

  11. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation.

    Science.gov (United States)

    Hiraga, Shin-Ichiro; Ly, Tony; Garzón, Javier; Hořejší, Zuzana; Ohkubo, Yoshi-Nobu; Endo, Akinori; Obuse, Chikashi; Boulton, Simon J; Lamond, Angus I; Donaldson, Anne D

    2017-03-01

    The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity.

    Science.gov (United States)

    Xu, Jian; Kurup, Pradeep; Bartos, Jason A; Patriarchi, Tommaso; Hell, Johannes W; Lombroso, Paul J

    2012-06-15

    Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.

  13. Activation of the low molecular weight protein tyrosine phosphatase in keratinocytes exposed to hyperosmotic stress.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Silva

    Full Text Available Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

  14. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  15. Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres

    Science.gov (United States)

    Ivanov, Delyan P.; Parker, Terry L.; Walker, David A.; Alexander, Cameron; Ashford, Marianne B.; Gellert, Paul R.; Garnett, Martin C.

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  16. The wip1 phosphatase (PPM1D) antagonizes activation of the CHK2 tumor suppressor kinase

    Energy Technology Data Exchange (ETDEWEB)

    Manet, Oliva-Trastoy; Berthonaud, V.; Chevalier, A.; Ducrot, C.; Marsolier-Kergoat, M.C.; Mann, C.; Leteurtre, F. [CEA Saclay, DSV, DBJC, SBGM, Lab. du Controle du Cycle Cellulaire, 91 - Gif-sur-Yvette (France)

    2006-07-01

    adaptation). Our group previously demonstrated that type 2C protein phosphatases (PP2C) Ptc2 and Ptc3 are required for DNA checkpoint inactivation after DNA double-strand break repair or adaptation in S. cerevisiae. Here we show the conservation of this pathway in mammalian cells. In response to DNA damage, ATM (ataxia telangiectasia mutated) phosphorylates the Chk2 tumor suppressor kinase at threonine 68 (Thr68), allowing Chk2 kinase dimerization and activation by auto-phosphorylations in the T-loop. The oncogenic protein Wip1, a PP2C phosphatase, binds Chk2 and de-phosphorylates phospho-Thr68. Consequently, Wip1 opposes Chk2 activation by ATM after ionizing irradiation of cells. The recombinant Chk2 protein is fully phosphorylated and activated, due to the high protein concentrations obtained during production. In vitro, Wip 1 de-phosphorylates the phospho-T68 of Chk2, but does not reduce Chk2 kinase activity on its usual GST-CDC25C substrate. These observations suggest that Wip1 phosphatase controls Chk2 activation rather than its enzymatic activity that relies on phosphorylations in the T-loop. The physiological consequences of Wip1 overexpression were tested in human adenocarcinoma cells: the HCT15 cell line. The specificities of this cell line are (i ) the absence of functional p53 proteins, leading to a G2 delay in response to a genotoxic stress, and (ii) the absence of functional Chk2 proteins, because of one CHK2 allele being unexpressed and because the second allele codes for a mutated protein that is unstable and inactive. The HCT15 cell line was complemented by a functional form of HA-Chk2 and the selected clone expresses the protein to a level similar to that observed in other cell lines. In HCT15 colorectal cancer cells corrected for functional Chk2 activity, Wip 1 modest overexpression suppressed the contribution of Chk2 to the G2/M DNA damage checkpoint. These results indicate that Wip1 is one of the phosphatases regulating the activity of Chk2 in response to

  17. Influence of Coexisting Crude Drugs on the Inhibitory Activity of Sinomeni Caulis et Rhizoma on Mouse Plasma Alkaline Phosphatase

    OpenAIRE

    MASAMI, HOUGA; FUMIHIKO, YOSHIZAKI; Mie, Suzuki; TOSHIO, ANDO; Tohoku College of Pharmacy

    1995-01-01

    A hot water extract of Sinomeni Caulis et Rhizoma inhibited the mouse plasma alkaline phosphatase (ALP) activity. Sinomenine and other alkaloids in this crude drug were found as the active principles. In this work, to study the influence of coexisting crude drugs in Chinese medicinal prescriptions, a mixture of Sinomeni Caulis et Rhizoma and one of 28 crude drugs was extracted with hot water and the ALP inhibiting activities of the extracts were compared. Angelicae Radix, Astragali Radix, Atr...

  18. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells.

    Science.gov (United States)

    Wang, Weizhuo; Olson, Douglas; Cheng, Bin; Guo, Xiong; Wang, Kunzheng

    2012-06-26

    Sanguis Draconis (SD), "Dragon's Blood", is a resin that is obtained from Daemonorops draco (Palmae). Used in traditional medicine, it has shown activity in the prevention of osteoporosis as well as promoting the healing of bone fractures. In this study, the effects of Sanguis Dranonis ethanol extract on β-glycerolphosphate and ascorbic acid induced differentiation using mouse calvaria origin MC3T3-E1 osteoblastic cells was examined. We looked at osteoblast differentiation, proliferation, and mineralization by measuring alkaline phosphatase (ALP) and specific bone marker activities. Osteoblast-like MC3T3-E1 cells were cultured in various concentrations of SD ethanol extract (0.005-1mg/mL) during the osteoblast differentiation period (1, 5, 15, and 25 days). As measured by 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay, SD extracts increased cell proliferation as compared to control. The most pronounced effect was observed at the concentration range between 0.01 and 0.1 mg/mL (P<0.01). This SD stimulatory effect for cell proliferation was observed during the whole osteogenic period. Cellular (synthesized) ALP activity was increased during 15 days of culture, and was confirmed by the staining of ALP activity on cell matrix layers for matrix calcification. SD stimulatory effect for cell mineralization we observed in 14 and 21 days. Elevated mRNA or protein levels of bone morphogenetic protein-2(BMP 2), the differentiation marker osteocalcin, osteopontin, collgen I, and a master osteogenic transcription factor, Runx2, were observed in SD-treated cells. These results suggest that SD may increase osteogenic effect by stimulating cell ALP activity and affect the BMP signaling pathway cascades in osteoblastic cells, then promotes osteoblast differentiation, mineralization, and bone formation. Copyright © 2012. Published by Elsevier Ireland Ltd.

  19. Interleukin 2 induces a transient downregulation of protein phosphatase 1 and 2A activity in human T cells

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Dobson, P

    1997-01-01

    /threonine phosphatases in antigen specific, CD4+ human T cell lines. Using inhibitors of protein phosphatases 1 (PP1, PP2A, and PP2B, we provide evidence, that IL-2 induces a downregulation of PP activity in the cytoplasmic/membrane fraction. Thus, IL-2R ligation for 30 min triggers a 16 percent decrease in total PP2A...... activity (p 2A activity reaches a maximum 60 min after IL-2R ligation, and returns to baseline levels within two hours. Downregulation of PPI activity reaches a maximum after 30 min...... and is largely reversed one hour after IL-2 stimulation. As determined from immunoblotting experiments using a specific anti-PP1 or anti-PP2A antibody, the amount of PPI and PP2A recovered from cytosolic/membrane fraction remains unchanged after IL-2 treatment suggesting that the drop in PP1/PP2A activity might...

  20. Fosfatasa ácida en Oxisoles bajo cultivo de tabaco Acid phosphatase in Oxisols under tobacco cropping

    Directory of Open Access Journals (Sweden)

    Toledo Marcela

    2010-07-01

    Full Text Available En suelos ácidos de trópicos y subtrópicos, caracterizados por una baja disponibilidad de P para las plantas, el papel de las fosfatasas ácidas en la mineralización del P orgánico es fundamental, constituyendo una variable promisoria para estimar la calidad del suelo. El objetivo del trabajo fue evaluar la actividad de la fosfatasa ácida en Oxisoles bajo uso tabacalero, como indicador sensible de calidad. En la provincia de Misiones ubicada al nordeste de la República Argentina, se estableció un ensayo sobre Eutrudoxes Ródicos, familia arcillosa fina, hipertérmica, aplicándose un diseño con cuatro bloques completos aleatorizados. Se establecieron 2 tratamientos: selva subtropical (Sv y uso tabacalero (Ta. Se tomaron muestras compuestas a 3 profundidades: 0-10; 10-20; 20-30 cm. Se determinaron las siguientes variables: actividad de la fosfatasa ácida (APA, pH, contenido de arcilla, carbono orgánico edáfico (CO, nitrógeno total (N, fósforo asimilable (P, materia orgánica particulada (MOP, y respiración del suelo (RES. En los casos estudiados, la APA fue mayor en los primeros diez centímetros de suelo, y fue disminuyendo con el aumento de la profundidad del perfil, en estrecha relación con los contenidos orgánicos del suelo. El 70% de la variabilidad de la APA se explicó por el nitrógeno total, íntimamente relacionado con la materia orgánica del suelo (pSoil biological parameters are of great value as sensitive indicators of transformations occurring under different uses and management practices (Mijangos et al., 2006. The aim of this study was to evaluate the activity of the acid phosphatase enzyme in Oxisols under tobacco cropping. The experimental design was in randomized complete blocks, with two treatments: subtropical rainforest (Sv and tobacco cropping (Ta (Nicotiana tabacum L.. Soil samples were taken from 0-10, 10 -20 and 20 -30 cm-deep layers. The variables measured were: APA, pH, clay content, total nitrogen (N

  1. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity During Extinction of Conditioned Fear in Mice

    OpenAIRE

    Cannich, Astrid; Carsten T. Wotjak; Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecular substrates of extinction behavior. To test the involvement of these kinase and phosphatase activit...

  2. Molecular Differences between a Mutase and a Phosphatase: Investigations of the Activation Step in Bacillus cereus Phosphopentomutase

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, T.M.; Panosian, Timothy D.; Birmingham, William R.; Nannemann, David P.; Bachmann, Brian O. (Vanderbilt)

    2012-05-09

    Prokaryotic phosphopentomutases (PPMs) are di-Mn{sup 2+} enzymes that catalyze the interconversion of {alpha}-D-ribose 5-phosphate and {alpha}-D-ribose 1-phosphate at an active site located between two independently folded domains. These prokaryotic PPMs belong to the alkaline phosphatase superfamily, but previous studies of Bacillus cereus PPM suggested adaptations of the conserved alkaline phosphatase catalytic cycle. Notably, B. cereus PPM engages substrates when the active site nucleophile, Thr-85, is phosphorylated. Further, the phosphoenzyme is stable throughout purification and crystallization. In contrast, alkaline phosphatase engages substrates when the active site nucleophile is dephosphorylated, and the phosphoenzyme reaction intermediate is only stably trapped in a catalytically compromised enzyme. Studies were undertaken to understand the divergence of these mechanisms. Crystallographic and biochemical investigations of the PPM{sup T85E} phosphomimetic variant and the neutral corollary PPM{sup T85Q} determined that the side chain of Lys-240 underwent a change in conformation in response to active site charge, which modestly influenced the affinity for the small molecule activator {alpha}-D-glucose 1,6-bisphosphate. More strikingly, the structure of unphosphorylated B. cereus PPM revealed a dramatic change in the interdomain angle and a new hydrogen bonding interaction between the side chain of Asp-156 and the active site nucleophile, Thr-85. This hydrogen bonding interaction is predicted to align and activate Thr-85 for nucleophilic addition to {alpha}-D-glucose 1,6-bisphosphate, favoring the observed equilibrium phosphorylated state. Indeed, phosphorylation of Thr-85 is severely impaired in the PPM{sup D156A} variant even under stringent activation conditions. These results permit a proposal for activation of PPM and explain some of the essential features that distinguish between the catalytic cycles of PPM and alkaline phosphatase.

  3. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2011-01-01

    Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study......-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from...

  4. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    Science.gov (United States)

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Lawan, Ahmed; Zhang, Lei; Gatzke, Florian; Min, Kisuk; Jurczak, Michael J; Al-Mutairi, Mashael; Richter, Patric; Camporez, Joao Paulo G; Couvillon, Anthony; Pesta, Dominik; Roth Flach, Rachel J; Shulman, Gerald I; Bennett, Anton M

    2015-01-01

    The liver plays a critical role in glucose metabolism and communicates with peripheral tissues to maintain energy homeostasis. Obesity and insulin resistance are highly associated with nonalcoholic fatty liver disease (NAFLD). However, the precise molecular details of NAFLD remain incomplete. The p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) regulate liver metabolism. However, the physiological contribution of MAPK phosphatase 1 (MKP-1) as a nuclear antagonist of both p38 MAPK and JNK in the liver is unknown. Here we show that hepatic MKP-1 becomes overexpressed following high-fat feeding. Liver-specific deletion of MKP-1 enhances gluconeogenesis and causes hepatic insulin resistance in chow-fed mice while selectively conferring protection from hepatosteatosis upon high-fat feeding. Further, hepatic MKP-1 regulates both interleukin-6 (IL-6) and fibroblast growth factor 21 (FGF21). Mice lacking hepatic MKP-1 exhibit reduced circulating IL-6 and FGF21 levels that were associated with impaired skeletal muscle mitochondrial oxidation and susceptibility to diet-induced obesity. Hence, hepatic MKP-1 serves as a selective regulator of MAPK-dependent signals that contributes to the maintenance of glucose homeostasis and peripheral tissue energy balance. These results also demonstrate that hepatic MKP-1 overexpression in obesity is causally linked to the promotion of hepatosteatosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Lack of phosphoserine phosphatase activity alters pollen and tapetum development in Arabidopsis thaliana.

    Science.gov (United States)

    Flores-Tornero, M; Anoman, A D; Rosa-Téllez, S; Ros, R

    2015-06-01

    Formation of mature pollen grain, an essential process for the reproduction of higher plants, is affected in lines that are deficient in the enzymes of the phosphorylated pathway of serine biosynthesis (PPSB). Mutants of phosphoserine phosphatase (PSP), the enzyme that catalyses the last step of PPSB, are embryo-lethal. When they are complemented with a construct carrying PSP1 cDNA under the control of the 35S promoter (psp1.1 35S:PSP1), which is poorly expressed in anther tissues, plants display a wild-type phenotype, but are male-sterile. The pollen from the psp1.1 35S:PSP1 lines are shrunken and unviable. Here we report the morphological alterations that appear in the psp1.1 35S:PSP1 lines during microspore development. We show that the pollen wall from these lines presents a normal exine layer, but a shrunken and collapsed shape. Lack of PSP activity also affects oil bodies formation in the tapetosomes of tapetal cells which, in turn, may influence microspore pollen coat formation. All these results highlight the important role of the PPSB in the normal development of microspores in Arabidopsis thaliana. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Alkalosis and Dialytic Clearance of Phosphate Increases Phosphatase Activity: A Hidden Consequence of Hemodialysis.

    Science.gov (United States)

    Villa-Bellosta, Ricardo; González-Parra, Emilio; Egido, Jesús

    2016-01-01

    Extracellular pyrophosphate is a potent endogenous inhibitor of vascular calcification, which is degraded by alkaline phosphatase (ALP) and generated by hydrolysis of ATP via ectonucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1). ALP activity (as routinely measured in clinical practice) represents the maximal activity (in ideal conditions), but not the real activity (in normal or physiological conditions). For the first time, the present study investigated extracellular pyrophosphate metabolism during hemodialysis sessions (including its synthesis via eNPP1 and its degradation via ALP) in physiological conditions. 45 patients in hemodialysis were studied. Physiological ALP activity represents only 4-6% of clinical activity. ALP activity increased post-hemodialysis by 2% under ideal conditions (87.4 ± 3.3 IU/L vs. 89.3 ± 3.6 IU/L) and 48% under physiological conditions (3.5 ± 0.2 IU/L vs. 5.2 ± 0.2 IU/L). Pyrophosphate synthesis by ATP hydrolysis remained unaltered post-hemodialysis. Post-hemodialysis plasma pH (7.45 ± 0.02) significantly increased compared with the pre-dialysis pH (7.26 ± 0.02). The slight variation in pH (~0.2 units) induced a significant increase in ALP activity (9%). Addition of phosphate in post-hemodialysis plasma significantly decreased ALP activity, although this effect was not observed with the addition of urea. Reduction in phosphate levels and increment in pH were significantly associated with an increase in physiological ALP activity post-hemodialysis. A decrease in plasma pyrophosphate levels (3.3 ± 0.3 μmol/L vs. 1.9 ± 0.1 μmol/L) and pyrophosphate/ATP ratio (1.9 ± 0.2 vs. 1.4 ± 0.1) post-hemodialysis was also observed. Extraction of uremic toxins, primarily phosphate and hydrogen ions, dramatically increases the ALP activity under physiological conditions. This hitherto unknown consequence of hemodialysis suggests a reinterpretation of the clinical value of this parameter.

  8. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate.

    Science.gov (United States)

    Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-07-01

    Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Influence of tebuconazole and copper hydroxide on phosphatase and urease activities in red sandy loam and black clay soils.

    Science.gov (United States)

    Anuradha, B; Rekhapadmini, A; Rangaswamy, V

    2016-06-01

    The efficacy of two selected fungicides i.e., tebuconazole and coppoer hydroxide, was conducted experiments in laboratory and copper hydroxide on the two specific enzymes phosphatase and urease were determined in two different soil samples (red sandy loam and black clay soils) of groundnut (Arachis hypogaea L.) from cultivated fields of Anantapuramu District, Andhra Pradesh. The activities of the selected soil enzymes were determined by incubating the selected fungicides-treated (1.0, 2.5, 5.0, 7.5 and 10.0 kg ha-1) and -untreated groundnut soil samples at 10 day intervals. By determining the effective concentration, the rate of selected enzyme activity was estimated by adding the suitable substrate at 10, 20, 30 and 40 days of soil incubation. Both the enzyme activities were increased up to 5.0 kg ha-1 level of fungicide in both soil samples significantly at 10 days of soil incubation and further enhanced up to 20 days of incubation. The activity of the phosphatase and urease decreased progressively at 30 and 40 days of incubation. From overall studies, higher concentrations (7.5 and 10.0 kg ha-1) of both tebuconazole and copper hydroxide were toxic to phosphatase and urease activities, respectively, in both soil samples.

  10. Tartrate-Resistant Acid Phosphatase 5b in Young Patients With Sickle Cell Disease and Trait Siblings: Relation to Vasculopathy and Bone Mineral Density.

    Science.gov (United States)

    Mokhtar, Galila Mohamed; Tantawy, Azza Abdel Gawad; Hamed, Ahmed Al-Saeed; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Makkeyah, Sara Mostafa

    2017-01-01

    Bone involvement is a frequent cause of acute morbidity in sickle cell disease (SCD). Tartrate-resistant acid phosphatase 5b (TRACP 5b), a bone resorption marker, is produced specifically by activated osteoclasts. We assessed bone mineral density (BMD) in 30 young patients with SCD and 17 asymptomatic patients with sickle cell trait (SCT) compared with 32 healthy controls and determined TRACP 5b levels in relation to vascular complications. Serum ferritin, alkaline phosphatase (ALP), and TRACP 5b were measured. Echocardiography was performed with assessment of BMD using dual energy X-ray absorptiometry (DXA). The BMD was decreased in patients with SCD compared with SCT and controls (P = .005), with no significant difference between the latter 2 groups. Patients with SCD had higher incidence of bone complications than SCT group and controls (P = .03). The SCD group with abnormal DXA scan had higher ferritin and ALP than normal BMD. Serum TRACP 5b was significantly higher in patients with SCD than SCT and controls (P = .003). The TRACP 5b levels were associated with severe vaso-occlusive crisis (P = .022). Patients treated with hydroxyurea and those on chelation therapy had lower TRACP 5b levels than untreated patients. The TRACP 5b level was positively correlated with lactate dehydrogenase, while there was no relation with ferritin, ALP, or BMD. We suggest that bone complications frequently occur in SCD as reflected by low BMD and high ALP and TRACP 5b. Hemolysis and iron overload may be involved in the occurrence of these complications. The lack of correlation between abnormal DXA scan and high TRACP 5b suggests that bone disease in SCD is multifactorial. © The Author(s) 2015.

  11. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis

    KAUST Repository

    Lei, Mingguang

    2010-11-30

    With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  12. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    Science.gov (United States)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  13. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  14. Gingival crevicular fluid alkaline phosphatase activity in relation to pubertal growth spurt and dental maturation: A multiple regression study

    OpenAIRE

    Perinetti, G.; Contardo, L.

    2016-01-01

    Introduction: The identification of the onset of the pubertal growth spurt has major clinical implications when dealing with orthodontic treatment in growing subjects. Aim: Through multivariate methods, this study evaluated possible relationships between the gingival crevicular fluid (GCF) alkaline phosphatase (ALP) activity and pubertal growth spurt and dentition phase. Materials and methods: One hundred healthy growing subjects (62 females, 38 males; mean age, 11.5±2.4 years) were enr...

  15. Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues.

    Science.gov (United States)

    Li, Lin; Ge, Jingyan; Wu, Hao; Xu, Qing-Hua; Yao, Shao Q

    2012-07-25

    Two-photon fluorescence microscopy (TPFM) provides key advantages over conventional fluorescence imaging techniques, namely, increased penetration depth, lower tissue autofluorescence and self-absorption, and reduced photodamage and photobleaching and therefore is particularly useful for imaging deep tissues and animals. Enzyme-detecting, small molecule probes provide powerful alternatives over conventional fluorescent protein (FP)-based methods in bioimaging, primarily due to their favorable photophysical properties, cell permeability, and chemical tractability. In this article, we report the first fluorogenic, small molecule reporter system (Y2/Y1) capable of imaging endogenous phosphatase activities in both live mammalian cells and Drosophila brains. The one- and two-photon excited photophysical properties of the system were thoroughly investigated, thus confirming the system was indeed a suitable Turn-ON fluorescence pair for TPFM. To our knowledge, this is the first enzyme reporting two-photon fluorescence bioimaging system which was designed exclusively from a centrosymmetric dye possessing desirable two-photon properties. By conjugation of our reporter system to different cell-penetrating peptides (CPPs), we were able to achieve organelle- and tumor cell-specific imaging of phosphatase activities with good spatial and temporal resolution. The diffusion problem typically associated with most small molecule imaging probes was effectively abrogated. We further demonstrated this novel two-photon system could be used for imaging endogenous phosphatase activities in Drosophila brains with a detection depth of >100 μm.

  16. A novel bifunctional hybrid with marine bacterium alkaline phosphatase and Far Eastern holothurian mannan-binding lectin activities.

    Directory of Open Access Journals (Sweden)

    Larissa Balabanova

    Full Text Available A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25 ± 5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens.

  17. MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis

    National Research Council Canada - National Science Library

    Sebastian Bartels; Jeffrey C. Anderson; Manna A. González Besteiro; Alessandro Carreri; Heribert Hirt; Antony Buchala; Jean-Pierre Métraux; Scott C. Peck; Roman Ulm

    2009-01-01

    ...) accession results in growth defects and constitutive biotic defense responses, including elevated levels of salicylic acid, camalexin, PR gene expression, and resistance to the bacterial pathogen Pseudomonas syringae...

  18. Protein tyrosine and serine–threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: Identification and potential functions

    Science.gov (United States)

    Byrum, C.A.; Walton, K.D.; Robertson, A.J.; Carbonneau, S.; Thomason, R.T.; Coffman, J.A.; McClay, D.R.

    2011-01-01

    Protein phosphatases, in coordination with protein kinases, play crucial roles in regulation of signaling pathways. To identify protein tyrosine phosphatases (PTPs) and serine–threonine (ser–thr) phosphatases in the Strongylocentrotus purpuratus genome, 179 annotated sequences were studied (122 PTPs, 57 ser–thr phosphatases). Sequence analysis identified 91 phosphatases (33 conventional PTPs, 31 dual specificity phosphatases, 1 Class III Cysteine-based PTP, 1 Asp-based PTP, and 25 ser–thr phosphatases). Using catalytic sites, levels of conservation and constraint in amino acid sequence were examined. Nine of 25 receptor PTPs (RPTPs) corresponded to human, nematode, or fly homologues. Domain structure revealed that sea urchin-specific RPTPs including two, PTPRLec and PTPRscav, may act in immune defense. Embryonic transcription of each phosphatase was recorded from a high-density oligonucleotide tiling microarray experiment. Most RPTPs are expressed at very low levels, whereas nonreceptor PTPs (NRPTPs) are generally expressed at moderate levels. High expression was detected in MAP kinase phosphatases (MKPs) and numerous ser–thr phosphatases. For several expressed NRPTPs, MKPs, and ser–thr phosphatases, morpholino antisense-mediated knockdowns were performed and phenotypes obtained. Finally, to assess roles of annotated phosphatases in endomesoderm formation, a literature review of phosphatase functions in model organisms was superimposed on sea urchin developmental pathways to predict areas of functional activity. PMID:17087928

  19. New procedures to measure synthase and phosphatase activities of bis-phosphoglycerate mutase. Interest for development of therapeutic drugs; Nouveaux procedes pour mesurer les activites synthase et phosphatase de la bisphosphoglycerate mutase. Interet pour le developpement de drogues therapeutiques

    Energy Technology Data Exchange (ETDEWEB)

    Ravel, P.; Garel, M.C. [Hopital Henri-Mondor, 94 - Creteil (France); Toullec, D. [Laboratoire Glaxo Wellcome, 91- Les Ulis (France)

    1997-12-31

    In red blood cells, a modulation of the level of the allosteric effector of hemoglobin, 2,3-diphosphoglycerate (2,3-DPG) would have implications in the treatment of ischemia and sickle cell anemia. Its concentrations is determined by the relative activities of the synthase and phosphatase reactions of the multifunctional bis-phosphoglycerate mutase (BPGM). In this report we develop first a more direct synthase assay which uses glyceraldehyde phosphate to suppress the aldolase and triose phosphate isomerase reactions. Secondly we propose a radioactive phosphatase assay coupled to chromatographic separation and identification of the reaction products by paper electrophoresis. Such identification of these products allows us to show that the multifunctional BPGM expresses its mutase instead of its phosphatase activity in conditions of competition between the 3-phosphoglycerate and the 2-phospho-glycolate activator in the phosphatase reaction. These two more precise procedures could be used to study the effects of substrate and cofactor analogues regarding potential therapeutic approaches and could be used for clinical analyses to detect deficiency of BPGM. (author)

  20. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  1. Identification of gp17 glycoprotein and characterization of prostatic acid phosphatase (PAP) and carboxypeptidase E (CPE) fragments in a human seminal plasma fraction interacting with concanavalin A.

    Science.gov (United States)

    Marquínez, A C; Andreetta, A M; González, N; Wolfenstein-Todel, C; Scacciati de Cerezo, J M

    2003-07-01

    The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.

  2. Exchange potentials of phosphorus between sediments and water coupled to alkaline phosphatase activity and environmental factors in an oligo-mesotrophic reservoir.

    Science.gov (United States)

    Mhamdi, Badre Alaoui; Azzouzi, Assia; Elloumi, Jannet; Ayadi, Habib; Mhamdi, Mohammed Alaoui; Aleya, Lotfi

    2007-05-01

    We investigated the exchange potentials of phosphates at the water-sediment interface together with in situ benthic-chamber fractionated alkaline phosphatase activity and bacteria estimates during September and October 1998 at two stations: station 1, which received immediately the urban inputs from the Taounate city, and station 2, located in the centre of the Sahela reservoir (Morocco). The results showed that low oxygenation enhanced both the bacterial abundance and the alkaline phosphatase activity. Size-fractionated (0.65-100 microm) bacteria attached to dead organic matter together with algae and zooplankton contributed strongly (78%) to the total alkaline phosphatase synthesis in the two sampled stations, suggesting that attachment to organic particles stimulated phosphatase activities. The appearance of anoxic conditions and the decrease of pH supported the dissolution of particulate phosphorus and the release of soluble reactive phosphorus. This latter, together with persisting discharges of organic matter, sewage, and olive mill waste will exacerbate the eutrophication of the reservoir.

  3. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    Science.gov (United States)

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  4. Cell-specific extracellular phosphatase activity of dinoflagellate populations in acidified mountain lakes

    Czech Academy of Sciences Publication Activity Database

    Novotná, J.; Nedbalová, Linda; Kopáček, Jiří; Vrba, Jaroslav

    2010-01-01

    Roč. 46, č. 4 (2010), s. 635-644 ISSN 0022-3646 R&D Projects: GA AV ČR IAA600170602; GA ČR GA206/07/1200 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z60170517 Keywords : extracellular phosphatases * acidified lakes * dinoflagellates Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  5. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway.

    Science.gov (United States)

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-12-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  6. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling.

    Science.gov (United States)

    Perera, Imara Y; Hung, Chiu-Yueh; Moore, Candace D; Stevenson-Paulik, Jill; Boss, Wendy F

    2008-10-01

    The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP(3)) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP(3)-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca(2+) responses to a cold or salt stimulus were reduced by approximately 30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP(3) is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP(3) signal reveals unanticipated interconnections between signaling pathways.

  7. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  8. Research on Phosphatases of Belladona Leaves and Their Purification

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1957-01-01

    Full Text Available Through experimentation with several leaves it has been possible for us to point out the existance of two different acid phosphatases. We have studied in more detail the phosphatases of belldon a leaves (Atropa Belladona L. Solanacees. The great part of the phosphatase activity is water extractable. We have compared the activity of the soluble fraction with that not directly extractable by means of water. The insoluble fraction could not be solubilized in a satisfaetC'fY m.anner.The digestion by papaine produced a slight solubilizing effect; on the other hand salt solutions, neutral or alkaline, or water glycerol mixtures had no solubilizing effect on the enzyme, It has been possible to demonstrate the existence of two different phosphatases in the insoluble fraction: the first of the type II,

  9. Nucleotide sequence of the gene for alkaline phosphatase of Thermus caldophilus GK24 and characteristics of the deduced primary structure of the enzyme.

    Science.gov (United States)

    Park, T; Lee, J H; Kim, H K; Hoe, H S; Kwon, S T

    1999-11-15

    The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54¿ omitted¿760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.

  10. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells.

    Science.gov (United States)

    Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J

    2006-07-12

    Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.

  11. Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin.

    Science.gov (United States)

    Ohta, Yusaku; Kousaka, Kazuyoshi; Nagata-Ohashi, Kyoko; Ohashi, Kazumasa; Muramoto, Aya; Shima, Yasuyuki; Niwa, Ryusuke; Uemura, Tadashi; Mizuno, Kensaku

    2003-10-01

    Cofilin, a key regulator of actin filament dynamics, is inactivated by phosphorylation at Ser-3 by LIM-kinases and is reactivated by dephosphorylation by a family of protein phosphatases, termed Slingshot (SSH). We have identified two novel isoforms of SSHs, termed SSH-2L and SSH-3L and characterized them in comparison with SSH-1L that was previously reported. SSH-1L and SSH-2L, but not SSH-3L, tightly bound to and co-localized with actin filaments. When expressed in cultured cells, SSH-1L, SSH-2L and SSH-3L decreased the level of Ser-3-phosphorylated cofilin (P-cofilin) in cells and suppressed LIM-kinase-induced actin reorganization, although SSH-3L was less effective than SSH-1L and SSH-2L. In cell-free assays, SSH-1L and SSH-2L efficiently dephosphorylated P-cofilin, whereas SSH-3L did do so only weakly. Using deleted mutants of SSH-1L and SSH-2L, we found that the N-terminal and C-terminal extracatalytic regions are critical for cofilin-phosphatase and F-actin-binding activities, respectively. In situ hybridization analyses revealed characteristic patterns of expression of each of the mouse Ssh genes in both neuronal and non-neuronal tissues; in particular, expression of Ssh-3 in epithelial tissues is evident. SSH-1L, SSH-2L and SSH-3L have the potential to dephosphorylate P-cofilin, but subcellular distribution, F-actin-binding activity, specific phosphatase activity and expression patterns significantly differ, which suggests that they have related but distinct functions in various cellular and developmental events.

  12. Overexpression of a Protein Phosphatase 2C from Beech Seeds in Arabidopsis Shows Phenotypes Related to Abscisic Acid Responses and Gibberellin Biosynthesis1

    Science.gov (United States)

    Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos

    2006-01-01

    A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952

  13. Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2012-08-30

    In this work, a solid phase extraction sequential injection methodology for the determination of alkaline phosphatase activity in dynamic water systems was developed. The determination of the enzymatic activity was based on the spectrophotometric detection of a coloured product, p-nitrophenol, at 405 nm. The p-nitrophenol is the product of the catalytic decomposition of p-nitrophenyl phosphate, a non-coloured substrate. Considering the low levels expected in natural waters and exploiting the fact of alkaline phosphatase being a metalloprotein, the enzyme was pre-concentrated in-line using a NTA Superflow resin charged with Zn(2+) ions. The developed sequential injection method enabled a quantification range of 0.044-0.441 unit mL(-1) of enzyme activity with a detection limit of 0.0082 unit mL(-1) enzyme activity (1.9 μmol L(-1) of pNP) and a determination rate of 17 h(-1). Recovery tests confirmed the accuracy of the developed sequential injection method and it was effectively applied to different natural waters and to plant root extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Inhibition of osteoblast activity by zoledronic acid

    Directory of Open Access Journals (Sweden)

    Fernanda Gonçalves Basso

    2013-10-01

    Full Text Available INTRODUCTION: Patients treated with nitrogen-containing bisphosphonates, such as zoledronic acid (ZA, have frequently shown oral bone exposure areas, termed osteonecrosis. In addition, these patients may also present low repair and regeneration potential, mainly after tooth extractions. These side-effects caused by bisphosphonates may be due to their inhibitory effects on oral mucosa and local bone cells. OBJECTIVE: To evaluate the effects of ZA on the mineralization capacity of cultured osteoblasts. MATERIALS AND METHODS: Human immortalized osteoblasts (SaOs-2 were grown in plain culture medium (Dulbecco's Modified Eagle Medium [DMEM] + 10% fetal bovine serum [FBS] in wells of 24-well plates. After 48-hour incubation, the plain DMEM was replaced by a solution with ZA at 5 µM which was maintained in contact with cells for seven, 14 or 21 days. After these periods, cells were evaluated regarding alkaline phosphatase (ALP activity and mineral nodule formation (alizarin red. Data were statistically analyzed by Mann-Whitney test, at 5% of significance level. RESULTS: ZA caused significant reduction on ALP activity and mineral nodules formation by cultured osteoblasts in all evaluated periods (p < 0.05. CONCLUSION: These data indicate that ZA causes inhibition on the osteogenic phenotype of cultured human osteoblasts, which, in turn, may reduce bone repair in patients subjected to ZA therapy.

  15. Purification, N-terminal amino acid sequence and characterization of pH 2.5 optimum acid phosphatase (E.C. 3.1.3.2) from Aspergillus ficuum.

    Science.gov (United States)

    Ullah, A H; Cummins, B J

    1987-01-01

    An acid phosphatase from crude culture filtrate of Aspergillus ficuum was purified to homogeneity using three ion exchange chromatographic steps. SDS-PAGE of the purified enzyme gave a single stained band at approximately 68-KDa. The mobility of the native enzyme in gel filtration chromatography, however, indicated that the molecular mass to be about 130-KDa implying the active form to be a dimer. On the basis of a molecular mass of 68-KDa, the molar extinction coefficient of the enzyme at 280 nm was estimated to be 3.4 x 10(5) M-1 cm-1. The isoelectric point of the enzyme, as judged by chromatofocusing, was about 4.0. The purified enzyme is highly stable at 0 degree C. Thermal inactivation studies have indicated that the enzyme is unstable at 70 degrees C. The enzyme, however, exhibited a broad temperature optima with a maximum catalytic activity at 63 degrees C. The Km of the enzyme for p-nitrophenylphosphate is about 270 microM with an estimated turnover number of 2550 per sec. The enzyme is a glycoprotein as evidenced by the positive PAS staining; the sugar composition suggests the presence of N-linked high mannose-oligosaccharides. A partial N-terminal amino acid sequence up to the twenty-third residue was obtained. The enzyme was inhibited competitively by inorganic orthophosphate (Ki = 185 microM) and non-competitively by phosphomycin (Ki = 600 microM).

  16. A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry.

    Science.gov (United States)

    Duhamel, Solange; Gregori, Gerald; Van Wambeke, France; Mauriac, Romain; Nedoma, Jirí

    2008-10-01

    It has been demonstrated that ELF97-phosphate (ELF-P) is a useful tool to detect and quantify phosphatase activity of phytoplankton populations at a single cell level. Recently, it has been successfully applied to marine heterotrophic bacteria in culture samples, the cells exhibiting phosphatase activity being detected using epifluorescence microscopy. Here, we describe a new protocol that enables the detection of ELF alcohol (ELFA), the product of ELF-P hydrolysis, allowing the detection of phosphatase positive bacteria, using flow cytometry. Bacteria from natural samples must be disaggregated and, in oligotrophic waters, concentrated before they can be analyzed by flow cytometry. The best efficiency for disaggregating/separating bacterial cell clumps was obtained by incubating the sample for 30 min with Tween 80 (10 mg l(-1), final concentration). A centrifugation step (20,000 g; 30 min) was required in order to recover all the cells in the pellet (only 7+/-2% of the cells were recovered from the supernatant). The cells and the ELFA precipitates were resistant to these treatments. ELFA-labelled samples were stored in liquid nitrogen for up to four months before counting without any significant loss in total or ELFA-labelled bacterial cell abundance or in the ELFA fluorescence intensity. We describe a new flow cytometry protocol for detecting and discriminating the signals from both ELFA and different counterstains (4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)) necessary to distinguish between ELFA-labelled and non ELFA-labelled heterotrophic bacteria. The method has been successfully applied in both freshwater and marine samples. This method promises to improve our understanding of the physiological response of heterotrophic bacteria to P limitation.

  17. TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase

    OpenAIRE

    Shiba, Akio; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2017-01-01

    We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled O-phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.4; the intensity of the fluorescence peak of the complex at 580 nm (?ex = 523 nm) was significantly reduced to 32% of...

  18. 113Cd nuclear magnetic resonance (NMR) study of the inhibitory effect of methylvinylether/maleic acid (PVM/MA) copolymer on the alkaline phosphatase of Escherichia coli.

    Science.gov (United States)

    Afflitto, J; Smith, K A; Patel, M; Esposito, A; Jensen, E; Gaffar, A

    1991-11-01

    The inhibitory effect of PVM/MA copolymer on the alkaline phosphatase (AP) of E. coli was investigated. Kinetic studies indicated that enzyme inhibition was characterized by a reduction in both the Vmax and the Km. Addition of 1 mM zinc or magnesium ions to the reaction prevented inhibition of the enzyme by the copolymer. The inhibitory effect of the copolymer on alkaline phosphatase was also investigated using 113Cd NMR after exchange of the active center metal ions with 113Cd. The resulting Cd(II)6AP exhibited characteristic 113Cd resonances reflecting the environment of the A, B, and C metal binding sites of the enzyme's active center. Addition of copolymer resulted in a 113Cd NMR spectrum which indicated removal of 113Cd from the C site and formation of two distinct forms of the enzyme. Possible explanations for the 113Cd NMR results are discussed.

  19. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Directory of Open Access Journals (Sweden)

    Lee Jee

    2012-02-01

    Full Text Available Abstract Background The peroxisome proliferator-activated receptor (PPAR-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA, is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1 were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK phosphorylation and activator protein 1 (AP1 activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism

  20. Use of an Anaerobic Chamber Environment for the Assay of Endogenous Cellular Protein-Tyrosine Phosphatase Activities

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2002-01-01

    Full Text Available Protein-tyrosine phosphatases (PTPases have a catalytic cysteine residue whose reduced state is integral to the reaction mechanism. Since exposure to air can artifactually oxidize this highly reactive thiol, PTPase assays have typically used potent reducing agents to reactivate the enzymes present; however, this approach does not allow for the measurement of the endogenous PTPase activity directly isolated from the in vivo cellular environment. Here we provide a method for using an anaerobic chamber to preserve the activity of the total PTPase complement in a tissue lysate or of an immunoprecipitated PTPase homolog to characterize their endogenous activation state. Comparison with a sample treated with biochemical reducing agents allows the determination of the activatable (reducible fraction of the endogenous PTPase pool.

  1. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa

    2005-01-01

    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  2. Serum total acid phosphatase for monitoring the clinical course of giant cell tumors of bone--26 patients with 5 local recurrences.

    Science.gov (United States)

    Akahane, Tsutomu; Isobe, Ken'ichi; Shimizu, Tominaga

    2005-10-01

    Giant cell tumor of bone (GCT) is a bone-destroying tumor that sometimes recurs locally after treatment. A recent study showed increased levels of serum total acid phosphatase (TACP). We assessed TACP in the serum of 26 patients with primary GCT, and in 5 of them who developed a local recurrence. We found a correlation between TACP level in serum and tumor size. TACP levels that were elevated preoperatively in patients with GCT became normalized after surgery, but increased in 3 of the 5 patients with local recurrence. TACP could be used as a tumor marker for monitoring response to treatment of GCT.

  3. Regulation of the abscisic acid response by protein phosphatase 2C-interacting proteins ABP7 and ABP9 in Arabidopsis thaliana

    OpenAIRE

    Ma-Lauer, Yue

    2011-01-01

    The protein phosphatases 2C ABI1 and ABI2 are negative regulators in signal transduction of the phytohormone abscisic acid (ABA). The aim of this work is to characterize two homologous proteins ABP7 and ABP9, which were identified as interacting partners of ABI2 in the yeast two-hybrid system. In protoplasts, ABP7 and ABP9 interacted with both ABI1 and ABI2 in the nucleus and the cytosol. Overexpression of ABP7 and ABP9 resulted in dramatic inductions of ABA-induced gene expression in div...

  4. The Rab27a-binding protein, JFC1, regulates androgen-dependent secretion of prostate-specific antigen and prostatic-specific acid phosphatase1

    OpenAIRE

    Johnson, Jennifer L.; Ellis, Beverly A.; Noack, Deborah; Seabra, Miguel C.; Catz, Sergio D.

    2005-01-01

    Two of the major proteins secreted by the prostate epithelium secretory cells are PSA (prostate-specific antigen) and PSAP (prostatic-specific acid phosphatase). The molecules involved in the secretory machinery of PSA and PSAP, and the regulation of this machinery, remain unknown. In the present paper, we provide evidence that JFC1 [synaptotagmin-like protein (slp1)], a Rab27a- and PtdIns(3,4,5)P3-binding protein, regulates the androgen-dependent secretion of PSAP and PSA in human LNCaP pros...

  5. Alkaline phosphatase: beyond the liver.

    Science.gov (United States)

    Fernandez, Nicole J; Kidney, Beverly A

    2007-09-01

    The alkaline phosphatases comprise a heterogeneous group of enzymes that are widely distributed in mammalian cells. They often are associated with cell membranes, but their exact physiologic function is unknown. Despite this, alkaline phosphatase activity is a very useful serum biochemical indicator of liver disease, particularly cholestatic disease. However, increases in the activity of alkaline phosphatase in serum and other body fluids may reflect physiologic or pathologic changes beyond those of hepatic origin. For example, nonhepatic increases in serum alkaline phosphatase activity are found in young animals, in pregnant and lactating females, and in association with high fat diets. Bone disease, endocrine disease, neoplasia, and other disorders can result in increased alkaline phosphatase activity. In addition, alkaline phosphatase activity may be increased due to induction by certain drugs such as glucocorticoids and anticonvulsants. In this article, we will review the physiologic and pathologic factors influencing the activity of alkaline phosphatase in serum and other body fluids, with an emphasis on disorders beyond liver disease.

  6. Effect of dietary Spirulina on reduction of copper toxicity and improvement of growth, blood parameters and phosphatases activities in carp, Cirrhinus mrigala (Hamilton, 1822).

    Science.gov (United States)

    James, R; Sampath, K; Nagarajan, R; Vellaisamy, P; Manikandan, M Maripandi

    2009-09-01

    The effect of Spirulina supplementation on reduction of copper toxicity based on food utilization, phosphatases activities and selected haematological parameters was studied in a freshwater cultivable fish C. mrigala. Metal concentration in medium, body tissues and fecal matter was also analysed. Sublethal exposure of C. mrigala fed Spirulina-free diet significantly reduced the consumption and growth rates, phosphatases activities and haematological parameters. However, the above parameters enhanced in the copper exposed fish fed with Spirulina supplemented diets. A significant positive correlation was obtained for the relationship between supplementation of dietary Spirulina and copper defecation through feces. Among the doses of Spirulina supplementation, 6% addition has been considered optimum for C. mrigala since this dose produces maximum elimination of copper from the body and feces and better improvement on growth, phosphatases activities and haematological parameters.

  7. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation.

    Science.gov (United States)

    Pérez-Revuelta, B I; Hettich, M M; Ciociaro, A; Rotermund, C; Kahle, P J; Krauss, S; Di Monte, D A

    2014-05-08

    Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson's disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin's action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.

  8. Effects of cyclosporine on osteoclast activity: inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity.

    Science.gov (United States)

    Williams, John P; McKenna, Margaret A; Thames, Allyn M; McDonald, Jay M

    2003-03-01

    Cyclosporine results in rapid and profound bone loss in transplant patients, an effect ascribed to osteoclasts. Cyclosporine, complexed with the appropriate immunophilin, inhibits calcineurin (the calcium/calmodulin dependent serine/threonine phosphatase) activity. We tested the hypothesis that cyclosporine inhibits calcineurin activity in osteoclasts, resulting in stimulation of osteoclast activity. We compared the effects of cyclosporine A and the calmodulin antagonist, tamoxifen, on bone resorption by avian osteoclasts. Tamoxifen inhibits bone resorption approximately 60%, whereas cyclosporine A only inhibited bone resorption 12%. One-hour treatment with 100 nM cyclosporine inhibited osteoclast calcineurin activity 70% in whole cell lysates, whereas 10 microM tamoxifen only inhibited calcineurin activity 25%. We compared the effects of cyclosporine A and tamoxifen on acid transport activity in isolated membrane vesicles and in isolated membrane vesicles obtained from osteoclasts treated with cyclosporine A or tamoxifen under conditions that inhibit calcineurin activity. Direct addition of cyclosporine A in the acid transport assay, or pretreatment of cells with cyclosporine A followed by membrane isolation, had no effect on acid transport activity in membrane vesicles. In contrast, direct addition of tamoxifen to membranes inhibits acid transport activity, an effect that can be prevented by addition of exogenous calmodulin. Furthermore, acid transport activity was also inhibited in membrane vesicles isolated from cells treated with tamoxifen. In conclusion, cyclosporine A inhibits osteoclast calcineurin activity; however, calcineurin inhibition does not correspond to a significant effect on acid transport activity in isolated membrane vesicles or bone resorption by osteoclasts.

  9. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved.

    Science.gov (United States)

    Ramos, Ana Raquel; Elong Edimo, William's; Erneux, Christophe

    2017-09-05

    Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase.

    Science.gov (United States)

    Shiba, Akio; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2017-08-15

    We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled O -phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.4; the intensity of the fluorescence peak of the complex at 580 nm (λ ex = 523 nm) was significantly reduced to 32% of the average value for the two individual components as a result of the mutual approach of the TAMRA moieties. As TAMRA-PEA was dephosphorylated by AP, the resulting TAMRA-labeled ethanolamine dissociated and the fluorescence increased in a manner dependent on the AP dose and the time. In the second assay, pyrophosphate (PP), a natural AP-substrate, was used as a bridging ligand to form a dimeric TAMRA-Phos-tag complex. The dimerization reduced the fluorescence intensity to 49% of that in the absence of PP. As pyrophosphate was hydrolyzed to two orthophosphate moieties by AP, the 580-nm fluorescence recovered in a time-dependent manner. By examining the initial slope of this time-dependent fluorescence recovery, we succeeded in evaluating the 50% inhibitory concentrations of orthovanadate toward two AP isozymes under near-physiological conditions.

  11. Effects of nitrogen fertilization on soil nutrient concentration and phosphatase activity and forage nutrient uptake from a grazed pasture system.

    Science.gov (United States)

    Dillard, Sandra Leanne; Wood, Charles Wesley; Wood, Brenda Hall; Feng, Yucheng; Owsley, Walter Frank; Muntifering, Russell Brian

    2015-05-01

    Over a 3-year period, the effect of differing N-application regimes on soil extractable-P concentration, soil phosphatase activity, and forage P uptake in a P-enriched grazed-pasture system was investigated. In the fall of each year, six 0.28-ha plots were overseeded with triticale ( × Triticosecale rimpaui Wittm.) and crimson clover (Trifolium incarnatum) into a tall fescue (Lolium arundinacea)/bermudagrass (Cynodon dactylon) sod and assigned to 1 of 3 N-fertilizer treatments (n = 2): 100% of N recommendation in a split application (100N), 50% in a single application (50N), and 0% of N recommendation (0N) for triticale. Cattle commenced grazing the following spring and grazed until May. In the summer, plots were overseeded with cowpea (Vigna unguiculata), fertilized at the same rates by reference to N recommendations for bermudagrass, and grazed by cattle until September. There were no effects of N fertilization on soil phosphatase activity, electrical conductivity, or concentrations of water-soluble P. Concentrations of extractable P decreased in plots receiving 50N, but increasing N fertilization to 100N resulted in no further reduction in extractable P. Forage biomass, foliar P concentrations, and forage P mass were not affected by N fertilization rates at the plant-community level, but responses were observed within individual forage species. Results are interpreted to mean that N fertilization at 50% of the agronomic recommendation for the grass component can increase forage P mass of specific forages and decrease soil extractable P, thus providing opportunity for decreasing P losses from grazed pasture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Karla eDietrich

    2016-02-01

    Full Text Available Atmospheric nutrient deposition and climate change are expected to endanger the diversity of tropical forest ecosystems. Nitrogen (N deposition might influence nutrient fluxes beyond the N cycle by a concomitant increased demand for other nutritional elements such as phosphorus (P. Organisms might respond to the increased P demand by enhanced activity of enzymes involved in releasing inorganic P from organic matter (OM. Our aims were to assess the effect of i climate shifts (approximated by an altitudinal gradient, and ii nutrient addition (N, P, N+P on phosphatase activity (PA in organic layer and mineral soil of a tropical montane rainforest in Southern Ecuador. A nutrient manipulation experiment (NUMEX was set up along an altitudinal gradient (1000, 2000, and 3000 m a.s.l.. We determined PA and inorganic and total P concentrations. PA at 1000 m was significantly lower (mean ± standard error: 48 ± 20 µmol p-NP g-1 dm h-1 as compared to 2000 m and 3000 m (119 ± 11 and 137 ± 19, respectively. One explanation might be that very rapid decomposition of OM at 1000 m results in very thin organic layers reducing the stabilization of enzymes and thus, resulting in leaching loss of enzymes under the humid tropical climate. We found no effect of N addition on PA neither in the organic layer nor in mineral soil, probably because of the low nutrient addition rates that showed ambiguous results so far on productivity measures as a proxy for P demand. In the organic layers of P and N+P treatments, we found decreased PA and increased concentrations of inorganic P. This indicates that the surplus of inorganic P reduced the biosynthesis of phosphatase enzymes. PA in megadiverse montane rainforests is likely to be unaffected by increased atmospheric N deposition but reduced upon atmospheric P deposition.

  13. Assessment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow's, goat's, and sheep's milk.

    Science.gov (United States)

    Klotz, V; Hill, Art; Warriner, K; Griffiths, M; Odumeru, J

    2008-09-01

    Raw milk is a well-established vehicle for the carriage of human pathogens, and many regulatory bodies have consequently mandated compulsory pasteurization as a food safety intervention. The residual activity of alkaline phosphatase (ALP) has historically been used to verify the adequacy of pasteurization of cow's milk. However, there is uncertainty on how the current ALP standards and methods of analysis can be applied to sheep's and goat's milk, which naturally contain different levels of the enzyme than that found in cow's milk. The official ALP methods applied in Canada (colorimetric assay; MFO-3) and in the United States (Fluorophos) were assessed for their ability to detect enzyme activity in raw and pasteurized milk derived from cows, sheep, and goats. The detection limit and the limit of quantitation were 0.8 and 2.02 microg/ml phenol, respectively, for the MFO-3 method and 43 and 85 mU/liter, respectively, for the Fluorophos method. The average ALP levels in raw goat's, cow's, and sheep's milk were 165, 1,562, and 3,512 microg/ml phenol, respectively. Raw milk detection limits, which correspond to raw milk phosphatase levels, were 0.051, 0.485, and 0.023% in cow's, goat's, and sheep's milk, respectively, for the MFO-3 method and 0.007, 0.070, and 0.004%, respectively, for the Fluorophos method. Although both methods can be used for ALP determination in cow's, goat's, and sheep's milk, the Fluorophos assay was superior to the colorimetric MFO-3 method based on sensitivity and time required to complete the analysis.

  14. Cell-bound and extracellular matrix-associated alkaline phosphatase activity in rat periodontal ligament. Experimental Oral Biology Group.

    Science.gov (United States)

    Groeneveld, M C; Van den Bos, T; Everts, V; Beertsen, W

    1996-01-01

    In previous studies it was noted that alkaline phosphatase (ALP) activity in periodontal ligament does not only seem to be related to cells but may also be associated with the extracellular matrix. In an attempt to clarify this we studied the distribution of the enzyme at the electron microscopic level. In addition, ALP-activity was assessed biochemically following extraction of the ligament with (i) agents dissolving the membrane or splitting the phosphatidylinositol anchor (Triton X-100 or phosphatidylinositol-phospholipase C, respectively), and (ii) a matrix-degrading enzyme cocktail (collagenase, hyaluronidase and elastase). Histochemical observations revealed (a) a heterogeneous distribution of ALP-activity, with highest activity adjacent to the alveolar bone and (b) two pools of activity; one bound to cells and one associated with the collagenous extracellular matrix. In line with this were the biochemical data indicating that approximately 10% of the enzyme activity was firmly bound to the extracellular matrix and 90% to plasma membranes. Isoelectric focusing did not reveal differences between the two fractions, both samples yielding a single broad band corresponding with an isoelectric point of about 4.4.

  15. Serum alkaline phosphatase activity is not a marker for neoplastic transformation of esophageal nodules in canine spirocercosis.

    Science.gov (United States)

    Mukorera, Varaidzo; van der Merwe, Liesel L; Lavy, Eran; Aroch, Itamar; Dvir, Eran

    2011-09-01

    Spirocerca lupi is a nematode of Canidae that matures within the esophageal wall to form fibroblastic nodules with potential for malignant transformation. Diagnosis is based on histopathologic examination, but false-negative results may be obtained from samples collected by endoscopy. Serum alkaline phosphatase (ALP) activity, frequently increased in hepatobiliary disease, is also increased in a variety of neoplastic conditions in dogs, including appendicular osteosarcoma, and has also been reported to be increased in dogs with spirocercosis. The aim of this study was to evaluate serum ALP activity as a marker for malignant transformation of esophageal nodules in S. lupi-infected dogs. In this retrospective study, medical records of dogs diagnosed with spirocercosis from 1991 to 2008 were reviewed, and serum ALP activity determined at presentation was compared between dogs with nonneoplastic and neoplastic nodules. Owing to use of multiple analyzers, ratios of ALP activity to the upper reference interval for ALP were calculated and compared. Median ALP activity ratios were 0.65 (0.07-4.00) and 0.86 (0.10-3.40) for dogs with nonneoplastic (n=88) and neoplastic (n=32) nodules, respectively, with no significant difference (P=.18) and substantial overlap between groups. Tumors included osteosarcoma (15 dogs), fibrosarcoma (15 dogs), and anaplastic sarcoma (2 dogs); there was no difference in ALP activity between the dogs with osteosarcoma and fibrosarcoma. ALP is a poor marker of malignant transformation in canine spirocercosis. ©2011 American Society for Veterinary Clinical Pathology.

  16. Oleanane triterpenes with protein tyrosine phosphatase 1B inhibitory activity from aerial parts of Lantana camara collected in Indonesia and Japan.

    Science.gov (United States)

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Maarisit, Wilmar; Rotinsulu, Henki; Wewengkang, Defny S; Sumilat, Deiske A; Kapojos, Magie M; Losung, Fitje; Ukai, Kazuyo; Namikoshi, Michio

    2017-09-13

    During the search for new protein tyrosine phosphatase (PTP) 1B inhibitors, EtOH extracts from the aerial parts of Lantana camara L. (lantana) collected at Manado (Indonesia) and two subtropical islands in Japan (Ishigaki and Iriomote Islands, Okinawa) exhibited potent inhibitory activities against PTP1B in an enzyme assay. Four previously undescribed oleanane triterpenes were isolated together with known triterpenes and flavones from the Indonesian lantana. The EtOH extracts of lantana collected in Ishigaki and Iriomote Islands exhibited different phytochemical profiles from each other and the Indonesian lantana. Triterpenes with a 24-OH group were isolated from the Indonesian lantana only. Five known triterpene compounds were detected in the Ishigaki lantana, and two oleanane triterpenes with an ether linkage between 3β and 25 were the main components together with five known triterpenes as minor components in the Iriomote lantana. The structures of previously undescribed compounds were assigned on the basis of their spectroscopic data. Among the compounds obtained in this study, oleanolic acid exhibited the most potent activity against PTP1B, and is used as a positive control in studies on PTP1B. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  18. Activity increase after extraction of alkaline phosphatase from human osteoblastic membranes by nonionic detergents: influence of age and sex.

    Science.gov (United States)

    Bourrat, C; Radisson, J; Chavassieux, P; Azzar, G; Roux, B; Meunier, P J

    2000-01-01

    The solubilization of alkaline phosphatase (AP) from osteoblastic cell membranes obtained from human primary bone cell cultures was studied according to the age and sex of the donors (17 females, 11 males; age range: 2-77 years). Cell membranes were treated by non-ionic (n-octyl beta-D-glucopyranoside, OG), ionic or zwitterionic detergents, then centrifuged. When OG was used almost all the AP was solubilized. AP activity in supernatant of solubilization was compared to the activity of the suspension before centrifugation. The activity ratio (AR) increased in function of age for subjects between 65 and 74. Neither total nor specific AP activities were influenced by age or sex. Electrophoresis studies showed that the AP released was a GPI (glycosyl phosphatidylinositol)-anchored protein, amphipathic form, with 140 kDa as apparent molecular mass. The activity change of AP in the presence of OG may result from age-related modifications either in the AP structure or in the constituents of the plasma membranes (proteins or phospholipids).

  19. Ekspresi Tartrate-Resistant Acid Phosphatase-5b pada Epifisis Tulang Femur Tikus Ovariektomi yang Mengkonsumsi Calcitriol dan Raloxifene (TARTRATE-RESISTANT ACID PHOSPHATASE-5b EXPRESSION OF EPIPHYSYS DISTALIS FEMUR OVARIECTOMIZED RATS CONSUMING CALCITRIO

    Directory of Open Access Journals (Sweden)

    Hartiningsih .

    2016-03-01

    Full Text Available Tartrate resistant alkaline phosphatase 5b (TRACP5b is secreted by osteoclasts during bonedifferentiation and resorption. The objective of the research was to study TRAP5b expression inovariectomized Wistar rat consuming the combinations of calcitriol and raloxifene supplementation foreight weeks. Twenty five female Wistar rats aged eight weeks were randomly divided into five groups:normal control (NK, ovariectomy control (OVK, ovariectomy+calcitriol supplementation (OVD,ovariectomy+ raloxifene supplementation (OVR, and ovariectomy+calcitriol+ raloxifene supplementation(OVDR. At the end of the treatment, blood samples were taken from plexus orbitalis medialis forestrogen analysis. All rats were euthanized, the uteri were taken and weighed. Left femur was taken forhistopatological examination and immunohistochemistry TRAP5b using monoclonal antibody anti TRAP5bwhich was detected with streptavidin-biotin. The results showed that estrogen levels of the rats in OVKgroup were significantly decreased compared to the rats in NK group, meanwhile estrogen levels in the OVDR rat group were significantly decreased compared to the NK and OVK rat group. Histopathologicalobservation of distal femur epiphysis in group NK showed normal structure, meanwhile, distal femurepiphysis in OVK group was found osteoporosis, with some abnormalities, such as: increased of bonemarrow space, domination of adipocytes in the bone marrow, and decrease of trabecular bone speculum inepiphysis. Histopathological findings of distal femur epiphysis in OVDR group were increased of trabecularbone speculum in epiphysis and the domination of adipocytes in the bone marrow of epiphysis.Immunohistochemistry of distal femur epiphysis in OVDR group revealed increasing tartrate resistantalkaline phosphatase 5b (TRAP5b expression in trabecular bone, which was located in bone marrow spaceand trabecular speculum surface as well. It can be concluded that the combination of calcitriol and

  20. Evaluation of serum bone alkaline phosphatase activity in patients with liver disease: Comparison between electrophoresis and chemiluminescent enzyme immunoassay.

    Science.gov (United States)

    Zhan, Fangjie; Watanabe, Yoshihisa; Shimoda, Aya; Hamada, Etsuko; Kobayashi, Yoshimasa; Maekawa, Masato

    2016-09-01

    Serum bone alkaline phosphatase (ALP) is a marker of bone formation and metabolism. However, existing methods for measuring it have their limitations and their accuracy has not been determined. We measured serum bone ALP activity in 127 patients with liver disease using 2 methods: electrophoresis and chemiluminescent enzyme immunoassay (CLEIA). The results of these 2 methods were compared and analyzed according to gender, age and several serum biochemical markers. When ALP3 (%; bone-type isozyme activity as a percentage of total ALP activity) values were high, the 2 methods showed good correlation. However, with a decrease in ALP3 (%) levels, the correlation coefficient (R) also decreased. Starting with ALP3 (%)0.05). Five outliers displayed low ALP3 (%) activity levels. Furthermore, in regard to genders, there were significant differences in total cholesterol (TC), γ-glutamyltransferase (γ-GTP), ALP and ALP3 (%) levels (pliver disease, the accuracy of electrophoresis was comparable to that of CLEIA. However, the accuracy of electrophoresis needs to be evaluated with further when patient samples under certain conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Increased activity of goat liver plasma membrane alkaline phosphatase upon release by phosphatidylinositol-specific phospholipase C.

    Science.gov (United States)

    Kothekar, Deepali; Bandivdekar, Atmaram; Dasgupta, Debjani

    2014-08-01

    Mammalian alkaline phosphatase (ALP) is attached to the plasma membrane by a unique glycosylphosphatidylinositol (GPI) anchor. The influence of such a complex anchoring device on the enzyme function is not fully understood. Here, we report the effect of cleavage of the GPI anchor on the activity of goat liver plasma membrane ALP (GLPM-ALP). Phosphatidylinositol-specific phospholipase C (PI-PLC) purified from Bacillus cereus was used for the cleavage of the GPI anchor (delipidation) and hence for release of ALP from the membrane. Detergents--octyl-beta-D-glucopyranoside (OG) and triton X100 (TX100) were also used for solubilization of ALP from the membrane. Resistance to solubilization by TX100 suggested the association of GPI-ALP with lipid rafts. Solubilization of GLPM-ALP with OG had no effect on the enzyme activity; however, delipidation with PI-PLC resulted in enhanced ALP activity. Kinetic analysis showed catalytic activation of PI-PLC-treated GLPM-ALP with an increase in V(max) (35%) without a significant change in K(m). Moreover, this change in Vmax was observed to be independent of pH and buffer. The results suggested the implication of GPI anchor in modulating the catalytic property of GLPM-ALP, thus indicating the role of this special anchoring structure in the enzyme regulation.

  2. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    Science.gov (United States)

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phosphatase acitivity as biosignatures in terrestrial extreme environments

    Science.gov (United States)

    Kawai, Jun; Nakamoto, Saki; Hara, Masashi; Obayashi, Yumiko; Kaneko, Takeo; Mita, Hajime; Yoshimura, Yoshitaka; Takano, Yoshinori; Kobayashi, Kensei

    Since phosphate esters are essential for the terrestrial life, phosphatase activity can be a can-didate for biosignatures of biological activity. It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere, high temperature hot springs and stratosphere. We analyzed phosphatase activities in the samples obtained in ex-treme environments such as submarine hydrothermal systems and Antarctica , and discussed whether they can be used as biosignatures for extant life. Core samples and chimney samples were collected at Tarama Knoll in Okinawa Trough in 2009, both in a part of the Archaean Park Project. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Alkaline Phosphatase activ-ity in sea water and in soil was measured spectrometrically by using 25 mM p-nitrophenyl phosphate (pH 8.0) as a substrate. Phosphatase activities in extracts were measured fluoro-metrically by using 4-methylumberyferryl phosphate as a substrate. Concentration of amino acids and their enantiomeric ratios were also determined by HPLC . Significant enzymatic ac-tivities were revealed in both some of the hydrothermal sub-vent systems and Antarctica soils, which is crucial evidence of vigorous microbial oasis. It is consistent with the fact that large enantiomeric excess of L-form amino acids were found in the same core sequences. Optimum temperatures of ALP in the chimney, Antarctica soil and YNU campus soil were 353 K, 313 K, and 333 K, respectively. The present results suggested that phosphatase activities,, together with amino acids, can be used as possible biosignatures for extant life.

  4. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol.

    Science.gov (United States)

    Turner, P C; Wu, Q K; Piekkola, S; Gratz, S; Mykkänen, H; El-Nezami, H

    2008-06-01

    Deoxynivalenol (DON) contamination of cereal crops occurs frequently, and may cause acute exposure at high levels or chronic more moderate exposure. DON has proven toxicity including restriction of enterocyte differentiation, which may play a part in DON induced gastroenteritis. The probiotic bacteria Lactobacillus rhamnosus strain GG (GG) can bind DON, and therefore potentially restrict bioavailability of this toxin. Binding efficacy is not significantly altered by heat treatment, and therefore this in vitro study evaluated whether heat inactivated GG could restore the differentiation process in Caco-2 cells, using alkaline phosphatase (ALP) activity as a marker of differentiation. DON (200ng/mL) caused a significant (pGG (1719+/-84; 2007+/-142; 2272+/-160U/mg for GG at 1x10(4) (p>0.9), 1x10(7) (pGG were co-incubated with DON a similar restoration of ALP activity was observed as seen for heat inactivated GG. These combined data suggest that the major effect of GG on restoring ALP activity, and therefore Caco-2 cell differentiation, was due to specific binding of DON, with possibly a more minor role of non-specific bacterial interference.

  5. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane.

    LENUS (Irish Health Repository)

    Knodler, Leigh A

    2009-11-01

    The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K(6)R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt\\/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K(6)R mutant. At later times, fewer SCV were decorated with SopB-K(6)R compared with SopB. Instead SopB-K(6)R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.

  6. Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity.

    Science.gov (United States)

    Paduano, Francesco; Ortuso, Francesco; Campiglia, Pietro; Raso, Cinzia; Iaccino, Enrico; Gaspari, Marco; Gaudio, Eugenio; Mangone, Graziella; Carotenuto, Alfonso; Bilotta, Anna; Narciso, Domenico; Palmieri, Camillo; Agosti, Valter; Artese, Anna; Gomez-Monterrey, Isabel; Sala, Marina; Cuda, Giovanni; Iuliano, Rodolfo; Perrotti, Nicola; Scala, Giuseppe; Viglietto, Giuseppe; Alcaro, Stefano; Croce, Carlo M; Novellino, Ettore; Fusco, Alfredo; Trapasso, Francesco

    2012-10-19

    PTPRJ is a receptor-type protein tyrosine phosphatase whose expression is strongly reduced in the majority of investigated cancer cell lines and tumor specimens. PTPRJ negatively interferes with mitogenic signals originating from several oncogenic receptor tyrosine kinases, including HGFR, PDGFR, RET, and VEGFR-2. Here we report the isolation and characterization of peptides from a random peptide phage display library that bind and activate PTPRJ. These agonist peptides, which are able to both circularize and form dimers in acqueous solution, were assayed for their biochemical and biological activity on both human cancer cells and primary endothelial cells (HeLa and HUVEC, respectively). Our results demonstrate that binding of PTPRJ-interacting peptides to cell cultures dramatically reduces the extent of both MAPK phosphorylation and total phosphotyrosine levels; conversely, they induce a significant increase of the cell cycle inhibitor p27(Kip1). Moreover, PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of treated cells. Our data indicate that peptide agonists of PTPRJ positively modulate the PTPRJ activity and may lead to novel targeted anticancer therapies.

  7. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots.

    Science.gov (United States)

    Qian, Zhao Sheng; Chai, Lu Jing; Huang, Yuan Yuan; Tang, Cong; Shen, Jia Jia; Chen, Jian Rong; Feng, Hui

    2015-06-15

    A convenient and real-time fluorometric assay with the assistance of copper ions based on aggregation and disaggregation of carbon quantum dots (CQDs) was developed to achieve highly sensitive detection of alkaline phosphatase activity. CQDs and pyrophosphate anions (PPi) were used as the fluorescent indicator and substrate for ALP activity assessment respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by copper ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, PPi can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to copper ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by re-dispersion of CQDs in the presence of ALP and PPi. Quantitative evaluation of ALP activity in a broad range from 16.7 to 782.6 U/L with the detection limit of 1.1 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility, and provides an example based on disaggregation in optical probe development. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Resistance imparted by traditional Chinese medicines to the acute change of glutamic pyruvic transaminase, alkaline phosphatase and creatine kinase activities in rat blood caused by noise.

    Science.gov (United States)

    Zhu, Bei-Wei; Sun, Yu-Mei; Yun, Xia; Han, Song; Piao, Mei-Lan; Murata, Yoshiyuki; Tada, Mikiro

    2004-05-01

    The activities of serum glutamic pyruvic transaminase (GPT), alkaline phosphatase (ALP) and creatine kinase (CK) in rats injected or not with the Chinese medicines, Astragali, Rhodiolae and Ligusticum, were determined after noise exposure. Noise at 95 and 105 dB significantly increased the activities of GPT, ALP and CK, and showed a dependence on the exposure time. The injection of each medicine significantly suppressed the increased enzyme activities by 95 and 105 dB noise.

  9. Age-related decline in activation of calcium/calmodulin-dependent phosphatase calcineurin and kinase CaMK-IV in rat T cells.

    Science.gov (United States)

    Pahlavani, M A; Vargas, D M

    1999-12-07

    We have previously shown that the DNA binding activity of the transcription factor NFAT which plays a predominant role in IL-2 transcription decreases with age. Because the transactivation (dephosphorylation and nuclear translocation) of the NFAT-c (cytoplasmic component of the NFAT complex) is mediated by the calcium/calmodulin-dependent phosphatase, calcineurin (CaN), and because Ca2+/calmodulin-dependent kinases (CaMK-II and IV/Gr) have been shown to play a critical role in calcium signaling in T cells, it was of interest to determine what effect aging has on the activation and the levels of these calcium regulating enzymes. The induction of calcineurin phosphatase activity, and CaMK-II and IV/Gr activities, were studied in splenic T cells isolated from Fischer 344 rats at 6, 15, and 24 months of age. In addition, the changes in the protein levels of these enzymes were measured by Western blot. The calcineurin phosphatase activity and CaMK-II and IV kinase activities were at a maximum after the cells were incubated with anti-CD3 antibody for 5-10 minutes. The induction of calcineurin activity by anti-CD3 and by calcium ionophore (A23187) declined 65 and 55%, respectively, between 6 and 24 months of age. The induction of CaMK-IV activity, but not CaMK-II activity by anti-CD3, was significantly less (by 54%) in T cells from old rats compared to T cells from young rats. The decline in the activation of these enzymes with age was not associated with changes in their corresponding protein levels. These results demonstrate that alterations in calcineurin phosphatase activity and CaMK-IV activity may contribute to the well-documented age-related decline in T cell function.

  10. Mitogen activated protein kinase 6 and MAP kinase phosphatase 1 are involved in the response of Arabidopsis roots to L-glutamate.

    Science.gov (United States)

    López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo

    2018-01-17

    The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.

  11. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    Science.gov (United States)

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Red yeast rice stimulates osteoblast proliferation and increases alkaline phosphatase activity in MC3T3-E1 cells.

    Science.gov (United States)

    Cho, Young-Eun; Alcantara, Ethel; Kumaran, Santhy; Son, Kun-Ho; Sohn, Ho-Yong; Lee, Jong-Hwa; Choi, Chung-Sig; Ha, Tae-Youl; Kwun, In-Sook

    2010-07-01

    Red yeast (Monascus purpureus) is used as a traditional hypocholesterolemic dietary food component in Asia due to its bioactive component, lovastatin. Recently, new evidence suggesting that the statins in red yeast enhance bone formation has been reported, but more research is still needed in order to support these claims of osteogenic effects. Therefore, in this study, we hypothesized that red yeast rice (in which red yeast is fermented) can improve osteogenic function through osteoblast cell proliferation and differentiation. We studied the effect of methanol extract of red yeast rice powder (RYRP) on osteoblast proliferation and differentiation by measuring mitochondrial enzyme activity and bone marker alkaline phosphatase (ALP) activity, respectively. Osteoblast-like MC3T3-E1 cells were cultured in various concentrations of RYRP methanol extract (0.001-1 mg/mL) during the osteoblast differentiation period (1, 5, 10, and 15 days). As measured by 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay, RYRP extracts stimulated cell proliferation during a 24-hour period, compared to cooked white rice powder extract. The most pronounced effect was observed at the concentration range between 0.075 and 0.1 mg/mL. This RYRP stimulatory effect for cell proliferation was observed during the whole osteogenic period. Cellular (synthesized) ALP activity was increased at a RYRP extract concentration of 0.075 mg/mL during 15 days of culture, but the medium (secreted) ALP activity did not show any significant change. This cellular ALP activity stimulation by RYRP extract was confirmed by the staining of ALP activity on cell matrix layers for matrix calcification. The results imply that RYRP extract may increase osteogenic effect by stimulating cell proliferation and ALP activity in osteoblastic cells. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    Science.gov (United States)

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50.

    Science.gov (United States)

    Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; McPhail, Graham; Luklinska, Zofia; Haurat, M Florencia; Feldman, Mario F; Curtis, Michael A

    2017-06-01

    Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram

  15. Characterization of N-type glycosylation sites and glycan structures of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing

    2011-01-01

    ) Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.), Maize (Zea maize L.) and Rice (Oryza sativa L.). Plant Physiol. [in press, Jan 10, Epub ahead of print] Dionisio G., Brinch-Pedersen H., Welinder K.G., Jørgensen M. (2011b......., Skov L. Brinch-Pedersen H. (2011). The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J. Sci. Food Agri. (in press). Dionisio G., Madsen C.K., Holm P.B., Welinder K.G., Jørgensen M., Stoger E., Arcalis E., Brinch-Pedersen H. (2011a......). Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase. Phytochemistry (in press)....

  16. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  17. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk.

    Science.gov (United States)

    Yu, Ling; Shi, ZhuanZhuan; Fang, Can; Zhang, YuanYuan; Liu, YingShuai; Li, ChangMing

    2015-07-15

    A disposable lateral flow-through strip was developed for smartphone to fast one-step quantitatively detect alkaline phosphatase (ALP) activity in raw milk. The strip comprises two functional components, a conjugation pad loaded with phosphotyrosine-coated gold nanoparticles (AuNPs@Cys-Try-p) and a testing line coated with anti-phosphotryosine antibody (anti-Tyr-p mAb). The dephosphorylation activity of ALP at the testing zone can be quantitatively assayed by monitoring the accumulated AuNPs-induced color changes by smartphone camera, thus providing a highly convenient portable detection method. A trace amount of ALP as low as 0.1UL(-1) with a linear dynamic range of 0.1-150UL(-1) (R(2)=0.999) in pasteurized milk and raw milk can be one-step detected by the developed flow-through strip within 10min, demonstrating the potential of smartphone-based portable sensing device for pathogen detection. This bio-hazards free lateral flow-through testing strip can be also used to fabricate rapid, sensitive and inexpensive enzyme or immunosensors for broad portable clinic diagnosis and food contamination analysis, particularly in point-of-care and daily food quality inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester

    DEFF Research Database (Denmark)

    den Hertog, J; Sap, J; Pals, C E

    1995-01-01

    with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate, a direct activator of protein kinase C, induced a rapid, transient increase in RPTP alpha activity due to a 2- to 3-fold increase in substrate affinity. A transient increase in RPTP alpha serine phosphorylation was concomitant with the enhanced activity....... Tryptic phosphopeptide mapping of RPTP alpha demonstrated that phosphorylation of three tryptic peptides was enhanced in response to phorbol ester. In vitro dephosphorylation of RPTP alpha from phorbol ester-treated cells reduced RPTP alpha activity to prestimulation levels, indicating that enhanced...

  19. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    Science.gov (United States)

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.

  20. Modulation of Src Activity by Low Molecular Weight Protein Tyrosine Phosphatase During Osteoblast Differentiation

    NARCIS (Netherlands)

    Zambuzzi, Willian F.; Granjeiro, Jose M.; Parikh, Kaushal; Yuvaraj, Saravanan; Peppelenbosch, Maikel P.; Ferreira, Carmen V.

    2008-01-01

    Background: Src kinase plays a critical role in bone metabolism, particularly in osteoclasts. However, the ability of Src kinase to modulate the activity of other bone cells is less well understood. In this work, we examined the expression and activity of Src and low molecular weight protein

  1. Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by regulating both kinase and phosphatase activities.

    Directory of Open Access Journals (Sweden)

    Valsala Haridas

    Full Text Available Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a the cross-talk that occurs between redox and phosphorylation processes, and (b the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways.

  2. Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn(2+) and Mg (2+).

    Science.gov (United States)

    Fernández, Juan Manuel; Molinuevo, Maria Silvina; McCarthy, Antonio Desmond; Cortizo, Ana Maria

    2014-06-01

    Strontium ranelate (SR) is an orally administered and bone-targeting anti-osteoporotic agent that increases osteoblast-mediated bone formation while decreasing osteoclastic bone resorption, and thus reduces the risk of vertebral and femoral bone fractures in postmenopausal women with osteoporosis. Osteoblastic alkaline phosphatase (ALP) is a key enzyme involved in the process of bone formation and osteoid mineralization. In this study we investigated the direct effect of strontium (SR and SrCl2) on the activity of ALP obtained from UMR106 osteosarcoma cells, as well as its possible interactions with the divalent cations Zn(2+) and Mg(2+). In the presence of Mg(2+), both SR and SrCl2 (0.05-0.5 mM) significantly increased ALP activity (15-66 % above basal), and this was dose-dependent in the case of SR. The stimulatory effect of strontium disappeared in the absence of Mg(2+). The cofactor Zn(2+) also increased ALP activity (an effect that reached a plateau at 2 mM), and co-incubation of 2 mM Zn(2+) with 0.05-0.5 mM SR showed an additive effect on ALP activity stimulation. SR induced a dose-dependent decrease in the Km of ALP (and thus an increase in affinity for its substrate) with a maximal effect at 0.1 mM. Co-incubation with 2 mM Zn(2+) further decreased Km in all cases. These direct effects of SR on osteoblastic ALP activity could be indicating an alternative mechanism by which this compound may regulate bone matrix mineralization.

  3. The phosphatase calcineurin PP2BAβ mediates part of mineralocorticoid receptor transcriptional activity.

    Science.gov (United States)

    Seiferth, Anja; Ruhs, Stefanie; Mildenberger, Sigrid; Gekle, Michael; Grossmann, Claudia

    2012-06-01

    Recently it was shown that the mineralocorticoid receptor (MR) may exert part of its transcriptional activity by mediation of calcineurin (PP2B). Here we investigated the mechanism of interaction of MR with calcineurin and provide a new MR signaling pathway with potential physiological and pathophysiological relevance. MR → calcineurin crosstalk was assessed in a heterologous expression system (human embryonic kidney cells), which provides the opportunity for detailed mechanistic investigation. SiRNA knockdown experiments show that activated MR, but not GR, reduces CREB- and enhances NFaT-mediated transcriptional activation via the catalytic calcineurin subunit PP2BAβ but not via PP2BAα. Altered PP2BAβ expression, elevated cytosolic Ca(2+), activation of mitogen-activated kinase [p38, extracellular signal-regulated kinase (ERK) 1/2], or protein kinase C do not seem to be involved, whereas inhibition of the chaperone heat-shock protein 90 (HSP90) abrogated the effect of MR. Coimmunoprecipitation indicates the existence of protein complexes harboring MR and PP2BAβ independent of MR activation but dependent on HSP90. Activated MR alters the subcellular distribution of PP2BAβ, enhancing its nuclear fraction, and reduces mRNA expression of the endogenous inhibitor CAIN (calcineurin inhibitor) but not of RCAN1 (regulator of calcineurin). Overall, transcriptional relevant MR → calcineurin crosstalk occurs via the catalytic subunit PP2BAβ, enables glucocorticoid response element-independent genomic signaling of MR, and is of potential pathophysiological relevance. Mechanistically, the crosstalk results from HSP90-mediated cytosolic protein complex formation, altered subcellular distribution, and altered endogenous inhibitor expression.

  4. Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells

    DEFF Research Database (Denmark)

    Vuocolo, Scott; Purev, Enkhtsetseg; Zhang, Dongmei

    2003-01-01

    treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate....... We have made use of a battery of Rb2/p130 mutants to determine the sites dephosphorylated in response to ATRA treatment of CAOV3 cells. Obligate CDK4 phosphorylation sites seemed most important to the stability of the protein and are among the candidate sites that are dephosphorylated by PP2A...... following ATRA treatment. Finally, using both small interfering RNA specific to the catalytic subunit of PP2A and a variant of the SKOV3 cell line that overexpresses PP2A, we have shown that modulation of PP2A protein levels correlates with the ability of ATRA to inhibit growth of ovarian carcinoma cells...

  5. Alcohol drives S-nitrosylation and redox activation of protein phosphatase 1, causing bovine airway cilia dysfunction.

    Science.gov (United States)

    Price, Michael E; Pavlik, Jacqueline A; Liu, Miao; Ding, Shi-Jian; Wyatt, Todd A; Sisson, Joseph H

    2017-03-01

    Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide (∙NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of ∙NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or ∙NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.

  6. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity ofChlamydomonasin Response to Temperature and Nutrients.

    Science.gov (United States)

    Hessen, Dag O; Hafslund, Ola T; Andersen, Tom; Broch, Catharina; Shala, Nita K; Wojewodzic, Marcin W

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes.

  7. The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance

    Directory of Open Access Journals (Sweden)

    Marina Borisova

    2017-03-01

    Full Text Available Bacterial cells are encased in and stabilized by a netlike peptidoglycan (PGN cell wall that undergoes turnover during bacterial growth. PGN turnover fragments are frequently salvaged by the cells via a pathway referred to as PGN recycling. Two different routes for the recycling of the cell wall sugar N-acetylmuramic acid (MurNAc have been recognized in bacteria. In Escherichia coli and related enterobacteria, as well as in most Gram-positive bacteria, MurNAc is recovered via a catabolic route requiring a MurNAc 6-phosphate etherase (MurQ in E. coli enzyme. However, many Gram-negative bacteria, including Pseudomonas species, lack a MurQ ortholog and use an alternative, anabolic recycling route that bypasses the de novo biosynthesis of uridyldiphosphate (UDP-MurNAc, the first committed precursor of PGN. Bacteria featuring the latter pathway become intrinsically resistant to the antibiotic fosfomycin, which targets the de novo biosynthesis of UDP-MurNAc. We report here the identification and characterization of a phosphatase enzyme, named MupP, that had been predicted to complete the anabolic recycling pathway of Pseudomonas species but has remained unknown so far. It belongs to the large haloacid dehalogenase family of phosphatases and specifically converts MurNAc 6-phosphate to MurNAc. A ΔmupP mutant of Pseudomonas putida was highly susceptible to fosfomycin, accumulated large amounts of MurNAc 6-phosphate, and showed lower levels of UDP-MurNAc than wild-type cells, altogether consistent with a role for MupP in the anabolic PGN recycling route and as a determinant of intrinsic resistance to fosfomycin.

  8. Gill (Na+,K+)-ATPase from the blue crab Callinectes danae: modulation of K+-phosphatase activity by potassium and ammonium ions.

    Science.gov (United States)

    Masui, D C; Furriel, R P M; Mantelatto, F L M; McNamara, J C; Leone, F A

    2003-04-01

    The kinetic properties of a microsomal gill (Na(+),K(+))-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na(+),K(+))-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4+/-7.5 U mg(-1) with K(0.5)=1.2+/-0.1 mmol l(-1); stimulation by potassium (V=121.0+/-6.1 U mg(-1); K(0.5)=2.1+/-0.1 mmol l(-1)) and magnesium ions (V=125.3+/-6.3 U mg(-1); K(0.5)=1.0+/-0.1 mmol l(-1)) was cooperative. Ammonium ions also stimulated the enzyme through site-site interactions (n(H)=2.7) to a rate of V=126.1+/-4.8 U mg(-1) with K(0.5)=13.7+/-0.5 mmol l(-1). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4)(+) ions. Sodium ions (K(I)=36.7+/-1.7 mmol l(-1)), ouabain (K(I)=830.3+/-42.5 micromol l(-1)) and orthovanadate (K(I)=34.0+/-1.4 nmol l(-1)) completely inhibited K(+)-phosphatase activity. The competitive inhibition by ATP (K(I)=57.2+/-2.6 micromol l(-1)) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K(+)-phosphatase activity corresponds strictly to a (Na(+),K(+))-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K(+)-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.

  9. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Sharmy J. James

    2015-03-01

    Full Text Available The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5, a dual-specificity phosphatase (DUSP, in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.

  10. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner.

    Science.gov (United States)

    Tambe, Mahesh Balasaheb; Narvi, Elli; Kallio, Marko

    2016-08-01

    Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis. © 2016 Federation of European Biochemical Societies.

  11. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the western North Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Masahiro eSuzumura

    2012-03-01

    Full Text Available We measured pools of dissolved phosphorus (P, including dissolved inorganic P (DIP, dissolved organic P (DOP and alkaline phosphatase (AP-hydrolyzable labile DOP (L-DOP, and kinetic parameters of AP activity (APA in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific Subtropical Gyre (NPSG and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L−1, chlorophyll a (Chl a concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62–92% of total dissolved P at and above the Chl a maximum layer (CML. L-DOP represented 22–39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85% in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 d at the coastal station to 84.4 d in the NPSG. The ratio of the APA half saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate end efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean.

  12. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the Western north pacific ocean.

    Science.gov (United States)

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L(-1), chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62-92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22-39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean.

  13. Adsorption of humic acid on acid-activated Greek bentonite.

    Science.gov (United States)

    Doulia, Danae; Leodopoulos, Ch; Gimouhopoulos, K; Rigas, F

    2009-12-15

    The adsorption of humic acid on bentonite from Milos Island (Greece) acid-treated with dilute H(2)SO(4) solutions over a concentration range between 0.25 and 13M has been studied. Bentonite activated with 3M sulfuric acid (AAS) showed a higher efficiency in removing humic acid from aqueous solutions and was selected for further investigation. The specific surface area of acid-activated bentonite was estimated using the methylene blue adsorption method. The morphology of untreated, activated, and HA-sorbed bentonite was studied under scanning electron microscope (SEM). The effects of contact time, adsorbate concentration, adsorbent dose, and temperature on the adsorption of humic acid onto bentonite activated with 3M H(2)SO(4) were studied using a batch adsorption technique. Acidic pH and high ionic strength proved to be favorable for the adsorption efficiency. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to describe the kinetic data and the rate constants were evaluated. The experimental isotherm data were analyzed using Langmuir, Freundlich, and Temkin equations and the isotherm constants were determined. Thermodynamic parameters (DeltaH(o), DeltaS(o), and DeltaG(o)) of adsorption of humic acid onto acid-activated bentonite with 3M sulfuric acid were also evaluated.

  14. Design, Synthesis, Biological Activity and Molecular Dynamics Studies of Specific Protein Tyrosine Phosphatase 1B Inhibitors over SHP-2

    OpenAIRE

    Sun, Su-Xia; Li, Xiao-Bo; Liu, Wen-Bo; Ma, Ying; Wang, Run-Ling; Cheng, Xian-Chao; Wang, Shu-Qing; Liu, Wei

    2013-01-01

    Over expressing in PTPN1 (encoding Protein tyrosine phosphatase 1B, PTP1B), a protein tyrosine phosphatase (PTP) that plays an overall positive role in insulin signaling, is linked to the pathogenesis of diabetes and obesity. The relationship between PTP1B and human diseases exhibits PTP1B as the target to treat these diseases. In this article, small weight molecules of the imidazolidine series were screened from databases and optimized on silicon as the inhibitors of PTP1B based on the steri...

  15. Alkaline Phosphatase: An Overview

    National Research Council Canada - National Science Library

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    .... Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP...

  16. An evaluation on the activity level of Aspartate aminotransferase and Alkaline phosphatase nzymes in peri-implant sulcus fluid

    Directory of Open Access Journals (Sweden)

    Paknegad M. Assistant Professor

    2003-07-01

    Full Text Available Statement of Problem: The correlation between the activity of aspartate aminotransferase (AST and alkaline phosphatase (ALP enzymes in gingival sulcular fluid (GCF with inflammation and periodontal attachment loss has been proved, however there are not adequate studies about dental implants. Purpose: The aim of present study was to investigate the presence and activity level of AST & ALP and their correlation with pocket depth (PD and bleeding of peri-implant slcular fluid (PISF, and to evaluate the possibility of using these assessments as a diagnostic index in oral implantology. Material and Methods: In this study, 41 implants as test group and 41 contralateral teeth as control group, in 21 patients were evaluated. At first visit, the general information about implants and the values of pocket probing depth (PPD, modified sulcus bleeding index (mSBl and modified plaque index (mPI were recorded. At the second visit, samples of GCF/PISF were collected. AST & ALP activity was determined spectrophotometrically and data were analyzed by "t", "Mann-Whitney" tests and Pearson Spearman correlation coefficient."nResults: The results showed that there was a significant difference in the activity of AST between two study groups (P<0.0001. The average activity of ALP in test group was more than control group but the difference was not significant. After elimination of the confounding variables, the average AST in test group was 54.6 (S£=2.3 and in control groups was 44.8 (SE=2.3 (P=0.004. The average ALP in test group (SE=2.2 and in control (SE=2.2 were 36.6 and 35.4, respectively. Values of AST and ALP were positively correlated with other clinical parameters such as PD and mSBI which was significant in test group."nConclusion: The present study suggests that PISF analysis could be considered as a proper diagnostic strategy in the evaluation of dental implant success.

  17. Pediatric reference intervals for alkaline phosphatase.

    Science.gov (United States)

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  18. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    Science.gov (United States)

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  19. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.; Philippart, M.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylation rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.

  20. Design, synthesis, biological activity and molecular dynamics studies of specific protein tyrosine phosphatase 1B inhibitors over SHP-2.

    Science.gov (United States)

    Sun, Su-Xia; Li, Xiao-Bo; Liu, Wen-Bo; Ma, Ying; Wang, Run-Ling; Cheng, Xian-Chao; Wang, Shu-Qing; Liu, Wei

    2013-06-17

    Over expressing in PTPN1 (encoding Protein tyrosine phosphatase 1B, PTP1B), a protein tyrosine phosphatase (PTP) that plays an overall positive role in insulin signaling, is linked to the pathogenesis of diabetes and obesity. The relationship between PTP1B and human diseases exhibits PTP1B as the target to treat these diseases. In this article, small weight molecules of the imidazolidine series were screened from databases and optimized on silicon as the inhibitors of PTP1B based on the steric conformation and electronic configuration of thiazolidinedione (TZD) compounds. The top three candidates were tested using an in vitro biological assay after synthesis. Finally, we report a novel inhibitor, Compound 13, that specifically inhibits PTP1B over the closely related phosphatase Src homology 2 (SH2) domain-containing phosphatase 2 (SHP-2) at 80 μΜ. Its IC50 values are reported in this paper as well. This compound was further verified by computer analysis for its ability to combine the catalytic domains of PTP1B and SHP-2 by molecular dynamics (MD) simulations.

  1. Design, Synthesis, Biological Activity and Molecular Dynamics Studies of Specific Protein Tyrosine Phosphatase 1B Inhibitors over SHP-2

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-06-01

    Full Text Available Over expressing in PTPN1 (encoding Protein tyrosine phosphatase 1B, PTP1B, a protein tyrosine phosphatase (PTP that plays an overall positive role in insulin signaling, is linked to the pathogenesis of diabetes and obesity. The relationship between PTP1B and human diseases exhibits PTP1B as the target to treat these diseases. In this article, small weight molecules of the imidazolidine series were screened from databases and optimized on silicon as the inhibitors of PTP1B based on the steric conformation and electronic configuration of thiazolidinedione (TZD compounds. The top three candidates were tested using an in vitro biological assay after synthesis. Finally, we report a novel inhibitor, Compound 13, that specifically inhibits PTP1B over the closely related phosphatase Src homology 2 (SH2 domain-containing phosphatase 2 (SHP-2 at 80 μΜ. Its IC50 values are reported in this paper as well. This compound was further verified by computer analysis for its ability to combine the catalytic domains of PTP1B and SHP-2 by molecular dynamics (MD simulations.

  2. Trichocyalides A and B, new inhibitors of alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblasts, produced by Trichoderma sp. FKI-5513.

    Science.gov (United States)

    Fukuda, Takashi; Uchida, Ryuji; Ohte, Satoshi; Inoue, Hiroyo; Yamazaki, Hiroyuki; Matsuda, Daisuke; Nonaka, Kenichi; Masuma, Rokurou; Katagiri, Takenobu; Tomoda, Hiroshi

    2012-11-01

    Two new butenolides, designated trichocyalides A and B, were isolated along with the known compound harzianolide, from the culture broth of Trichoderma sp. FKI-5513 by solvent extraction, ODS column chromatography and HPLC. Their structures were elucidated by several spectral analyses, showing that they have the common skeleton of butenofuranone. Trichocyalides A and B inhibited alkaline phosphatase (ALP) activity, a typical marker enzyme of osteoblastic differentiation (IC(50): 83.0 and 187 μM, respectively), in bone morphogenetic protein (BMP)-stimulated C2C12 myoblasts mutant cells, which stably express BMP receptor activity, whereas harzianolide showed no inhibitory activity against ALP even at 500 μM.

  3. Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation

    NARCIS (Netherlands)

    Lankester, A. C.; van Schijndel, G. M.; van Lier, R. A.

    1995-01-01

    Hematopoietic cell phosphatase is a nonreceptor protein tyrosine phosphatase that is preferentially expressed in hematopoietic cell lineages. Motheaten mice, which are devoid of (functional) hematopoietic cell phosphatase, have severe disturbances in the regulation of B cell activation and

  4. Presence and patterns of alkaline phosphatase activity and phosphorus cycling in natural riparian zones under changing nutrient conditions

    Directory of Open Access Journals (Sweden)

    Peifang Wang

    2014-08-01

    Full Text Available Phosphorus (P is an important limiting nutrient in aquatic ecosystems and knowledge of P cycling is fundamental for reducing harmful algae blooms and other negative effects in water. Despite their importance, the characteristics of P cycling under changing nutrient conditions in shallow lakes were poorly investigated. In this study, in situ incubation experiments were conducted in a natural riparian zone in the main diversion channel used for water transfer into Lake Taihu (Wangyu River. Variations in microbial biomass, dissolved P fractions (organic and inorganic, and alkaline phosphatase activity (bulk APA and specific APA were determined after incubation with and without the addition of P and nitrogen (N (4 total water treatments: +P, +N, +NP, and control. Experiments were conducted during two seasons (late spring and early fall to account for natural differences in nutrient levels that may occur in situ. Our results demonstrated that low levels of DRP may not necessarily indicate P limitation. Phytoplankton exhibited “serial N limitation with P stress” in May, such that chlorophyll a (Chl a increased significantly with N addition, while the limiting nutrient shifted to P in October and phytoplankton biomass increased with P addition. Phytoplankton contributed greatly to APA production and was significantly influenced by P bioavailability, yet high levels of bulk APA were also not necessarily indicative of P limitation. In contrast to phytoplankton, bacteria were less P stressed. As a consequence of enhanced utilization of dissolved reactive P (DRP and dissolved organic P (DOP, +N treatment elevated APA significantly. By contrast, APA could be repressed to low values and phytoplankton converted a large portion of DRP to DOP with P addition. But this was not consistent with bacteria APA (bact-APA in the absence or presence of abundant phytoplankton biomass. The correlation between bulk APA and DRP was good at separate sites and discrepant

  5. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    Science.gov (United States)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP

  6. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    Science.gov (United States)

    Seow, Chun Ling; Lau, Aik Jiang

    2017-06-01

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

    Science.gov (United States)

    Kong, Hoon Young; Byun, Jonghoe

    2015-01-01

    Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer. PMID:25591398

  8. Highly sensitive detection of acid phosphatase by using a graphene quantum dots-based förster resonance energy transfer.

    Science.gov (United States)

    Na, Weidan; Liu, Qing; Sui, Bowen; Hu, Tianyu; Su, Xingguang

    2016-12-01

    A novel and effective fluorescence strategy was developed for sensitive and selective detection of acid phosphatase (ACP). A förster resonance energy transfer (FRET) biosensor was established by attaching nile red (NR) to graphene quantum dots (GQDs) via lecithin/β-Cyclodextrin (lecithin/β-CD) complex as the linker. The introduction of lecithin/β-CD would brought GQDs-NR pair close enough through both electrostatic interaction and hydrophobic interaction, thereby making the FRET occur and thus resulting in the fluorescence quenching of GQDs (donor) and meanwhile the fluorescence enhancement of NR (acceptor). The presence of ACP in the sensing system would catalyze the hydrolysis of lecithin into two parts, resulting in the GQDs-NR pair separation. Meanwhile, considerable fluorescence recovery of GQDs and decreasing of NR was observed due to the inhibition of FRET progress. In this method, the limit of detection (LOD) is 28µUmL(-1) which was considerably low for ACP detection. Using the GQDs-based fluorescence biosensor, we successfully performed in vitro imaging of human prostate cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alkaline Phosphatases From Camel Small Intestine | Fahmy ...

    African Journals Online (AJOL)

    ... activity of camel intestinal IAP2 and IAP5 was studied. The camel intestinal alkaline phosphatase isoenzymes IAP2 and IAP5 were inhibited by EDTA and phenylalanine. Keywords: Camel; Small intestine; Alkaline phosphatase ; Purification; Characterization Egyptian Journal of Biochemistry and Molecular Biology Vol.

  10. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.

    Directory of Open Access Journals (Sweden)

    Eun-Young Won

    Full Text Available Human dual-specificity phosphatase 26 (DUSP26 is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C, the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS measurements showed that DUSP26-N (C152S exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S revealed that the N-terminal region of DUSP26-N (C152S serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.

  11. Joint influence of temperature and ions of metals on level of activity alkaline phosphatase the mucous membrane of intestines beluga, the starlet and their hybrid

    Directory of Open Access Journals (Sweden)

    D. A. Bednyakov

    2010-01-01

    Full Text Available In work joint influence of ions of bivalent metals (Mn, Fe, Co, Ni, Cu and Zn and temperatures on level of activity alkaline phosphatase mucous membrane beluga, starlet and their hybrid is shown. Dependence of response of enzyme on action of ions of metals according to their position in a periodic table of chemical elements is shown. The given dependence remains and at temperature change incubation, only at low temperatures the activating effect of metals being in the period beginning is maximum, and at high, is maximum inhibiting effect of metals being in the period end.

  12. Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells.

    Science.gov (United States)

    Parmar, Manoj B; Meenakshi Sundaram, Daniel Nisakar; K C, Remant Bahadur; Maranchuk, Robert; Montazeri Aliabadi, Hamidreza; Hugh, Judith C; Löbenberg, Raimar; Uludağ, Hasan

    2018-01-15

    Triple-negative breast cancer is an aggressive form of breast cancer with few therapeutic options if it recurs after adjuvant chemotherapy. RNA interference could be an alternative therapy for metastatic breast cancer, where small interfering RNA (siRNA) can silence the expression of aberrant genes critical for growth and migration of malignant cells. Here, we formulated a siRNA delivery system using lipid-substituted polyethylenimine (PEI) and hyaluronic acid (HA), and characterized the size, ζ-potential and cellular uptake of the nanoparticulate delivery system. Higher cellular uptake of siRNA by the tailored PEI/HA formulation suggested better interaction of complexes with breast cancer cells due to improved physicochemical characteristics of carrier and HA-binding CD44 receptors. The siRNAs against specific phosphatases that inhibited migration of MDA-MB-231 cells were then identified using library screen against 267 protein-tyrosine phosphatases, and siRNAs to inhibit cell migration were further validated. We then assessed the combinational delivery of a siRNA against CDC20 to decrease cell growth and a siRNA against several phosphatases shown to decrease migration of breast cancer cells. Combinational siRNA therapy against CDC20 and identified phosphatases PPP1R7, PTPN1, PTPN22, LHPP, PPP1R12A and DUPD1 successfully inhibited cell growth and migration, respectively, without interfering the functional effect of the co-delivered siRNA. The identified phosphatases could serve as potential targets to inhibit migration of highly aggressive metastatic breast cancer cells. Combinational siRNA delivery against cell cycle and phosphatases could be a promising strategy to inhibit both growth and migration of metastatic breast cancer cells, and potentially other types of metastatic cancer. The manuscript investigated the efficacy of a tailored polymeric siRNA delivery system formulation as well as combinational siRNA therapy in metastatic breast cancer cells to inhibit

  13. The effects of drought stress on the activity of acid phosphatase and ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116. Cao H, Han ZH, Xu XF (2003). Membrane lipid peroxidation damage effect of chlorophyll degradation in malus seedlings under water stress. Scientia Agricultura Sinica 36(10): 1191-1195. Cao SQ, Jiang ST, ...

  14. Multisystemic functions of alkaline phosphatases.

    Science.gov (United States)

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  15. Extracellular Signal-Regulated Kinase (ERK Activation and Mitogen-Activated Protein Kinase Phosphatase 1 Induction by Pulsatile Gonadotropin-Releasing Hormone in Pituitary Gonadotrophs

    Directory of Open Access Journals (Sweden)

    Haruhiko Kanasaki

    2012-01-01

    Full Text Available The frequency of gonadotropin-releasing hormone (GnRH pulse secreted from the hypothalamus differently regulates the expressions of gonadotropin subunit genes, luteinizing hormone β (LHβ and follicle-stimulating hormone β (FSHβ, in the pituitary gonadotrophs. FSHβ is preferentially stimulated at slower GnRH pulse frequencies, whereas LHβ is preferentially stimulated at more rapid pulse frequencies. Several signaling pathways are activated, including mitogen-activated protein kinase (MAPK, protein kinase C, calcium influx, and calcium-calmodulin kinases, and these may be preferentially regulated under certain conditions. Previous studies demonstrated that MAPK pathways, especially the extracellular signal-regulated kinase (ERK, play an essential role for induction of gonadotropin subunit gene expression by GnRH, whereas, MAPK phosphatases (MKPs inactivate MAPKs through dephosphorylation of threonine and/or tyrosine residues. MKPs are also induced by GnRH, and potential feedback regulation between MAPK signaling and MKPs within the GnRH signaling pathway is evident in gonadotrophs. In this paper, we reviewed and mainly focused on our observations of the pattern of ERK activation and the induction of MKP by different frequencies of GnRH stimulation.

  16. Tartrate-resistant acid phosphatase 5a in sarcoidosis: Further evidence for a novel macrophage biomarker in chronic inflammation

    Directory of Open Access Journals (Sweden)

    Yi-Ying Wu

    2014-06-01

    Conclusion: TRACP5a protein is expressed abundantly in the granulomatous tissues and may be elevated in a significant proportion of sarcoidosis patients. These findings further support our hypothesis that serum TRACP5a is derived from systemic inflammatory MΦ and thereby may be a biomarker of inflammation for sarcoidosis and also reflect its disease activity.

  17. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    Science.gov (United States)

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation.

  18. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A.

    Science.gov (United States)

    Persad, Amit; Venkateswaran, Geetha; Hao, Li; Garcia, Maria E; Yoon, Jenny; Sidhu, Jaskiran; Persad, Sujata

    2016-11-01

    Dysregulation of Wnt/β-catenin signaling has been associated with the development and progression of many cancers. The stability and subcellular localization of β-catenin, a dual functional protein that plays a role in intracellular adhesion and in regulating gene expression, is tightly regulated. However, little is known about the transcriptionally active form of β-catenin, Active Beta Catenin (ABC), that is unphosphorylated at serine 37 (Ser37) and threonine 41 (Thr41). Elucidating the mechanism by which β-catenin is activated to generate ABC is vital to the development of therapeutic strategies to block β-catenin signaling for cancer treatment. Using melanoma, breast and prostate cancer cell lines, we show that while cellular β-catenin levels are regulated by the Wnt pathway, cellular ABC levels are mainly regulated by the PI3K pathway and are dependent on the phosphatase activity of the protein phosphatase PP2A. Furthermore, we demonstrate that although the PI3K/PTEN pathway does not regulate total β-catenin protein levels within the cell, it plays a role in regulating the subcellular localization of β-catenin. Our results support a novel functional interaction/cross-talk between the PTEN/PI3K and Wnt pathways in the regulation of the subcellular/nuclear levels of ABC, which is crucially important for the protein's activity as a transcription factor and its biological effects in health and disease.

  19. Possible involvement of mitogen-activated protein kinase phosphatase-1 (MKP-1) in thyrotropin-releasing hormone (TRH)-induced prolactin gene expression.

    Science.gov (United States)

    Oride, Aki; Kanasaki, Haruhiko; Purwana, Indri N; Miyazaki, Kohji

    2009-05-15

    The role of extracellular signal-regulated kinase (ERK) in mediating the ability of thyrotropin-releasing hormone (TRH) to stimulate the prolactin gene has been well elucidated. ERK is inactivated by a dual specificity phosphatase, mitogen-activated protein kinase phosphatase (MKP). In this study, we examined the induction of MKP-1 protein by thyrotropin-releasing hormone (TRH) in pituitary GH3 cells, and investigated the possible role for MKP-1 in TRH-induced prolactin gene expression. MKP-1 protein was induced significantly from 60 min after TRH stimulation, and remained elevated at 4h. The effect of TRH on MKP-1 expression was completely prevented in the presence of the MEK inhibitor, U0126. In the experiments using triptolide, a potent blocker for MKP-1, MKP-1 induction by TRH was completely inhibited in a dose-dependent manner. TRH-induced ERK activation was significantly enhanced in this condition. Prolactin promoter activity, activated by TRH, was reduced to the control level in the presence of triptolide in a dose-dependent manner. In GH3 cells, which were transfected with MKP-1 specific siRNA, both the basal and TRH-stimulated activities of the prolactin promoter were significantly reduced compared to the cells transfected with negative control siRNA. Our present results support a critical role of MKP-1 in TRH-induced, ERK-dependent, prolactin gene expression.

  20. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex.

    Directory of Open Access Journals (Sweden)

    Andriy E Belevych

    Full Text Available In heart failure (HF, arrhythmogenic spontaneous sarcoplasmic reticulum (SR Ca(2+ release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively. Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca(2+ waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca(2+/calmodulin-dependent protein kinase (CaMKII-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca(2+ waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca(2+ waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by

  1. Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory.

    Science.gov (United States)

    Płachno, Bartosz Jan; Adamec, Lubomír; Huet, Hervé

    2009-09-01

    Ibicella lutea and Proboscidea parviflora are two American semi-desert species of glandular sticky plants that are suspected of carnivory as they can catch small insects. The same characteristics might also hold for two semi-desert plants with glandular sticky leaves from Israel, namely Cleome droserifolia and Hyoscyamus desertorum. The presence of proteases on foliar hairs, either secreted by the plant or commensals, detected using a simple test, has long been considered proof of carnivory. However, this test does not prove whether nutrients are really absorbed from insects by the plant. To determine the extent to which these four species are potentially carnivorous, hair secretion of phosphatases and uptake of N, P, K and Mg from fruit flies as model prey were studied in these species and in Roridula gorgonias and Drosophyllum lusitanicum for comparison. All species examined possess morphological and anatomical adaptations (hairs or emergences secreting sticky substances) to catch and kill small insects. The presence of phosphatases on foliar hairs was tested using the enzyme-labelled fluorescence method. Dead fruit flies were applied to glandular sticky leaves of experimental plants and, after 10-15 d, mineral nutrient content in their spent carcasses was compared with initial values in intact flies after mineralization. Phosphatase activity was totally absent on Hyoscyamus foliar hairs, a certain level of activity was usually found in Ibicella, Proboscidea and Cleome, and a strong response was found in Drosophyllum. Roridula exhibited only epidermal activity. However, only Roridula and Drosophyllum took up nutrients (N, P, K and Mg) from applied fruit flies. Digestion of prey and absorption of their nutrients are the major features of carnivory in plants. Accordingly, Roridula and Drosophyllum appeared to be fully carnivorous; by contrast, all other species examined are non-carnivorous as they did not meet the above criteria.

  2. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.

    2016-01-01

    cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC...... or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species...

  3. A sensitive dual colorimetric and fluorescence system for assaying the activity of alkaline phosphatase that relies on pyrophosphate inhibition of the peroxidase activity of copper ions.

    Science.gov (United States)

    Park, Ki Soo; Lee, Chang Yeol; Park, Hyun Gyu

    2014-09-21

    A novel and highly sensitive colorimetric and fluorescence assay for the accurate determination of alkaline phosphatase (ALP) activity has been developed. The assay takes advantage of the inhibition of the peroxidase activity of Cu(2+) ions caused by complexation with pyrophosphate (PPi), a natural substrate for ALP. This inhibition disappears when PPi undergoes ALP catalyzed hydrolysis to generate phosphate, which does not bind to Cu(2+) ions. Thus, ALP causes generation of uncomplexed Cu(2+) ions, which promote multiple oxidation reactions of Amplex UltraRed in the presence of hydrogen peroxide in conjunction with the production of intense fluorescence and colorimetric signals. By employing the fluorescence and colorimetric assay strategies, ALP can be detected at respective concentrations as low as 4.3 pM and 5.4 pM, detection limits that are much lower than those associated with previously described methods. The practical diagnostic capability of the assay system has been demonstrated by its use to detect ALP in human blood serum.

  4. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    Science.gov (United States)

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  5. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2015-01-01

    Full Text Available This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3, a repeatability of 9.4% (n = 3 and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition.

  6. The lipid raft-bound alkaline phosphatase activity increases and the level of transcripts remains unaffected in liver of merosin-deficient LAMA2dy mouse.

    Science.gov (United States)

    Montenegro, María Fernanda; Moral-Naranjo, María Teresa; Campoy, Francisco J; Muñoz-Delgado, Encarnación; Vidal, Cecilio J

    2014-06-05

    Alkaline phosphatase (AP) and other proteins add glycosylphosphatidylinositol (GPI) before addressing to raft domains of the cell membrane. Our previous report showing an increased density of lipid rafts in muscle of dystrophic Lama2dy mice prompted us to compare livers of normal (NL) and dystrophic mice (DL) for their levels of rafts. With this aim, hepatic rafts were isolated as Triton X-100 resistant membranes, and identified by their abundance of flotillin-2, alkaline phosphatase (AP) and other raft markers. The comparable abundance of cholesterol and flotillin-2 in rafts of NL and DL contrasted with the double AP activity both in rafts of DL and whole DL. The AP mRNA level was the same in NL and DL. Sedimentation analysis profiles revealed AP activity of NL distributed between dimeric (dAP) and monomeric AP (mAP), whose proportions and lectin-binding extent changed in DL. The increased AP activity and changed AP glycosylation in DL, the prevalence of mAP in NL and the enhanced stability of dAP in DL demonstrated the critical role that glycosylation and oligomerization play for AP catalysis. The higher AP activity of DL probably arises from dystrophy-associated changes in glycosyl transferases, which alter AP glycosylation and subunit folding with profitable effects for AP stability and catalysis. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  8. Specific dephosphorylation by phosphatases 1 and 2A of a nuclear protein structurally and immunologically related to nucleolin

    DEFF Research Database (Denmark)

    Schneider, H R; Mieskes, G; Issinger, O G

    1989-01-01

    to a complete dephosphorylation of N-60. The two other phosphatases tested (2B and 2C) did not dephosphorylate protein N-60 to the same extent as phosphatases 1 and 2Ac. In the case of nucleolin only 18% phosphate was released by all four phosphatases tested. The activity of both phosphatases, 1 and 2A, could......A new nuclear substrate (N-60) for phosphatase 1 and 2Ac has been described. In contrast to nucleolin (C23), to which it is structurally and immunologically related, N-60 becomes dephosphorylated to 51% and 41% by phosphatases 1 and 2Ac, respectively, within 10 min. Incubation up to 20 min led...... be blocked by tumour promoter okadaic acid (100 nM) when N-60 was used as a substrate. These results support the notion that the observed okadaic-acid-induced hyperphosphorylation of N-60 in intact human fibroblasts may be caused by specific inhibition of phosphatases involved in the process of r...

  9. Structural and catalytic characterization of a heterovalent Mn(II)Mn(III) complex that mimics purple acid phosphatases.

    Science.gov (United States)

    Smith, Sarah J; Riley, Mark J; Noble, Christopher J; Hanson, Graeme R; Stranger, Robert; Jayaratne, Vidura; Cavigliasso, Germán; Schenk, Gerhard; Gahan, Lawrence R

    2009-11-02

    The binuclear heterovalent manganese model complex [Mn(II)Mn(III)(L1)(OAc)(2)] ClO(4) x H(2)O (H(2)L1 = 2-(((3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)-methyl)phenol) has been prepared and studied structurally, spectroscopically, and computationally. The magnetic and electronic properties of the complex have been related to its structure. The complex is weakly antiferromagnetically coupled (J approximately -5 cm(-1), H = -2J S(1) x S(2)) and the electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra identify the Jahn-Teller distortion of the Mn(III) center as predominantly a tetragonal compression, with a significant rhombic component. Electronic structure calculations using density functional theory have confirmed the conclusions derived from the experimental investigations. In contrast to isostructural M(II)Fe(III) complexes (M = Fe, Mn, Zn, Ni), the Mn(II)Mn(III) system is bifunctional possessing both catalase and hydrolase activities, and only one catalytically relevant pK(a) (= 8.2) is detected. Mechanistic implications are discussed.

  10. Quantitative evaluation of the alkaline phosphatase activity in industrial and traditional dairy products supplied in Ahvaz as an indicator of pasteurization

    Directory of Open Access Journals (Sweden)

    M. Zarei

    2017-05-01

    Full Text Available Alkaline phosphatase is an indigenous milk enzyme and is probably, the most important indigenous milk enzyme from a dairy technology viewpoint which is used to determine the efficacy of the pasteurization process. The aim of this study was to assess the alkaline phosphatase activity of 200 samples of industrial and traditional yoghurt, ice cream and cheese, as well as raw and pasteurized milk samples. To achieve this purpose, p-nitrophenylphosphate was used as substrate and the amount of liberated p-nitrophenol was measured spectrophotometrically. The amount of liberated p-nitrophenol in all samples of raw milk was very high (6839±4070 µg/ml but in pasteurized milk samples, the amount was in the range of 0.75-52.96 µg/ml and 88% of the samples had less than 10 µg p-nitrophenol/ml, the maximum permissible limit of p-nitrophenol in pasteurized products. The amount of liberated p-nitrophenol was in the range of 5.68-1210 µg/ml and 2.61-18.22 µg/ml in traditional and industrial cheese samples, respectively and it was estimated at the range of 0.75-26.67 µg/ml and 0.71- 35.82 µg/ml for traditional and industrial ice cream samples, respectively. The lowest alkaline phosphatase activity was observed in both industrial and traditional yoghurt samples. Meanwhile, p-nitrophenol in 12% of industrial cheese, 44% of traditional cheese and 16% of both industrial and traditional ice cream samples was higher than 10 µg/ml which could be due to the inadequate pasteurization of the product or cross contamination with raw milk. The results of the present study showed a need for more strict attention in the pasteurization of milk and its products.

  11. Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity.

    Science.gov (United States)

    Maneesh, Anusree; Chakraborty, Kajal

    2017-12-01

    Previously undescribed fridooleanene triterpenoids 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-propyl-21-hex-4'(Z)-enoate, 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-prop-2(E)-en-21-butanoate and oxygenated labdane diterpenoids 2α-hydroxy-8(17), (12E), 14-labdatriene, 3β, 6β, 13α-tri hydroxy 8(17), 12E, 14-labdatriene were purified from the ethyl acetate-methanol and dichloromethane fractions of the air-dried thalli of Sargassum wightii (Sargassaceae), a brown seaweed collected from the Gulf-of-Mannar of Penninsular India. Inhibitory potential of Δ12 oleanenes towards protein tyrosine phosphatase-1B, the critical regulator of insulin-receptor activity were found to be significantly greater (IC50 0.1 × 10-2 and 0.09 × 10-2 mg/mL, respectively) than the standard sodium metavanadate (IC50 0.31 × 10-2 mg/mL). Fridooleanene triterpenoids displayed greater antioxidant activities (IC50DPPH 0.16-0.18 mg/mL) than the commercially available antioxidants, butylated hydroxytoluene and α-tocopherol (IC50DPPH 0.25 and 0.63 mg/mL, respectively). In general, the oxygenated labdane diterpenoids displayed significantly lesser antioxidant and tyrosine phosphatase-1B inhibitory properties than those exhibited by the fridooleanenes. Bioactivities of the titled compounds were primarily determined by the electronic and lipophilic parameters and not by the steric descriptors. Molecular docking simulations and kinetic studies were employed to describe the tyrosine phosphatase-1B inhibitory mechanism. The previously undescribed fridooleanene triterpenoids might be used as potential anti-hyperglycaemic pharmacophore leads to reduce the risk of elevated postprandial glucose levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    DEFF Research Database (Denmark)

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T

    2005-01-01

    The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation...... of the enterocytes, we have conducted a computer-assisted cis-element search of the proximal human ALPI promoter sequence. A putative recognition site for the transcription factor hepatocyte nuclear factor (HNF)-4 was predicted at the positions from -94 to -82 in relation to the translational start site. The ability...

  13. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    Science.gov (United States)

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.

    2016-12-01

    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  14. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    OpenAIRE

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-01-01

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(...

  15. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    Administrator

    Abstract. New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid.

  16. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid and aminobenzamide ...

  17. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins.

    Directory of Open Access Journals (Sweden)

    James D Swarbrick

    Full Text Available VPS29 is a key component of the cargo-binding core complex of retromer, a protein assembly with diverse roles in transport of receptors within the endosomal system. VPS29 has a fold related to metal-binding phosphatases and mediates interactions between retromer and other regulatory proteins. In this study we examine the functional interactions of mammalian VPS29, using X-ray crystallography and NMR spectroscopy. We find that although VPS29 can coordinate metal ions Mn(2+ and Zn(2+ in both the putative active site and at other locations, the affinity for metals is low, and lack of activity in phosphatase assays using a putative peptide substrate support the conclusion that VPS29 is not a functional metalloenzyme. There is evidence that structural elements of VPS29 critical for binding the retromer subunit VPS35 may undergo both metal-dependent and independent conformational changes regulating complex formation, however studies using ITC and NMR residual dipolar coupling (RDC measurements show that this is not the case. Finally, NMR chemical shift mapping indicates that VPS29 is able to associate with SNX1 via a conserved hydrophobic surface, but with a low affinity that suggests additional interactions will be required to stabilise the complex in vivo. Our conclusion is that VPS29 is a metal ion-independent, rigid scaffolding domain, which is essential but not sufficient for incorporation of retromer into functional endosomal transport assemblies.

  18. Persistently elevated alkaline phosphatase.

    Science.gov (United States)

    Verma, Jitin; Gorard, David A

    2012-08-24

    A 32-year-old overweight asymptomatic man was found to have a persistently raised serum alkaline phosphatase at 250-300 U/l (normal range liver function tests were unremarkable apart from an initial marginally elevated alanine transaminase, which normalised with weight reduction. Abdominal imaging revealed a fatty liver but an extensive serological search for significant hepatobiliary disease was negative. Subsequent isoenzyme electrophoresis revealed normal liver and bone fractions of alkaline phosphatase but a grossly elevated intestinal fraction. Elevated intestinal fraction of alkaline phosphatase should be considered in the investigation of unexplained alkaline phosphatase, particularly when the usual associated hepatobiliary and bony pathologies are not present. Although an elevated intestinal fraction of alkaline phosphatase can be linked to significant gastrointestinal pathology, this case report highlights that it can be a benign biochemical finding.

  19. Competitive, uncompetitive, and mixed inhibitors of the alkaline phosphatase activity associated with the isolated brush border membrane of the tapeworm Hymenolepis diminuta.

    Science.gov (United States)

    Pappas, P W; Leiby, D A

    1989-06-01

    Several compounds were tested as inhibitors of the alkaline phosphatase (AlkPase) activity associated with the isolated brush border membrane of the tapeworm, Hymenolepis diminuta. Molybdate, arsenate, arsenite and beta-glycerophosphate (BGP) were competitive inhibitors of the hydrolysis of p-nitrophenyl phosphate, while levamisole and clorsulon were uncompetitive and mixed inhibitors, respectively. Molybdate was also a competitive inhibitor of the hydrolysis of BGP and 5'-adenosine monophosphate, and levamisole was an uncompetitive inhibitor of BGP hydrolysis. The apparent inhibitor constants (Ki') for molybdate and levamisole were virtually identical regardless of the substrate, and these data support the hypothesis that the AlkPase activity is represented by a single membrane-bound enzyme with low substrate specificity. Quinacrine, Hg2+, and ethylenediaminetetraacetate were also potent inhibitors of the AlkPase activity, but the mechanisms by which these latter three inhibitors function were not clear.

  20. Determination of Cancer Cell-Based pH-Sensitive Fluorescent Carbon Nanoparticles of Cross-Linked Polydopamine by Fluorescence Sensing of Alkaline Phosphatase Activity on Coated Surfaces and Aqueous Solution.

    Science.gov (United States)

    Kang, Eun Bi; Choi, Cheong A; Mazrad, Zihnil Adha Islamy; Kim, Sung Han; In, Insik; Park, Sung Young

    2017-12-19

    The tumor-specific sensitive fluorescence sensing of cellular alkaline phosphatase (ALP) activity on the basis of host-guest specific and pH sensitivity was conducted on coated surfaces and aqueous states. Cross-linked fluorescent nanoparticles (C-FNP) consisting of β-cyclodextrin (β-CD)/boronic acid (BA) and fluorescent hyaluronic acid [FNP(HA)] were conjugated to fluorescent polydopamine [FNP(pDA)]. To determine the quenching effect of this system, hydrolysis of 4-nitrophenyl phosphate (NPP) to 4-nitrophenol (NP) was performed in the cavity of β-CD in the presence of ALP activated photoinduced electron transfer (PET) between NP and C-FNP. At an ALP level of 30-1000 U/L, NP caused off-emission of C-FNP because of their specific host-guest recognition. Fluorescence can be recovered under pH shock due to cleavage of the diol bond between β-CD and BA, resulting in release of NP from the fluorescent system. Sensitivity of the assays was assessed by confocal imaging not only in aqueous states, but also for the first time on coated surfaces in MDAMB-231 and MDCK cells. This novel system demonstrated high sensitivity to ALP through generation of good electron donor/acceptor pair during the PET process. Therefore, this fluorescence sensor system can be used to enhance ALP monitoring and cancer diagnosis on both coated surfaces and in aqueous states in clinical settings.

  1. EFFECTS OF GLYPHOSATE AMMONIUM SALT ON THE BIOAVAILABLE PHOSPHORUS CONTENT AND THE ACTIVITY OF SELECTED PHOSPHATASES IN LOAMY SAND

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2015-07-01

    Full Text Available The aim of this study was to determine the effects of glyphosatę ammonium salt on the activity of some enzymes involved in the metabolism of phosphorus in the soil: acid phosphomonoeaterase (EC 3.1.3.2, alkaline phosphomonoeaterase (EC 3.1.3.1, phosphotrieaterase (EC 3.1.5.1, inorganic pyrophosphatase (EC 3.1.6.1, and a phosphorus content in a form available to plants. The experiment was carried out on loamy sand samples with organic carbon content 8.7 g kg-1. Into soil samples the aqueous solutions of Avans Premium 360 SC (360 g glyphosate ammonium salt in 1 dm3 were added. The amount of introduced glyphosate ammonium salt was 0 (control, 1, 10, 50 and 100 mg·kg-1, on days 0 (1 hour after glyphosate application, 7, 14, 28 and 56 measured parameters were determined spectrophotometrically. The obtained results showed that the application of glyphosate ammonium salt resulted in changes of available phosphorus content and the activity of enzymes involved in the metabolism of this element in loamy sand. The effects glyphosate ammonium salt dosage and effect of day of experiment were ambiguous. Among the determined parameters the most sensitive to the presence of the glyphosate ammonium was alkaline phosphomonoesterase.

  2. A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin

    DEFF Research Database (Denmark)

    Hansen, L; Hansen, T; Vestergaard, H

    1995-01-01

    The regulatory G-subunit of the glycogen-associated form of protein phosphatase 1 (PP1) plays a crucial part in muscle tissue glycogen synthesis and breakdown. As impaired insulin stimulated glycogen synthesis in peripheral tissues is considered to be a pathogenic factor in subsets of non-insulin...

  3. Activation of c-Src and Fyn kinases by protein tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization

    DEFF Research Database (Denmark)

    Vacaresse, Nathalie; Møller, Bente; Danielsen, Erik Michael

    2008-01-01

    Tyrosine kinases of the Src family (SFKs) function in multiple signaling pathways, raising the question of how appropriate regulation and substrate choice are achieved. SFK activity is modulated by several protein tyrosine phosphatases (PTPs), among which RPTPa and SHP2 are the best established. We...... studied how RPTPa affects substrate specificity and regulation of c-Src and Fyn in response to EGF and PDGF. We find that RPTPa, in a growth factor-specific manner, directs the specificity of these kinases towards a specific subset of SFK substrates, particularly the focal adhesion protein Paxillin...... and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPa is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPa. Forced concentration of RPTPa into lipid rafts is compatible...

  4. Phosphatases: The New Brakes for Cancer Development?

    Directory of Open Access Journals (Sweden)

    Qingxiu Zhang

    2012-01-01

    Full Text Available The phosphatidylinositol 3-kinase (PI3K pathway plays a pivotal role in the maintenance of processes such as cell growth, proliferation, survival, and metabolism in all cells and tissues. Dysregulation of the PI3K/Akt signaling pathway occurs in patients with many cancers and other disorders. This aberrant activation of PI3K/Akt pathway is primarily caused by loss of function of all negative controllers known as inositol polyphosphate phosphatases and phosphoprotein phosphatases. Recent studies provided evidence of distinct functions of the four main phosphatases—phosphatase and tensin homologue deleted on chromosome 10 (PTEN, Src homology 2-containing inositol 5′-phosphatase (SHIP, inositol polyphosphate 4-phosphatase type II (INPP4B, and protein phosphatase 2A (PP2A—in different tissues with respect to regulation of cancer development. We will review the structures and functions of PTEN, SHIP, INPP4B, and PP2A phosphatases in suppressing cancer progression and their deregulation in cancer and highlight recent advances in our understanding of the PI3K/Akt signaling axis.

  5. Protein tyrosine phosphatases as potential therapeutic targets.

    Science.gov (United States)

    He, Rong-Jun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Zhang, Zhong-Yin

    2014-10-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.

  6. Deprotonation states of the two active site water molecules regulate the binding of protein phosphatase 5 with its substrate: A molecular dynamics study.

    Science.gov (United States)

    Wang, Lingyun; Yan, Feng

    2017-10-01

    Protein phosphatase 5 (PP5), mainly localized in human brain, can dephosphorylate tau protein whose high level of phosphorylation is related to Alzheimer's disease. Similar to other protein phosphatases, PP5 has a conserved motif in the catalytic domain that contains two binding sites for manganese (Mn2+ ) ions. Structural data indicate that two active site water molecules, one bridging the two Mn2+ ions and the other terminally coordinated with one of the Mn2+ ions (Mn1), are involved in catalysis. Recently, a density functional theory study revealed that the two water molecules can be both deprotonated to keep a neutral active site for catalysis. The theoretical study gives us an insight into the catalytic mechanism of PP5, but the knowledge of how the deprotonation states of the two water molecules affect the binding of PP5 with its substrate is still lacking. To approach this problem, molecular dynamics simulations were performed to model the four possible deprotonation states. Through structural, dynamical and energetic analyses, the results demonstrate that the deprotonation states of the two water molecules affect the structure of the active site including the distance between the two Mn2+ ions and their coordination, impact the interaction energy of residues R275, R400 and H304 which directly interact with the substrate phosphoserine, and mediate the dynamics of helix αJ which is involved in regulation of the enzyme's activity. Furthermore, the deprotonation state that is preferable for PP5 binding of its substrate has been identified. These findings could provide new design strategy for PP5 inhibitor. © 2017 The Protein Society.

  7. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase

    DEFF Research Database (Denmark)

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E

    2016-01-01

    -exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues......Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface...... within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides...

  8. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  9. pH-dependent conversion of liver-membranous alkaline phosphatase to a serum-soluble form by n-butanol extraction.

    Science.gov (United States)

    Miki, A; Kominami, T; Ikehara, Y

    1985-01-16

    Alkaline phosphatase released from rat liver plasma membrane under usual conditions was electrophoretically not identical with a soluble form in serum which was derived from the liver. The liver-membranous alkaline phosphatase, however, was converted to the serum-soluble form when the liver plasma membrane was treated with n-butanol under the acidic conditions lower than pH 6.5. Such pH-dependent conversion of the enzyme was not observed in plasma membrane of rat ascites hepatoma AH-130 cells. The converting activity for alkaline phosphatase was detected not only in plasma membrane but also in lysosomal membrane of rat liver.

  10. Roles for the Mitogen-activated Protein Kinase (MAPK) Phosphatase, DUSP1, in Feedback Control of Inflammatory Gene Expression and Repression by Dexamethasone*

    Science.gov (United States)

    Shah, Suharsh; King, Elizabeth M.; Chandrasekhar, Ambika; Newton, Robert

    2014-01-01

    Glucocorticoids act on the glucocorticoid receptor (NR3C1) to repress inflammatory gene expression. This is central to their anti-inflammatory effectiveness and rational improvements in therapeutic index depend on understanding the mechanism. Human pulmonary epithelial A549 cells were used to study the role of the mitogen-activated protein kinase (MAPK) phosphatase, dual-specificity phosphatase 1 (DUSP1), in the dexamethasone repression of 11 inflammatory genes induced, in a MAPK-dependent manner, by interleukin-1β (IL1B). Adenoviral over-expression of DUSP1 inactivated MAPK pathways and reduced expression of all 11 inflammatory genes. IL1B rapidly induced DUSP1 expression and RNA silencing revealed a transient role in feedback inhibition of MAPKs and inflammatory gene expression. With dexamethasone, which induced DUSP1 expression, plus IL1B (co-treatment), DUSP1 expression was further enhanced. At 1 h, this was responsible for the dexamethasone inhibition of IL1B-induced MAPK activation and CXCL1 and CXCL2 mRNA expression, with a similar trend for CSF2. Whereas, CCL20 mRNA was not repressed by dexamethasone at 1 h, repression of CCL2, CXCL3, IL6, and IL8 was unaffected, and PTGS2 repression was partially affected by DUSP1 knockdown. At later times, dexamethasone repression of MAPKs was unaffected by DUSP1 silencing. Likewise, 6 h post-IL1B, dexamethasone repression of all 11 mRNAs was essentially unaffected by DUSP1 knockdown. Qualitatively similar data were obtained for CSF2, CXCL1, IL6, and IL8 release. Thus, despite general roles in feedback inhibition, DUSP1 plays a transient, often partial, role in the dexamethasone-dependent repression of certain inflammatory genes. Therefore this also illustrates key roles for DUSP1-independent effectors in mediating glucocorticoid-dependent repression. PMID:24692548

  11. Intestinal Anti-Inflammatory Activity of Baccharis dracunculifolia in the Trinitrobenzenesulphonic Acid Model of Rat Colitis

    Directory of Open Access Journals (Sweden)

    Sílvia Helena Cestari

    2011-01-01

    Full Text Available Baccharis dracunculifolia DC (Asteraceae is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS. Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mg kg−1 significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.

  12. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    Science.gov (United States)

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  13. Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells.

    Science.gov (United States)

    Chetoui, Nizar; Gendron, Steve; Chamoux, Estelle; Aoudjit, Fawzi

    2006-04-01

    Growing evidence indicates that interactions of T cells with extracellular matrix through beta1 integrins are important for the regulation of T cell-mediated immune responses and diseases. In this regard, we have recently demonstrated that collagen I (Coll I) through alpha2beta1 integrin inhibited Fas-induced apoptosis of T cells by activating a protein phosphatase 2A (PP2A)-dependent ERK/MAP Kinase pathway. As survival of T cells is critical for their functions, we further investigated the mechanisms underlying the activation of this pathway. Inhibition studies demonstrated that Coll I activates the ERK/MAP Kinase pathway in Jurkat T cells through the activation of Ras and Raf-1. Activation of PP2A was not necessary for the binding of Coll I to Jurkat T cells, but is required for the activation of Raf-1. In accordance, activation of Ras, Raf-1 and PP2A were also required for the ability of Coll I to protect Jurkat T cells from Fas-induced apoptosis. In contrast and despite its capacity to activate Ras, fibronectin (Fbn) failed to activate PP2A and Raf-1. These results might explain, at least in part, the weak ability of Fbn to activate ERK in T cells, supporting thus the differential signaling of beta1 integrin members in these cells. This study provides novel insights into the mechanisms by which beta1 integrins activate the ERK/MAP Kinase pathway in T cells, and is the first report to provide a role for PP2A in integrin-mediated ERK/MAP Kinase activation.

  14. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30

    DEFF Research Database (Denmark)

    Kruse, Thomas; Biedenkopf, Nadine; Hertz, Emil Peter Thrane

    2018-01-01

    Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase......A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention....... through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2...

  15. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  16. MAP kinase phosphatase-2 plays a key role in the control of infection with Toxoplasma gondii by modulating iNOS and arginase-1 activities in mice.

    Directory of Open Access Journals (Sweden)

    Stuart Woods

    2013-08-01

    Full Text Available The dual specific phosphatase, MAP kinase phosphatase-2 (MKP-2 has recently been demonstrated to negatively regulate macrophage arginase-1 expression, while at the same time to positively regulate iNOS expression. Consequently, MKP-2 is likely to play a significant role in the host interplay with intracellular pathogens. Here we demonstrate that MKP-2(-/- mice on the C57BL/6 background have enhanced susceptibility compared with wild-type counterparts following infection with type-2 strains of Toxoplasma gondii as measured by increased parasite multiplication during acute infection, increased mortality from day 12 post-infection onwards and increased parasite burdens in the brain, day 30 post-infection. MKP-2(-/- mice did not, however, demonstrate defective type-1 responses compared with MKP-2(+/+ mice following infection although they did display significantly reduced serum nitrite levels and enhanced tissue arginase-1 expression. Early resistance to T. gondii in MKP-2(+/+, but not MKP-2(-/-, mice was nitric oxide (NO dependent as infected MKP-2(+/+, but not MKP-2(-/- mice succumbed within 10 days post-infection with increased parasite burdens following treatment with the iNOS inhibitor L-NAME. Conversely, treatment of infected MKP-2(-/- but not MKP-2(+/+ mice with nor-NOHA increased parasite burdens indicating a protective role for arginase-1 in MKP-2(-/- mice. In vitro studies using tachyzoite-infected bone marrow derived macrophages and selective inhibition of arginase-1 and iNOS activities confirmed that both iNOS and arginase-1 contributed to inhibiting parasite replication. However, the effects of arginase-1 were transient and ultimately the role of iNOS was paramount in facilitating long-term inhibition of parasite multiplication within macrophages.

  17. Alkaline phosphatase: an overview.

    Science.gov (United States)

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  18. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2 beta)

    DEFF Research Database (Denmark)

    Drake, P.G.; Peters, Günther H.j.; Andersen, H.S.

    2003-01-01

    Islet-cell antigen 512 (IA-2) and phogrin (IA-2) are atypical members of he receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent studi...

  19. Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion.

    Directory of Open Access Journals (Sweden)

    James J Fiordalisi

    Full Text Available The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins.

  20. Serum total and bone alkaline phosphatase and tartrate-resistant acid phosphatase activities for the assessment of bone fracture healing in dogs

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2011-08-01

    Full Text Available O objetivo deste trabalho foi estudar o padrão de variação da atividade sérica da fosfatase alcalina total (tALP, da isoenzima óssea da fosfatase alcalina (BALP e da fosfatase ácida resistente ao tartarato (TRAP, assim como a variação da concentração dos minerais séricos durante o processo de cicatrização de fraturas ósseas no cão. A variação sérica destes marcadores do metabolismo ósseo foi avaliada em nove cães com fraturas diafisárias fechadas de ossos longos, submetidas a tratamento cirúrgico para osteosíntese. Durante o período pós-operatório, sete animais evoluíram no sentido de uma normal união óssea, sendo que dois deles desenvolveram um processo de não união óssea. Foram observados, relativamente à BALP, valores de actividade sérica mais elevados e com diferença estatística (P<0,05 no grupo de animais que evoluiu no sentido de uma normal união óssea, comparativamente ao grupo de animais que evoluiu no sentido do processo de não união. No grupo de animais que evoluiu para a completa união óssea foram, adicionalmente, observados valores diminuidos (P<0,05 da atividade sérica da TRAP, até ao dia 60 do período pós-operatório seguido de uma elevação estatisticamente significativa após este período. Em conclusão, os biomarcadores do metabolismo ósseo poderão vir a constituir um método auxiliar de diagnóstico na monitorização do processo de cicatrização de fracturas ósseas, possibilitando, a detecção precoce de complicações pós-operatórias.

  1. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    Science.gov (United States)

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-26

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the Ki for inorganic phosphate (product inhibition) and the KM for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  2. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus

    Science.gov (United States)

    Jeong, Do-Won; Cho, Hoonsik; Jones, Marcus B.; Shatzkes, Kenneth; Sun, Fei; Ji, Quanjiang; Liu, Qian; Peterson, Scott N.; He, Chuan; Bae, Taeok

    2012-01-01

    Summary In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase’s phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-hemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism. PMID:22882143

  3. Inorganic Phosphate as an Important Regulator of Phosphatases

    Directory of Open Access Journals (Sweden)

    Claudia Fernanda Dick

    2011-01-01

    Full Text Available Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi. Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms.

  4. K+-Phosphatase activity of gill (Na+, K+)-ATPase from the blue crab, Callinectes danae: low-salinity acclimation and expression of the alpha-subunit.

    Science.gov (United States)

    Masui, D C; Furriel, R P M; Mantelatto, F L M; McNamara, J C; Leone, F A

    2005-04-01

    The kinetic properties of a microsomal gill (Na(+), K(+)) ATPase from the blue crab, Callinectes danae, acclimated to 15 per thousand salinity for 10 days, were analyzed using the substrate p-nitrophenylphosphate. The (Na(+), K(+))-ATPase hydrolyzed the substrate obeying Michaelian kinetics at a rate of V=102.9+/-4.3 U.mg(-1) with K(0.5)=1.7+/-0.1 mmol.L(-1), while stimulation by magnesium (V=93.7+/-2.3 U.mg(-1); K(0.5)=1.40+/-0.03 mmol.L(-1)) and potassium ions (V=94.9+/-3.5 U.mg(-1); K(0.5)=2.9+/-0.1 mmol.L(-1)) was cooperative. K(+)-phosphatase activity was also stimulated by ammonium ions to a rate of V=106.2+/-2.2 U. mg(-1) with K(0.5)=9.8+/-0.2 mmol.L(-1), following cooperative kinetics (n(H)=2.9). However, K(+)-phosphatase activity was not stimulated further by K(+) plus NH(4) (+) ions. Sodium ions (K(I)=22.7+/-1.7 mmol.L(-1)), and orthovanadate (K(I)=28.1+/-1.4 nmol.L(-1)) completely inhibited PNPPase activity while ouabain inhibition reached almost 75% (K(I)=142.0+/-7.1 micromol.L(-1)). Western blotting analysis revealed increased expression of the (Na(+), K(+))-ATPase alpha-subunit in crabs acclimated to 15 per thousand salinity compared to those acclimated to 33 per thousand salinity. The increase in (Na(+), K(+))-ATPase activity in C. danae gill tissue in response to low-salinity acclimation apparently derives from the increased expression of the (Na(+), K( (+) ))-ATPase alpha-subunit; phosphate-hydrolyzing enzymes other than (Na(+), K(+))-ATPase are also expressed. These findings allow a better understanding of the kinetic behavior of the enzymes that underlie the osmoregulatory mechanisms of euryhaline crustaceans. (c) 2005 Wiley-Liss, Inc.

  5. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model.

    Science.gov (United States)

    Gladding, Clare M; Fan, Jing; Zhang, Lily Y J; Wang, Liang; Xu, Jian; Li, Edward H Y; Lombroso, Paul J; Raymond, Lynn A

    2014-07-01

    Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre-symptomatic (excitotoxin-sensitive) transgenic mice expressing full-length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex-NMDAR) localization and signaling. Furthermore, Ex-NMDAR stimulation facilitates excitotoxicity in wild-type cortical neurons via calpain-mediated cleavage of STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen-activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain-mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal-regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6-week-old, excitotoxin-sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA-induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR-post-synaptic density protein-95 (PSD-95) binding but not by calpain inhibition. In 1-year-old excitotoxin-resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR-PSD-95 interactions contributes to elevated p38 signaling in early, excitotoxin-sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin-resistant stages. The YAC128 Huntington's disease mouse model shows early, enhanced susceptibility to NMDA receptor-mediated striatal apoptosis, progressing to late-stage excitotoxicity resistance. This study shows that elevated NMDA

  6. Fas-associated Phosphatase 1 (Fap1) Influences βCatenin Activity in Myeloid Progenitor Cells Expressing the Bcr-abl Oncogene

    Science.gov (United States)

    Huang, Weiqi; Bei, Ling; Eklund, Elizabeth A.

    2013-01-01

    Increased βcatenin activity correlates with leukemia stem cell expansion and disease progression in chronic myeloid leukemia (CML). We found previously that expression of the CML-related Bcr-abl oncoprotein in myeloid progenitor cells increases expression of Fas-associated phosphatase 1 (Fap1). This resulted in Fap1-dependent resistance to Fas-induced apoptosis in these cells. Fap1 also interacts with the adenomatous polyposis coli (Apc) protein, but the functional significance of this interaction is unknown. Apc participates in a complex that includes glycogen synthase kinase β (Gsk3β) and βcatenin. Assembly of this complex results in phosphorylation of βcatenin by Gsk3β, which facilitates βcatenin ubiquitination and degradation by the proteasome. In this study, we found increased association of Fap1 with the Apc complex in Bcr-abl+ myeloid progenitor cells. We also found Fap1-dependent inactivation of Gsk3β and consequent stabilization of βcatenin in these cells. Consistent with this, Bcr-abl+ cells exhibited a Fap1-dependent increase in βcatenin activity. Our studies identified Fap1-dependent Gsk3β inactivation as a molecular mechanism for increased βcatenin activity in CML. PMID:23519466

  7. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  8. Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: A landscape-scale analysis

    Science.gov (United States)

    Ralph E. J. Boerner; Kelly L. M. Decker; Elaine K. Sutherland

    2000-01-01

    We assessed the effect of a single, dormant season prescribed fire on soil enzyme activity in oak-hickory (Quercus-Carya) forests in southern Ohio, USA. Four enzymes specific for different C sources were chosen for monitoring: acid phosphatase, beta-glucosidase, chitinase and phenol oxidase. Postfire acid phosphatase activity was generally reduced by burning and...

  9. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    Science.gov (United States)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  10. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  11. Cdc14 phosphatase

    DEFF Research Database (Denmark)

    Machín, Félix; Quevedo Rodriguez, Oliver; Ramos-Pérez, Cristina

    2016-01-01

    master cell cycle phosphatase in the model yeast Saccharomyces cerevisiae, Cdc14. Transient inactivation is expected to better mimic the pharmacological action of drugs. Interestingly, we have found that yeast cells tolerate badly a relatively brief inactivation of Cdc14 when cells are already committed...

  12. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  13. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    Directory of Open Access Journals (Sweden)

    Gabriella Caruso

    2010-03-01

    Full Text Available In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU on organic polymers (proteins, organic phosphates and polysaccharides, respectively. Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also

  14. Cdc1p is an endoplasmic reticulum-localized putative lipid phosphatase that affects Golgi inheritance and actin polarization by activating Ca2+ signaling.

    Science.gov (United States)

    Losev, Eugene; Papanikou, Effrosyni; Rossanese, Olivia W; Glick, Benjamin S

    2008-05-01

    In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.

  15. Cdc1p Is an Endoplasmic Reticulum-Localized Putative Lipid Phosphatase That Affects Golgi Inheritance and Actin Polarization by Activating Ca2+ Signaling ▿ †

    Science.gov (United States)

    Losev, Eugene; Papanikou, Effrosyni; Rossanese, Olivia W.; Glick, Benjamin S.

    2008-01-01

    In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca2+ and display enhanced sensitivity to the extracellular Mn2+ concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn2+-dependent protein that can affect Ca2+ levels. We identified a cdc1 allele that activates Ca2+ signaling but does not show enhanced sensitivity to the Mn2+ concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca2+ channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca2+ signaling. PMID:18332110

  16. A comparative study of nutrients utilization, alkaline phosphatase activity and creatinine concentration in the serum of sheep and goats fed diets based on olive leaves.

    Science.gov (United States)

    Yáñez-Ruiz, D R; Molina-Alcaide, E

    2008-04-01

    The aim of this study was to compare, in goats and wethers, the nutritive utilization of diets including olive leaves (OL) and the possible detrimental effect of that by-product. Three different diets were studied: OL, OL plus polyethylene glycol (PEG) (OLP) and OL supplemented with barley [164 g/kg dry matter (DM)] and faba beans (59 g/kg DM) (OLSUP). Apparent digestibility of nutrients and energy and nitrogen balances were determined along with creatinine concentrations and alkaline phosphatase (ALP) activity in the serum. The apparent digestibility of OL was low and similar in goats and wethers (54.4% and 53.5%, 22.2% and 21.6% and, 47.7% and 46.6% for DM, crude protein and neutral detergent fibre in goats and wethers, respectively). The addition of PEG did not improve (p > 0.05) digestibility of OL, although a slightly beneficial effect on the digestion of structural carbohydrates was observed (up to 8.4% and 7.10% in goats and wethers, respectively). The supplementation of OL with barley and faba beans increased (p value. The consumption of the OL led to high ALP activity in the serum. Despite the higher sensitivity of wethers to Cu levels, our results show a similar digestive use of OL by wethers and goats and suggest the need of further comparative investigations focusing on the effect of the presence of high Cu levels in the by-product on the animal health.

  17. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    Science.gov (United States)

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (pmilk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

  18. A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells.

    Science.gov (United States)

    Abdjul, Delfly B; Kanno, Syu-Ichi; Yamazaki, Hiroyuki; Ukai, Kazuyo; Namikoshi, Michio

    2016-01-15

    Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator of the insulin and leptin signaling pathways. Therefore, this enzyme is regarded as an attractive therapeutic target for the treatment of type 2 diabetes and obesity. Our screening program for PTP1B inhibitors led to the isolation of four sesquiterpenes and sterol: N,N'-bis[(6R,7S)-7-amino-7,8-dihydro-α-bisabolen-7-yl]urea (1), (6R,7S)-7-amino-7,8-dihydro-α-bisabolene (2), (1R,6S,7S,10S)-10-isothiocyanato-4-amorphene (3), axinisothiocyanate J (4), and axinysterol (5) from the marine sponge Axinyssa sp. collected at Iriomote Island. Of these, compound 1 was the most potent inhibitor of PTP1B activity (IC50=1.9μM) without cytotoxicity at 50μM in two human cancer cell lines, hepatoma Huh-7 and bladder carcinoma EJ-1 cells. Compound 1 also moderately enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells. Therefore, compound 1 has potential as a new type of anti-diabetic drug candidate possessing PTP1B inhibitory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex.

    Science.gov (United States)

    Zheng, Yonggang; Liu, Bo; Wang, Li; Lei, Huiyan; Pulgar Prieto, Katiuska Daniela; Pan, Duojia

    2017-12-19

    The Hippo pathway controls organ size and tissue homeostasis through a kinase cascade leading from the Ste20-like kinase Hpo (MST1/2 in mammals) to the transcriptional coactivator Yki (YAP/TAZ in mammals). Whereas previous studies have uncovered positive and negative regulators of Hpo/MST, how they are integrated to maintain signaling homeostasis remains poorly understood. Here, we identify a self-restricting mechanism whereby autophosphorylation of an unstructured linker in Hpo/MST creates docking sites for the STRIPAK PP2A phosphatase complex to inactivate Hpo/MST. Mutation of the phospho-dependent docking sites in Hpo/MST or deletion of Slmap, the STRIPAK subunit recognizing these docking sites, results in constitutive activation of Hpo/MST in both Drosophila and mammalian cells. In contrast, autophosphorylation of the Hpo/MST linker at distinct sites is known to recruit Mats/MOB1 to facilitate Hippo signaling. Thus, multisite autophosphorylation of Hpo/MST linker provides an evolutionarily conserved built-in molecular platform to maintain signaling homeostasis by coupling antagonistic signaling activities. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Characterization of human placental alkaline phosphatase by activity and protein assays, capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Eriksson, H J; Somsen, G W; Hinrichs, W L; Frijlink, H W; de Jong, G J

    2001-01-01

    Placental alkaline phosphatase (PLAP) that had been isolated from human placenta was further purified using subsequent ion-exchange chromatography (IEC), affinity chromatography (AC) and centrifugal membrane concentration (CMC). During the process, the PLAP samples from the different stages of

  1. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  2. Striatal-enriched protein tyrosine phosphatase - STEPs toward understanding chronic stress-induced activation of CRF neurons in the rat BNST

    Science.gov (United States)

    Dabrowska, Joanna; Hazra, Rimi; Guo, Ji-Dong; Li, ChenChen; DeWitt, Sarah; Xu, Jian; Lombroso, Paul J.; Rainnie, Donald G.

    2013-01-01

    BACKGROUND STEP is a brain-specific protein tyrosine phosphatase that opposes the development of synaptic strengthening and the consolidation of fear memories. In contrast, stress facilitates fear memory formation, potentially by activating corticotrophin releasing factor (CRF) neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG). METHODS Here, using dual-immunofluorescence, single-cell RT-PCR, quantitative RT-PCR, Western blot, and whole cell patch-clamp electrophysiology, we examined the expression and role of STEP in regulating synaptic plasticity in rat BNSTALG neurons, and its modulation by stress. RESULTS STEP was selectively expressed in CRF neurons in the oval nucleus of the BNSTALG. Following repeated restraint stress (RRS), animals displayed a significant increase in anxiety-like behavior, which was associated with a down-regulation of STEP mRNA and protein expression in the BNSTALG as well as selectively enhanced magnitude of long-term potentiation (LTP) induced in Type III, putative CRF neurons. To determine if the changes in STEP expression following RRS were mechanistically related to the facilitation of synaptic strengthening, we examined the effects of intracellular application of STEP on the induction of LTP. STEP completely blocked the RRS-induced facilitation of LTP in BNSTALG neurons. CONCLUSIONS Hence, STEP acts to buffer CRF neurons against excessive activation, while down-regulation of STEP after chronic stress may result in pathological activation of CRF neurons in the BNSTALG and contribute to prolonged states of anxiety. Thus, targeted manipulations of STEP activity might represent a novel treatment strategy for stress-induced anxiety disorders. PMID:24012328

  3. Hepatoprotective activity of polyherbal formulation against carbon ...

    African Journals Online (AJOL)

    The ethanolic extract of polyherbal formulation at 250 mg/kg b.w. exhibited a significant protective effect by lowering serum and liver activities of aspartate transaminase (AST), alanine transaminase (ALT), acid phosphatase (ACP), alkaline phosphatase (ALP), lactate dehydrogenase(LDH), serum bilirubin, serum cholesterol ...

  4. Differences in growth and alkaline phosphatase activity between Microcystis aeruginosa and Chlorella pyrenoidosa in response to media with different organic phosphorus

    Directory of Open Access Journals (Sweden)

    Yang YU

    2011-02-01

    Full Text Available The growth of Microcystis aeruginosa and Chlorella pyrenoidosa in three dissolved organic phosphorus sources (glucose-1- phosphate, adenosine triphosphate, cyclic-adenosine monophosphate were studied in cultures separated by a dialysis membrane. Results showed that M. aeruginosa and C. pyrenoidosa could utilize those three forms of organic phosphorus, but their growth rates and cell abundances were low in comparison with those in the orthophosphate control. M. aeruginosa had a higher growth rate than C. pyrenoidosa in glucose-1-phosphate, and then became dominate in the separate cultures. In contrast, those two algal species didn’t show any significant differences in the growth rate and cell abundance in the medium with adenosine triphosphate and cyclicadenosine monophosphate. Alkaline phosphatase was an important enzyme for hydrolyzing glucose-1-phosphate, adenosine triphosphate and cyclic-adenosine monophosphate, the activity of which was positively correlated with the growth rate of algae. Considering the big proportion of glucose-1-phosphate in the Lake Taihu, the capability of M. aeruginosa to efficiently utilize this type of organic phosphorus source might be one of reason that why M. aeruginosa is the dominant species in this hyper-eutrophic lake.

  5. Régulation de la sécrétion des phosphatases acides des champignons ectomycorhiziens et mobilisation de phosphore organique dans la rhizosphère des arbres forestiers : approches biochimiques et moléculaires

    OpenAIRE

    Louche, Julien

    2009-01-01

    En culture pure, certains champignons ectomycorhiziens sont capables de sécréter de grandes quantités de phosphatase acide (AcPase). L’hypothèse centrale de ce travail est que ces enzymes joueraient un rôle déterminant dans la mobilisation de P organique (Po) des sols forestiers. Pour étudier cette hypothèse nous avons utilisé le basidiomycète ectomycorhizien modèle Hebeloma cylindrosporum, reconnu pour sa forte capacité de sécrétion d’AcPase in vitro. La séparation des protéines sécrétées da...

  6. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model.

    Science.gov (United States)

    Gladding, Clare M; Sepers, Marja D; Xu, Jian; Zhang, Lily Y J; Milnerwood, Austen J; Lombroso, Paul J; Raymond, Lynn A

    2012-09-01

    In Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice). NMDAR trafficking at the plasma membrane is regulated by dephosphorylation of the NMDAR subunit GluN2B tyrosine 1472 (Y1472) residue by STriatal-Enriched protein tyrosine Phosphatase (STEP). NMDAR function is also regulated by calpain cleavage of the GluN2B C-terminus. Activation of both STEP and calpain is calcium-dependent, and disruption of calcium homeostasis occurs early in the HD striatum. Here, we show increased calpain cleavage of GluN2B at both synaptic and extrasynaptic sites, and elevated extrasynaptic total GluN2B expression in the YAC128 striatum. Calpain inhibition significantly reduced extrasynaptic GluN2B expression in the YAC128 but not wild-type striatum. Furthermore, calpain inhibition reduced whole-cell NMDAR current and the surface/internal GluN2B ratio in co-cultured striatal neurons, without affecting synaptic GluN2B localization. Synaptic STEP activity was also significantly higher in the YAC128 striatum, correlating with decreased GluN2B Y1472 phosphorylation. A substrate-trapping STEP protein (TAT-STEP C-S) significantly increased VGLUT1-GluN2B colocalization, as well as increasing synaptic GluN2B expression and Y1472 phosphorylation. Moreover, combined calpain inhibition and STEP inactivation reduced extrasynaptic, while increasing synaptic GluN2B expression in the YAC128 striatum. These results indicate that increased STEP and calpain activation contribute to altered NMDAR localization in an HD mouse model, suggesting new therapeutic targets for HD.

  7. Glucose-6-phosphatase deficiency.

    OpenAIRE

    Labrune Philippe; Gajdos Vincent; Eberschweiler Pascale; Hubert-Buron Aurélie; Petit François; Vianey-Saban Christine; Boudjemline Alix; Piraud Monique; Froissart Roseline

    2011-01-01

    Abstract Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, betw...

  8. Alkaline phosphatase activity at the southwest coast of India: A comparison of locations differently affected by upwelling..

    Digital Repository Service at National Institute of Oceanography (India)

    Mamatha, S.S.; Malik, A.; Varik, S.; Parvathi, V.; Jineesh, V.K.; Gauns, M.; LokaBharathi, P.A.

    nearshore to offshore Trivandrum, the pattern is more patchy. However, we could discern an increase in activity at station 5 and beyond, synchronizing with the decrease in Chl a. Access to DOP data would have clarified these aspects better... for their comments and suggestions which significantly improved the content of the manuscript. This is NIO contribution no. is xxxx. References Ahmed, N., Shahab, S., 2011. Phosphate Solubilization: Their Mechanism Genetics and Application. The Internet. J...

  9. Glycogen storage disease type Ia mice with less than 2% of normal hepatic glucose-6-phosphataseactivity restored are at risk of developing hepatic tumors.

    Science.gov (United States)

    Kim, Goo-Young; Lee, Young Mok; Kwon, Joon Hyun; Cho, Jun-Ho; Pan, Chi-Jiunn; Starost, Matthew F; Mansfield, Brian C; Chou, Janice Y

    2017-03-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown. In this study, we constructed rAAV-co-G6PC, a rAAV vector expressing a codon-optimized (co) G6Pase-α and showed that rAAV-co-G6PC was more efficacious than rAAV-G6PC in directing hepatic G6Pase-α expression. Over an 88-week study, we showed that both rAAV-G6PC- and rAAV-co-G6PC-treated G6pc-/- mice expressing 3-33% of normal hepatic G6Pase-α activity (AAV mice) maintained glucose homeostasis, lacked HCA/HCC, and were protected against age-related obesity and insulin resistance. Of the eleven rAAV-G6PC/rAAV-co-G6PC-treated G6pc-/- mice harboring 0.9-2.4% of normal hepatic G6Pase-α activity (AAV-low mice), 3 expressing 0.9-1.3% of normal hepatic G6Pase-α activity developed HCA/HCC, while 8 did not (AAV-low-NT). Finally, we showed that the AAV-low-NT mice exhibited a phenotype indistinguishable from that of AAV mice expressing ≥3% of normal hepatic G6Pase-α activity. The results establish the threshold of hepatic G6Pase-α activity required to prevent HCA/HCC and show that GSD-Ia mice harboring <2% of normal hepatic G6Pase-α activity are at risk of tumor development. Published by Elsevier Inc.

  10. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyros......BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  11. Functional processing of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N): evidence for a critical role of proteolytic processing in the regulation of its catalytic activity, subcellular localization and substrate targeting in vivo.

    Science.gov (United States)

    Sueyoshi, Noriyuki; Nimura, Takaki; Onouchi, Takashi; Baba, Hiromi; Takenaka, Shinobu; Ishida, Atsuhiko; Kameshita, Isamu

    2012-01-01

    Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear homolog CaMKP-N are Ser/Thr protein phosphatases that belong to the PPM family. These phosphatases are highly specific for multifunctional CaM kinases and negatively regulate their activities. CaMKP-N is only expressed in the brain and specifically localized in the nucleus. In this study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing in both the zebrafish brain and Neuro2a cells. In Neuro2a cells, the proteolytic processing was effectively inhibited by the proteasome inhibitors MG-132, Epoxomicin, and Lactacystin, suggesting that the ubiquitin-proteasome pathway was involved in this processing. Using MG-132, we found that the proteolytic processing changed the subcellular localization of zCaMKP-N from the nucleus to the cytosol. Accompanying this change, the cellular targets of zCaMKP-N in Neuro2a cells were significantly altered. Furthermore, we obtained evidence that the zCaMKP-N activity was markedly activated when the C-terminal domain was removed by the processing. Thus, the proteolytic processing of zCaMKP-N at the C-terminal region regulates its catalytic activity, subcellular localization and substrate targeting in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex.

    Science.gov (United States)

    Nowak, Lionel G; Rosay, Benoît; Czégé, Dávid; Fonta, Caroline

    2015-01-01

    Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.

  13. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (

    Directory of Open Access Journals (Sweden)

    Anirban Guha

    2012-03-01

    Full Text Available Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu, iron (Fe, zinc (Zn, cobalt (Co and manganese (Mn and enzyme activity of lactate dehydrogenase (LDH, alkaline phosphatase (ALP and aspartate aminotransferase (AST in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01 increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×105 cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

  14. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Science.gov (United States)

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  15. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Directory of Open Access Journals (Sweden)

    Victòria Ceperuelo-Mallafré

    Full Text Available Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes.ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR.ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG.ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  16. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids.

    Science.gov (United States)

    Zheng, Chang Ji; Yoo, Jung-Sung; Lee, Tae-Gyu; Cho, Hee-Young; Kim, Young-Ho; Kim, Won-Gon

    2005-09-26

    Long-chain unsaturated fatty acids, such as linoleic acid, show antibacterial activity and are the key ingredients of antimicrobial food additives and some antibacterial herbs. However, the precise mechanism for this antimicrobial activity remains unclear. We found that linoleic acid inhibited bacterial enoyl-acyl carrier protein reductase (FabI), an essential component of bacterial fatty acid synthesis, which has served as a promising target for antibacterial drugs. Additional unsaturated fatty acids including palmitoleic acid, oleic acid, linolenic acid, and arachidonic acid also exhibited the inhibition of FabI. However, neither the saturated form (stearic acid) nor the methyl ester of linoleic acid inhibited FabI. These FabI-inhibitory activities of various fatty acids and their derivatives very well correlated with the inhibition of fatty acid biosynthesis using [(14)C] acetate incorporation assay, and importantly, also correlated with antibacterial activity. Furthermore, the supplementation with exogenous fatty acids reversed the antibacterial effect of linoleic acid, which showing that it target fatty acid synthesis. Our data demonstrate for the first time that the antibacterial action of unsaturated fatty acids is mediated by the inhibition of fatty acid synthesis.

  17. Studying Protein-Tyrosine Phosphatases in Zebrafish

    NARCIS (Netherlands)

    Hale, Alexander James; den Hertog, Jeroen

    2016-01-01

    Protein-tyrosine phosphatases (PTPs) are a large family of signal transduction regulators that have an essential role in normal development and physiology. Aberrant activation or inactivation of PTPs is at the basis of many human diseases. The zebrafish, Danio rerio, is being used extensively to

  18. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  19. The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-07-01

    Full Text Available Abstract Protein kinases and phosphatases catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in central nervous system. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. To explore the role of protein phosphatase in central sensitization of spinal nociceptive neurons following peripheral noxious stimulation, using electrophysiological recording techniques, we investigated the role of two inhibitors of protein phosphatase type 2A (PP2A, fostriecin and okadaic acid (OA, on the responses of dorsal horn neurons to mechanical stimuli in anesthetized rats following intradermal injection of capsaicin. Central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw. A microdialysis fiber was implanted in the spinal cord dorsal horn for perfusion of ACSF and inhibitors of PP2A, fostriecin and okadaic acid. We found that in ACSF pretreated animals, the responses to innocuous and noxious stimuli following capsaicin injection increased over a period of 15 min after injection and had mostly recovered by 60 min later. However, pre- or post-treatment with the phosphatase inhibitors, fostriecin or OA, significantly enhanced the effects of capsaicin injection by prolonging the responses to more than 3 hours. These results confirm that blockade of protein phosphatase activity may potentiate central sensitization of nociceptive transmission in the spinal cord following capsaicin injection and indicate that protein phosphatase type 2A may be involved in determining the duration of capsaicin-induced central sensitization.

  20. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity.

    Science.gov (United States)

    Nguyen, Phi-Hung; Yang, Jun-Li; Uddin, Mohammad N; Park, So-Lim; Lim, Seong-Il; Jung, Da-Woon; Williams, Darren R; Oh, Won-Keun

    2013-11-22

    As part of our ongoing search for new antidiabetic agents from medicinal plants, we found that a methanol extract of Morinda citrifolia showed potential stimulatory effects on glucose uptake in 3T3-L1 adipocyte cells. Bioassay-guided fractionation of this active extract yielded two new lignans (1 and 2) and three new neolignans (9, 10, and 14), as well as 10 known compounds (3-8, 11-13, and 15). The absolute configurations of compounds 9, 10, and 14 were determined by ECD spectra analysis. Compounds 3, 6, 7, and 15 showed inhibitory effects on PTP1B enzyme with IC50 values of 21.86 ± 0.48, 15.01 ± 0.20, 16.82 ± 0.42, and 4.12 ± 0.09 μM, respectively. Furthermore, compounds 3, 6, 7, and 15 showed strong stimulatory effects on 2-NBDG uptake in 3T3-L1 adipocyte cells. This study indicated the potential of compounds 3, 6, 7, and 15 as lead molecules for antidiabetic agents.

  1. Effect of surfactants on phosphatase level of fresh water fish Labeo rohita.

    Science.gov (United States)

    Mandal, R; Mandal, D; Mishra, N; Bahadur, A

    2010-07-01

    Alterations in the activity of enzymes Acid phosphatase (E.C.3.1.3.2) and Alkaline phosphatase (EC 3.1.3.1) in organs such as liver, gills and muscle of rohu following its exposure to surfactants viz. CTAB, SDS and Triton X-100 were analyzed. Different levels of exposure were given depending on the LC50 value of the surfactant used. Also, the influence of age and weight of the organisms was tested simultaneously. The activity of ACP in the tissues of fish exposed to all the three surfactants showed marked enhancement after exposure; the effect being highest in the liver followed by gill and muscle. Activity levels of ALP in different tissues of the fish exposed to the surfactants also showed an increase. Maximum increase was found in the liver followed by muscle, and gill. The increase in the levels of these enzymes indicates a stressful condition of the fish.

  2. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1)

    Science.gov (United States)

    Shah, Suharsh; Mostafa, Mahmoud M.; McWhae, Andrew; Traves, Suzanne L.; Newton, Robert

    2016-01-01

    TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3′-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies. PMID:26546680

  3. Phosphatases, DNA damage checkpoints and checkpoint deactivation.

    Science.gov (United States)

    Heideker, Johanna; Lis, Ewa T; Romesberg, Floyd E

    2007-12-15

    Cells have evolved intricate and specialized responses to DNA damage, central to which are the DNA damage checkpoints that arrest cell cycle progression and facilitate the repair process. Activation of these damage checkpoints relies heavily on the activity of Ser/Thr kinases, such as Chk1 and Chk2 (Saccharomyces cerevisiae Rad53), which are themselves activated by phosphorylation. Only more recently have we begun to understand how cells disengage the checkpoints to reenter the cell cycle. Here, we review progress toward understanding the functions of phosphatases in checkpoint deactivation in S. cerevisiae, focusing on the non-redundant roles of the type 2A phosphatase Pph3 and the PP2C phosphatases Ptc2 and Ptc3 in the deactivation of Rad53. We discuss how these phosphatases may specifically recognize different phosphorylated forms of Rad53 and how each may independently regulate different facets of the checkpoint response. In conjunction with the independent dephosphorylation of other checkpoint proteins, such regulation may allow a more tailored response to DNA damage that is coordinated with the repair process, ultimately resulting in the resumption of growth.

  4. Effects of Newly Synthesized DCP-LA-Phospholipids on Protein Kinase C and Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Takeshi Kanno

    2013-04-01

    Full Text Available Background/Aims: The linoleic acid derivative DCP-LA selectively activates PKCε and inhibits protein phosphatase 1 (PP1. In the present study, we have newly synthesized phosphatidyl-ethanolamine, -serine, -choline, and -inositol containing DCP-LA at the α and β position (diDCP-LA-PE, -PS, PC, and -PI, respectively, and examined the effects of these compounds on activities of PKC isozymes and protein phosphatases. Methods: Activities of PKC isozymes PKCα, -βΙ, -βΙΙ, -γ, -δ, -ε-, ι, and -ζ and protein phosphatases PP1, PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Results: All the compounds activated PKC, with the different potential, but only PKCγ inhibition was obtained with diDCP-LA-PC. Of compounds diDCP-LA-PE alone significantly activated PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI suppressed PP1 activity, but otherwise diDCP-LA-PI enhanced PP2A activity. diDCP-LA-PE, diDCP-LA-PS, and diDCP-LA-PI strongly reduced PTP1B activity, while diDCP-LA-PC enhanced the activity. Conclusion: All the newly synthesized DCP-LA-phospholipids serve as a PKC activator and of them diDCP-LA-PE alone has the potential to activate the atypical PKC isozymes PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI serve as an inhibitor for PP1 and PTP1B, diDCP-LA-PS as a PTP1B inhibitor, diDCP-LA-PI as a PP2A enhancer, and diDCP-LA-PC as a PTP1B enhancer.

  5. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  6. Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Hye-Ryung Choi

    Full Text Available Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role of dual-specificity phosphatase 10 (DUSP10 in brown adipocyte differentiation using primary brown preadipocytes.The expression of DUSP10 increased continuously after the brown adipocyte differentiation of mouse primary brown preadipocytes, whereas the phosphorylation of p38 was significantly upregulated at an early stage of differentiation followed by steep downregulation. The overexpression of DUSP10 induced a decrease in the level of p38 phosphorylation, resulting in lower lipid accumulation than that in cells overexpressing the inactive mutant DUSP10. The expression levels of several brown adipocyte markers such as PGC-1α, UCP1, and PRDM16 were also significantly reduced upon the ectopic expression of DUSP10. Furthermore, decreased mitochondrial DNA content was detected in cells expressing DUSP10. The results obtained upon treatment with the p38 inhibitor, SB203580, clearly indicated that the phosphorylation of p38 at an early stage is important in brown adipocyte differentiation. The effect of the p38 inhibitor was partially recovered by DUSP10 knockdown using RNAi.These results suggest that p38 phosphorylation is controlled by DUSP10 expression. Furthermore, p38 phosphorylation at an early stage is critical in brown adipocyte differentiation. Thus, the regulation of DUSP10 activity affects the efficiency of brown adipogenesis. Consequently, DUSP10 can be used as a novel target protein for the regulation of obesity.

  7. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    Science.gov (United States)

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contai