WorldWideScience

Sample records for acid oxidation defects

  1. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  2. Defective [U-14 C] palmitic acid oxidation in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased [U-14 C] palmitic acid oxidation. [1-14 C] palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation

  3. Mitochondrial fatty acid oxidation defects--remaining challenges

    DEFF Research Database (Denmark)

    Gregersen, Niels; Andresen, Brage S; Pedersen, Christina B

    2008-01-01

    Mitochondrial fatty acid oxidation defects have been recognized since the early 1970s. The discovery rate has been rather constant, with 3-4 'new' disorders identified every decade and with the most recent example, ACAD9 deficiency, reported in 2007. In this presentation we will focus on three...

  4. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  5. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  6. Defect Chemistry of Oxides for Energy Applications.

    Science.gov (United States)

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  8. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  9. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  10. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies

    OpenAIRE

    Wajner, Moacir; Amaral, Alexandre?Umpierrez

    2016-01-01

    Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive e...

  11. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    Science.gov (United States)

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  12. Effect of the degree of oxidation and defects of graphene oxide on adsorption of Cu2+ from aqueous solution

    Science.gov (United States)

    Tan, Ping; Bi, Qi; Hu, Yongyou; Fang, Zheng; Chen, Yuancai; Cheng, Jianhua

    2017-11-01

    Graphene oxide (GO) is a promising adsorbent for heavy metal ions from water. However, the relationship between the degree of oxidation and defects of GO and the adsorption performance has been rarely reported. In this study, a series of GO with different degree of oxidation (GO1, GO5, GO6) and defects (GO1-GO4) were prepared by the improved Hummers method and were employed to explore the relationship between the degree of oxidation and defects of GO and the Cu2+ adsorption. The results showed that the adsorption of Cu2+ on GO was strongly dependent on the degree of oxidation and independent of the defects under various pH levels and ionic strength. The adsorption isotherms of Cu2+ on GO with different degree of oxidation and defects were well described by the Langmuir model and the maximum adsorption capacity of GO for Cu2+ increased with the improvement of the degree of oxidation but was independent of the defects, indicating that the adsorption of Cu2+ on GO was mainly proportional to the degree of oxidation but become insignificant in the structure integrity of aromatic matrixes, which might be due to the shielding effect of oxygen-containing groups. The adsorption of Cu2+ on GO with different degree of oxidation and defects reached an equilibrium state after 50 min, the adsorption kinetics followed the pseudo-second-order model and the adsorption process was controlled by the degree of oxidation.

  13. Defect driven tailoring of colossal dielectricity of Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.; Mondal, A. [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Dey, K. [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, R., E-mail: juphyruma@gmail.com [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-02-15

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorption reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.

  14. Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect

    Directory of Open Access Journals (Sweden)

    Tom E. J. Theunissen

    2017-10-01

    Full Text Available Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS. Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at

  15. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  16. Amino acids interacting with defected carbon nanotubes: ab initio calculations

    Directory of Open Access Journals (Sweden)

    M. Darvish Ganji

    2016-09-01

    Full Text Available The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT is investigated by using the density-functional theory (DFT calculations. The adsorption energies and equilibrium distances are calculated for various configurations such as amino acid attaching to defect sites heptagon, pentagon and hexagon in defective tube and also for several molecular orientations with respect to the nanotube surface. The results showed that amino acids prefer to be physisorbed on the outer surface of the defected nanotube with different interaction strength following the hierarchy histidine > glycine > phenylalanine > cysteine. Comparing these findings with those obtained for perfect SWCNTs reveals that the adsorption energy of the amino acids increase for adsorption onto defected CNTs. The adsorption nature has also been evaluated by means of electronics structures analysis within the Mulliken population and DOS spectra for the interacting entities.

  17. Use of porous silicon to minimize oxidation induced stacking fault defects in silicon

    International Nuclear Information System (INIS)

    Shieh, S.Y.; Evans, J.W.

    1992-01-01

    This paper presents methods for minimizing stacking fault defects, generated during oxidation of silicon, include damaging the back of the wafer or depositing poly-silicon on the back. In either case a highly defective structure is created and this is capable of gettering either self-interstitials or impurities which promote nucleation of stacking fault defects. A novel method of minimizing these defects is to form a patch of porous silicon on the back of the wafer by electrochemical etching. Annealing under inert gas prior to oxidation may then result in the necessary gettering. Experiments were carried out in which wafers were subjected to this treatment. Subsequent to oxidation, the wafers were etched to remove oxide and reveal defects. The regions of the wafer adjacent to the porous silicon patch were defect-free, whereas remote regions had defects. Deep level transient spectroscopy has been used to examine the gettering capability of porous silicon, and the paper discusses the mechanism by which the porous silicon getters

  18. Medium-chain fatty acids undergo elongation before β-oxidation in fibroblasts

    International Nuclear Information System (INIS)

    Jones, Patricia M.; Butt, Yasmeen; Messmer, Bette; Boriak, Richard; Bennett, Michael J.

    2006-01-01

    Although mitochondrial fatty acid β-oxidation (FAO) is considered to be well understood, further elucidation of the pathway continues through evaluation of patients with FAO defects. The FAO pathway can be examined by measuring the 3-hydroxy-fatty acid (3-OHFA) intermediates. We present a unique finding in the study of this pathway: the addition of medium-chain fatty acids to the culture media of fibroblasts results in generation of 3-OHFAs which are two carbons longer than the precursor substrate. Cultured skin fibroblasts from normal and LCHAD-deficient individuals were grown in media supplemented with various chain-length fatty acids. The cell-free medium was analyzed for 3-OHFAs by stable-isotope dilution gas-chromatography/mass-spectrometry. Our finding suggests that a novel carbon chain-length elongation process precedes the oxidation of medium-chain fatty acids. This previously undescribed metabolic step may have important implications for the metabolism of medium-chain triglycerides, components in the dietary treatment of a number of disorders

  19. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    Science.gov (United States)

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  20. A conceptual model for the fuel oxidation of defective fuel

    International Nuclear Information System (INIS)

    Higgs, J.D.; Lewis, B.J.; Thompson, W.T.; He, Z.

    2007-01-01

    A mechanistic conceptual model has been developed to predict the fuel oxidation behaviour in operating defective fuel elements for water-cooled nuclear reactors. This theoretical work accounts for gas-phase transport and sheath reactions in the fuel-to-sheath gap to determine the local oxygen potential. An improved thermodynamic analysis has also been incorporated into the model to describe the equilibrium state of the oxidized fuel. The fuel oxidation kinetics treatment accounts for multi-phase transport including normal diffusion and thermodiffusion for interstitial oxygen migration in the solid, as well as gas-phase transport in the fuel pellet cracks. The fuel oxidation treatment is further coupled to a heat conduction equation. A numerical solution of the coupled transport equations is obtained by a finite-element technique with the FEMLAB 3.1 software package. The model is able to provide radial-axial profiles of the oxygen-to-uranium ratio and the fuel temperatures as a function of time in the defective element for a wide range of element powers and defect sizes. The model results are assessed against coulometric titration measurements of the oxygen-to-metal profile for pellet samples taken from ten spent defective elements discharged from the National Research Universal Reactor at the Chalk River Laboratories and commercial reactors

  1. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  2. Oxide film defects in Al alloys and the formation of hydrogen- related porosity

    International Nuclear Information System (INIS)

    Griffiths, W D; Yue, Y; Gerrard, A J

    2016-01-01

    Double oxide film defects have also been held responsible for the origins of hydrogen porosity, where hydrogen dissolved in the Al melt passes into the interior atmosphere of the double oxide film defect causing it to inflate. However, this is in opposition to long- established evidence that H cannot readily diffuse through aluminium oxide. To investigate this further, samples of commercial purity Al were first degassed to remove their initial H content, and then heated to above their melting point and held in atmospheres of air and nitrogen respectively, to determine any differences in H pick-up. The experiment showed that samples held in an oxidising atmosphere, and having an oxide skin, picked up significantly less H than when the samples were held in a nitrogen atmosphere, which resulted in the formation of AlN in cracks in the oxide skin of the sample. It is suggested that double oxide film defects can give rise to hydrogen-related porosity, but this occurs more quickly when the oxygen in the original oxide film defect has been consumed by reaction with the surrounding melt and nitrogen reacts to form AlN, which is more permeable to H than alumina, more easily allowing the oxide film defect to give rise to a hydrogen pore. This is used to interpret results from an earlier synchrotron experiment, in which a small pore was seen to grow into a larger pore, while an adjacent large pore remained at a constant size. (paper)

  3. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  4. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    International Nuclear Information System (INIS)

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Liu, Aiping; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2013-01-01

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP + ) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP + accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [ 14 C]-palmitate oxidation (measured as [ 14 C]O 2 release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency

  5. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  6. The defect chemistry of nitrogen in oxides: A review of experimental and theoretical studies

    International Nuclear Information System (INIS)

    Polfus, Jonathan M.; Norby, Truls; Haugsrud, Reidar

    2013-01-01

    Incorporation of nitrogen into oxides has in recent years received increased attention as a variable for tuning their functional properties. A vast number of reports have been devoted to improving the photocatalytic properties of TiO 2 , p-type charge carrier concentration in ZnO and the ionic transport properties of ZrO 2 by nitrogen doping. In comparison, the fundamentals of the nitrogen related defect chemistry for a wider range of oxides have been less focused upon. In the present contribution, we review experimental and computational investigations of the nitrogen related defect chemistry of insulating and semiconducting oxides. The interaction between nitrogen and protons is important and emphasized. Specifically, the stability of nitrogen defects such as N O / , NH O × and (NH 2 ) O • is evaluated under various conditions and their atomistic and electronic structure is presented. A final discussion is devoted to the role of nitrogen with respect to transport properties and photocatalytic activity of oxides. - Graphical abstract: Experimental and theoretical investigations of the nitrogen related defect chemistry of a range of wide band gap oxides is reviewed. The interaction between nitrogen dopants and protons is emphasized and described through the atomistic and electronic structure as well as defect chemical processes involving NH and NH 2 defects. Consequently, the physical properties of oxides containing such species are discussed with respect to e.g., diffusion and photocatalytic properties. Highlights: ► Experimental and theoretical investigations of the nitrogen and hydrogen related defect chemistry of wide band gap oxides is reviewed. ► The interaction between nitrogen dopants and protons is important and emphasized. ► Diffusion and photocatalytic properties of N-doped oxides are discussed.

  7. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  8. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies.

    Science.gov (United States)

    Wajner, Moacir; Amaral, Alexandre Umpierrez

    2015-11-20

    Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive encephalopathy whose pathogenesis is poorly known. In recent years growing evidence has emerged indicating that energy deficiency/disruption of mitochondrial homoeostasis is involved in the pathophysiology of some fatty acid oxidation defects (FAOD), although the exact underlying mechanisms are not yet established. Characteristic fatty acids and carnitine derivatives are found at high concentrations in these patients and more markedly during episodes of metabolic decompensation that are associated with worsening of clinical symptoms. Therefore, it is conceivable that these compounds may be toxic. We will briefly summarize the current knowledge obtained from patients and genetic mouse models with these disorders indicating that disruption of mitochondrial energy, redox and calcium homoeostasis is involved in the pathophysiology of the tissue damage in the more common FAOD, including medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. We will also provide evidence that the fatty acids and derivatives that accumulate in these diseases disrupt mitochondrial homoeostasis. The elucidation of the toxic mechanisms of these compounds may offer new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group. © 2016 Authors.

  9. Neural Tube Defects, Folic Acid and Methylation

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Blom, Henk J.

    2013-01-01

    Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects. PMID:24048206

  10. Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities

    Science.gov (United States)

    Parameshwari, R.; Jothivenkatachalam, K.; Banks, Craig E.; Jeganathan, K.

    2017-02-01

    We propose an acid-free and environmental friendly surfactant based approach to anchor zinc oxide (ZnO) nanoparticles on graphene. Herein, liquid-phase exfoliated graphene in water by ultrasonic waves has been used to prepare graphene-ZnO (G-ZnO) nanocomposites that circumvent the use of various toxic acids and chemicals which are generally used in the preparation of graphene-based nanocomposites. Oxygen vacancy related defect peaks observed by Raman and photoluminescence confirm the formation of C-O-Zn bond due to the synergistic interaction of carbon and zinc via oxygen atoms in G-ZnO nanocomposites. The enhanced photocatalytic behavior of G-ZnO under visible light as evaluated using the dye Rhodamine B holds its genesis from the intrinsic oxygen defects in G-ZnO. Furthermore, graphene acts as electron sink for accumulation of charges from defect levels of ZnO, which controls recombination of charge carriers. It is envisaged that the acid-free and facile strategy can be a potential route for the preparation of graphene-based hybrid materials using liquid-phase exfoliation methodology.

  11. Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Jothivenkatachalam, K. [Department of Chemistry, Anna University, Tiruchirappalli 620024, Tamil Nadu (India); Banks, Craig E. [Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD (United Kingdom); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2017-02-01

    We propose an acid-free and environmental friendly surfactant based approach to anchor zinc oxide (ZnO) nanoparticles on graphene. Herein, liquid-phase exfoliated graphene in water by ultrasonic waves has been used to prepare graphene-ZnO (G-ZnO) nanocomposites that circumvent the use of various toxic acids and chemicals which are generally used in the preparation of graphene-based nanocomposites. Oxygen vacancy related defect peaks observed by Raman and photoluminescence confirm the formation of C–O–Zn bond due to the synergistic interaction of carbon and zinc via oxygen atoms in G-ZnO nanocomposites. The enhanced photocatalytic behavior of G-ZnO under visible light as evaluated using the dye Rhodamine B holds its genesis from the intrinsic oxygen defects in G-ZnO. Furthermore, graphene acts as electron sink for accumulation of charges from defect levels of ZnO, which controls recombination of charge carriers. It is envisaged that the acid-free and facile strategy can be a potential route for the preparation of graphene-based hybrid materials using liquid-phase exfoliation methodology.

  12. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  13. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ndukwe Erlingsson, Uzochi Chimdinma [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Iacobazzi, Francesco [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari (Italy); Liu, Aiping [ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Ardon, Orly; Pasquali, Marzia [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States); Longo, Nicola, E-mail: Nicola.Longo@hsc.utah.edu [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States)

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  14. Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins.

    Science.gov (United States)

    Kwak, Jinsung; Jo, Yongsu; Park, Soon-Dong; Kim, Na Yeon; Kim, Se-Yang; Shin, Hyung-Joon; Lee, Zonghoon; Kim, Sung Youb; Kwon, Soon-Yong

    2017-11-16

    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators.

  15. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  16. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  17. Folic Acid and Birth Defects: A Case Study (Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Bager Hosseini

    2011-01-01

    Full Text Available The aim of this study was to evaluate the impact of folic acid use in pregnancy for the reduction of neural tube defects (NTDs in the northwest region of Iran. We studied 243 women with pregnancies complicated by some forms of birth defect(s. These patients were identified by medical diagnostic tests as having a fetus with some types of congenital anomalies. The prevalence of NTDs among pregnant women who were referred for therapeutic termination of pregnancy was 24.7 percent. Consumption of folic acid prevented NTDs by 79 percent (Odds Ratio = 0.21, CI 95%: 0.12–0.40 and 94 percent (Odds Ratio = 0.06, CI 95%: 0.03–0.15 compared to pregnancies complicated by other anomalies and normal pregnancies, respectively. Hydrops fetalis, hydrocephaly, Down syndrome, and limb anomalies did not have any significant association with the folic acid use. Along with the advice for the consumption of folic acid for pregnant women, they should be offered prenatal screening or diagnostic tests to identify fetal abnormalities for possible termination of pregnancy.

  18. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  19. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  20. Defect Engineering and Interface Phenomena in Tin Oxide

    KAUST Repository

    Albar, Arwa

    2017-04-05

    The advance in transparent electronics requires high-performance transparent conducting oxide materials. The microscopic properties of these materials are sensitive to the presence of defects and interfaces and thus fundamental understanding is required for materials engineering. In this thesis, first principles density functional theory is used to investigate the possibility of tuning the structural, electronic and magnetic properties of tin oxide by means of defects and interfaces. Our aim is to reveal unique properties and the parameters to control them as well as to explain the origin of unique phenomena in oxide materials. The stability of native defect in tin monoxide (SnO) under strain is investigated using formation energy calculations. We find that the conductivity (which is controlled by native defects) can be switched from p-type to either n-type or undoped semiconducting by means of applied pressure. We then target inducing magnetism in SnO by 3d transition metal doping. We propose that V doping is efficient to realize spin polarization at high temperature. We discuss different tin oxide interfaces. Metallic states are found to form at the SnO/SnO2 interface with electronic properties that depend on the interface terminations. The origin of these states is explained in terms of charge transfer caused by chemical bonding and band alignment. For the SnO/SnO2 heterostructure, we observe the formation of a two dimensional hole gas at the interface, which is surprising as it cannot be explained by the standard polar catastrophe model. Thus, we propose a charge density discontinuity model to explain our results. The model can be generalized to other polar-polar interfaces. Motivated by technological applications, the electronic and structural properties of the MgO (100)/SnO2 (110) interface are investigated. Depending on the interface termination, we observe the formation of a two dimensional electron gas or spin polarized hole gas. Aiming to identify further

  1. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  2. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  3. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  4. Regularities of radiation defects build up on oxide materials surface; Zakonomernosti nakopleniya radiatsionnykh defektov na poverkhnosti oksidnykh materialov

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan); Tuseev, T [Inst. Yadernoj Fiziki, Almaty (Kazakhstan)

    2005-07-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide{yields}beryllium oxide{yields}aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency.

  5. A method of eliminating the surface defect in low-temperature oxidation powder added UO2 pellet

    International Nuclear Information System (INIS)

    Yoo, H. S.; Lee, S. J.; Kim, J. I.; Jeon, K. R.; Kim, J. W.

    2002-01-01

    A study on methods to eliminate surface defect shown in low-temperature oxidation powder added UO 2 pellet has been performed. Powders oxidized at 350 .deg. C for 4 hrs were prepared and mixed with UO 2 powder after crushing them. After being sintered, surfaces of the pellet were inspected both visually and optically. A large number of defects were observed on the surface of the specimens in which low-temperature oxidation powders were directly mixed or master mixed with UO 2 powder while both specimens produced from mixed powders including milled oxidation powders and powders that were milled totally after mixing had clean surfaces. However, optical examination showed considerably large defected pores in the milled oxidation powder added pellet and it was confirmed that the inner defects can be eliminated completely only when milling the entire mixture on UO 2 and low-temperature oxidation powder, but not by crushing only oxidation powder

  6. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  7. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  8. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    Science.gov (United States)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  9. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  10. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  11. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis.

    Science.gov (United States)

    Zhao, Zhongkui; Dai, Yitao; Ge, Guifang; Wang, Guiru

    2015-05-26

    A facile and scalable approach for fabricating structural defect-rich nitrogen-doped carbon nanotubes (MCSA-CNTs) through explosive decomposition of melamine-cyanuric acid supramolecular assembly is presented. In comparison to pristine carbon nanotubes, MCSA-CNT exhibits significantly enhanced catalytic performance in oxidant- and steam-free direct dehydrogenation of ethylbenzene, demonstrating the potential for metal-free clean and energy-saving styrene production. This finding also opens a new horizon for preparing highly-efficient carbocatalysts rich in structural defect sites for diverse transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  13. Ab-initio modelling of thermodynamics and kinetics of point defects in indium oxide

    International Nuclear Information System (INIS)

    Agoston, Peter; Klein, Andreas; Albe, Karsten; Erhart, Paul

    2008-01-01

    The electrical and optical properties of indium oxide films strongly vary with the processing parameters. Especially the oxygen partial pressure and temperature determine properties like electrical conductivity, composition and transparency. Since this material owes its remarkable properties like the intrinsic n-type conductivity to its defect chemistry, it is important to understand both, the equilibrium defect thermodynamics and kinetics of the intrinsic point defects. In this contribution we present a defect model based on DFT total energy calculations using the GGA+U method. Further, the nudged elastic band method is employed in order to obtain a set of migration barriers for each defect species. Due to the complicated crystal structure of indium oxide a Kinetic Monte-Carlo algorithm was implemented, which allows to determine diffusion coefficients. The bulk tracer diffusion constant is predicted as a function of oxygen partial pressure, Fermi level and temperature for the pure material

  14. Point defects and irradiation in oxides: simulations at the atomic scale

    International Nuclear Information System (INIS)

    Crocombette, J.P.

    2005-12-01

    The studies done by Jean-Paul Crocombette between 1996 and 2005 in the Service de Recherches de Metallurgie Physique of the Direction de l'Energie Nucleaire in Saclay are presented in this Habilitation thesis. These works were part of the material science researches on the ageing, especially under irradiation, of oxides of interest for the nuclear industry. In this context simulation studies at the atomic scale were performed on two elementary components of ageing under irradiation : point defects and displacement cascades ; using two complementary simulation techniques : ab initio electronic structure calculations and empirical potential molecular dynamics. The first part deals with point defects : self defects (vacancies or interstitials) or hetero-atomic dopants. One first recalls the energetics of such defects in oxides, the specific features of defects calculations and the expected accuracy of these calculations. Then one presents the results obtained on uranium dioxide, oxygen in silver and amorphous silica. The second part tackles the modelling of disintegration recoil nuclei in various?displacement cascades created by crystalline matrices for actinide waste disposal. Cascade calculations give access to the amorphization mechanisms under irradiation of these materials. One thus predicts that the amorphization in zircon takes place directly in the tracks whereas in lanthanum zirconate, the amorphization proceeds through the accumulation of point defects. Finally the prospects of these studies are discussed. (author)

  15. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  16. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  17. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  18. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  19. Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes

    International Nuclear Information System (INIS)

    Yan Hongdan; Lemmens, Peter; Wulferding, Dirk; Shi, Jianmin; Becker, Klaus Dieter; Lin, Chengtian; Lak, Aidin; Schilling, Meinhard

    2012-01-01

    Defects influence the optical and electronic properties of nanostructured materials that may be relevant for applications. In self-organized anodic aluminum oxide (AAO) templates we have investigated the effect of annealing, doping and nanoscale metal deposition. Optical absorption spectroscopy has been used as a sensitive probe for the defect density in AAO templates. The electronic spectra are found to be dominated by bands which originate from oxygen-deficient color centers (F + , F and F 2 ). In annealing studies, the integrated absorption of the bands changes non-monotonically with annealing temperature and annealing time. This demonstrates that the concentration of defects can be optimized to tailor the optical properties of the AAO. Metallic Au wires are deposited in the template to establish a plasmonic template or array. The investigations provide an interesting insight into the interplay of reactivity and diffusivity on nanoscales. - Highlights: ► Preparation of metal wire arrays in oxide templates with tailored plasmonic properties. ► Oxygen defects are characterized using optical absorption and fluorescence. ► Optical absorption spectra are assigned to energy levels of oxygen vacancies (color centers). ► Annealing and electrodeposition of Au wires minimize defects maintaining the morphology.

  20. Lack of periconceptional vitamins or supplements that contain folic acid and diabetes mellitus-associated birth defects.

    Science.gov (United States)

    Correa, Adolfo; Gilboa, Suzanne M; Botto, Lorenzo D; Moore, Cynthia A; Hobbs, Charlotte A; Cleves, Mario A; Riehle-Colarusso, Tiffany J; Waller, D Kim; Reece, E Albert

    2012-03-01

    The purpose of this study was to examine the risk of birth defects in relation to diabetes mellitus and the lack of use of periconceptional vitamins or supplements that contain folic acid. The National Birth Defects Prevention Study (1997-2004) is a multicenter, population-based case-control study of birth defects (14,721 cases and 5437 control infants). Cases were categorized into 18 types of heart defects and 26 noncardiac birth defects. We estimated odds ratios for independent and joint effects of preexisting diabetes mellitus and a lack of periconceptional use of vitamins or supplements that contain folic acid. The pattern of odds ratios suggested an increased risk of defects that are associated with diabetes mellitus in the absence vs the presence of the periconceptional use of vitamins or supplements that contain folic acid. The lack of periconceptional use of vitamins or supplements that contain folic acid may be associated with an excess risk for birth defects due to diabetes mellitus. Published by Mosby, Inc.

  1. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    Science.gov (United States)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  2. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  3. Defects and properties of cadmium oxide based transparent conductors

    International Nuclear Information System (INIS)

    Yu, Kin Man; Detert, D. M.; Dubon, O. D.; Chen, Guibin; Zhu, Wei; Liu, Chaoping; Grankowska, S.; Hsu, L.; Walukiewicz, Wladek

    2016-01-01

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10 20 /cm 3 and mobility in the range of 40–100 cm 2 /V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O 2 partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10 −4 to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10 21  cm −3 and electron mobility higher than 120 cm 2 /V s can be achieved. Thermal annealing of doped CdO films in N 2 ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of

  4. Defects and properties of cadmium oxide based transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Detert, D. M.; Dubon, O. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Chen, Guibin [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department and Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, Huaiyin Normal University, Jiangsu 223300 (China); Zhu, Wei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and The Center for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Chaoping [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Grankowska, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institute of Experimental Physics (IEP UW), Warsaw University, Warsaw (Poland); Hsu, L. [Department of Postsecondary Teaching and Learning, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10{sup 20}/cm{sup 3} and mobility in the range of 40–100 cm{sup 2}/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O{sub 2} partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10{sup −4} to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10{sup 21 }cm{sup −3} and electron mobility higher than 120 cm{sup 2}/V s can be achieved. Thermal annealing of doped CdO films in N{sub 2} ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited

  5. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    Glatz, J.F.C.

    1983-01-01

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14 CO 2 and 14 C-labeled acid-soluble products formed during oxidation of [ 14 C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  6. On hydrazine oxidation in nitric acid media

    International Nuclear Information System (INIS)

    Zil'berman, B.Ya.; Lelyuk, G.A.; Mashkin, A.N.; Yasnovitskaya, A.L.

    1988-01-01

    Yield of products of radiolytic ( 60 Co gamma radiation) and chemical hydrazine (HZ) oxidation in nitric acid media is studied. Under radiolyte HZ oxidation by nitric acid hydrazoic acid, ammonia and nitrogen appear to be the reaction products. HN 3 yield maximum under HZN oxidation makes up ∼ 0.35 mol per a mol of oxiduzed HZN. Under chemical oxidation HZN is oxidized by HNO 3 according to reaction catalysed by technetium HN 3 yield makes up ∼ 0.35 mol per a mol of oxidized HZN. Radiation-chemical oxidation of HN 3 proceeds up to its complete decomposition, decomposition rate is comparable with HZ oxidation rate. Under the chemical oxidation HN 3 is more stable, it is slowly decomposed after complete HZ decomposition

  7. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Komen, Jasper; Kemp, Stephan

    2011-01-01

    Fatty acids (FAs) can be degraded via different mechanisms including alpha-, beta- and omega-oxidation. In humans, a range of different genetic diseases has been identified in which either mitochondrial FA beta-oxidation, peroxisomal FA beta-oxidation or FA alpha-oxidation is impaired. Treatment

  8. Defects in tor regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Sассharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    B. V. Homza

    2014-02-01

    Full Text Available TOR signaling pathway first described in yeast S. сerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of α-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.

  9. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  10. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  11. Understanding the defect structure of solution grown zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Laura-Lynn [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Sankar, Gopinathan, E-mail: g.sankar@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Handoko, Albertus D. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Goh, Gregory K.L., E-mail: g-goh@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Kohara, Shinji [Japan Synchrotron Radiation Research Institute (JASRI), Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  12. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  13. Acid-permanganate oxidation of potassium tetraphenylboron

    International Nuclear Information System (INIS)

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO 2 , highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO 4 /2.5M H 3 PO 4 solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO 2 (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation

  14. Influence of surface defects on the tensile strength of carbon fibers

    Science.gov (United States)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  15. Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish skin gelatins modified with oxidized linoleic acid (OLA) and oxidized tannic acid (OTA) were characterized and determined for emulsifying properties and antioxidative activity. Modification of gelatin with 5% OTA increased the total phenolic content and 1,1-diphenyl-2-picrylhydrazyl,

  16. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.

    Science.gov (United States)

    Diekman, Eugene F; van Weeghel, Michel; Wanders, Ronald J A; Visser, Gepke; Houten, Sander M

    2014-07-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited disorder of mitochondrial long-chain fatty acid β-oxidation (FAO). Patients with VLCAD deficiency may present with hypoglycemia, hepatomegaly, cardiomyopathy, and myopathy. Although several mouse models have been developed to aid in the study of the pathogenesis of long-chain FAO defects, the muscular phenotype is underexposed. To address the muscular phenotype, we used a newly developed mouse model on a mixed genetic background with a more severe defect in FAO (LCAD(-/-); VLCAD(+/-)) in addition to a validated mouse model (LCAD(-/-); VLCAD(+/+)) and compared them with wild-type (WT) mice. We found that both mouse models show a 20% reduction in energy expenditure (EE) and a 3-fold decrease in locomotor activity in the unfed state. In addition, we found a 1.7°C drop in body temperature in unfed LCAD(-/-); VLCAD(+/+) mice compared with WT body temperature. We conclude that food withdrawal-induced inactivity, hypothermia, and reduction in EE are novel phenotypes associated with FAO deficiency in mice. Unexpectedly, inactivity was not explained by rhabdomyolysis, but rather reflected the overall reduced capacity of these mice to generate heat. We suggest that mice are partly protected against the negative consequence of an FAO defect.-Diekman, E. F., van Weeghel, M., Wanders, R. J. A., Visser, G., Houten, S. M. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models. © FASEB.

  17. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  18. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO 2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO 2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [ 14 C]acetoacetate formed from the [1- 14 C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [ 14 C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  19. Maternal folic acid supplementation and dietary folate intake and congenital heart defects.

    Directory of Open Access Journals (Sweden)

    Baohong Mao

    Full Text Available It has been reported that folic acid supplementation before and/or during pregnancy could reduce the risk of congenital heart defects (CHDs. However, the results from limited epidemiologic studies have been inconclusive. We investigated the associations between maternal folic acid supplementation, dietary folate intake, and the risk of CHDs.A birth cohort study was conducted in 2010-2012 at the Gansu Provincial Maternity & Child Care Hospital in Lanzhou, China. After exclusion of stillbirths and multiple births, a total of 94 births were identified with congenital heart defects, and 9,993 births without any birth defects. Unconditional logistic regression was used to estimate the associations.Compared to non-users, folic acid supplement users before pregnancy had a reduced risk of overall CHDs (OR: 0.42, 95% CI: 0.21-0.86, Ptrend = 0.025 after adjusted for potential confounders. A protective effect was observed for certain subtypes of CHDs (OR: 0.37, 95% CI: 0.16-0.85 for malformation of great arteries; 0.26, 0.10-0.68 for malformation of cardiac septa; 0.34, 0.13-0.93 for Atrial septal defect. A similar protective effect was also seen for multiple CHDs (OR: 0.49, 95% CI: 0.26-0.93, Ptrend = 0.004. Compared with the middle quartiles of dietary folate intake, lower dietary folate intake (<149.88 μg/day during pregnancy were associated with increased risk of overall CHDs (OR: 1.63, 95% CI: 1.01-2.62 and patent ductus arteriosus (OR: 1.85, 95% CI: 1.03-3.32. Women who were non-user folic acid supplement and lower dietary folate intake have almost 2-fold increased CHDs risk in their offspring.Our study suggested that folic acid supplementation before pregnancy was associated with a reduced risk of CHDs, lower dietary folate intake during pregnancy was associated with increased risk. The observed associations varied by CHD subtypes. A synergistic effect of dietary folate intake and folic acid supplementation was also observed.

  20. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  1. Carnitine transport and fatty acid oxidation.

    Science.gov (United States)

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  2. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  3. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  4. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  5. Positron trapping at defects in copper oxide superconductors

    International Nuclear Information System (INIS)

    McMullen, T.; Jena, P.; Khanna, S.N.; Li, Y.; Jensen, K.O.

    1991-01-01

    Positron states and lifetimes at defects in the copper oxide superconductors La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7-x , and Bi 2 Sr 2 CaCu 2 O 8+x are calculated with use of the superposed-atom model. In the Bi 2 Sr 2 CaCu 2 O 8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x bind positrons by ∼1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ∼k BT , are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials

  6. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  7. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to

  8. Relationships among oxidation-reduction and acid-base properties of the actinides in high oxidation states

    International Nuclear Information System (INIS)

    Morss, L.R.

    1992-01-01

    The first chemical identification of plutonium, its subsequent isolation on the macroscopic scale, and more recent chemical separation schemes were achieved by taking advantage of the differences among the oxidation states of uranium, neptunium, and plutonium. Many acid-base properties modify the relative stabilities of oxidation states of the actinides. In the solid state, strongly basic compounds such as Cs 2 O yield complex oxides with oxidation states of Np(VII), Pu(VI), and Am(VI) whereas more acidic compounds such as CsF yield complex fluorides with lower oxidation states. In aqueous solution, high basicity and strongly covalent complexes favor high oxidation states. In nonaqueous solvent systems, high acidity generally favors low oxidation states. This paper elucidates and attempts to interpret the effects of these acid-base properties in a systematic fashion

  9. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid

    International Nuclear Information System (INIS)

    Lidong, Wang; Yongliang, Ma; Wendi, Zhang; Qiangwei, Li; Yi, Zhao; Zhanchao, Zhang

    2013-01-01

    Graphical abstract: Ascorbic acid is used as an inhibitor to retard the oxidation rate of magnesium sulfite. It shows that the oxidation rate would decrease greatly with the rise of initial ascorbic acid concentration, which provides a useful reference for sulfite recovery in magnesia desulfurization. -- Highlights: • We studied the kinetics of magnesium sulfite oxidation inhibited by ascorbic acid. • The oxidation process was simulated by a three-phase model and proved by HPLC–MS. • We calculated the kinetic parameters of intrinsic oxidation of magnesium sulfite. -- Abstract: Magnesia flue gas desulfurization is a promising process for small to medium scale industrial coal-fired boilers in order to reduce sulfur dioxide emissions, in which oxidation control of magnesium sulfite is of great importance for the recycling of products. Effects of four inhibitors were compared by kinetic experiments indicating that ascorbic acid is the best additive, which retards the oxidation process of magnesium sulfite in trace presence. The macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid were studied. Effects of the factors, including ascorbic acid concentration, magnesium sulfite concentration, oxygen partial pressure, pH, and temperature, were investigated in a stirred reactor with bubbling. The results show that the reaction rate is −0.55 order in ascorbic acid, 0.77 in oxygen partial pressure, and zero in magnesium sulfite concentration, respectively. The apparent activation energy is 88.0 kJ mol −1 . Integrated with the kinetic model, it is concluded that the oxidation rate of magnesium sulfite inhibited by ascorbic acid is controlled by the intrinsic chemical reaction. The result provides a useful reference for sulfite recovery in magnesia desulfurization

  10. Effect of Oxidation Time on Humic Acid Yields

    International Nuclear Information System (INIS)

    Khin Thidar Cho; May Zin Lwin

    2010-12-01

    In this study,humic acids were produced from coal under controlled conditions by using different oxidation time. This research studies on the behaviour of coal during oxidation process. The coal used as raw material in this research was obtained from Ka Lay Wa, Sagaing Division . The coals were oxidized at the different oxidation times from 76 hr to 380 hr at the temperature 150 5C. The yields of humic acid, the ultimate analysis (percentage of carbon, hydrogen, nitrogen and oxygen) and the proximate analysis (percentage of volatile, ash and moisture) were done in this study. The functional groups and structural entities of the obtained humic acids were identified by using Fourier Transform Infrared Spectrophotometer (FTIR). The yield percentage of prepared humic acid in Ka Lay Wa coal was found to be 3%.

  11. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.

    Science.gov (United States)

    Houten, Sander M; Violante, Sara; Ventura, Fatima V; Wanders, Ronald J A

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.

  12. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  13. Band alignment and defects of the diamond zinc oxide heterojunction; Bandstruktur und Defekte der Diamant-Zinkoxid-Heterostruktur

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, Peter

    2008-09-12

    Zinc oxide films were grown on diamond single crystals by rf sputtering of zinc oxide. The valence and conduction band offset was determined by photoelectron spectroscopy. A deep defect occurring in the zinc oxide films on diamond was characterized by cathodoluminescence spectroscopy. (orig.)

  14. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicon – dioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  15. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Science.gov (United States)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  16. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C [Department of Physics, University of Hong Kong (Hong Kong); Gong, M, E-mail: sfung@hkucc.hku.h, E-mail: edwardto04@yahoo.com.h [Department of Physics, Sichuan University, Chengdu (China)

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10{sup 17}cm{sup -2}. Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  17. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    International Nuclear Information System (INIS)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C; Gong, M

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10 17 cm -2 . Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  18. UV photodissociation spectroscopy of oxidized undecylenic acid films.

    Science.gov (United States)

    Gomez, Anthony L; Park, Jiho; Walser, Maggie L; Lin, Ao; Nizkorodov, Sergey A

    2006-03-16

    Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.

  19. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  20. International retrospective cohort study of neural tube defects in relation to folic acid recommendations : are the recommendations working?

    NARCIS (Netherlands)

    Botto, LD; Lisi, A; Robert-Gnansia, E; Erickson, JD; Vollset, SE; Mastroiacovo, P; Botting, B; Cocchi, G; de Vigan, C; de Walle, H; Feijoo, M; Irgens, LM; McDonnell, B; Merlob, P; Ritvanen, A; Scarano, G; Siffel, C; Metneki, J; Stoll, C; Smithells, R; Goujard, J

    2005-01-01

    Objective To evaluate the effectiveness of policies and recommendations on folic acid aimed at reducing the occurrence of neural tube defects. Design Retrospective cohort study of births monitored by birth defect registries. Setting 13 birth defects registries monitoring rates of neural tube defects

  1. Ursodeoxycholic acid improves gastrointestinal motility defects in gallstone patients

    Science.gov (United States)

    Colecchia, A; Mazzella, G; Sandri, L; Azzaroli, F; Magliuolo, M; Simoni, P; Bacchi-Reggiani, ML; Roda, E; Festi, D

    2006-01-01

    AIM: To simultaneously evaluate the presence of defects in gallbladder and gastric emptying, as well as in intestinal transit in gallstone patients (GS) and the effect of chronic ursodeoxycholic acid (UDCA) administration on these parameters and on serum bile acids and clinical outcome in GS and controls (CTR). METHODS: After a standard liquid test meal, gallbla-dder and gastric emptying (by ultrasound), oroileal transit time (OITT) (by an immunoenzymatic technique) and serum bile acids (by HPLC) were evaluated before and after 3 mo of UDCA (12 mg/kg bw/d) or placebo administration in 10 symptomatic GS and 10 matched healthy CTR. RESULTS: OITT was longer in GS than in CTR (P < 0.0001); UDCA significantly reduced OITT in GS (P < 0.0001), but not in CTR. GS had longer gastric half-emptying time (t1/2) than CTR (P < 0.0044) at baseline; after UDCA, t1/2 significantly decreased (P < 0.006) in GS but not in CTR. Placebo administration had no effect on gastric emptying and intestinal transit in both GS and CTR. CONCLUSION: The gallstone patient has simultaneous multiple impairments of gallbladder and gastric emptying, as well as of intestinal transit. UDCA administration restores these defects in GS, without any effect in CTR. These results confirm the pathogenetic role of gastrointestinal motility in gallstone disease and suggest an additional mechanism of action for UDCA in reducing bile cholesterol supersaturation. PMID:16981264

  2. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    Science.gov (United States)

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  4. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    Science.gov (United States)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  5. Point defects and irradiation in oxides: simulations at the atomic scale

    International Nuclear Information System (INIS)

    Crocombette, J.P.

    2005-11-01

    The author gives an overview of his research activity since 1995. This activity concerns research in materials science, and more particularly the ageing of oxides present in the nuclear industry, or more generally, the evolution of these materials under irradiation. The first part deals with the investigation of point defects, and more particularly of the structures and energies of these defects. The author discusses results obtained on uranium dioxide, on amorphous silica, and on the solution of oxygen in silver. The second part deals with irradiation-induced damages in crystalline matrices storing radioactive actinides, and more particularly with the effect of alpha disintegration decay nuclei which are the main sources of long term irradiation in these materials

  6. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  7. Oxidation in fish oil enriched mayonnaise : Ascorbic acid and low pH increase oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Timm Heinrich, Maike; Meyer, Anne S.

    2001-01-01

    The effect of ascorbic acid (0-4000 ppm) and pH (3.8-6.2) on oxidation and levels of iron and copper in various fractions of mayonnaise enriched with 16% fish oil was investigated. Ascorbic acid induced release of iron from the assumed oil- water interface into the aqueous phase at all pH levels......, but this effect of ascorbic acid was strongest at low pH (pH 3.8- 4.2). Ascorbic acid generally promoted formation of volatile oxidation compounds and reduced the peroxide value in mayonnaises. Peroxide values and total volatiles generally increased with decreasing pH values, suggesting that low pH promoted...... oxidation. It is proposed that iron bridges between the egg yolk proteins low-density lipoproteins, lipovitellin, and phosvitin at the oil-water interface are broken at low pH values, whereby iron ions become accessible as oxidation initiators. In the presence of ascorbic acid, oxidation is further enhanced...

  8. Regularities of praseodymium oxide dissolution in acids

    International Nuclear Information System (INIS)

    Savin, V.D.; Elyutin, A.V.; Mikhajlova, N.P.; Eremenko, Z.V.; Opolchenova, N.L.

    1989-01-01

    The regularities of Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 interaction with inorganic acids are studied. pH of the solution and oxidation-reduction potential registrated at 20±1 deg C are the working parameters of studies. It is found that the amount of all oxides dissolved increase in the series of acids - nitric, hydrochloric and sulfuric, in this case for hydrochloric and sulfuric acid it increases in the series of oxides Pr 2 O 3 , Pr 2 O 5 and Pr(OH) 3 . It is noted that Pr 2 O 5 has a high value of oxidation-reduction potential with a positive sign in the whole disslolving range. A low positive value of a redox potential during dissolving belongs to Pr(OH) 3 and in the case of Pr 2 O 3 dissloving redox potential is negative. The schemes of dissolving processes which do not agree with classical assumptions are presented

  9. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    Science.gov (United States)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  10. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  11. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  12. Synthesis and structural characterization of defect spinels in the Lithium-Manganese-Oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesised by the reaction of MnCO3 and Li2CO3 at 400...

  13. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  14. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  15. Studies on the biological oxidation - The oxidation of ascorbic acid (vitamin C) in biological fluids

    OpenAIRE

    Guzmán Barrón, E. S.; Guzmán Barrón, Alberto; Klemperer, Friedrich

    2014-01-01

    Biological fluids can be divided according to their behavior toward ascorbic acid into two groups: those having an inhibitory mechanism that protects the ascorbic acid oxidation, and those lacking this mechanism. Animal fluids and some of vegetable origin (those containing dosables amounts of ascorbic acid) corresponding to the first group. Ascorbic acid is protected from oxidation in the fluids by the action of copper catalyst. Fluids from plants (those that contain very little ascorbic acid...

  16. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesized by the reaction of MnCO3 and Li2CO3 at 400°C...

  17. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  18. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    International Nuclear Information System (INIS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-01-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In 2 O 3 and SnO 2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies. (paper)

  19. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    Science.gov (United States)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  20. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    Science.gov (United States)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  1. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  2. Fuel cracking in relation to fuel oxidation in support of an out-reactor instrumented defected fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.; Thiriet, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Lewis, B., E-mail: brent.lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada); Corcoran, E., E-mail: emily.corcoran@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    An experimental program funded by the CANDU Owners Group (COG) is studying an out-reactor instrumented defected fuel experiment in Stern Laboratories (Hamilton, Ontario) with guidance from Atomic Energy of Canada Limited (AECL). The objective of this test is to provide experimental data for validation of a mechanistic fuel oxidation model. In this experiment a defected fuel element with UO{sub 2} pellets will be internally heated with an electrical heater element, causing the fuel to crack. By defecting the sheath in-situ the fuel will be exposed to light water coolant near normal reactor operating conditions (pressure 10 MPa and temperature 265-310{sup o}C) causing fuel oxidation, especially near the hotter regions of the fuel in the cracks. The fuel thermal conductivity will change, resulting in a change in the temperature distribution of the fuel element. This paper provides 2D r-θ plane strain solid mechanics models to simulate fuel thermal expansion, where conditions for fuel crack propagation are investigated with the thermal J integral to predict fuel crack stress intensity factors. Finally since fuel crack geometry can affect fuel oxidation this paper shows that the solid mechanics model with pre-set radial cracks can be coupled to a 2D r-θ fuel oxidation model. (author)

  3. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  4. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.

    2008-01-01

    The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...... with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...... dead (KD) AMPK alpha2. In wild-type (WT) mice, AICAR and contraction increased AMPK alpha2 and alpha1 activities, the phosphorylation of ACC2 and rates of fatty acid oxidation while tending to reduce malonyl-CoA levels. Despite no activation of AMPK in KD mice, ACC2 phosphorylation was maintained...

  5. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  6. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  7. Folic acid supplement use in the prevention of neural tube defects.

    LENUS (Irish Health Repository)

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  8. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    Energy Technology Data Exchange (ETDEWEB)

    Oudhia, A. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Choudhary, A., E-mail: aarti.bhilai@gmail.com [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Sharma, S.; Aggrawal, S. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Dhoble, S.J. [RTM University Nagpur, Maharashtra (India)

    2014-10-15

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission.

  9. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  10. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    Science.gov (United States)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  11. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review.

    Science.gov (United States)

    Ojeda, Luisa; Nogales, Fátima; Murillo, Luisa; Carreras, Olimpia

    2018-04-01

    There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD. Furthermore, prenatal and postnatal exposure to ethanol in dams, as well as increasing oxidation in offspring, causes malnutrition of several micronutrients such as the antioxidant folic acid and selenium (Se), affecting their metabolism and bodily distribution. Although abstinence from alcohol is the only way to prevent FASD, it is possible to reduce its harmful effects with a maternal dietary antioxidant therapy. In this review, folic acid and Se have been chosen to be analyzed as antioxidant intervention systems related to FASD because, like ethanol, they act on the methionine metabolic cycle, being related to the endogenous antioxidants GSH and glutathione peroxidase. Moreover, several birth defects are related to poor folate and Se status.

  12. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  13. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  14. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-[ 14 C] palmitate to 14 CO 2 and total [ 14 C] acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO 2 was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation

  15. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  16. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  17. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  18. Dislocations and related defects in niobium oxide structures

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J S; Hutchinson, J L; Lincoln, F J [Oxford Univ. (UK). Inorganic Chemistry Lab.

    1977-01-07

    Lattice images of the niobium oxides, structures based on the linkage of octahedral groups in continuous networks, occasionally contain features recognizable as dislocations. Since lattice imaging enables the microstructure to be resolved in greater detail, at the level of local structural organization, it is possible to determine the configuration, and also to infer the chemical composition, of dislocated areas. By treating the niobium oxide 'block' structures as superstructures of the ReO/sub 3/ (DO/sub 9/) type, the topology of dislocations can be expressed by relations between the insertion (or deletion) of one or more half-planes of cations, or of oxygen atoms only, changes in the number of crystallographic shear plane interfaces between blocks or columns, changes in (idealized) dimensions and any requisite distortion in the third dimension. Mapping the structure around a dislocation, from the lattice image, is directly equivalent to plotting the Burgers' circuit. In this way, the precise nature of a dislocating perturbation and its implications for the local chemical composition of the crystal can be directly identified. The method is exemplified by analysis of dislocations and of related extended defects of several types, associated with twinning phenomena, semicoherent intergrowth between different ReO/sub 3/-type superstructures and arrays building up a low angle boundary. The essential features of the analysis are not restricted to structures of the niobium oxide type, but can be extended to other types of polyhedron networks.

  19. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides - A comparison study

    Science.gov (United States)

    Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min

    2018-05-01

    Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.

  20. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Science.gov (United States)

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  1. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  2. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  3. Effect of sulfonylureas on hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Patel, T.B.

    1986-01-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 μM concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with [U- 1 $C]oleic acid (0.1 mM) increased the rate of 14 C label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine

  4. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  5. Chiral lewis Acid catalysis in nitrile oxide cycloadditions.

    Science.gov (United States)

    Sibi, Mukund P; Itoh, Kennosuke; Jasperse, Craig P

    2004-05-05

    We describe examples of highly regio- and enantioselective nitrile oxide cycloadditions to unsaturated alkenes using substoichiometric amounts of a chiral Lewis acid. Pyrazolidinones proved to be effective achiral templates in the cycloadditions providing C-adducts typically in >30:1 selectivity and 80-99% ee. To avoid potential problems involving coordination of the Lewis acid by amine bases, we have devised a novel method for the generation of unstable nitrile oxides from hydroximinoyl chlorides using Amberlyst 21 as the base.

  6. Evaluation of crystallographic strain, rotation and defects in functional oxides by the moiré effect in scanning transmission electron microscopy

    Science.gov (United States)

    Naden, A. B.; O'Shea, K. J.; MacLaren, D. A.

    2018-04-01

    Moiré patterns in scanning transmission electron microscopy (STEM) images of epitaxial perovskite oxides are used to assess strain and defect densities over fields of view extending over several hundred nanometers. The patterns arise from the geometric overlap of the rastered STEM electron beam and the samples’ crystal periodicities and we explore the emergence and application of these moiré fringes for rapid strain analysis. Using the epitaxial functional oxide perovskites BiFeO3 and Pr1-x Ca x MnO3, we discuss the impact of large degrees of strain on the quantification of STEM moiré patterns, identify defects in the fringe patterns and quantify strain and lattice rotation. Such a wide-area analysis of crystallographic strain and defects is crucial for developing structure-function relations of functional oxides and we find the STEM moiré technique to be an attractive means of structural assessment that can be readily applied to low dose studies of damage sensitive crystalline materials.

  7. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  8. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus)

    International Nuclear Information System (INIS)

    Bandyopadhyay, G.K.; Dutta, J.; Ghosh, S.

    1982-01-01

    The fate of [1(- 14 C] linoleic acid and [1( 14 C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish, Heteropneustes fossilis and Clarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated 14 C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of linolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species

  9. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  10. Folic Acid and Birth Defects: A Case Study (Iran

    Directory of Open Access Journals (Sweden)

    Saeid Dastgiri

    2015-07-01

    Full Text Available Background and Objectives : The aim of this study was to evaluate the impact of using folic acid during pregnancy for the reduction of neural tube defects (NTDs in the northwest region of Iran. Material and Methods : In this study, 243 pregnant women that were identified by medical diagnostic tests as having a fetus with some types of congenital anomalies were evaluated. They were referred to Legal Medicine Organization of East Azarbaijan province to get permission for therapeutic termination of pregnancy. Results : The prevalence of NTDs among pregnant women who were referred for therapeutic termination of pregnancy was 24.7%. Consumption of folic acid prevented NTDs by 79% (Odds Ratio = 0.21, CI 95%: 0.12–0.40 and 94% (Odds Ratio = 0.06, CI 95%: 0.03–0.15 compared to pregnancies complicated by other anomalies and normal pregnancies, respectively. Hydrops fetalis, hydrocephaly, Down syndrome and limb anomalies did not have any significant association with use folic acid. Conclusion : Along with the advice for the consumption of folic acid for pregnant women, they should be offered prenatal screening or diagnostic tests to identify fetal abnormalities for possible termination of pregnancy for maternal and child health promotion. ​

  11. Nitrous Acid as an Oxidant in Acidic Media

    Science.gov (United States)

    1979-09-25

    current work is the account of Ogsts and Sawski3 who studied the oxidation of benzyl ethers at 90C in acidic, aqueous dioxane. They found an increase in...and G. Tobin, Chem. Com., 180 (1978); (b) J. Hoggett , R. Moodie, and K. Schofield, Chem. Comm., 605 (1969). 15. (a) B. Challis and A. Lawson. J. Chem

  12. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  13. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic ...

  14. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  15. Synthesis of acetic acid by catalytic oxidation of butenes-2. Synthesis of acetic acid from sec. -butyl alcohol and methyl ethyl ketone in vapor-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, T.; Matsuzawa, Y.; Ninagawa, S.

    1977-11-01

    Eleven binary catalysts containing vanadium pentoxide (V/sub 2/O/sub 5/), 17 binary catalysts containing cobalt oxide (Co/sub 3/O/sub 4/), and 18 ternary catalysts containing both V/sub 2/O/sub 5/ and Co/sub 3/O/sub 4/ were screened for the stepwise conversion of sec.-butanol to methyl ethyl ketone (MEK) and acetic acid. Of the binary catalysts, 4:1 Rh/V and Co/V binary oxides gave the best acetic acid yields. With the Co/V catalyst, the selectivity for MEK increased rapidly as the cobalt content of the catalyst increased above 50%, reaching 81% at 226/sup 0/C and 90% conversion on 9:1 Co/V oxide. The 9:1 Co/V catalyst also yielded acetaldehyde from ethanol with 98% selectivity at 210/sup 0/C and acetone from isopropanol with 98% selectivity at 200/sup 0/C, but dehydrated tert.-butanol to isobutene. V/Cr and V/Sb binary oxides were the most effective catalysts for the oxidation of MEK to acetic acid, with 78-88% selectivities at 100% conversion at 260/sup 0/C. Of the ternary oxides tested for the one-step conversion of sec.-butanol to acetic acid, a 6:2:2 Co/V/Al catalyst gave best results, (i.e., 34% selectivity for acetic acid (45% for total acids) at 100% conversion and 68% selectivity (90% for total acids) at 50Vertical Bar3< conversion). Graphs, tables, and 21 references.

  16. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  17. Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support

    KAUST Repository

    Liu, Xin

    2014-01-01

    We systematically investigated the electronic structure of Ru nanoparticles supported on various local structures on reduced graphene oxide (rGO) by first-principles-based calculations. We showed that Ru nanoparticles prefer to nucleate at these localized defect structures on rGO, which act as strong trapping sites for Ru nanoparticles and inhibit their aggregation. The binding of Ru nanoparticles to rGO, which is dependent on these local defect structures and correlates with the interfacial charge transfer, determines the electronic structure of the composites. Further study reveals that the performance of these composites against oxygen adsorption changes proportionally with the shift of the d-band center of the nanoparticles. The correlation between the defect structures on rGO and the reactivity of the composites suggests that controlled modification of the graphenic support by defect engineering would be an efficient way to fabricate new transition metal/rGO composites with high stability and desired reactivity. This journal is © the Partner Organisations 2014.

  18. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    Science.gov (United States)

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  19. Bezafibrate in skeletal muscle fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Ørngreen, Mette Cathrine; Madsen, Karen Lindhardt; Preisler, Nicolai

    2014-01-01

    OBJECTIVE: To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS: This was a 3-month, randomized, double......, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION: Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro...

  20. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  1. Kinetics of Oxidation of 3-Benzoylpropionic Acid by N-Bromoacetamide in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2011-01-01

    Full Text Available The kinetics of oxidation of 3-benzoylpropionic acid (KA with N-bromoacetamide (NBA have been studied potentiometrically in 50:50 (v/v aqueous acetic acid medium at 298 K The reaction was first order each with respect to [KA], [NBA] and [H+]. The main product of the oxidation is the corresponding carboxylic acid. The rate decreases with the addition of acetamide, one of the products of the reaction. Variation in ionic strength of the reaction medium has no significant effect on the rate of oxidation. But the rate of the reaction is enhanced by lowering the dielectric constant of the reaction medium. A mechanism consistent with observed results have been proposed and the related rate law was deduced.

  2. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    Science.gov (United States)

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  3. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    Science.gov (United States)

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  5. Cold-storage defects in butter and their relation to the autoxidation of unsaturated fatty acids

    NARCIS (Netherlands)

    Badings, H.T.

    1970-01-01

    In this thesis investigations are described of the identification of aroma compounds which are formed as a result of oxidative deterioration of butter during cold storage, producing a typical trainy (fishy) off-flavour. As these flavour defects are caused chiefly by autoxidative breakdown of

  6. The comparison of gamma-radiation and electrical stress influences on oxide and interface defects in power VDMOSFET

    Directory of Open Access Journals (Sweden)

    Đorić-Veljković Snežana M.

    2013-01-01

    Full Text Available The behaviour of oxide and interface defects in n-channel power vertical double-diffused metal-oxide-semiconductor field-effect transistors, firstly degraded by the gamma-irradiation and electric field and subsequently recovered and annealed, is presented. By analyzing the transfer characteristic shifts, the changes of threshold voltage and underlying changes of gate oxide and interface trap densities during the stress (recovery, annealing of investigated devices, it is shown that these two types of stress influence differently on the gate oxide and the SiO2-Si interface. [Projekat Ministarstva nauke Republike Srbije, br. OI171026

  7. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Keywords: Honeysuckle, Chlorogenic acid, Enzymatic browning, Mimic system, Oxidation pathway, ... enzymatic oxidation of CA is the major cause of ..... to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion- kinetic model. J Electroanal Chem 2011; 660: 200-208.

  8. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    Science.gov (United States)

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  9. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  10. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    Science.gov (United States)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  11. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  12. Intrinsic point defects in zinc oxide. Modeling of structural, electronic, thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, P.

    2006-07-01

    The present dissertation deals with the modeling of zinc oxide on the atomic scale employing both quantum mechanical as well as atomistic methods. The first part describes quantum mechanical calculations based on density functional theory of intrinsic point defects in ZnO. To begin with, the geometric and electronic structure of vacancies and oxygen interstitials is explored. In equilibrium oxygen interstitials are found to adopt dumbbell and split interstitial configurations in positive and negative charge states, respectively. Semi-empirical self-interaction corrections allow to improve the agreement between the experimental and the calculated band structure significantly; errors due to the limited size of the supercells can be corrected by employing finite-size scaling. The effect of both band structure corrections and finite-size scaling on defect formation enthalpies and transition levels is explored. Finally, transition paths and barriers for the migration of zinc as well as oxygen vacancies and interstitials are determined. The results allow to interpret diffusion experiments and provide a consistent basis for developing models for device simulation. In the second part an interatomic potential for zinc oxide is derived. To this end, the Pontifix computer code is developed which allows to fit analytic bond-order potentials. The code is subsequently employed to obtain interatomic potentials for Zn-O, Zn-Zn, and O-O interactions. To demonstrate the applicability of the potentials, simulations on defect production by ion irradiation are carried out. (orig.)

  13. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  14. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  15. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Purpose: To investigate the pathways involved in the oxidation of chlorogenic acid (CA) and phenol metabolism in honeysuckle buds. Methods: A model that mimics CA oxidation by honeysuckle polyphenol oxidase (PPO) by controlling the reaction temperature or reaction duration was employed, and the resulting products ...

  16. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  17. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    Science.gov (United States)

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  19. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  20. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    Science.gov (United States)

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  1. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  2. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi....... Catalysts prepared in this way exhibit about 10 times higher activity for formic acid oxidation in comparison to pure Pt, as revealed both by potentiodynamic and quasy-potentiostatic measurements. This high activity is the result of well-balanced ensemble effect induced by Bi-oxide species interrupting Pt...

  3. Green reduction of graphene oxide by ascorbic acid

    Science.gov (United States)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  4. Clarithromycin, trimethoprim, and penicillin and oxidative nucleic acid modifications in humans

    DEFF Research Database (Denmark)

    Larsen, Emil List; Cejvanovic, Vanja; Kjaer, Laura Kofoed

    2017-01-01

    , phenoxymethylpenicillin (penicillin V), or placebo. Oxidative modifications were measured as 24-h urinary excretion of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and plasma levels of malondialdehyde before and after treatment as a measurement of DNA oxidation, RNA oxidation.......7% (95% CI: 5.8–37.6%), but did not influence urinary excretion of 8-oxoGuo. Penicillin V did not influence urinary excretion of 8-oxodG or 8-oxoGuo. None of the antibiotic drugs influenced plasma levels of malondialdehyde. Conclusion Clarithromycin significantly increases oxidative nucleic acid...... modifications. Increased oxidative modifications might explain some of clarithromycin's known adverse reactions. Trimethoprim significantly lowers DNA oxidation but not RNA oxidation. Penicillin V had no effect on oxidative nucleic acid modifications....

  5. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  6. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  7. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    OpenAIRE

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  8. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    International Nuclear Information System (INIS)

    Reinecke, D.

    1989-01-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O 2 , and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14 C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  10. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: yanzhang@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, Huilian, E-mail: huilian.hao@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang, Linlin, E-mail: wlinlin@mail.ustc.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-12-30

    Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k{sup 0}) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k{sup 0} values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k{sup 0} valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  11. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    International Nuclear Information System (INIS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-01-01

    Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k"0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k"0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k"0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  12. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects

    Science.gov (United States)

    Grant, Nicholas E.

    2016-01-01

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<1012 cm-3). PMID:26779939

  13. Effects of a tetracycline blended polylactic and polyglycolic acid membrane on the healing of one-wall intrabony defects in beagle dogs

    International Nuclear Information System (INIS)

    Kim, Il-Young; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Chai, Jung-Kiu; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the regenerative effects of a tetracycline blended polylactic and polyglycolic acid (TC-PLGA) and non-blended polylactic and polyglycolic acid (PLGA) barrier membrane on one-wall intrabony defects in beagle dogs. It can be concluded that when used for guided tissue regeneration TC-PLGA membranes show a beneficial effect on one-wall intrabony defects in beagle dogs

  14. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  15. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  16. Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane

    International Nuclear Information System (INIS)

    Li Haipeng; Zhao Naiqin; He Chunnian; Shi Chunsheng; Du Xiwen; Li Jiajun

    2008-01-01

    Changes in the thermogravimetrically determined oxidation behaviors of CVD-grown multi-walled carbon nanotubes (MWNTs) over Ni/Al catalyst with different Ni content were examined. Catalyst type was found to have a measurable impact upon nanotube stability, suggesting differing levels of crystalline perfection in the resulting nanotubes. With increasing the Ni content in the Ni/Al catalyst, the CNTs obtained became less stable during heat treatment in air. Furthermore, high-resolution transmission electron microscopy was employed to investigate the defect sites of as-grown MWNTs. The results provide evidence showing that defect sites along the walls and at the ends of the raw MWNTs facilitate the thermal oxidative destruction of the nanotubes

  17. A model for the formation of lattice defects at silicon oxide precipitates in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Gryse, O. de; Clauws, P.

    2003-01-01

    The critical size of silicon oxide precipitates and the formation of lattice defects by the precipitates are discussed. An expression is derived allowing estimation of self-interstitial emission by spherical precipitates as well as strain build-up during precipitate growth. The predictions are compared with published experimental data. A model for stacking fault nucleation at oxide precipitates is developed based on strain and self-interstitial accumulation during the thermal history of the wafer. During a low-temperature treatment high levels of strain develop. During subsequent high-temperature treatment, excess strain energy in the precipitate is released by self-interstitial emission leading to favourable conditions for stacking fault nucleation

  18. Selenium dioxide catalysed oxidation of acetic acid hydrazide

    Indian Academy of Sciences (India)

    The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the ...

  19. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    Science.gov (United States)

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  20. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  1. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    Science.gov (United States)

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  2. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  3. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan; Chen, Po-Yen; Jang, Bi-Sheng

    2015-01-01

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe 3 ) and oxygen (O 2 ) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H 2 within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO 2 . The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O ads and Pt–(OH) ads ) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed

  4. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  5. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  6. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.

    Science.gov (United States)

    Swain, Swadhin; Roy, Shweta; Shah, Jyoti; Van Wees, Saskia; Pieterse, Corné M; Nandi, Ashis K

    2011-12-01

    Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  7. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  8. The extraction of trace amounts of tantalum(V) from different mineral acid solutions by 4-(5-nonyl) pyridine oxide and trioctylamine oxide

    International Nuclear Information System (INIS)

    Ejaz, M.; Carswell, D.J.

    1976-01-01

    Data are presented on the distribution of trace amounts of tantalum(V) between different mineral acid solutions and 0.1M solutions of N-oxides of 4-(5-nonyl) pyridine and trioctylamine. The optimal acidity is 0.01-0.5M, depending on the nature of the acid. Common anions have little effect on extraction. Possible mechanism of extraction are suggested making use of slope analysis data. Separation factors for a number of metal ions with respect to tantalum are reported for the 0.1M 4-(5-nonyl)pyridine oxide - 1M sulphuric acid extraction system. Separation from uranium(VI), thorium(IV) and a number of fission products is suggested. The conclusions are unique as follows: Amine oxides are as unique as oxygen-donor extractants in their extraction of tantalum(V) from weakly acid solutions; tantalum is almost completely extracted from weakly nitric, hydrochloric and sulphuric acid solutions by both of the amine oxides; the extraction in low acidity solutions is independent of the nature of the anion of the acids present, indicating the ability of amine oxides to extract the product of hydrolysis of hydrolysable elements. In this respect amine oxides are much better than tributyl phosphate. (T.G.)

  9. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA

    Directory of Open Access Journals (Sweden)

    John S Gunn

    2016-04-01

    Full Text Available Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.

  10. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels.

    Science.gov (United States)

    Chen, Chuck T; Bazinet, Richard P

    2015-01-01

    The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  12. Role of masking oxide on silicon in processes of defect generation at formation of SIMOX structures

    CERN Document Server

    Askinazi, A Y; Miloglyadova, L V

    2002-01-01

    One investigated into Si-SiO sub 2 structures formed by implantation of oxygen ions into silicon (SIMOX-technology) by means of techniques based on measuring of high-frequency volt-farad characteristics and by means of electroluminescence. One determined existence of electrically active centres and of luminescence centres in the formed oxide layer near boundary with silicon. One clarified the role SiO sub 2 masking layer in silicon in defect generation under formation of the masked oxide layer. One established dependence of concentration of electrically active and luminescence centres on thickness of masking layer

  13. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  14. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  15. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Rachi, T.; Yokouchi, M.; Kamimoto, Y. [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan); Okada, K. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama, Kanagawa 226-8503 (Japan)

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  16. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  17. Ab initio study of point defects in magnesium oxide

    International Nuclear Information System (INIS)

    Gilbert, C. A.; Kenny, S. D.; Smith, R.; Sanville, E.

    2007-01-01

    Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do

  18. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  19. Mechanistic studies of formic acid oxidation at polycarbazole supported Pt nanoparticles

    International Nuclear Information System (INIS)

    Moghaddam, Reza B.; Pickup, Peter G.

    2013-01-01

    Highlights: •A polycarbazole support decreases the accumulation of adsorbed intermediates on Pt during formic acid oxidation. •Polycarbazole causes a bilayer of Cu to form on Pt nanoparticles during Cu underpotential deposition. •XPS suggests that both of these effects are due to electron donation from the metal (Pt or Cu) into the polymer π-system. -- Abstract: Mechanistic aspects of the promotion of formic acid oxidation at Pt nanoparticles supported on a thin layer of polycarbazole (PCZ) have been investigated by voltammetry and X-ray photoelectron spectroscopy (XPS). The Pt nanoparticles were drop coated onto a glassy carbon (GC) electrode coated with a ca. 9 nm layer of electrochemically deposited polycarbazole. After 500 s of formic acid oxidation at 0 V vs. SCE, the current at a GC/PCZ/Pt electrode was 25 times higher than at a GC/Pt electrode. Voltammetry in formic acid free H 2 SO 4 following potentiostatic oxidation of formic acid revealed that there was less accumulation of adsorbed intermediates for the polycarbazole supported Pt nanoparticles than for those deposited directly onto the glassy carbon with, 50% more Pt sites remaining available for the GC/PCZ/Pt electrode relative to the GC/Pt electrode. Independent CO stripping experiments revealed only slight differences, while Cu underpotential deposition surprisingly resulted in the deposition of a ca. two-fold excess of Cu on the polycarbazole supported particles. This observation was supported by XPS which also revealed a second Cu signal at a higher binding energy, suggesting electron donation into the conjugated π system of the polymer. Such an interaction of Pt with the polycarbazole may be responsible for its higher activity for formic acid oxidation

  20. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  1. Kinetic Studies on the Oxidation of Some para and meta-Substituted Cinnamic Acids by Pyridinium Bromochromate in the Presence of Oxalic Acid (A Co-oxidation Study

    Directory of Open Access Journals (Sweden)

    G. Vanangamudi

    2009-01-01

    Full Text Available The kinetics of oxidation of cinnamic acids by pyridinium bromochromate (PBC in the presence of oxalic acid has been studied in acetic acid-water (60:40% medium. The reaction shows unit order dependence each with respect to oxidant as well as oxalic acid [OX], the order with respect to [H+] and [CA] are fractional. The reaction is acid catalyzed and a low dielectric constant favours the reaction. Increase the ionic strength has no effect on the reaction rate. In the case of substituted cinnamic acids the order with respect to substrate vary depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the rate while the electron releasing substituents enhance the rate of reaction. From the kinetic data obtained the activation parameters have been computed and a suitable mechanism has been proposed.

  2. Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid.

    Science.gov (United States)

    De, Sandip Kumar; Mondal, Subrata; Sen, Pintu; Pal, Uttam; Pathak, Biswarup; Rawat, Kuber Singh; Bardhan, Munmun; Bhattacharya, Maireyee; Satpati, Biswarup; De, Amitabha; Senapati, Dulal

    2018-06-14

    Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.

  3. Orphan drugs in development for long-chain fatty acid oxidation disorders: challenges and progress

    OpenAIRE

    Merritt II, J Lawrence; Sun,Angela

    2015-01-01

    Angela Sun, J Lawrence Merritt II Department of Pediatrics, University of Washington, Seattle, WA, USA Abstract: Fatty acid oxidation disorders are inborn errors of metabolism resulting in failure of ß-oxidation within or transport of fatty acids into the mitochondria. The long-chain fatty acid oxidation disorders are characterized by variable presentations ranging from newborn cardiomyopathy, to infantile hypoketotic hypoglycemia resulting from liver involvement, to skeletal myopa...

  4. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  5. Effects of hypoxia and pyruvate infusion on myocardial fatty acid oxidation measured with 123I heptadecanoic acid

    International Nuclear Information System (INIS)

    Comans, E.F.I.; Visser, F.C.; Elzinga, Gijs

    1993-01-01

    Radio-iodinated fatty acids like 123 I heptadecanoic acid (HDA) can be used for the non-invasive delineation of myocardial non-esterified fatty acid (FA) metabolism. In this study the quantitative value of HDA was assessed for the measurement of myocardial FA oxidation. In an isolated saline perfused rat heart preparation myocardial time-activity curves were made during control perfusion and after inhibition of FA oxidation by hypoxia and infusion of 10.0 mM pyruvate, respectively. Control experiments were performed using 1- 14 C palmitate as the 'golden standard' for myocardial FA oxidation. Myocardial HDA oxidation was calculated from the amplitude of the third exponential term of the time-activity curve. During control perfusion no differences were observed between the calculated oxygen equivalents (from HDA oxidation) and the measured (A-V oxygen content difference) and the estimated ( 14 CO 2 production) values. Inhibition of palmitate oxidation with pyruvate was accurately detected with HDA. During hypoxic perfusion, an overestimation of palmitate oxidation was calculated on the basic of HDA oxidation. Infusion of pyruvate did not influence the time constants of the time-activity curves, whereas during hypoxic perfusion an increase of the time constant of the third exponential term was observed, probably caused by the presence of back-diffusion of non-metabolized HDA. We conclude that HDA can be used as a quantitative tool for the measurement of myocardial FA oxidation under various metabolic conditions. During periods of a decreased oxygen availability back-diffusion of FA needs to be taken into account for the interpretation of the myocardial time-activity curves. (author)

  6. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  7. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of

  8. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  9. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  10. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  11. PREPARATION OF METAL OXIDE POWDERS FROM METAL LOADED VERSATIC ACID

    OpenAIRE

    KAKIHATA, Takayuki; USAMI, Kensuke; YAMAMOTO, Hideki; SHIBATA, Junji

    1998-01-01

    A production process for metal oxide powders was developed using a solvent extraction method. Versatic Acid 10 and D2EHPA solutions containing copper, zinc and nickel were used for a precipitation-stripping process, where oxalic acid was added to the solution as a precipitation reagent.Copper, zinc and nickel oxalates were easily formed in an aqueous phase, and 99.9% of precipitation was obtained for each metal during this process. These metal oxalates were easily converted to metal oxides by...

  12. Folic acid supplementation influences the distribution of neural tube defect subtypes : A registry-based study

    NARCIS (Netherlands)

    Bergman, J. E. H.; Otten, E.; Verheij, J. B. G. M.; de Walle, H. E. K.

    Periconceptional folic acid (FA) reduces neural tube defect (NTD) risk, but seems to have a varying effect per NTD subtype. We aimed to study the effect of FA supplementation on NTD subtype distribution using data from EUROCAT Northern Netherlands. We included all birth types with non-syndromal NTDs

  13. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection?

    Directory of Open Access Journals (Sweden)

    Paulo J. Oliveira

    2012-01-01

    Full Text Available Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.

  14. Oxidative kinetics of amino acids by peroxydisulfate: Effect of dielectric constant

    International Nuclear Information System (INIS)

    Khalid, Mohammad A. A.

    2008-01-01

    The kinetics and mechanism of oxidation of alanine, asparagines, cysteine, glutamic acid, lysine, phenylalanine and serine by peroxydisulfate ion have been studied in aqueous acidic (sulfuric acid) medium at the temperature range 60-80C. The rate shows first order dependence on peroxydisulfate concentration and zero order dependence on amino acid concentration. The rate law observed is: -d [S2O82-] /dt = Kobs [S2O82-] [amino acid]0. An autocatalytic effect has been observed in amino acids oxidation due to formation of Schiff's base between the formed aldehyde and parent amino acid. A decrease in the dielectric constant of the medium-adding acetic acid (5-15% v/v) results in a decrease in the rate in all cases studied. Reactions were carried out at different temperature (60-80C) and the thermodynamics parameters have been calculated. The logarithm of the rate constant is linearly interrelated to the square root of the ionic strength. (author)

  15. Colorimetric study of oxidation kinetics of thiolactic acid (2 - mercaptopropionic acid) by hexacyanoferrate (III) in acid and alkaline media

    International Nuclear Information System (INIS)

    Kachhwaha, O.P.; Potter, P.C.; Kapoor, R.C.

    1985-01-01

    The oxidation kinetics of thiolactic acid by hexacyanoferrate (III) in acid and alkaline media employing the calorimetric method have been described. The two compounds react in equimolar ratio in both media, but the kinetic results are different in both media. In acid medium the total order is three, two with respect to thiol and one in oxidant. The rate of the reaction shows an inverse proportionality to (H + ) and also varies inversely with decreasing dielectric constant of the medium. In alkaline medium, the total order of the reaction is two, being unity in each reactant. The rate increases with increased pH value. Additions of ferrocyanide and dithio dilactic acid have no effect on the rate in both media. Additions of a neutral electrolyte does not affect the rate in the acid medium, while a positive salt effect was observed in an alkaline medium. Activation parameters have been evaluated in both media and in a medium of low dialectric. Different reaction schemes have been proposed for acid and alkaline media and have satisfactory explained the experimental data, except for the pH rate. (author)

  16. Epoxy Stearic Acid, an Oxidative Product Derived from Oleic Acid, Induces Cytotoxicity, Oxidative Stress, and Apoptosis in HepG2 Cells.

    Science.gov (United States)

    Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa

    2018-05-23

    In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.

  17. Assessment of myocardial metabolism with iodine-123 heptadecanoic acid: effect of decreased fatty acid oxidation on deiodination

    International Nuclear Information System (INIS)

    Luethy, P.C.; Chatelain, P.; Papageorgiou, I.; Schubiger, A.; Lerch, R.A.

    1988-01-01

    Terminally radioiodinated fatty acid analogs are of potential use for the noninvasive delineation of regional alterations of fatty acid metabolism by gamma imaging. Since radioactivity from extracted iodine-123 heptadecanoic acid [( 123I]HDA) is released from the myocardium in form of free radioiodide (123I-) the present study was performed to determine whether deiodination of [123I]HDA is related to free fatty acid metabolism. Myocardial production of free radioiodide was measured in rat hearts in vitro and in vivo both under control conditions and after inhibition of fatty acid oxidation. In isolated rat hearts perfused at constant flow with a medium containing [123I]HDA, release of 123I- was markedly reduced during cardioplegia and pharmacologic inhibition of mitochondrial fatty acid transfer with POCA by 67% (p less than 0.005) and 72% (p less than 0.005), respectively. In fasted rats in vivo, 1 min after i.v. injection of [123I]HDA, 51 +/- 5% of myocardial radioactivity was recovered in the aqueous phase, containing free iodide, of myocardial lipid extracts. Aqueous activity was significantly decreased in fed (20 +/- 2%; p less than 0.002) and POCA pretreated (30 +/- 3.7%; p less than 0.05) animals exhibiting reduced oxidation of [14C]palmitate. Thus, deiodination of [123I]HDA was consistently reduced during inhibition of fatty acid oxidation in vitro and in vivo. The results apply to the interpretation of myocardial clearance curves of terminally radioiodinated fatty acid analogs

  18. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  19. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  20. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco

    2007-01-01

    ), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  1. Layered sphere-shaped TiO₂ capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation.

    Science.gov (United States)

    Ma, Chunyan; Pang, Guanglong; He, Guangzhi; Li, Yang; He, Chi; Hao, Zhengping

    2016-01-01

    We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au-TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface. Such vacancies are essential for generating active oxygen species (*O(-)) on the TiO2 surface and Ti(3+) ions in bulk TiO2. These ions can then form Ti(3+)-O(-)-Ti(4+) species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials. Copyright © 2015. Published by Elsevier B.V.

  2. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-04-15

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations.

  3. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    International Nuclear Information System (INIS)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D.

    2012-01-01

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations

  4. Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.

    Science.gov (United States)

    Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun

    2018-01-01

    Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions in nitric and perchloric acid solutions

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Astafurova, L.N.

    1991-01-01

    Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions are studied spectrometrically. It is shown that even at small oxalate concentrations a notable effect of tetravalent uranium stabilization is observed relatively to the oxidation with nitrous acid. In case of a significant excess of oxalate-ions the oxidation rate will be considerably slower as a result of the formation of U(4) bisoxalate complex

  6. Repair of oxidative DNA damage by amino acids.

    Science.gov (United States)

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  7. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  8. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements

  9. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    Science.gov (United States)

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  10. Deuterium oxide as a tool for the study of amino acid metabolism

    International Nuclear Information System (INIS)

    Mitra, R.; Burton, J.; Varner, J.E.

    1976-01-01

    We have used deuterium oxide in nontoxic concentrations to study, in intact seedlings, the biosynthesis of amino acids. The extent and pattern of deuteration, as determined by a gas--liquid chromatograph--mass spectrometer system, permits conclusions about the biosynthesis of individual amino acids and also about their exposure to transaminases and other enzymes that might introduce deuterium into specific positions of the amino acid by exchange. This method could be used to study amino acid biogenesis in any organism that can tolerate 20 to 40 percent deuterium oxide for a period of a few hours to a few days

  11. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    Science.gov (United States)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant

  12. Folic Acid for the Prevention of Neural Tube Defects : US Preventive Services Task Force Recommendation Statement

    NARCIS (Netherlands)

    Calonge, Ned; Petitti, Diana B.; DeWitt, Thomas G.; Dietrich, Allen J.; Gregory, Kimberly D.; Grossman, David; Isham, George; LeFevre, Michael L.; Leipzig, Rosanne M.; Marion, Lucy N.; Melnyk, Bernadette; Moyer, Virginia A.; Ockene, Judith K.; Sawaya, George F.; Schwartz, J. Sanford; Wilt, Timothy

    2009-01-01

    Description: In 1996, the U. S. Preventive Services Task Force (USPSTF) recommended that all women planning or capable of pregnancy take a multivitamin supplement containing folic acid for the prevention of neural tube defects. This recommendation is an update of the 1996 USPSTF recommendation.

  13. Electron donating and acid-base properties of cerium oxide and its mixed oxides with alumina

    International Nuclear Information System (INIS)

    Sugunan, S.; Jalaja, J.M.

    1994-01-01

    The electron donating properties of cerium oxide activated at 300, 500 and 800 degC and of its mixed oxides with alumina were examined based on the adsorption of electron acceptors exhibiting different electron affinities. The surface acidity/basicity of the oxides was determined by titrimetry; the H 0,max values are given. The limit of electron transfer from the oxide surface lies within the region of 1.77 and 2.40 eV in terms of the electron affinity of the electron acceptor. Cerium oxide promotes the electron donor nature of alumina while leaving the limit of electron transfer unchanged. 2 tabs., 4 figs., 13 refs

  14. Oxidative degradation of ion-exchange resins in acid medium. Vol. 3

    International Nuclear Information System (INIS)

    Eskander, S.B.; Ghattas, N.K.

    1996-01-01

    Volume reduction of spent ion-exchange resins used in nuclear facilities receive increasing importance due to the increase in storage cost, unstable physical and chemical properties and their relatively high specific activity (in some cases up to 1 Ci per liter). The present study is part of research program on the treatment and immobilization of radioactive spent ion-exchange resins simulate; hydrogen peroxide was used for the oxidative degradation of spent ion-exchange resins simulate in sulphuric acid medium. Five liters ring digester developed in Karlsruhe nuclear research center-(KFK)- in germany was the chosen option to perform the oxidation process. The work reported focused on the kinetics and mechanism of the oxidation process. Heating the organic resins in sulphuric acid results in its carbonization and partial oxidation of only 1.7% of the carbon added. Results show that the oxidation reaction is a relatively slow process of first order with K value in the order of 10 -4 min -1 , and the main oxidation product was carbon dioxide. The production of carbon oxide in the off gas stream increased sharply by the addition of hydrogen peroxide to the hot sulphuric acid-resin mixture. The results obtained show that more than 97% of the carbon added was oxidized to carbon dioxide and carbon monoxide. The rate constant value (K) of this reaction was calculated to be (1.69±0.13) x 10 -2 min -1 . The results of gas chromatographic analysis indicate that no significant amounts of hazardous organic materials were detected in the off-gas streams. 6 figs., 4 tabs

  15. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  16. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  17. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  18. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  19. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum.

    Science.gov (United States)

    Oliw, Ernst H; Hamberg, Mats

    2017-08-01

    Fungi can produce jasmonic acid (JA) and its isoleucine conjugate in large quantities, but little is known about the biosynthesis. Plants form JA from 18:3 n -3 by 13 S -lipoxygenase (LOX), allene oxide synthase, and allene oxide cyclase. Shaking cultures of Fusarium oxysporum f. sp. tulipae released over 200 mg of jasmonates per liter. Nitrogen powder of the mycelia expressed 10 R -dioxygenase-epoxy alcohol synthase activities, which was confirmed by comparison with the recombinant enzyme. The 13 S -LOX of F. oxysporum could not be detected in the cell-free preparations. Incubation of mycelia in phosphate buffer with [17,17,18,18,18- 2 H 5 ]18:3 n -3 led to biosynthesis of a [ 2 H 5 ]12-oxo-13-hydroxy-9 Z ,15 Z -octadecadienoic acid (α-ketol), [ 2 H 5 ]12-oxo-10,15 Z -phytodienoic acid (12-OPDA), and [ 2 H 5 ]13-keto- and [ 2 H 5 ]13 S -hydroxyoctadecatrienoic acids. The α-ketol consisted of 90% of the 13 R stereoisomer, suggesting its formation by nonenzymatic hydrolysis of an allene oxide with 13 S configuration. Labeled and unlabeled 12-OPDA were observed following incubation with 0.1 mM [ 2 H 5 ]18:3 n -3 in a ratio from 0.4:1 up to 47:1 by mycelia of liquid cultures of different ages, whereas 10 times higher concentration of [ 2 H 5 ]13 S -hydroperoxyoctadecatrienoic acid was required to detect biosynthesis of [ 2 H 5 ]12-OPDA. The allene oxide is likely formed by a cytochrome P450 or catalase-related hydroperoxidase. We conclude that F. oxysporum , like plants, forms jasmonates with an allene oxide and 12-OPDA as intermediates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. The association between low-grade inflammation, iron status and nucleic acid oxidation in the elderly

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Siersma, Volkert Dirk; Andersen, Jon T

    2011-01-01

    This study applied a case-control approach to investigate the association between low-grade inflammation, defined by high values within the normal range of C-reactive protein (CRP) and interleukin-6 (IL-6), and urinary markers of nucleic acid oxidation. No differences in excretion of urinary...... markers of nucleic acid oxidation between cases and controls were found and multivariable linear regression analysis showed no association between urinary markers of nucleic acid oxidation and inflammatory markers. Post-hoc multivariable linear regression analysis showed significant associations between...... suggest that low-grade inflammation only has a negligible impact on whole body nucleic acid oxidation, whereas iron status seems to be of great importance....

  1. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-01-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO 2 , ZnO and ZrO 2 ) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO 2 (rutile and anatase), ZnO and ZrO 2 . • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained

  2. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    International Nuclear Information System (INIS)

    Anstey, Andrew; Vivekanandhan, Singaravelu; Rodriguez-Uribe, Arturo; Misra, Manjusri; Mohanty, Amar Kumar

    2016-01-01

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  3. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Andrew [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Vivekanandhan, Singaravelu [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Sustainable Materials and Nanotechnology Lab, Department of Physics, VHNSN College, Virudhunagar 626 001, Tamilnadu (India); Rodriguez-Uribe, Arturo [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Mohanty, Amar Kumar, E-mail: mohanty@uoguelph.ca [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2016-04-15

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  4. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  5. Gallic Acid Grafted Chitosan Has Enhanced Oxidative Stability in Bulk Oils.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Mi-Ja; Lee, JaeHwan

    2017-07-01

    Gallic acid (GA) was grafted in chitosan and the effects of GA grafted chitosan (GA-g-CS) on the oxidative stability in bulk oil was tested at 60 and 140 °C. To text oxidative stability in oils, headspace oxygen content, conjugated dienoic acid (CDA) value, p-anisidine value (p-AV), and acid value were determined. Chitosan itself did not show antioxidative or prooxidative effects in oils at 60 °C. However, GA-g-CS and GA acted as antioxidants at 60 °C. At 140 °C heating with moisture supplied condition, different results were observed. GA-g-CS acted as antioxidants based on the results of CDA and p-AV. However, chitosan showed the highest oxidative stability based on results of acid value and brown color formation at 140 °C. This could be due to reduction of moisture content by chitosan. GA was continuously released from GA-g-CS in bulk oil. This might have provided extra antioxidant activities to oils. © 2017 Institute of Food Technologists®.

  6. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    Science.gov (United States)

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  7. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  8. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  9. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    International Nuclear Information System (INIS)

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D.

    1990-01-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of [1- 14 C]palmitic acid but not that of [1- 14 C]palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of [1- 14 C]palmitic acid and markedly inhibited the beta oxidation of [1- 14 C]octanoic acid and [1- 14 C]butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of [ 14 C]CO 2 from [1- 14 C]fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids

  10. Effect of impaired fatty acid oxidation on myocardial kinetics of 11C- and 123I-labelled fatty acids

    International Nuclear Information System (INIS)

    Lerch, R.

    1986-01-01

    Positron emission tomography with palmitate 11 C and single photon imaging with terminally radioiodinated fatty acid analogues (FFA 123 I) were evaluated for the noninvasive assessment of regional myocardial fatty acid metabolism during ischaemia. Decreased uptake of tracer and delayed clearance of activity in the ischaemic myocardium were reported for both 11 C- and 123 I-labelled compounds. However, since during ischaemia both myocardial blood flow and oxidative metabolism are reduced concomitantly, either factor can be responsible for the changes observed. Experimental preparations in which fatty acid metabolism can be modified independently of flow are helpful for the characterization of the relationship between metabolism and myocardial kinetics of labelled fatty acids. Results obtained during flow-independent inhibition of fatty acid oxidation include the following observations: - In dogs with controlled coronary perfusion the rate of clearance of palmitate 11 C-activity is decreased during diminished delivery of oxygen, regardless of whether myocardial perfusion is concomitantly reduced or not. - In isolated rabbit hearts perfused at normal flow, the extraction of FFA 123 I is decreased during hypoxia. - During pharmacological inhibition of fatty acid oxidation the deiodination of FFA 123 I is markedly reduced in rat hearts in vivo and in vitro. (orig.)

  11. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    Science.gov (United States)

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  13. New fundamental defects in a-SiO2

    International Nuclear Information System (INIS)

    Karna, S.P.; Kurtz, H.A.; Shedd, W.M.; Pugh, R.D.; Singaraju, B.K.

    1999-01-01

    Throughout the three decades of research into radiation-induced degradation of metal-oxide-semiconductor (MOS) devices, investigators understood that point defects in the Si-SiO 2 structure (localized deviations from stoichiometrically pure Si and SiO 2 ) are responsible for many observed anomalies. Basic research in this area has progressed along two tracks: (i) differentiating the anomalies based upon subtle differences in their characteristic behavior, and (ii) precise description of the defects responsible for the anomalous behavior. These two research tracks are complementary since often a discovery in one area provides insight and ultimately leads to discoveries in the other. Here, the atomic structure and spin properties of two previously undescribed amorphous silicon dioxide fundamental point defects have been characterized for the first time by ab initio quantum mechanical calculations. Both defects are electrically neutral trivalent silicon centers in the oxide. One of the defects, the X-center, is determined to have an O 2 Sitriple b ondSi ↑ atomic structure. The other defect, called the Y-center, is found to have an OSi 2 triple b ondSi ↑ structure. Calculated electronic and electrical properties of the new defect centers are consistent with the published characteristics of the oxide switching trap or border trap precursors

  14. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material

    OpenAIRE

    NICOLOSI, VALERIA

    2010-01-01

    PUBLISHED Graphene nanoflakes (GNFs) with average diameters of 30 nm have been prepared by a single-step oxidation procedure using single-wall carbon nanotube arc-discharge material and nitric acid. The GNFs are predominately single sheets containing a small number of internal defects. The edges are decorated with primarily carboxylic acid groups which allow facile chemical functionalisation and cross-linking of the fragments using multivalent cations

  15. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  16. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  17. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    Science.gov (United States)

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  18. Defect engineering in 1D Ti-W oxide nanotube arrays and their correlated photoelectrochemical performance.

    Science.gov (United States)

    Abdelhafiz, Ali A; Ganzoury, Mohamed A; Amer, Ahmad W; Faiad, Azza A; Khalifa, Ahmed M; AlQaradawi, Siham Y; El-Sayed, Mostafa A; Alamgir, Faisal M; Allam, Nageh K

    2018-04-18

    Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.

  19. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  20. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  1. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  2. Role Of Ascorbic Acid In Imparting Tolerance To Plants Against Oxidizing Pollutants

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2015-08-01

    Full Text Available Ascorbic acid is an antioxidant in plants which play important role in activation of many physiological and defense mechanisms. The level of ascorbic acid in plants is determinant of its tolerance against the adverse effect of oxidizing pollutants. The present study tries to relate the variation in ascorbic acid content with the tolerance and sensitivity of two selected plant species viz. Azadirachtaindica and Pongamiapinnata by calculating their Air Pollution Tolerance Index APTI during winter season from November to March in the urban city Delhi of North India. Moreover ascorbic acid is also an important part of chloroplast it protects different components of photosynthetic system from oxidative stress. Thus to understand the role of ascorbic acid in imparting tolerance to plants against oxidizing pollutants the changes in chlorophyll content of the selected plant species with variation in ambient ozone concentration was analysed. It was found that as per APTI values Azadirachta sp. came under tolerant range with highest ascorbic acid content whereas Pongamia sp. was under intermediate range with less ascorbic acid content. It was statistically established that ozone has no significant relation with chlorophyll content of Azadirachta sp. which has the highest ascorbic acid content. Whereas ambient ozone concentrations showed significant negative relation with the chlorophyll content of Pongamia sp. p 0.05. Thus it was observed that the plants with high ascorbic acid content are tolerant and have greater ability to remediate pollutants.

  3. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise

    NARCIS (Netherlands)

    Romijn, J. A.; Coyle, E. F.; Sidossis, L. S.; Zhang, X. J.; Wolfe, R. R.

    1995-01-01

    To evaluate the extent to which decreased plasma free fatty acid (FFA) concentration contributes to the relatively low rates of fat oxidation during high-intensity exercise, we studied FFA metabolism in six endurance-trained cyclists during 20-30 min of exercise [85% of maximal O2 uptake (VO2max)].

  4. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. (Unite de Recherches de Physiolopathologie Hepatique (INSERM U-24), Hopital Beaujon, Clichy (France))

    1990-11-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of (1-{sup 14}C)palmitic acid but not that of (1-{sup 14}C)palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of (1-{sup 14}C)palmitic acid and markedly inhibited the beta oxidation of (1-{sup 14}C)octanoic acid and (1-{sup 14}C)butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of ({sup 14}C)CO{sub 2} from (1-{sup 14}C)fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids.

  5. Charged defects during alpha-irradiation of actinide oxides as revealed by Raman and luminescence spectroscopy

    International Nuclear Information System (INIS)

    Mohun, R.; Desgranges, L.; Léchelle, J.; Simon, P.; Guimbretière, G.; Canizarès, A.; Duval, F.; Jegou, C.; Magnin, M.; Clavier, N.; Dacheux, N.; Valot, C.; Vauchy, R.

    2016-01-01

    We have recently evidenced an original Raman signature of alpha irradiation-induced defects in UO 2 . In this study, we aim to determine whether the same signature also exists in different actinide oxides, namely ThO 2 and PuO 2 . Sintered UO 2 and ThO 2 were initially irradiated with 21 MeV He 2+ ions using a cyclotron device and were subjected to an in situ luminescence experiment followed by Raman analysis. In addition, a PuO 2 sample which had accumulated self-irradiation damage due to alpha particles was investigated only by Raman measurement. Results obtained for the initially white ThO 2 showed that a blue color appeared in the irradiated areas as well as luminescence signals during irradiation. However, Raman spectroscopic analysis showed the absence of Raman signature in ThO 2 . In contrast, the irradiated UO 2 and PuO 2 confirmed the presence of the Raman signature but no luminescence peaks were observed. The proposed mechanism involves electronic defects in ThO 2 , while a coupling between electronic defects and phonons is required to explain the Raman spectra for UO 2 and PuO 2 .

  6. Dissolution study of thorium-uranium oxides in aqueous triflic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bulemela, E.; Bergeron, A.; Stoddard, T. [Canadian Nuclear Laboratories - CNL, 286 Plant Rd., Chalk River, Ontario, K0J 1J0 (Canada)

    2016-07-01

    The dissolution of sintered mixed oxides of thorium with uranium in various concentrations of trifluoromethanesulfonic (triflic) acid solutions was investigated under reflux conditions to evaluate the suitability of the method. Various fragment sizes (1.00 mm < x < 7.30 mm) of sintered (Th,U)O{sub 2} and simulated high-burnup nuclear fuel (SIMFUEL) were almost completely dissolved in a few hours, which implies that triflic acid could be used as an alternative to the common dissolution method, involving nitric acid-hydrofluoric acid mixture. The influence of acid concentration, composition of the solids, and reaction time on the dissolution yield of Th and U ions was studied using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The dissolution rate was found to depend upon the triflic acid concentration and size of the solid fragments, with near complete dissolution for the smallest fragments occurring in boiling 87% w/w triflic acid. The formation of Th and U ions in solution appears to occur at the same rate as the triflic acid simultaneously reacts with the constituent oxides as evidenced by the results of a constant U/Th concentration ratio with the progress of the dissolution. (authors)

  7. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  8. The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    Yuan; Bu; Wenle; Dai; Nan; Li; Xinran; Zhao; Xia; Zuo

    2013-01-01

    The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid.

  9. Intrinsic defect oriented visible region absorption in zinc oxide films

    Science.gov (United States)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  10. Defect pair formation in fluorine and nitrogen codoped TiO2

    Science.gov (United States)

    Kordatos, A.; Kelaidis, N.; Chroneos, A.

    2018-04-01

    Titanium oxide is extensively investigated because of its high chemical stability and its photocatalytic properties; nevertheless, the large band gap limits its activity to a small portion of the solar spectrum. Nitrogen and fluorine codoping is an efficient defect engineering strategy to increase the photocatalytic activity of titanium oxide. In the present study, we apply density functional theory to investigate the interaction of nitrogen with fluorine and the formation of defect pairs. We show that in fluorine and nitrogen codoped titanium oxide, the FiNi, FONi, and FiNTi defects can form. Their impact on the electronic structure of titanium oxide is discussed.

  11. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  12. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    Science.gov (United States)

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  13. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  14. Point defects and irradiation in oxides: simulations at the atomic scale; Defauts ponctuels et irradiation dans les oxydes: simulation a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Crocombette, J.P

    2005-12-15

    The studies done by Jean-Paul Crocombette between 1996 and 2005 in the Service de Recherches de Metallurgie Physique of the Direction de l'Energie Nucleaire in Saclay are presented in this Habilitation thesis. These works were part of the material science researches on the ageing, especially under irradiation, of oxides of interest for the nuclear industry. In this context simulation studies at the atomic scale were performed on two elementary components of ageing under irradiation : point defects and displacement cascades ; using two complementary simulation techniques : ab initio electronic structure calculations and empirical potential molecular dynamics. The first part deals with point defects : self defects (vacancies or interstitials) or hetero-atomic dopants. One first recalls the energetics of such defects in oxides, the specific features of defects calculations and the expected accuracy of these calculations. Then one presents the results obtained on uranium dioxide, oxygen in silver and amorphous silica. The second part tackles the modelling of disintegration recoil nuclei in various?displacement cascades created by crystalline matrices for actinide waste disposal. Cascade calculations give access to the amorphization mechanisms under irradiation of these materials. One thus predicts that the amorphization in zircon takes place directly in the tracks whereas in lanthanum zirconate, the amorphization proceeds through the accumulation of point defects. Finally the prospects of these studies are discussed. (author)

  15. Relationship between Photocatalytic Activity and Ti{sup 3+} Defects in Acid-Leached Titanium Dioxide / Hydroxyapatite Composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y; Rachi, T; Okuda, T; Yokouchi, M; Kamimoto, Y [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, 705-1 Shimo-imaizumi, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Okada, K, E-mail: ono-y@kanagawa-iri.go.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku, Yokohama 226-8503 (Japan)

    2011-10-29

    Effect of Ti{sup 3+} defect density on the photocatalytic activity was investigated using electron spin resonance (ESR) spectroscopy under UV irradiation at 103K. The Ti{sup 3+} signal intensity decreased with increasing heating temperature for the TiO{sub 2} powders prepared by hydroxyapatite (HAp) precipitation, heating and acid leaching process. The Ti{sup 3+} defect density of the TiO{sub 2} powder heat-treated at 700 deg. C was found to be about half that of the starting material, P25, without anatase-to-rutile phase transformation based on the results of X-ray diffraction. The photocatalytic activity of the TiO{sub 2} powder determined from the change of methylene blue concentration under UV irradiation became higher with decreasing of the Ti{sup 3+} defects without a significant change in the anatase ratio and specific surface area during the heat treatment.

  16. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  17. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring "1"4C–CO_2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  18. In vitro adsorption of oxalic acid and glyoxylic acid onto activated charcoal, resins and hydrous zirconium oxide

    NARCIS (Netherlands)

    Scholtens, R.; Scholten, J.; de Koning, H. W.; Tijssen, J.; ten Hoopen, H. W.; Olthuis, F. M.; Feijen, J.

    1982-01-01

    Patients suffering from primary hyperoxaluria show elevated plasma concentrations of oxalic acid and glyoxylic acid. The in vitro adsorption of these compounds into activated charcoal, a series of neutral and ion exchange resins and onto hydrous zirconium oxide has been investigated. Hydrous

  19. Mediterranean diet, folic acid, and neural tube defects.

    Science.gov (United States)

    Fischer, Maximilian; Stronati, Mauro; Lanari, Marcello

    2017-08-17

    The Mediterranean diet has been for a very long time the basis of food habits all over the countries of the Mediterranean basin, originally founded on rural models and low consumption of meat products and high-fat/high-processed foods. However, in the modern era, the traditional Mediterranean diet pattern is now progressively eroding due to the widespread dissemination of the Western-type economy, life-style, technology-driven culture, as well as the globalisation of food production, availability and consumption, with consequent homogenisation of food culture and behaviours. This transition process may affect many situations, including pregnancy and offspring's health. The problem of the diet during pregnancy and the proper intake of nutrients are nowadays a very current topic, arousing much debate. The Mediterranean dietary pattern, in particular, has been associated with the highest risk reduction of major congenital anomalies, like the heterogeneous class of neural tube defects (NTDs). NTDs constitute a major health burden (0.5-2/1000 pregnancies worldwide) and still remain a preventable cause of still birth, neonatal and infant death, or significant lifelong disabilities. Many studies support the finding that appropriate folate levels during pregnancy may confer protection against these diseases. In 1991 one randomised controlled trial (RCT) demonstrated for the first time that periconceptional supplementation of folic acid is able to prevent the recurrence of NTDs, finding confirmed by many other subsequent studies. Anyway, the high rate of unplanned/unintended pregnancies and births and other issues hindering the achievement of adequate folate levels in women in childbearing age, induced the US government and many other countries to institute mandatory food fortification with folic acid. The actual strategy adopted by European Countries (including Italy) suggests that women take 0,4 mg folic acid/die before conception. The main question is which intervention

  20. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum

    International Nuclear Information System (INIS)

    Cames, B.

    1997-01-01

    In nuclear fuel processing by the PUREX process, the purification of plutonium in nitric acid medium requires the oxidation of Pu(III) to Pu(IV), and of hydrazinium nitrate to nitrogen. The study helped to characterize the electrochemical behavior of the oxidation of hydrazinium nitrate and the reduction of nitric acid to nitrous acid, a compound which can chemically oxidize hydrazinium nitrate and Pu(III). Electro-analytical studies on polycrystalline platinum showed that hydrazine is oxidized in two potential zones, which depend on the surface texture of the platinum anode. Electrolysis in separate compartments, carried out in medium-acid media (2 and 4 mo/l) in the potential zone where these processes take place, showed that, at 0.9 V/ECS, the hydrazine oxidation reactions involved are: a four-electron process (75 %) with nitrogen formation and a one-electron process (25 %) with formation of nitrogen and ammonium ion. By contrast, electrolysis carried out at 0.65 V/ECS (with reactivation of the electrode at - 0.2 V/ECS to remove the poison from the platinum) allowed the selective oxidation of hydrazine to nitrogen by the four-electron reaction. Nitric acid can only be reduced to nitrous acid in the absence of hydrazine. For medium-acid media (≤ 6 mol/l), this reaction takes place at potentials below - 0.2 V/ECS. However, the production rate of nitrous acid (partial order 0 with respect to nitric acid) is very low compared with the values obtained for strongly-acid media (6 to 10 mol/l) at the potential of - 0.1 V/ECS. Note that, in concentrated nitric medium, the selectivity of the reduction reaction is 47 to 85 % for nitrous acid, depending on the nitric acid concentration (6 to 10 mol/l) and the potential imposed (- 0.1 ≤ E ≤ 0.6 V/ECS). A kinetic study helped to determine the hydrazine oxidation rates as a function of the operating conditions. In all cases, the reaction rate is of partial order 0 with respect to hydrazine. These studies accordingly

  1. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees.

    Science.gov (United States)

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2014-10-01

    The quality of the coffee beverage is negatively affected by the presence of defective coffee beans and its evaluation still relies on highly subjective sensory panels. To tackle the problem of subjectivity, sophisticated analytical techniques have been developed and have been shown capable of discriminating defective from non-defective coffees after roasting. However, these techniques are not adequate for routine analysis, for they are laborious (sample preparation) and time consuming, and reliable, simpler and faster techniques need to be developed for such purpose. Thus, it was the aim of this study to evaluate the performance of infrared spectroscopic methods, namely FTIR and NIR, for the discrimination of roasted defective and non-defective coffees, employing a novel statistical approach. The classification models based on Elastic Net exhibited high percentage of correct classification, and the discriminant infrared spectra variables extracted provided a good interpretation of the models. The discrimination of defective and non-defective beans was associated with main chemical descriptors of coffee, such as carbohydrates, proteins/amino acids, lipids, caffeine and chlorogenic acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  3. Orphan drugs in development for long-chain fatty acid oxidation disorders: challenges and progress

    Directory of Open Access Journals (Sweden)

    Sun A

    2015-04-01

    Full Text Available Angela Sun, J Lawrence Merritt II Department of Pediatrics, University of Washington, Seattle, WA, USA Abstract: Fatty acid oxidation disorders are inborn errors of metabolism resulting in failure of ß-oxidation within or transport of fatty acids into the mitochondria. The long-chain fatty acid oxidation disorders are characterized by variable presentations ranging from newborn cardiomyopathy, to infantile hypoketotic hypoglycemia resulting from liver involvement, to skeletal myopathy often resulting in rhabdomyolysis in adolescents and adults. Treatments for these long-chain fatty acid oxidation disorders have typically focused upon avoidance of fasting with dietary fat restriction and medium-chain triglyceride supplementation. These treatments have resulted in only a partial response with improvements in hypoglycemia, reduction in frequency of rhabdomyolysis, and improvement in cardiomyopathy with early therapy, but significant risk remains. Recent advances in therapies for long-chain fatty acid oxidation disorders are reviewed in this article. These include sodium D,L-3-hydroxybutyrate, triheptanoin, gene therapy, and bezafibrates. Sodium D,L-3-hydroxybutyrate has shown clinical effect, with improvements in muscle tone, neurological abnormalities, and some cases of cardiomyopathy and leukodystrophy. Triheptanoin has been used as an alternative medium-chain triglyceride in a number of fatty acid oxidation disorders and has shown promising findings in the treatment of cardiomyopathy and hypoglycemia. However, it does not significantly reduce episodes of rhabdomyolysis. Gene therapy has been shown to improve acylcarnitine levels in very-long-chain acyl-coenzyme A dehydrogenase deficiency mouse models, with preservation of glucose levels. Bezafibrates have shown improvements in acylcarnitine concentrations in fibroblast studies, but clinical observations have not demonstrated consistent effects. Together, these treatments have shown some

  4. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  5. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  6. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  7. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Indian Academy of Sciences (India)

    Unknown

    The organic acids were commercial products of the highest degree of purity .... reaction is not complete even at high concentration of ZnCl2, and that only the ... activation in the oxidation of oxalic acid suggests the involvement of both the ...

  8. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  9. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Verma, G S.P. [Ranchi Coll. (India). Dept. of Chemistry

    1975-12-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber.

  10. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  11. Identification of biochemical features of defective Coffea arabica L. beans.

    Science.gov (United States)

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  12. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    International Nuclear Information System (INIS)

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  13. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  14. Primary oxidation and reduction products in x-irradiated aspartic acid

    International Nuclear Information System (INIS)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-01-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine

  15. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Science.gov (United States)

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  16. Ultra-low power thin film transistors with gate oxide formed by nitric acid oxidation method

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kim, W. B.; Matsumoto, T.

    2011-01-01

    We have developed a low temperature fabrication method of SiO 2 /Si structure by use of nitric acid, i.e., nitric acid oxidation of Si (NAOS) method, and applied it to thin film transistors (TFT). A silicon dioxide (SiO 2 ) layer formed by the NAOS method at room temperature possesses 1.8 nm thickness, and its leakage current density is as low as that of thermally grown SiO 2 layer with the same thickness formed at ∼900 deg C. The fabricated TFTs possess an ultra-thin NAOS SiO 2 /CVD SiO 2 stack gate dielectric structure. The ultrathin NAOS SiO 2 layer effectively blocks a gate leakage current, and thus, the thickness of the gate oxide layer can be decreased from 80 to 20 nm. The thin gate oxide layer enables to decrease the operation voltage to 2 V (cf. the conventional operation voltage of TFTs with 80 nm gate oxide: 12 V) because of the low threshold voltages, i.e., -0.5 V for P-ch TFTs and 0.5 V for N-ch TFTs, and thus the consumed power decreases to 1/36 of that of the conventional TFTs. The drain current increases rapidly with the gate voltage, and the sub-threshold voltage is ∼80 mV/dec. The low sub-threshold swing is attributable to the thin gate oxide thickness and low interface state density of the NAOS SiO 2 layer. (authors)

  17. Potentiometric studies of acid-base interactions in substituted 4-nitropyridine N-oxide systems

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Ostrzechowska, Agnieszka; Makowski, Mariusz; Chmurzynski, Lech

    2006-01-01

    (Acid+base) equilibrium constants, involving the acidity (pK a AC ) and cationic homoconjugation constants (in the form of lgK BHB + AC ), have been determined by the potentiometric method in 13 systems formed by substituted 4-nitropyridine N-oxides in the polar aprotic solvent, acetone (AC). The derivatives covered a wide range of proton-acceptor properties and inherent diversified tendencies towards formation of hydrogen-bonded homocomplexed cations. In addition, the constant values (expressed as pK a AN andlgK BHB + AN ) for two of the systems studied, N-oxides of 2-methylamino- and 2-ethylamino-4-nitropyridine, were determined in acetonitrile (AN). The acidity constants in the non-aqueous media studied have been found to change in line with their substituent effects and the sequence of acidity changes in water. The values of the cationic homoconjugation constants increased with increasing basicity of the N-oxides and decreased with increasing solvent basicity

  18. Potentiometric studies of acid-base interactions in substituted 4-nitropyridine N-oxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Ostrzechowska, Agnieszka [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    (Acid+base) equilibrium constants, involving the acidity (pK{sub a}{sup AC}) and cationic homoconjugation constants (in the form of lgK{sub BHB{sup +}}{sup AC}), have been determined by the potentiometric method in 13 systems formed by substituted 4-nitropyridine N-oxides in the polar aprotic solvent, acetone (AC). The derivatives covered a wide range of proton-acceptor properties and inherent diversified tendencies towards formation of hydrogen-bonded homocomplexed cations. In addition, the constant values (expressed as pK{sub a}{sup AN}andlgK{sub BHB{sup +}}{sup AN}) for two of the systems studied, N-oxides of 2-methylamino- and 2-ethylamino-4-nitropyridine, were determined in acetonitrile (AN). The acidity constants in the non-aqueous media studied have been found to change in line with their substituent effects and the sequence of acidity changes in water. The values of the cationic homoconjugation constants increased with increasing basicity of the N-oxides and decreased with increasing solvent basicity.

  19. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  20. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    International Nuclear Information System (INIS)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei; Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi; Yamauchi, Jun

    2014-01-01

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N 2 atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies

  1. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro; Ishihara, Noritaka; Oota, Masashi; Nakashima, Motoki; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device, Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan); Yamauchi, Jun [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Emeritus Professor of Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502 (Japan)

    2014-04-28

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the latter signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.

  2. 3D imaging of intrinsic crystalline defects in zinc oxide by spectrally resolved two-photon fluorescence microscopy

    Science.gov (United States)

    Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.

    2017-05-01

    We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.

  3. Critical evaluation of pressurized microwave-assisted digestion efficiency using nitric acid oxidizing systems (M7)

    International Nuclear Information System (INIS)

    Matusiewicz, H.

    2002-01-01

    Full text: The possibilities of enhancement of a medium-pressure microwave-assisted digestion system for sample preparation in trace element analysis of biological material was investigated. Based on optimal digestion conditions for oxidizing systems with nitric acid, different digestion procedures were examined to minimize residual carbon. The substitution of nitric acid and the addition of hydrogen peroxide and ozone to nitric acid was evaluated. The residual carbon content of the digestate was determined coulometrically. Addition of hydrogen peroxide during organic oxidation reactions does not lower the resolved carbon in the solution. Ozone was tested as an additional, potentially non-contaminating, digestion/oxidation system to the nitric acid used in the sample preparation method. (author)

  4. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  5. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  6. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  7. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  8. Densification of ∼5 nm-thick SiO_2 layers by nitric acid oxidation

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Joo, Soyeong; Park, Tae Joo; Kim, Woo-Byoung

    2017-01-01

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO_2 layer has been decreased about three orders of magnitude by densification. • The densification of SiO_2 layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N_f) and defect state (N_d) in SiO_2/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ_t) is increased because of the increase of atomic density in SiO_2 layer. - Abstract: Low-temperature nitric acid (HNO_3) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO_2/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10"−"5 A/cm"2. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10"−"8 A/cm"2) approximately three orders of magnitude less than the as-grown SiO_2 layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si"1"+, Si"2"+ and Si"3"+) in the SiO_2/Si interface, as well as a decrease in the equilibrium density of defect sites (N_d) and fixed charge density (N_f). The barrier height (Φ_t) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO_2 layer in combination with the removal of OH species and increase in interfacial properties at the SiO_2/Si interface.

  9. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    OpenAIRE

    Haghighat Mamaghani, Alireza; Fatemi, Shohreh; Asgari, Mehrdad

    2013-01-01

    An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was ...

  10. Electrochemical behavior of thin anodic oxide films on Zircaloy-4: Role of the mobile defects

    International Nuclear Information System (INIS)

    Salot, R.; Lefebvre-Joud, F.; Baroux, B.

    1996-01-01

    The first stages of the electrochemical oxidation of Zircaloy-4 are investigated using simple electrochemical tests and modeling the passive film modifications occurring as a result of contact with the electrolyte. Variations in electrode potential (open-circuit conditions) or current density (potentiodynamic scans) can be simply explained by a high field (F ∼ 10 6 V/cm) assisted passive film growth. Under open-circuit conditions, this field does not vary with exposure time (in the 2 h to 48 h range). The minimum electric field for the onset of high-field behavior is also evaluated and found smaller than the theoretical value which can be explained by a variation in the concentration of mobile defects throughout the film. Measurements of the electrode potential decay after a potentiodynamic scan confirm this model, allowing interpretation of the film modification as a combination of two separate phenomena: film growth under a high electric field and point defect annihilation

  11. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine

    2012-01-01

    Abstract The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immun...

  12. Point defects and oxidation mechanism in cubic boron nitride

    International Nuclear Information System (INIS)

    Gorshin, A.P.; Shvajko-Shvajkovskij, V.E.

    1994-01-01

    A theoretical analysis of the defect formation in boron nitride by the Schottky mechanism within the framework of the quasi-chemical approximation method is carried out. On the base of solution of the disordering equations at different conditions of electroneutrality are obtained the dependences of defect concentrations in β-BN on the partial nitrogen pressure in equilibrium conditions. Experimental checking of the theoretical analysis proposed confirms the hypothesis on the presence of defects of nonstoichiometric origin in the β-BN anion sublattice

  13. Evaluation of effectiveness of hyaluronic acid in combination with bioresorbable membrane (poly lactic acid-poly glycolic acid for the treatment of infrabony defects in humans: A clinical and radiographic study

    Directory of Open Access Journals (Sweden)

    Bhumika Sehdev

    2016-01-01

    Full Text Available Background: The combination of biomaterials, bone graft substitutes along with guided tissue regeneration (GTR has been shown to be an effective modality of periodontal regenerative therapy for infrabony defects. Therefore, the present randomized controlled clinical study was undertaken to evaluate the effectiveness of hyaluronic acid (HA in combination with bioresorbable membrane for the treatment of human infrabony defects. Materials and Methods: Twenty four infrabony defects in 20 systemically healthy patients were randomly assigned to test (HA in combination with bioresorbable membrane and control (bioresorbable membrane alone treatment groups. Probing pocket depth (PPD, relative attachment level, and relative gingival margin level were measured with a computerized Florida disc probe at baseline and at 6 months follow-up. Radiographic measurements were also evaluated at baseline and at 6 months of postsurgery. Results: At 6 months, the mean reduction in PPD in test group and control group was 4.52 mm and 2.97 mm, respectively. Significantly higher clinical attachment level with a gain of 2.20 mm was found in the test group as compared to control group. In addition, statistically significant greater reduction of radiographic defect depth was observed in the test group. Conclusion: Regenerative approach using hyaloss in combination with GTR for the treatment of human infrabony defects resulted in a significant added benefit in terms of CAL gains, PPD reductions and radiographic defect fill, as well as LBG, compared to the GTR alone.

  14. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    International Nuclear Information System (INIS)

    Kumar, Arvind; Verma, G.S.P.

    1975-01-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber. (author)

  15. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  16. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  17. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  18. On an aspect of kinetics both defects accumulation and gas absorption in an irradiated metals oxides

    International Nuclear Information System (INIS)

    Tuseev, T.; Polyakov, A.I.; Bitenbaev, M.I.

    2001-01-01

    In the work an analysis of experimental data during study both gases adsorption processes and radiation defects accumulation in irradiated (ultraviolet, gamma-, neutron-, alpha-particle- and proton radiation) in the oxides (SiO 2 , Al 2 O 3 , BeO, Se 2 O 3 , Dy 2 O 3 , La 2 O 3 , Er 2 O 3 ) is carried out. It is determined, that these processes are correlating with each other and equivalent kinetic equations for its description are proposed

  19. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    Science.gov (United States)

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  1. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  2. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    Science.gov (United States)

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect

    International Nuclear Information System (INIS)

    Jung, Ui-Won; Song, Kun-Young; Kim, Chang-Sung; Lee, Yong-Keun; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2007-01-01

    The purpose of this study was to evaluate the effects of a chitosan membrane coated with polylactic and polyglycolic acid (PLGA) on bone regeneration in a rat calvarial defect. Surgical implantation of chitosan membranes resulted in enhanced local bone formation at both 2 and 8 weeks. In conclusion, the chitosan membrane coated with PLGA had a significant potential to induce bone formation in the rat calvarial defect model. Within the selected PLGA dose range and observation intervals, there appeared to be no meaningful differences in bone formation

  5. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  6. Defect Characterization of Pyroelectric Materials

    National Research Council Canada - National Science Library

    Keeble, David

    2002-01-01

    Two methods for identify point defects applicable to the study of technologically relevant pyroelectric oxide materials have been investigated, namely Positron Annihilation Lifetime Spectroscopy (PALS...

  7. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.

    2008-01-01

    induced partial but significant mitochondrial fragmentation, whereas dissipation of mitochondrial membrane potential (D Psi m) provoked complete fragmentation, and glycolysis inhibition had no effect. Oxidative phosphorylation defective fibroblasts had essentially normal filamentous mitochondria under...... basal conditions, although when challenged some of them presented with mild alteration of fission or fusion efficacy. Severely defective cells disclosed complete mitochondrial fragmentation under glycolysis inhibition. In conclusion, mitochondrial morphology is modulated by D Psi m but loosely linked...... to mitochondrial oxidative phosphorylation. Its alteration by glycolysis, inhibition points to a severe oxidative phosphorylation defect. (C) 2008 Elsevier B.V. All rights reserved Udgivelsesdato: 2008/4...

  8. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  9. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO 2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because

  10. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  11. Investigation of UFO defect on DUV CAR and BARC process

    Science.gov (United States)

    Yet, Siew Ing; Ko, Bong Sang; Lee, Soo Man; May, Mike

    2004-05-01

    Photo process defect reduction is one of the most important factors to improve the process stability and yield in sub-0.18um DUV process. In this paper, a new approach to minimize the Deep-UV (DUV) Chemically Amplified Resist (CAR) and Bottom Anti-Reflective Coating (BARC) induced defect known as UFO (UnidentiFied Object) defect will be introduced. These defects have mild surface topography difference on BARC; it only exists on the wide exposed area where there is no photoresist pattern. In this test, Nikon KrF Stepper & Scanner and TEL Clean track were used. Investigation was carried out on the defect formulation on both Acetal and ESCAP type of photoresist while elemental analysis was done by Atomic Force Microscope (AFM) & Auger Electron Spectroscopy (AES). Result indicated that both BARC and photoresist induce this UFO defect; total defect quantity is related with Post Exposure Bake (PEB) condition. Based on the elemental analysis and process-split test, we can conclude that this defect is caused by lack of acid amount and low diffusivity which is related to PAG (Photo Acid Generator) and TAG (Thermal Acid Generator) in KrF photoresist and BARC material. By optimizing photoresist bake condition, this UFO defect as well as other related defect such as Satellite defect could be eliminated.

  12. A novel platform based on defect-rich knotted graphene nanotubes for detection of small biomolecules

    International Nuclear Information System (INIS)

    Lan, Shumin; Song, Yingpan; Chen, Qidi; Guo, Zhiyong; Zhan, Hongbing

    2016-01-01

    Highlights: • Curvature of the SC-CNTs’ cavities had more local pressure, leading to form k-GNTs. • k-GNTs are divided into sections by knots with abundant edge-plane sites/defects. • k-GNTs exhibited excellent catalytic activity, sensitivity and reproducibility. - Abstract: Detection of disease-related small biomolecules was of great significance for clinical diagnostics and treatment. In this work, we synthesized defect-rich knotted graphene nanotubes (k-GNTs) via chemical oxidative etching of stacked-up carbon nanotubes (SC-CNTs) followed by chemical reduction, to detect disease-related small biomolecules. We further studied the electrochemical properties using three representative redox probes and analyzed their biosensitivity using five biomolecules. The k-GNT-modified electrodes exhibited excellent electrochemical response, with the lowest ΔE p and the highest k 0 . Besides, the modified electrodes could simultaneously detect and discriminate between dopamine (DA), ascorbic acid and uric acid (UA), as well as differentiate phenethylamine (PEA) and epinephrine (EP) existed in newborn rat serum, providing the wide linear detection ranges with high sensitivities for DA, UA, PEA, and EP. These excellent electrocatalytic properties could be ascribe to the unique knotted graphene nanotube structure with high proportion of defect/edge sites, large, accessible, three-dimensional, accessible surface area, fewer oxygen-containing groups and doped N atoms. Our work reveals defect-rich k-GNTs as a promising platform for further applications in electrochemical biosensing and electrocatalysis.

  13. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2017-07-01

    Full Text Available The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD, we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L−/− mice. Paradoxically, Cpt2L−/− mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance.

  14. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  16. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  17. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    Science.gov (United States)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  18. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along......Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  19. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  20. Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition

    Directory of Open Access Journals (Sweden)

    Karolina Maria Wójciak

    2015-02-01

    Full Text Available Organic fermented sausages typically spoil during long-term storage due to oxidative rancidity. The application of natural antioxidants to meat stuffing is a major practice intended to inhibit the oxidation process and color changes. This study aimed to assess the effect of two unusual starter cultures: three probiotic strains (Lactobacillus casei LOCK 0900, Lactobacillus casei LOCK 0908 and Lactobacillus paracasei LOCK 0919 and lactic acid bacteria from acid whey on model fermented sausage type products focusing on oxidative stability by measuring instrumental color (L*, a*, b* values, conjugated dienes (CD, TBARS immediately after 21 days of ripening (0 and after 90 and 180 days of refrigerated storage (4 ºC. Determination of fatty acid composition, in meat product was performed after ripening and after 180 days of storage. At the end of the storage period, the salted sausages were characterized by the same content of polyunsaturated fatty acids (PUFA compared to cured samples. The addition of acid whey and a mixture of probiotic strains to nitrite-free sausage formulation was barely able to protect lipids against oxidation in comparison to nitrite during vacuum storage. Surprisingly, the use of acid whey has an influence on the desired red-pinkish color of organic fermented sausage after ripening and after 180 days of storage period.

  1. Oxidation of hydrogen peroxide by [Ni (cyclam)] in aqueous acidic ...

    Indian Academy of Sciences (India)

    Oxidation of hydrogen peroxide by tris(2,2 -bipyridine) and tris(4,4 -dimethyl-2,2 - bipyridine) complexes of osmium(III), iron(III), ruthenium(III), and nickel(III) studied in acidic and neutral aqueous media, show an inverse acid depen- dence over the pH the range 6.0–8.5.12 Kinetic mea- surements with an excess of H2O2 ...

  2. Quantification of Fatty Acid Oxidation Products Using On-line High Performance Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838

  3. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.

    Science.gov (United States)

    Cisternas, Pedro; Silva-Alvarez, Carmen; Martínez, Fernando; Fernandez, Emilio; Ferrada, Luciano; Oyarce, Karina; Salazar, Katterine; Bolaños, Juan P; Nualart, Francisco

    2014-05-01

    Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time- and dose-dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes. © 2014 International Society for Neurochemistry.

  4. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  5. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    Directory of Open Access Journals (Sweden)

    Alireza Haghighat Mamaghani

    2013-01-01

    Full Text Available An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was followed by a liquid-liquid extraction stage using acetonitrile as a polar solvent to remove produced sulfones from the model fuel. The impact of operating parameters including the molar ratio of formic acid to sulfur (, hydrogen peroxide to sulfur (, and the time of reaction was investigated using Box-Behnken experimental design for oxidation of the model fuel. A significant quadratic model was introduced for the sulfur removal as a function of effective parameters by the statistic analysis.

  6. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components.

    Science.gov (United States)

    Taniguchi, Yoshimasa; Matsukura, Yasuko; Taniguchi, Harumi; Koizumi, Hideki; Katayama, Mikio

    2015-01-01

    The bitter acids in hops (Humulus lupulus L.) and beer, such as α-, β-, and iso-α-acids, are known to affect beer quality and display various physiological effects. However, these compounds readily oxidize, and the effect of the oxides on the properties of beer or their potential health benefits are not well understood. In this study, we developed a simple preparative method for the bitter acid oxide fraction derived from hops and designated the constituents as matured hop bitter acids (MHBA). HPLC-PDA-ESI/HRMS and MS(2) revealed that MHBA are primarily composed of α-acid-derived oxides, which possess a common β-tricarbonyl moiety in their structures similar to α-, β-, and iso-α-acids. We also developed a quantitative analytical method of whole MHBA by HPLC, which showed high precision and reproducibility. Using our newly developed method, the concentration of whole MHBA in several commercial beers was evaluated. Our results will promote the study of bitter acid oxides.

  7. Kinetics and mechanism of the oxidation of some neutral and acidic ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of solvent composition indicate that the rate of reaction increases with increase in the po- larity of the medium. Addition of ... oxidation of several neutral and acidic α-amino ac- ids by TBATB in aqueous acetic acid solution, and the mechanistic aspects are discussed in this paper. 2. Experimental. 2.1 Materials.

  8. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  9. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  10. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  11. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  12. ANTIOXIDANT AND PRO-OXIDANT EFFECT OF ASCORBIC ACID

    Directory of Open Access Journals (Sweden)

    Goran Rankovic

    2005-01-01

    Full Text Available Free radicals attack proteins, lipids, enzymes and DNA causing pathological changes in organism. There are many mechanisms that organism uses to fight against free radicals. Ascorbic acid is one of the strongest reducers and eliminators of free radicals. It reduces stable oxygenic, azoth and thyol radicals and acts as a primary defense against water radicals in blood. When radicals are dissolved in water suspensions of erythrocytes and low density lipoproteins (LDL, ascorbic acid catches and eliminates free radicals before they arrive to the membrane and LDL molecules. Even though ascorbic acid is not capable of eliminating free radicals out of fluid medium, it acts as synergist to alpha-tocopherol in lipid section, contributes to the lessening of lipid tocoperoxil radicals, and above all, regenerates alpha-tocopherol. Ascorbic acid may act as pro-oxidant under in vitro conditions in the presence of metals; however, this effect is probably not important under in vivo conditions where metal ions, being sequestered, become second reducers.

  13. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.

    Science.gov (United States)

    Hermenean, Anca; Codreanu, Ada; Herman, Hildegard; Balta, Cornel; Rosu, Marcel; Mihali, Ciprian Valentin; Ivan, Alexandra; Dinescu, Sorina; Ionita, Mariana; Costache, Marieta

    2017-11-30

    Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.

  14. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  15. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  16. Cyclic voltammetric study of electro-oxidation of methanol on platinum electrode in acidic and neutral media

    International Nuclear Information System (INIS)

    Khan, A.S.A.; Ahmed, R.; Mirza, M.L.

    2007-01-01

    The electro-oxidation of methanol on electrochemically treated platinum foil was investigated in acidic and neutral media for comparison of cyclic voltammetric characteristics and elucidation of mechanism of electro-oxidation of methanol. The surface area and roughness factor of platinum electrode was calculated. The electro-oxidation of mathanol is an irreversible process giving. anodic peaks in both anodic and cathodic sweep. The characteristic peaks of electrooxidation of methanol appeared at almost the same potential region in both acidic and neutral media. In neutral medium, certain additional cathodic/anodic peaks appeared which were confirmed to arise by the reduction/oxidation of hydrogen ions. The exchange current density and heterogeneous electron transfer rate constant was higher in neutral medium as. compared with acidic medium. The thermodynamic parameters delta H, delta S, and delta G/sub 298/ were calculated. The values of delta H and delta G/sub 298/were positive which indicated that the process of electro-oxidation of methanol is an endothermic and nonspontaneous. The mechanism of electro-oxidation of methanol was same in both acidic and neutral media involving the formation of various adsorbed intermediate species through dissociative adsorption steps leading to the formation of Co adsorbed radicals, which are removed. during interaction with adsorbed hydrous oxides provided by the oxidation of adsorbed water molecules. The higher rate of electro-oxidation of methanol in neutral medium was interpreted in the tight of electrochemical mechanism and was attributed to the presence of comparatively small amount of hydrogen ions only along the surface of working electrode, which are produced during electro-oxidation of methanol. (author)

  17. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.

    Science.gov (United States)

    Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Zhao, Liang; Hartung, Thomas; Scafidi, Susanna; Riddle, Ryan C; Wolfgang, Michael J

    2017-07-18

    The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2 L-/- mice). Paradoxically, Cpt2 L-/- mice were resistant to HFD-induced obesity and glucose intolerance with an absence of liver damage, although they exhibited serum dyslipidemia, hepatic oxidative stress, and systemic carnitine deficiency. Feeding an HFD induced hepatokines in mice, with a loss of hepatic fatty acid oxidation that enhanced systemic energy expenditure and suppressed adiposity. Additionally, the suppression in hepatic gluconeogenesis was sufficient to improve HFD-induced glucose intolerance. These data show that inhibiting hepatic fatty acid oxidation results in a systemic hormetic response that protects mice from HFD-induced obesity and glucose intolerance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  19. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  20. Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2014-01-01

    This work studies the effects of the deposition parameters on the microstructure and the related residual stress in a rare earth oxide thin film. This study is focused on the yttrium sesquioxide (Y 2 O 3 ) thin films deposited on Si (100) substrates using the ion beam sputtering technique. This technique allows the control of the microstructure and the related residual stress in the thin films by monitoring the energy of the argon beam used in the deposition process. Measurements of the stresses within the oxide layer were performed by the X-ray diffraction-sin 2 Ψ method. The results show that the classic model of a pure biaxial in-plane model of stress, generally proposed in thin films, is not satisfying. A model that includes a hydrostatic stress due to the crystalline defects generated during the deposition process and a biaxial stress called a fixation stress, gives a good agreement with the experimental results. This modeling of the residual stress, based on nanometer-scale inclusions (point, extended defects) inducing a hydrostatic stress field, leads to a quantitative analysis of the nature and the concentration of the defects. This work shows results that establish a relationship between residual stress, defects and non-equilibrium phase stabilization during growth. - Highlights: • Microstructure of Y 2 O 3 thin films • Measurements of residual stresses in the thin films • Modeling of a triaxial residual stress state • Stress-induced stabilization of non-equilibrium phase

  1. Catalytic Oxidation of CO and Soot over Ce-Zr-Pr Mixed Oxides Synthesized in a Multi-Inlet Vortex Reactor: Effect of Structural Defects on the Catalytic Activity.

    Science.gov (United States)

    Bensaid, Samir; Piumetti, Marco; Novara, Chiara; Giorgis, Fabrizio; Chiodoni, Angelica; Russo, Nunzio; Fino, Debora

    2016-12-01

    In the present work, ceria, ceria-zirconia (Ce = 80 at.%, Zr = 20 at.%), ceria praseodymia (Ce = 80 at.%, Pr = 20 at.%) and ceria-zirconia-praseodymia catalysts (Ce = 80 at.%, Zr = 10 at.% and Pr = 10 at.%) have been prepared by the multi-inlet vortex reactor (MIVR). For each set of samples, two inlet flow rates have been used during the synthesis (namely, 2 ml min -1 , and 20 ml min -1 ) in order to obtain different particle sizes. Catalytic activity of the prepared materials has been investigated for CO and soot oxidation reactions. As a result, when the catalysts exhibit similar crystallite sizes (in the 7.7-8.8 nm range), it is possible to observe a direct correlation between the O v /F 2g vibrational band intensity ratios and the catalytic performance for the CO oxidation. This means that structural (superficial) defects play a key role for this process. The incorporation of Zr and Pr species into the ceria lattice increases the population of structural defects, as measured by Raman spectroscopy, according to the order: CeO 2  oxidation activity for these catalysts, in contrast with nanostructured ones (e.g., Ce-Zr-O nanopolyhedra, Ce-Pr-O nanocubes) described elsewhere (Andana et al. Appl. Catal. B 197: 125-137, 2016; Piumetti et al., Appl Catal B 180: 271-282, 2016).

  2. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  3. Effect of Omega-3 Fatty Acids on Erythrocyte Membrane in Diabetic Rats

    OpenAIRE

    Hussein, Jihan; Mostafa, Ehab; El-Waseef, Maha; El-Khayat, Zakarya; Badawy, Ehsan; Medhat, Dalia

    2011-01-01

    Background: Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting from defects in insulin secretion, almost always with a major contribution from insulin resistance which may be affected by cell membrane fatty acids and phospholipids fractions.Aim: To evaluate the effects of omega-3 fatty acids on erythrocyte membrane and also in decreasing oxidative stress in diabetic rats.Material and Methods: Sixty healthy male albino rats weighting 180-200 g divided int...

  4. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  5. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  6. Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate

    DEFF Research Database (Denmark)

    Mihalache, V.; Grivel, J. C.; Secu, M.

    2018-01-01

    . An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature......Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence...... and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms...

  7. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  8. Genotoxicity and oxidative stress of microwave radiation role of ascorbic acid

    International Nuclear Information System (INIS)

    Desouky, O.S.; Abdel Karim, M.A.; Deiaa El Deen, D.A.; Nayal, N.A.

    2005-01-01

    Radiofrequency fields and especially microwaves are very important part of electromagnetic spectrum that can produce generations of reactive oxygen species, and thus can affect DNA and cause chromosomal aberrations. So this effect can be diminished by the supplement of an antioxidant such as ascorbic acid. In this study, the proposed protective role of ascorbic acid was tested against the EMF induced chromosomal aberrations and lipid peroxidation. The present study proved that EMF had a clastogenic effect on the bone marrow cells of mice, either with the exposure to EMF; 950 MHz or frequency EMF; 2450 MHz. This effect was evidenced by structural and numerical chromosomal aberrations. The study also proved that EMF had an effect on oxidative stress, evidenced by increase in the level of lipid peroxide, in a dose dependent manner. So, the mechanism of EMF induced chromosomal aberrations can be explained by this oxidative stress induced by EMF exposure. The present study showed that ascorbic acid had a protective effect against both EMF induced chromosomal aberrations and oxidative stress, when it is applied concomitantly with EMF exposure either at frequency of 950 MHz or 2450 MHz. this is evident by decreases in the level of lipid peroxide and decrease in chromosomal aberrations

  9. Study on the intrinsic defects in tin oxide with first-principles method

    Science.gov (United States)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  10. High-resolution Kendrick Mass Defect Analysis of Poly(ethylene oxide)-based Non-ionic Surfactants and Their Degradation Products.

    Science.gov (United States)

    Fouquet, Thierry; Shimada, Haruo; Maeno, Katsuyuki; Ito, Kanako; Ozeki, Yuka; Kitagawa, Shinya; Ohtani, Hajime; Sato, Hiroaki

    2017-09-01

    Matrix assisted laser desorption ionization (MALDI) high-resolution mass spectrometry (HRMS) and the recently introduced high-resolution Kendrick mass defect (HRKMD) analysis are combined to thoroughly characterize non-ionic surfactants made of a poly(ethylene oxide) (PEO) core capped by esters of fatty acids. A PEO monostearate surfactant is first analyzed as a proof of principle of the HRKMD analysis conducted with a fraction of EO as the base unit (EO/X with X being an integer) in lieu of EO for a regular KMD analysis. Data visualization is greatly enhanced and the distributions detected in the MALDI mass spectrum are assigned to a pristine (H, OH)-PEO as well as mono- and di-esterified PEO chains with palmitate and stearate end-groups in HRKMD plots computed with EO/45. The MALDI-HRMS/HRKMD analysis is then successfully applied to the more complex case of ethoxylated hydrogenated castor oil (EHCO) found to contain a large number of hydrogenated ricinoleate moieties (up to 14) in its HRKMD plot computed with EO/43, departing from the expected triglyceride structure. The exhaustiveness of the MALDI-HRMS/HRKMD strategy is validated by comparing the so-obtained fingerprints with results from alternative techniques (electrospray ionization MS, size exclusion and liquid adsorption chromatography, ion mobility spectrometry). Finally, aged non-ionic surfactants formed upon hydrolytic degradation are analyzed by MALDI-HRMS/HRKMD to easily assign the degradation products and infer the associated degradation routes. In addition to the hydrolysis of the ester groups observed for EHCO, chain scissions and new polar end-groups are observed in the HRKMD plot of PEO monostearate arising from a competitive oxidative ageing.

  11. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  12. Oxidative Stress in The Hippocampus During Experimental Seizures Can Be Ameliorated With The Antioxidant Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Ítala Mônica Sales Santos

    2009-01-01

    Full Text Available Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group, ascorbic acid (500 mg/kg, i.p., AA group, pilocarpine (400 mg/kg, i.p., pilocarpine group, and the association of ascorbic acid (500 mg/kg, i.p. plus pilocarpine (400 mg/kg, i.p., 30 min before of administration of ascorbic acid (AA plus pilocarpine group. After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a

  13. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.

    Science.gov (United States)

    Xu, Guoqiang; Chen, Xiulai; Liu, Liming; Jiang, Linghuo

    2013-11-01

    In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  15. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Micić, Darko; Šljukić, Biljana; Zujovic, Zoran; Travas-Sejdic, Jadranka; Ćirić-Marjanović, Gordana

    2014-01-01

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO 2 − oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  16. Clinical and radiographic evaluation of citric acid-based nano hydroxyapatite composite graft in the regeneration of intrabony defects - A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Chaurasia Priya Dayashankar

    2017-01-01

    Full Text Available Background: Conventional periodontal therapy with various bone grafts has limited scope and the results are not predictable. To improve their utility, the hybridization of bioceramics and biodegradable polymers has been widely adopted to reform the mechanical properties of bone grafts. One such biodegradable polymer is POC (Poly 1,8 octanediol. Secondly, citric acid is considered as the key material in bone mineralization, which is related to the overall stability, strength and fracture resistance of bone. Hence citric acid is incorporated in a polymer and Nano hydroxyapatite to form a composite graft, for periodontal bone regeneration. This study attempts to evaluate the efficacy of citric acid based Nano-hydroxyapatite composite graft for the treatment of intrabony defects in chronic periodontitis patients over 12 months. Methods: A split mouth study, which consists of 10 systemically healthy patients, were randomly treated with Citric acid based Nano hydroxyapatite composite graft (test sites, n=18 or with Nano hydroxyapatite alone (control sites, n=15. Plaque index, gingival index, gingival bleeding index, probing pocket depth (PPD, clinical attachment level (CAL, bone probing depth (BPD and hard tissue parameters such as amount of defect fill, percentage of defect fill, and changes in alveolar crest were assessed over a period of 12 months. Statistical analysis used was student's t-test and One-Way ANOVA. Results: Both test and control sites demonstrated statistically significant reduction of PD, BPD, gain in CAL and radiographic bone fill. Nevertheless the test sites showed Statistically significant improvements in all the parameters as compared to control sites at 12 months. Conclusion: Citric acid based Nano hydroxyapatite composite graft can be considered as a newer material for periodontal regeneration.

  17. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  18. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....... of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...

  19. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  20. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe; Sun, Miao; Han, Yu

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product

  1. Issues in first-principles calculations for defects in semiconductors and oxides

    International Nuclear Information System (INIS)

    Nieminen, Risto M

    2009-01-01

    Recent advances in density-functional theory (DFT) calculations of defect electronic properties in semiconductors and insulators are discussed. In particular, two issues are addressed: the band-gap underestimation of standard density-functional methods with its harmful consequences for the positioning of defect-related levels in the band-gap region, and the slow convergence of calculated defect properties when the periodic supercell approach is used. Systematic remedies for both of these deficiencies are now available, and are being implemented in the context of popular DFT codes. This should help in improving the parameter-free accuracy and thus the predictive power of the methods to enable unambiguous explanation of defect-related experimental observations. These include not only the various fingerprint spectroscopies for defects but also their thermochemistry and dynamics, i.e. the temperature-dependent concentration and diffusivities of defects under various doping conditions and in different stoichiometries

  2. Effect of ascorbic and folic acids supplementation on oxidative ...

    African Journals Online (AJOL)

    An experiment was conducted on the effect of supplementation of ascorbic and folic acids on the oxidative hormones, enzymatic antioxidants, haematological and biochemical properties of layers exposed to increased heat load. A total of 72 Isa Brown laying hens at 31 weeks of age were randomly divided into four groups ...

  3. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect.

    Science.gov (United States)

    Tucci, Sara; Flögel, Ulrich; Sturm, Marga; Borsch, Elena; Spiekerkoetter, Ute

    2011-08-01

    Because of the enhanced recognition of inherited long-chain fatty acid oxidation disorders by worldwide newborn screening programs, an increasing number of asymptomatic patients receive medium-chain triglyceride (MCT) supplements to prevent the development of cardiomyopathy and myopathy. MCT supplementation has been recognized as a safe dietary intervention, but long-term observations into later adulthood are still not available. We investigated the consequences of a prolonged MCT diet on abdominal fat distribution and composition and on liver fat. Mice with very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD(-/-)) were supplemented for 1 y with a diet in which MCTs replaced long-chain triglycerides without increasing the total fat content. The dietary effects on abdominal fat accumulation and composition were analyzed by in vivo (1)H- and (13)C-magnetic resonance spectroscopy (9.4 Tesla). After 1 y of MCT supplementation, VLCAD(-/-) mice accumulated massive visceral fat and had a dramatic increase in the concentration of serum free fatty acids. Furthermore, we observed a profound shift in body triglyceride composition, ie, concentrations of physiologically important polyunsaturated fatty acids dramatically decreased. (1)H-Magnetic resonance spectroscopy analysis and histologic evaluation of the liver also showed pronounced fat accumulation and marked oxidative stress. Although the MCT-supplemented diet has been reported to prevent the development of cardiomyopathy and skeletal myopathy in fatty acid oxidation disorders, our data show that long-term MCT supplementation results in a severe clinical phenotype similar to that of nonalcoholic steatohepatitis and the metabolic syndrome.

  4. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  5. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    Zhuang, Ye; Laumb, Jason; Liggett, Richard; Holmes, Mike; Pavlish, John

    2007-01-01

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO 2 , and SO 3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O 2 , CO 2 , H 2 O, NO, NO 2 , and NH 3 , and N 2 . HCl, SO 2 , and SO 3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO 2 and SO 3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO 2 and SO 3 , by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO 2 (2000 ppm), and SO 3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  6. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  7. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  8. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  9. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  10. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  11. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  12. Arachidonic acid triggers an oxidative burst in leukocytes

    Directory of Open Access Journals (Sweden)

    Pompeia C.

    2003-01-01

    Full Text Available The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells, Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold, whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

  13. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    Science.gov (United States)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  14. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  15. [Treatment of acute full-thickness chondral defects with high molecular weight hyaluronic acid; an experimental model].

    Science.gov (United States)

    Figueroa, D; Espinosa, M; Calvo, R; Scheu, M; Valderrama, J J; Gallegos, M; Conget, P

    2014-01-01

    To evaluate the effect of 2 different protocols of intra-articular hyaluronic acid (HA, hylan G-F20) to articular cartilage regeneration in acute full-thickness chondral defects. Full-thickness chondral defects of 3 x 6 mm were performed into the lateral femoral condyles of New Zealand rabbits, treated with a single or three doses of HA. The animals were sacrified at 12 weeks and the regenerated tissue was evaluated by direct observation and histology with the ICRS scale. Macroscopically, in both groups treated with HA the defects were filled with irregular tissue with areas similar to hyaline cartilage and others in which depressed areas with exposed subchondral bone were observed. Histological analysis showed in both groups treated with HA a hyaline-like cartilage compared to control group. However, the score of the International Cartilage Repair Society (ICRS) scale did not show differences between the groups treated with HA. The use of single dose or 3 doses of AH in acute chondral lesions has a limited and similar benefit in articular cartilage regeneration. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  16. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  17. Amino acid-assisted synthesis of zinc oxide nanostructures

    Science.gov (United States)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    In this manuscript we have used experimental approach that can provide a fundamental knowledge about the role played by biomolecules in designing the shape of nanostructure (NS) at a microscopic level. The three different amino acids (AAs) - Arginine (Arg), Aspartic acid (Asp) and Histidine (His) coated Zinc oxide (ZnO) NSs to explain the growth mechanism of nanoparticles of different shapes. Based on the experimental methodology we propose that AA-ZnO (Asp and Arg) nanomaterials could form of rod like configuration and His-ZnO NPs could form tablet like configuration. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that AAs are responsible for formation of different NSs

  18. Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

    NARCIS (Netherlands)

    But, Andrada; Wijst, van der Evie; Notre, le Jerome; Wever, Ron; Sanders, Johan P.M.; Bitter, Johannes H.; Scott, Elinor L.

    2017-01-01

    Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was

  19. A point defect model for the general and pitting corrosion on iron-oxide-electrolyte interface deduced from current oscillations

    CERN Document Server

    Pagitsas, M; Sazou, D

    2003-01-01

    Analysis of the passive-active oscillatory region of the Fe-0.75 M H sub 2 SO sub 4 system, perturbed by adding small amounts of halide species, allow the distinction between pitting and general corrosion. Complex periodic and aperiodic current oscillations characterize pitting corrosion whereas monoperiodic oscillations of a relaxation type indicate general corrosion. A point defect model (PDM) is considered for the microscopic description of the growth and breakdown of the iron oxide film. The physicochemical processes leading to different types of corrosion can be clarified in terms of the PDM. Occupation of an anion vacancy by a halide ion results in the localized attack of the passive oxide and pitting corrosion. On the other hand, the formation of surface soluble iron complexes is related to the uniform dissolution of the passive oxide and general corrosion.

  20. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid

    International Nuclear Information System (INIS)

    Zhang, Hanqiang; Huang, Qitong; Huang, Yihong; Li, Feiming; Zhang, Wuxiang; Wei, Chan; Chen, Jianhua; Dai, Pingwang; Huang, Lizhang; Huang, Zhouyi; Kang, Lianping; Hu, Shirong; Hao, Aiyou

    2014-01-01

    Graphical abstract: Schematic drawing of electrochemical oxidize AA, DA and UA on graphitic carbon nitride nanosheets-graphene oxide composite modified electrode. - Highlights: • Synthesize g-C 3 N 4 , GO and CNNS-GO composite. • CNNS-GO composite was the first time for simultaneous determination of AA, DA and UA. • CNNS-GO/GCE displays fantastic selectivity and sensitivity for AA, DA and UA. • CNNS-GO/GCE was applied to detect real sample with satisfactory results. - Abstract: Graphitic carbon nitride nanosheets with a graphite-like structure have strong covalent bonds between carbon and nitride atoms, and nitrogen atoms in the carbon architecture can accelerate the electron transfer and enhance electrical properties effectually. The graphitic carbon nitride nanosheets-graphene oxide composite was synthesized. And the electrochemical performance of the composite was investigated by cyclic voltammetry and differential pulse voltammetry ulteriorly. Due to the synergistic effects of layer-by-layer structures by π-π stacking or charge-transfer interactions, graphitic carbon nitride nanosheets-graphene oxide composite can improved conductivity, electro-catalytic and selective oxidation performance. The proposed graphitic carbon nitride nanosheets-graphene oxide composite modified electrode was employed for simultaneous determination of ascorbic acid, dopamine and uric acid in their mixture solution, it exhibited distinguished sensitivity, wide linear range and low detection limit. Moreover, the modified electrode was applied to detect urine and dopamine injection sample, and then the samples were spiked with certain concentration of three substances with satisfactory recovery results

  1. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  2. Nanocarbons as catalyst for selective oxidation of acrolein to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Frank, B.; Blume, R.; Rinaldi, A.; Trunschke, A.; Schloegl, R. [Fritz Haber Institute of the Max Planck Society, Berlin (Germany). Dept. of Inorganic Chemistry

    2011-07-01

    Selective oxidations are key steps of industrial oil and gas processing for the synthesis of high-value chemicals. Mixed metal oxides based on redox active V or Mo are frequently used for oxidative C-H bond activation. However, multiple processes require precious metals or suffer from low product selectivity demanding an ongoing search for cost-effective alternatives. Recently, the nanostructured carbon was reported to catalyze the metal-free selective alkane activation by oxidative dehydrogenation (ODH). Electron-rich surface carbonyls coordinate this reaction and mimic the active oxygen species in metal oxide catalysts. Here we show that the graphitic carbon, beyond ODH, has the potential to selectively mediate the insertion of an oxygen atom into an organic molecule, i.e., acrolein. Multi-step atom rearrangements considerably exceed the mechanistic complexity of hydrogen abstraction and were so far believed to be the exclusive domain of metal (oxide) catalysis. In the carbon catalyzed process, the nucleophilic oxygen atoms terminating the graphite (0001) surface abstract the formyl hydrogen and the activated aldehyde gets oxidized by epoxide-type mobile oxygen, thus the sp{sup 2} carbon acts as a bifunctional catalyst. Substantial similarities between the metal oxide- and carbon-catalyzed reactions could be identified. Our results shed light on a rarely known facet of applications of nanostructured carbon materials being decorated with diverse oxygen functionalities to coordinate complex catalytic processes. We could successfully transfer the results obtained from the graphite model to carbon nanotubes (CNTs) providing a higher surface area, defect density, and intrinsic activity, to substantially increase the reactivity per catalyst volume. Indeed, low dimensional nanostructured carbon is a highly flexible and robust material which can be modified in a multiple manner to optimize its properties with respect to the intended application. The exploration of

  3. Associations Between Disinfection By-Product Exposures and Craniofacial Birth Defects.

    Science.gov (United States)

    Kaufman, John A; Wright, J Michael; Evans, Amanda; Rivera-Núñez, Zorimar; Meyer, Amy; Narotsky, Michael G

    2018-02-01

    The aim of this study was to examine associations between craniofacial birth defects (CFDs) and disinfection by-product (DBP) exposures, including the sum of four trihalomethanes (THM4) and five haloacetic acids (HAA5) (ie, DBP9). We calculated first trimester adjusted odds ratios (aORs) for different DBPs in a matched case-control study of 366 CFD cases in Massachusetts towns with complete 1999 to 2004 THM and HAA data. We detected elevated aORs for cleft palate with DBP9 (highest quintile aOR = 3.52; 95% CI: 1.07, 11.60), HAA5, trichloroacetic acid (TCAA), and dichloroacetic acid. We detected elevated aORs for eye defects with TCAA and chloroform. This is the first epidemiological study of DBPs to examine eye and ear defects, as well as HAAs and CFDs. The associations for cleft palate and eye defects highlight the importance of examining specific defects and DBPs beyond THM4.

  4. Improving oxidative stability of olive oil: Incorporation of Spirulina and evaluation of its synergism with citric acid

    International Nuclear Information System (INIS)

    Alavi, N.; Golmakani, M.T.

    2017-01-01

    The effects of different Spirulina concentrations used alone and in combination with citric acid on the oxidative stability of olive oil were assessed. The amounts of primary and secondary oxidation products produced in Spirulina samples were lower than that of the control. The improved oxidative stability indices of Spirulina samples with and without citric acid were in the range of 85.20–94.47% and 258.10–260.21%, respectively. In comparison with the control, Spirulina samples manifested significantly higher carotenoid and chlorophyll contents at the beginning and end of the storage period. The presence of these bioactive compounds results from the presence of Spirulina in the medium and can thus retard the oxidation of olive oil. A higher oxidative stability was reached using BHT in comparison with Spirulina samples. Furthermore, no synergistic action was observed in possible connections between citric acid and Spirulina. In conclusion, Spirulina can enhance oxidative stability and improve the shelf life of olive oil. [es

  5. Safety Evaluation of a Bioglass–Polylactic Acid Composite Scaffold Seeded with Progenitor Cells in a Rat Skull Critical-Size Bone Defect

    Science.gov (United States)

    El-Kady, Abeer M.; Arbid, Mahmoud S.; Abd El-Hady, Bothaina M.; Marzi, Ingo; Seebach, Caroline

    2014-01-01

    Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation. PMID:24498345

  6. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    , the analytical reproducibility was tested by repeated analysis of plasma aliquots from one individual over four years. The plasma was subjected to acidic deproteinization with an equal volume of 10% meta-phosphoric acid containing 2 mM EDTA and analyzed for ascorbate and dehydroascorbic acid by high-performance...... liquid chromatography with coulometric detection. In a parallel experiment, stability of human plasma samples treated as above and stored at -80°C for five years was tested in a cohort of 131 individuals. No degradation or shift in the equilibrium between ascorbate and dehydroascorbic acid was observed......Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper...

  7. Oxidative modifications of conjugated and unconjugated linoleic acid during heating.

    Science.gov (United States)

    Giua, L; Blasi, F; Simonetti, M S; Cossignani, L

    2013-10-15

    The oxidative stability of conjugated linoleic (CLA) and linoleic (LA) acids in different chemical forms (free acids, methyl esters and homogeneous triacylglycerols) was compared. All model systems were heated at 180°C for different times (15, 30, 45 and 60min). The primary oxidation products were evaluated by spectrophometric analysis, while the volatile compounds were determined by solid phase micro-extraction (SPME), coupled with gas chromatography-mass spectrometry (HRGC-MS). The isomer profile modifications were investigated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) equipped with an UV detector. Generally, peroxide values decreased during the heating time. Among the volatiles, saturated aldehydes were the most represented compounds. Isomerization of cis,trans and trans,cis CLA to trans,trans isomers was observed mainly for the methyl form of CLA. The three different chemical forms of LA never showed isomerization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of oxidizing adulterants on detection of 11-nor-delta9-THC-9-carboxylic acid in urine.

    Science.gov (United States)

    Paul, Buddha D; Jacobs, Aaron

    2002-10-01

    Bleach, nitrite, chromate, and hydrogen peroxide-peroxidase are effective urine adulterants used by the illicit drug users to conceal marijuana-positive results. Methods for detecting nitrite and chromate are available. Effects of other oxidizing agents that could possibly be used as adulterants and are difficult to detect or measure are presented in this report. Urine samples containing 40 ng/mL of 11-nor-delta9-THC-9-carboxylic acid (THC-acid) were treated with 10 mmol/L of commonly available oxidizing agents. Effects of horseradish peroxidase of activity 10 unit/mL and extracts from 2.5 g of red radish (Raphanus sativus, Radicula group), horseradish (Armoracia rusticana), Japanese radish (Raphanus sativus, Daikon group), and black mustard seeds (Brassica nigra), all with 10 mmol/L of hydrogen peroxide, were also examined. After 5 min, 16 h and 48 h of exposure at room temperature (23 degrees C) the specimens were tested by a gas chromatographic-mass spectrometric method for THC-acid. A control group treated with sodium hydrosulfite to reduce the oxidants, was also tested to investigate the effect of oxidizing agents on THC-acid in the extraction method. THC-acid was lost completely in the extraction method when treated with chromate, nitrite, oxone, and hydrogen peroxide/ferrous ammonium sulfate (Fenton's reagent). Some losses were also observed with persulfate and periodate (up to 25%). These oxidants, and other oxidizing agents like permanganate, periodate, peroxidase, and extracts from red radish, horseradish, Japanese radish and black mustard seeds destroyed most of the THC-acid (> 94%) within 48 h of exposure. Chlorate, perchlorate, iodate, and oxychloride under these conditions showed little or no effect. Complete loss was observed when THC-acid was exposed to 50 mmol/L of oxychloride for 48 h. Several oxidizing adulterants that are difficult to test by the present urine adulterant testing methods showed considerable effects on the destruction of THC-acid

  9. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders

    NARCIS (Netherlands)

    Houten, Sander M.; Violante, Sara; Ventura, Fatima V.; Wanders, Ronald J. A.

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when

  10. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

    Directory of Open Access Journals (Sweden)

    Elsie Gonzalez-Hurtado

    2018-01-01

    Full Text Available Objective: To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Methods: Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A−/−, that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Results: Chronic administration of β3-adrenergic (CL-316243 or thyroid hormone (GC-1 agonists induced a loss of BAT morphology and UCP1 expression in Cpt2A−/− mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C stimulation induced UCP1 and thermogenic programming in both control and Cpt2A−/− adipose tissue albeit to a lesser extent in Cpt2A−/− mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2A−/− mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2A−/− BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2A−/− mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Conclusion: Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Keywords: Fatty acid oxidation, Brown adipose tissue, Cold induced thermogenesis, Adrenergic signaling, Adipose macrophage

  11. Biochemical competition makes fatty-acid β-oxidation vulnerable to substrate overload.

    Directory of Open Access Journals (Sweden)

    Karen van Eunen

    Full Text Available Fatty-acid metabolism plays a key role in acquired and inborn metabolic diseases. To obtain insight into the network dynamics of fatty-acid β-oxidation, we constructed a detailed computational model of the pathway and subjected it to a fat overload condition. The model contains reversible and saturable enzyme-kinetic equations and experimentally determined parameters for rat-liver enzymes. It was validated by adding palmitoyl CoA or palmitoyl carnitine to isolated rat-liver mitochondria: without refitting of measured parameters, the model correctly predicted the β-oxidation flux as well as the time profiles of most acyl-carnitine concentrations. Subsequently, we simulated the condition of obesity by increasing the palmitoyl-CoA concentration. At a high concentration of palmitoyl CoA the β-oxidation became overloaded: the flux dropped and metabolites accumulated. This behavior originated from the competition between acyl CoAs of different chain lengths for a set of acyl-CoA dehydrogenases with overlapping substrate specificity. This effectively induced competitive feedforward inhibition and thereby led to accumulation of CoA-ester intermediates and depletion of free CoA (CoASH. The mitochondrial [NAD⁺]/[NADH] ratio modulated the sensitivity to substrate overload, revealing a tight interplay between regulation of β-oxidation and mitochondrial respiration.

  12. Peracetic acid as a superior oxidant for preparation of [123I]IBZM: a potential dopamine D-2 receptor imaging agent

    International Nuclear Information System (INIS)

    Kung, Meiping; Kung, H.F.

    1989-01-01

    Various oxidizing agents: chloramine-T, hydrogen peroxide, sodium persulfate, m-chloroperoxybenzoic acid and peracetic acid were examined as the oxidant for preparing radioiodinated IBZM ((S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl]benzami de), which is a useful dopamine D-2 receptor imaging agent. Of all the oxidizing agents tested, peracetic acid appears to be the best agent for no-carrier added radioiodination. The advantages of using peracetic acid as the oxidant for the preparation of [ 125 I] or [ 123 I] IBZM include: high radiochemical yield, high radiochemical purity, and short reaction time at room temperature. (Author)

  13. Kinetics and mechanism of the oxidation of uranium (IV) by hypochlorous acid in aqueous acidic perchlorate media

    International Nuclear Information System (INIS)

    Silverman, R.A.; Gordon, G.

    1976-01-01

    The oxidation of uranium(IV) by hypochlorous acid has been studied in aqueous sodium perchlorate--perchloric acid solutions. The reaction U 4 + + 2HOCl = UO 2 2 + + Cl 2 (aq) + 2H + proceeds appropriate to the rate law --d[U(IV)]/dt = k 0 . [U 4+ ][HOCl][H + ] -1 . At 25 0 and 3 M ionic strength, k 0 is 1.08 +- 0.07 sec -1 . Over the 1--25 0 temperature range, ΔH 2+ is 18.4 +- 0.1 kcal mole -1 , and ΔS 2+ is 3.1 +- 0.4 eu. The inverse hydrogen ion dependence of the rate law is explained by a rapid preequilibrium, in which a proton is lost from one of the reactants. A uranyl-like activated complex, [H 2 UO 2 Cl 3+ ] 2+ , is suggested, with one proton likely to be residing on each oxygen atom. Evidence is presented that the mechanism involves a two-electron transfer, with the intermediate chloride ion rapidly reacting with hypochlorous acid to form chlorine. The uranium(IV)-hypochlorous acid reaction plays an important role in the oxidation of uranium(IV) by aqueous chlorine solutions. The magnitude of this role was seriously underestimated by previous investigators

  14. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    LENUS (Irish Health Repository)

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  15. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog.

    Science.gov (United States)

    Kawamoto, Kohei; Miyaji, Hirofumi; Nishida, Erika; Miyata, Saori; Kato, Akihito; Tateyama, Akito; Furihata, Tomokazu; Shitomi, Kanako; Iwanaga, Toshihiko; Sugaya, Tsutomu

    2018-01-01

    The 3-dimensional scaffold plays a key role in volume and quality of repair tissue in periodontal tissue engineering therapy. We fabricated a novel 3D collagen scaffold containing carbon-based 2-dimensional layered material, named graphene oxide (GO). The aim of this study was to characterize and assess GO scaffold for periodontal tissue healing of class II furcation defects in dog. GO scaffolds were prepared by coating the surface of a 3D collagen sponge scaffold with GO dispersion. Scaffolds were characterized using cytotoxicity and tissue reactivity tests. In addition, GO scaffold was implanted into dog class II furcation defects and periodontal healing was investigated at 4 weeks postsurgery. GO scaffold exhibited low cytotoxicity and enhanced cellular ingrowth behavior and rat bone forming ability. In addition, GO scaffold stimulated healing of dog class II furcation defects. Periodontal attachment formation, including alveolar bone, periodontal ligament-like tissue, and cementum-like tissue, was significantly increased by GO scaffold implantation, compared with untreated scaffold. The results suggest that GO scaffold is biocompatible and possesses excellent bone and periodontal tissue formation ability. Therefore, GO scaffold would be beneficial for periodontal tissue engineering therapy.

  16. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    International Nuclear Information System (INIS)

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi; Horiuchi, Hiroyuki; Ohta, Akinori

    2010-01-01

    Research highlights: → POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. → Deletion of POR1 caused growth defects on fatty acids. → Δpor1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y. lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in β-oxidation and peroxisome proliferation by oleate was distinctly diminished in the Δpor1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.

  17. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  18. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  19. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Norma Amador-Licona

    Full Text Available HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals, and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55% and AZT/3TC/EFV (15% without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04, but oxidative stress markers were not different between groups.

  20. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization.

    Science.gov (United States)

    Gonzalez, Kim L; Fleming, Wendell A; Kao, Yun-Ting; Wright, Zachary J; Venkova, Savina V; Ventura, Meredith J; Bartel, Bonnie

    2017-10-01

    Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  2. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    Science.gov (United States)

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    Science.gov (United States)

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  4. Application of the integral method to modelling the oxidation of defected fuel elements

    International Nuclear Information System (INIS)

    Kolar, M.

    1995-06-01

    The starting point for this report is the discrepancy reported in previous work between the reaction-diffusion calculations and the CEX-1 experiment, which involves storage of defected fuel elements in air at 150 deg C. This discrepancy is considerably diminished here by a more critical choice of theoretical parameters, and by taking into account the fact that different CEX-1 fuel elements were oxidized at very different rates and that the fuel element used previously for comparison with theoretical calculations actually underwent two limited-oxygen-supply cycles. Much better agreement is obtained here between the theory and the third, unlimited-air, storage period of the CEX-1 experiment. The approximate integral method is used extensively for the solution of the one-dimensional diffusion moving-boundary problems that may describe various storage periods of the CEX-1 experiment. In some cases it is easy to extend this method to arbitrary precision by using higher moments of the diffusion equation. Using this method, the validity of quasi-steady-state approximation is verified. Diffusion-controlled oxidation is also studied. In this case, for the unlimited oxygen supply, the integral method leads to an exact analytical solution for linear geometry, and to a good analytical approximation of the solution for the spherically symmetric geometry. These solutions may have some application in the analysis of experiments on the oxidation of small UO 2 fragments or powders when the individual UO 2 grains may be considered to be approximately spherical. (author). 23 refs., 5 tabs., 11 figs

  5. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  6. Kinetics and mechanism of the oxidation of some α-hydroxy acids by ...

    Indian Academy of Sciences (India)

    Unknown

    2004-11-08

    Nov 8, 2004 ... presence of a substantial kinetic isotope effect (kH/kD = 5⋅91 at 298 K). The rates of oxidation ... have been made to correlate rate and structure in this reaction. Mechanistic ... The solvent was glacial acetic acid and temperature was ≈ 298 K. .... glacial acetic acid was evaporated to dryness under reduced ...

  7. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  8. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  9. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural

    Science.gov (United States)

    Pacheco, Joshua J.; Davis, Mark E.

    2014-01-01

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  10. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

  11. Uptake of Tyrosine Amino Acid on Nano-Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hossam M. Nassef

    2018-01-01

    Full Text Available Graphene oxide (GO is emerging as a promising nanomaterial with potential application in the detection and analysis of amino acids, DNA, enzymes, and proteins in biological fluid samples. So, the reaction of GO with amino acids should be characterized and determined before using it in biosensing methods and devices. In this study, the reaction of tyrosine amino acid (Tyr with GO was characterized using FT-IR, UV-vis spectrophotometry, and scanning electron microscopy (SEM before its use. The optimum conditions for GO’s interaction with Tyr amino acid have been studied under variable conditions. The optimum conditions of pH, temperature, shaking time, and GO and tyrosine concentrations for the uptaking of tyrosine amino acid onto the GO’s surface from aqueous solution were determined. The SEM analysis showed that the GO supplied was in a particle size range between 5.4 and 8.1 nm. A pH of 8.4–9.4 at 25 °C and 5 min of shaking time were the optimum conditions for a maximum uptake of 1.4 μg/mL of tyrosine amino acid onto 0.2 mg/mL of GO.

  12. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  13. Environmental Enteric Dysfunction is Associated with Carnitine Deficiency and Altered Fatty Acid Oxidation

    Directory of Open Access Journals (Sweden)

    Richard D. Semba

    2017-03-01

    Interpretation: EED is a syndrome characterized by secondary carnitine deficiency, abnormal fatty acid oxidation, alterations in polyphenol and amino acid metabolites, and metabolic dysregulation of sulfur amino acids, tryptophan, and the urea cycle. Future studies are needed to corroborate the presence of secondary carnitine deficiency among children with EED and to understand how these metabolic derangements may negatively affect the growth and development of young children.

  14. Global Burden of Neural Tube Defects, Risk Factors, and Prevention

    Directory of Open Access Journals (Sweden)

    Joseph E

    2014-11-01

    Full Text Available Neural tube defects (NTDs, serious birth defects of the brain and spine usually resulting in death or paralysis, affect an estimated 300,000 births each year worldwide. Although the majority of NTDs are preventable with adequate folic acid consumption during the preconception period and throughout the first few weeks of gestation, many populations, in particular those in low and middle resource settings, do not have access to fortified foods or vitamin supplements containing folic acid. Further, accurate birth defects surveillance data, which could help inform mandatory fortification and other NTD prevention initiatives, are lacking in many of these settings. The burden of birth defects in South East Asia is among the highest in the world. Expanding global neural tube defects prevention initiatives can support the achievement of the United Nations Millennium Development Goal 4 to reduce child mortality, a goal which many countries in South East Asia are currently not poised to reach, and the 63rd World Health Assembly Resolution on birth defects. More work is needed to develop and implement mandatory folic acid fortification policies, as well as supplementation programs in countries where the reach of fortification is limited.

  15. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Zabol University of Medical Sciences, Zabol (Iran, Islamic Republic of); Saifullah, Bullo [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Dorniani, Dena [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF (United Kingdom); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Karthivashan, Govindarajan [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Elfghi, Fawzi M. [Department of Chemical and Petrochemical Engineering, The College of Engineering & Architecture, Initial Campus, Birkat Al Mouz Nizwa (Oman)

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV–vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π–π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV–vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of > 80% even at higher concentration of 50 μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. - Highlights: • Graphene oxide is synthesized using improved Hummer's method • The suppression of cancer cell growth was higher for chlorogenic acid/graphene oxide nanocomposite than for pure chlorogenic acid • Chlorogenic acid/graphene oxide nanocomposite has the potential to be used as a sustained release formulation.

  16. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  17. Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery

    Science.gov (United States)

    2012-07-17

    Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery Swati Mishra1,#, Lavanya Y. Peddada1,#, David I. Devore3,4, and Charles M. Roth1,2...Neil Raju for assistance with figures. Biographies Swati Mishra received her Ph.D. in Biomedical Engineering and Biotechnology from the University of...Kleiman N, Anderson RD, Gottlieb D, Karlsberg R, Snell J, Rocha- Singh K. Results from a phase II multicenter, double-blind placebo-controlled study of Del

  18. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  19. Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Motaung, DE

    2014-08-01

    Full Text Available Surface Science Vol. 311, pp 14-26 Defect-induced magnetism in undoped and Mn-doped wide band gapzinc oxide grown by aerosol spray pyrolysis D.E. Motaunga,∗, I. Kortidise, D. Papadakie, S.S. Nkosib,∗∗, G.H. Mhlongoa,J. Wesley-Smitha, G.F. Malgasc, B....W. Mwakikungaa, E. Coetseed, H.C. Swartd,G. Kiriakidise,f, S.S. Raya aDST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395,Pretoria 0001, South Africa b...

  20. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  1. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    OpenAIRE

    Lerin, Carles; Goldfine, Allison B.; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M.; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R.; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J.; Beebe, Kirk; Gall, Walt

    2016-01-01

    Objective: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sen...

  2. Probing of O2 vacancy defects and correlated magnetic, electrical and photoresponse properties in indium-tin oxide nanostructures by spectroscopic techniques

    Science.gov (United States)

    Ghosh, Shyamsundar; Dev, Bhupendra Nath

    2018-05-01

    Indium-tin oxide (ITO) 1D nanostructures with tunable morphologies i.e. nanorods, nanocombs and nanowires are grown on c-axis (0 0 0 1) sapphire (Al2O3) substrate in oxygen deficient atmosphere through pulsed laser deposition (PLD) technique and the effect of oxygen vacancies on optical, electrical, magnetic and photoresponse properties is investigated using spectroscopic methods. ITO nanostructures are found to be enriched with significant oxygen vacancy defects as evident from X-ray photoelectron and Raman spectroscopic analysis. Photoluminescence spectra exhibited intense mid-band blue emission at wavelength of region of 400-450 nm due to the electronic transition from conduction band maxima (CBM) to the singly ionized oxygen-vacancy (VO+) defect level within the band-gap. Interestingly, ITO nanostructures exhibited significant room-temperature ferromagnetism (RTFM) and the magnetic moment found proportional to concentration of VO+ defects which indicates VO+ defects are mainly responsible for the observed RTFM in nanostructures. ITO nanowires being enriched with more VO+ defects exhibited strongest RTFM as compared to other morphologies. Current voltage (I-V) characteristics of ITO nanostructures showed an enhancement of current under UV light as compared to dark which indicates such 1D nanostructure can be used as photovoltaic material. Hence, the study shows that there is ample opportunity to tailor the properties of ITOs through proper defect engineering's and such photosensitive ferromagnetic semiconductors might be promising for spintronic and photovoltaic applications.

  3. Combined Use of Zoledronic Acid Augments Ursolic Acid-Induced Apoptosis in Human Osteosarcoma Cells through Enhanced Oxidative Stress and Autophagy

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Wu

    2016-11-01

    Full Text Available Ursolic acid (UA, a naturally occurring pentacyclic triterpene acid found in many medicinal herbs and edible plants, triggers apoptosis in several tumor cell lines but not in human bone cancer cells. Most recently, we have demonstrated that UA exposure reduces the viability of human osteosarcoma MG-63 cells through enhanced oxidative stress and apoptosis. Interestingly, an inhibitor of osteoclast-mediated bone resorption, zoledronic acid (ZOL, also a third-generation nitrogen-containing bisphosphonate, is effective in the treatment of bone metastases in patients with various solid tumors. In this present study, we found that UA combined with ZOL to significantly suppress cell viability, colony formation, and induce apoptosis in two lines of human osteosarcoma cells. The pre-treatment of the antioxidant had reversed the oxidative stress and cell viability inhibition in the combined treatment, indicating that oxidative stress is important in the combined anti-tumor effects. Moreover, we demonstrated that ZOL combined with UA significantly induced autophagy and co-administration of autophagy inhibitor reduces the growth inhibitory effect of combined treatment. Collectively, these data shed light on the pathways involved in the combined effects of ZOL and UA that might serve as a potential therapy against osteosarcoma.

  4. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    Directory of Open Access Journals (Sweden)

    BG Sarvari

    2015-12-01

    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  5. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...

  6. Copper-Assisted Oxidative Trifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF3.

    Science.gov (United States)

    Pan, Shen; Huang, Yangen; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-09-01

    The oxidative trifluoromethylthiolation of 2,3-allenoic acids with AgSCF 3 in the presence of (NH 4 ) 2 S 2 O 8 and catalytic copper salt was investigated. A series of 4-aryl-2,3-allenoic acids underwent radical trifluoromethylthiolation/intramolecular cyclization to afford β-trifluoromethylthiolated butenolides, which were conveniently transformed into trifluoromethylthiolated furan derivatives. In contrast, 2-monosubstituted 2,3-allenoic acids were converted into the corresponding 3,4-bis(trifluoromethylthio)but-2-enoic-acids under similar reaction conditions.

  7. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  8. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    Science.gov (United States)

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  9. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  10. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  11. Spontaneously Bi decorated carbon supported Pd nanoparticles for formic acid electro-oxidation

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2013-01-01

    Highlights: • Selective decoration of Bi onto commercial Pd/C is carried out by a simple gas controlled surface potential modulation technique. • Bi decorated Pd/C catalyst exhibits higher and sustained formic acid oxidation activity presumably via the electronic effect. • Shielding of Pd atoms by Bi increases long term stability. • Formic acid electro-oxidation current increased by 121% at 0.2 V vs. RHE. -- Abstract: The activity and stability of carbon supported palladium (Pd/C) nanoparticles decorated with a submonolayer of bismuth (Bi) for formic acid (FA) electro-oxidation was investigated herein. The FA electro-oxidation activity enhancement of Bi decorated Pd/C was evaluated electrochemically using a rotating disk electrode configuration by linear sweep voltammetric and chronoamperometric measurements. Commercial Pd/C was decorated by irreversible adsorption of Bi via a simple gas controlled surface potential modulation technique, and the coverage of Bi adatoms as measured by cyclic voltammetry was controlled in the range of 30–87%. An optimal Bi coverage was observed to be 40%, resulting in a favorable decrease in the FA onset potential by greater than 0.1 V and increase in electro-oxidation current density from 0.25 mA cm −2 SA to 0.55 mA cm −2 SA at 0.2 V vs. RHE, compared to commercial Pd/C. The results indicate that Bi decorated Pd nanoparticles have excellent properties for the electro-oxidation of FA, i.e. high electro-catalytic activity and excellent stability, due to sustained promotion of dehydrogenation pathway attributed to the electronic effect, thereby promoting FA adsorption in the CH-down orientation. Based on no significant shifting in the CO stripping peak position, minimal impact of Bi on the Pd-CO bond strength is observed. Chronoamperometry results show much better long-term electro-catalytic activity for Bi decorated Pd nanoparticles attributed to shielding of surface Pd atoms by Bi and reducing Pd dissolution

  12. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Science.gov (United States)

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mechanism of Oxidation of (p-Substituted Phenylthioacetic Acids with N-Chlorosaccharin

    Directory of Open Access Journals (Sweden)

    N. M. I. Alhaj

    2011-01-01

    Full Text Available The kinetics of oxidation of (phenylthioacetic acid (PTAA with N-chlorosaccharin (NCSA have been studied potentiometrically in 80:20 (v/v acetonitrile-water medium at 298 K. The reaction is first-order each with respect to PTAA and NCSA and shows a negative dependence on [H+]. NCSA itself is shown to be the active oxidizing species. Effects of ionic strength variation, added saccharin, added acrylonitrile, added NaCl and solvent composition variation have been studied. Effect of substituents on the reaction rate has been analysed by employing various (p-sustituted phenylthioacetic acids. The electron-releasing substituent in the phenyl ring of PTAA accelerates the reaction rate while the electron-withdrawing substituent retards the rate. The excellently linear Hammett plot yields a large negative ρ value, supporting the involvement a chlorosulphonium ion intermediate in the rate-determining step.

  14. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    Science.gov (United States)

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  15. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    Fatty acids (FA) as fuel for energy utilization during exercise originate from different sources: FA transported in the circulation either bound to albumin or as triacylglycerol (TG) carried by very low density lipoproteins (VLDL) and FA from lipolysis of muscle TG stores (IMTG). Despite a high...... rate of energy expenditure during high intensity exercise the total fatty acid oxidation is suppressed to below that observed during moderate intensity exercise. Although this has been known for many years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose...... tissue to deliver sufficient fatty acids to exercising muscle has been proposed, but evidence is emerging that factors within the muscle might be of more importance. The high rate of glycolysis during high intensity exercise might be the "driving force" via the increased production of acetyl CoA which...

  16. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    Science.gov (United States)

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  17. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  18. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  19. Densification of ∼5 nm-thick SiO{sub 2} layers by nitric acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of); Joo, Soyeong [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Youngin 449-863 (Korea, Republic of); Park, Tae Joo [Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Kim, Woo-Byoung, E-mail: woo7838@dankook.ac.kr [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of)

    2017-08-15

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO{sub 2} layer has been decreased about three orders of magnitude by densification. • The densification of SiO{sub 2} layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N{sub f}) and defect state (N{sub d}) in SiO{sub 2}/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ{sub t}) is increased because of the increase of atomic density in SiO{sub 2} layer. - Abstract: Low-temperature nitric acid (HNO{sub 3}) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO{sub 2}/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10{sup −5} A/cm{sup 2}. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10{sup −8} A/cm{sup 2}) approximately three orders of magnitude less than the as-grown SiO{sub 2} layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si{sup 1+}, Si{sup 2+} and Si{sup 3+}) in the SiO{sub 2}/Si interface, as well as a decrease in the equilibrium density of defect sites (N{sub d}) and fixed charge density (N{sub f}). The barrier height (Φ{sub t}) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO{sub 2} layer in combination with the removal of OH species and increase in interfacial properties at the SiO{sub 2}/Si interface.

  20. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  1. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  2. Prevention by lactic acid bacteria of the oxidation of human LDL.

    Science.gov (United States)

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  3. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    International Nuclear Information System (INIS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-01-01

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM"−"1 cm"−"2. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N_2 adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2, and a possible mechanism was also given in the paper.

  4. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang, E-mail: caowang507@163.com; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-30

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM{sup −1} cm{sup −2}. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}, and a possible mechanism was also given in the paper.

  5. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  6. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, D.; Robson, J.D.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Turski, M. [Magnesium Elektron UK, Rake Lane, Manchester, M27 8BF (United Kingdom)

    2015-06-15

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.

  7. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    International Nuclear Information System (INIS)

    Mackie, D.; Robson, J.D.; Withers, P.J.; Turski, M.

    2015-01-01

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al 8 Mn 5 in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets

  8. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Science.gov (United States)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  9. Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyung Suk; Kim, Jeong-Jin; Kim, Young-Hun [Andong National University, Andong (Korea, Republic of)

    2016-03-15

    The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa{sub 1} and pKa{sub 2} of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa{sub 2}. At a low pH, below pKa{sub 1}, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

  10. Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

    International Nuclear Information System (INIS)

    Oh, Hyung Suk; Kim, Jeong-Jin; Kim, Young-Hun

    2016-01-01

    The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa 1 and pKa 2 of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa 2 . At a low pH, below pKa 1 , the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

  11. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  12. Riboflavin enhances photo-oxidation of amino acids under simulated clinical conditions

    International Nuclear Information System (INIS)

    Bhatia, J.; Stegink, L.D.; Ziegler, E.E.

    1983-01-01

    In neonatal nurseries, solutions of amino acids with added vitamins may be exposed to relatively intense light from phototherapy units. Light, especially in the presence of photosensitizers such as certain vitamins, is capable of destroying amino acids. In the present study, the effect of riboflavin on amino acid concentrations in solutions exposed to light was studied. Solutions of crystalline amino acids with and without added riboflavin were infused into shielded collecting vessels for 24 hr under conditions simulating those occurring during phototherapy. Decreases in concentrations of some amino acids were observed with light exposure alone. Decreases in concentrations of methionine, proline, tryptophan, and tyrosine were significantly greater in the presence of riboflavin that in its absence. Riboflavin concentrations were also significantly reduced after light exposure. Although the losses of amino acids are probably not nutritionally significant, the photo-oxidation products are largely unknown and may be toxic

  13. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions

    DEFF Research Database (Denmark)

    Frankel, E.N.; Satue-Gracia, T.; Meyer, Anne Boye Strunge

    2002-01-01

    from algae are unusually stable to oxidation, Addition of ethylenediaminetetraacetic acid (EDTA) prevented oxidation of both fish and algal oil emulsions without added iron and at low iron:EDTA molar concentrations. EDTA, however, promoted the oxidation of the corresponding emulsions that contained...... high iron:EDTA ratios. Therefore, to be effective as a metal chelator, EDTA must be added at molar concentrations higher than that of iron to inhibit oxidation of foods containing long-chain PUFA from either fish or algae and fortified with iron.......The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants...

  14. Comparative effectiveness of using resorbable membranes of polylactic acid and collagen in regeneration of bone defects in patients with periimplantitis

    Directory of Open Access Journals (Sweden)

    Gudaryan A.A.

    2014-03-01

    Full Text Available The article presents the results of comparative study of effectiveness of usage of separation membranes from polylactic acid (PLA and collagen in carrying out targeted regeneration of bone tissue in 22 patients with periimplantitis. Purpose: To conduct a comparative clinico-radiological efficiency of PLA membrane and collagen membranes in removing bone defects of the alveolar bone in patients with periimplantitis in clinic. It was found that depending on the type of membrane, bone tissue growth occurs not in the same way. Surgery in treatment of periimplantitis using osteo-inducing agent «Bio-Oss» and PLA membranes allows to reach full recovery of bone in bone defects in 90.9 % of patients versus 63.63 % of cases with collagen membranes. Thus, reconstitution of bone in bone defects in periimplantitis is more of full value in using PLA membranes than with membranes from collagen.

  15. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  16. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    Science.gov (United States)

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  18. Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gabriela T.A.D.; Santos, Patrícia S.M., E-mail: patricia.santos@ua.pt; Duarte, Armando C.

    2016-08-05

    Highlights: • The rate of oxidation of small aromatic acids increase with the pH decrease. • With the oxidation of aromatic acids are formed new small aromatic compounds. • The initial and formed compounds are not totally degraded during the night period. • The substituents and their positions in ring affect the oxidation of aromatic acids. • The OH radical attack to vanillic and syringic acids is different in atmospheric waters. - Abstract: Biomass combustion is a threat to the environment since it emits to the atmosphere organic compounds, which may react and originate others more aggressive. This work studied the behaviours of vanillic and syringic acids, small aromatic tracers of biomass burning, during Fenton-like oxidation in aqueous phase and absence of light. For both compounds, the extent of oxidation increased with pH decrease from neutral to acid in atmospheric waters, but for vanillic acid the neutral pH was not able of promoting the oxidation. With the oxidation of both acids were formed chromophoric compounds, and the formation rate increased with the degree of electron-donator substituents in benzene ring. The initial and produced compounds were not totally degraded up to 24 h of reaction at pH 4.5, suggesting that the night period may be not sufficient for their full degradation in atmospheric waters. The major compounds formed were the 3,4-dihydroxybenzoic acid for vanillic acid, and the 1,4-dihydroxy-2,6-dimethoxybenzene for syringic acid. These findings suggest the occurrence of an ipso attack by the hydroxyl radical preferential to the methoxy and carboxyl groups of vanillic and syringic acids, respectively. It is important to highlight that for both aromatic acids the main compounds produced are also small aromatic compounds.

  19. Mechanisms of oxide dissolution by acid chelating agents

    International Nuclear Information System (INIS)

    Blesa, M.A.; Maroto, A.J.G.

    1982-01-01

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  20. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Akkarach Bumrungpert

    2018-06-01

    Full Text Available Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation on lipid profiles, oxidative stress, and inflammatory status in hyperlipidemia. The study design is a randomized, double-blind, placebo-controlled trial. Subjects with hyperlipidemia were randomly divided into two groups. The treatment group (n = 24 was given ferulic acid (1000 mg daily and the control group (n = 24 was provided with a placebo for six weeks. Lipid profiles, biomarkers of oxidative stress and inflammation were assessed before and after the intervention. Ferulic acid supplementation demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001, LDL-C (9.3%; p < 0.001, triglyceride (12.1%; p = 0.049, and increased HDL-C (4.3%; p = 0.045 compared with the placebo. Ferulic acid also significantly decreased the oxidative stress biomarker, MDA (24.5%; p < 0.001. Moreover, oxidized LDL-C was significantly decreased in the ferulic acid group (7.1%; p = 0.002 compared with the placebo group. In addition, ferulic acid supplementation demonstrated a statistically significant reduction in the inflammatory markers hs-CRP (32.66%; p < 0.001 and TNF-α (13.06%; p < 0.001. These data indicate ferulic acid supplementation can improve lipid profiles and oxidative stress, oxidized LDL-C, and inflammation in hyperlipidemic subjects. Therefore, ferulic acid has the potential to reduce cardiovascular disease risk factors.