WorldWideScience

Sample records for acid o-methyl transferase

  1. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity

    OpenAIRE

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A.; Thompson, Peter M.; Bortolato, Marco

    2014-01-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous SNP that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood posttranslation...

  2. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    DEFF Research Database (Denmark)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun;

    2010-01-01

    R-[(11)C]-SKF 82957 is a high-affinity and potent dopamine D(1) receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway...

  3. Cloning and sequencing of protein L-isoaspartyl O-methyl transferase of Salmonella Typhimurium isolated from poultry

    Directory of Open Access Journals (Sweden)

    S. K. Dixit

    2014-09-01

    Full Text Available Aim: To clone the Salmonella Typhimurium protein L-isoaspartyl O-methyl transferase (PIMT enzyme and to analyze the sequence with PIMT gene of other pathogenic serovars of Salmonella. Materials and Methods: Salmonella Typhimurium strain E-2375 was procured from the National Salmonella Center, IVRI. The genomic DNA was isolated from Salmonella Typhimurium. Polymerase chain reaction (PCR was carried out to amplify PIMT gene using the designed primers. The PCR product was cloned into pET28c plasmid vector and transformed into Escherichia coli DH5α cells. The plasmid was isolated from E. coli and was sequenced. The sequence was analyzed and submitted in Genbank. Results: The PCR product revealed a distinct amplicon of 627 bp. The clone was confirmed by PCR. Sequencing data revealed 100% homology between PIMT sequences from Salmonella Typhimurium strain E-2375 (used in the current study and PIMT sequences of standard reported strain (Salmonella Typhimurium str. LT2 in NCBI data base. This submitted sequence in Genbank having accession no. KJ575536. Conclusions: PIMT gene of Salmonella is highly conserved in most of the pathogenic Salmonella serovars. The PIMT clone can be used to isolate PIMT protein. This PIMT protein will be helpful to identify isoaspartate containing proteins thus can help in study Salmonella virulence.

  4. Membrane-bound catechol-O-methyl transferase in cortical neurons and glial cells is intracellularly oriented

    Directory of Open Access Journals (Sweden)

    Björn H Schott

    2010-10-01

    Full Text Available Catechol-O-methyl transferase (COMT is involved in the inactivation of dopamine in brain regions in which the dopamine transporter (DAT1 is sparsely expressed. The membrane-bound isoform of COMT (MB-COMT is the predominantly expressed form in the mammalian central nervous system (CNS. It has been a matter of debate whether in neural cells of the CNS the enzymatic domain of MB-COMT is oriented towards the cytoplasmic or the extracellular compartment. Here we used live immunocytochemistry on cultured neocortical neurons and glial cells to investigate the expression and membrane orientation of native COMT and of transfected MB-COMT fused to green fluorescent protein (GFP. After live staining, COMT immunoreactivity was reliably detected in both neurons and glial cells after permeabilization, but not on unpermeabilized cells. Similarly, autofluorescence of COMT-GFP fusion protein and antibody fluorescence showed overlap only in permeabilized neurons. Our data provide converging evidence for an intracellular membrane orientation of MB-COMT in neurons and glial cells, suggesting the presence of a DAT1-independent postsynaptic uptake mechanism for dopamine, prior to its degradation via COMT.

  5. Substrate control through per-O-methylation of cyclodextrin acids

    DEFF Research Database (Denmark)

    Fenger, Thomas H; Bols, Mikael

    2010-01-01

    Per-O-methylated cyclodextrins containing a single 2-O-(2-acetate), 2-O-(3-propanoate) or a 6-carboxylate were investigated for glycosidase activity on p-nitrophenyl glycosides. The former two compounds displayed enzyme catalysis giving rate accelerations of 500-1000, while the latter compound gave...

  6. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    International Nuclear Information System (INIS)

    Introduction: R-[11C]-SKF 82957 is a high-affinity and potent dopamine D1 receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[11C]-SKF 82957 to image the high-affinity state of the dopamine D1 receptor with PET. Methods: R-[11C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D1 binding of R-[11C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor α-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[11C]-SKF 82957 dopamine D1 binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC90 5.3±4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[11C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D1 antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[11C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[11C]SKF 82957. Under such conditions, R-[11C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D1 receptor by PET.

  7. Lignin biosynthesis by sup-pression of two O-methyl-transferases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA-3-O-methyltransferase (CCoAOMT) genes encode two methyltransferases at different substrate levels in lignin biosynthesis. We constructed two single antisense expression vectors containing the cDNA of COMT or CCoAOMT genes and one dual antisense expression vector containing cDNAs of both OMTs genes. The antisense constructs were transferred into tobacco mediated by Agrobacterium tumefacience. PCR-Southern analysis indicated that antisense cDNAs had been integrated into the genome of the transgenic tobacco. The antisense genes were also expressed at transcriptional level displayed by Northern dot analysis. Klason lignin assay of 3-month-old transgenic tobaccos showed that repression in COMT or CCoAOMT alone could result in reduction of lignin content, more reduction was caused by suppression in CCoAOMT than in COMT. Furthermore, simultaneous suppression of both COMT and CCoAOMT resulted in more reduction than that of single gene, which indicated the cooperation of COMT and CCoAOMT. Histochemical staining showed that downregulated COMT led to the remarkable reduction of syringyl lignin. These data demonstrated that repression of CCoAOMT was an effective way to alter lignin biosynthesis in transgenic plants for improving the property of pulping.

  8. Systemic catechol-O-methyl transferase inhibition enables the D{sub 1} agonist radiotracer R-[{sup 11}C]SKF 82957

    Energy Technology Data Exchange (ETDEWEB)

    Palner, Mikael, E-mail: mikael.palner@nru.d [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); McCormick, Patrick; Parkes, Jun [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Knudsen, Gitte M. [Neurobiology Research Unit, Rigshospitalet and University of Copenhagen, Copenhagen (Denmark); Center for Integrated Molecular Brain Imaging, Rigshospitalet (Denmark); Wilson, Alan A. [PET Center, Center for Addiction and Mental Health, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, Ontario (Canada)

    2010-10-15

    Introduction: R-[{sup 11}C]-SKF 82957 is a high-affinity and potent dopamine D{sub 1} receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[{sup 11}C]-SKF 82957 to image the high-affinity state of the dopamine D{sub 1} receptor with PET. Methods: R-[{sup 11}C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D{sub 1} binding of R-[{sup 11}C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor {alpha}-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[{sup 11}C]-SKF 82957 dopamine D{sub 1} binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC{sub 90} 5.3{+-}4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[{sup 11}C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D{sub 1} antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[{sup 11}C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[{sup 11}C]SKF 82957. Under such conditions, R-[{sup 11}C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D{sub 1} receptor by PET.

  9. Structural transformation induced by locked nucleic acid or 2′–O-methyl nucleic acid site-specific modifications on thrombin binding aptamer

    OpenAIRE

    Liu, Bo; Li, Da

    2014-01-01

    Background Locked nucleic acid (LNA) and 2'–O-methyl nucleic acid (OMeNA) are two of the most extensively studied nucleotide derivatives in the last decades. However, how they affect DNA quadruplex structures remains largely unknown. To explore their possible biological affinities for quadruplexes, we investigated how LNA- or OMeNA-substitutions affect G-quadruplex structure formation using a thrombin binding aptamer (TBA), the most studied extracorporal G-quadruplex-forming DNA sequence, whi...

  10. 3-O-methyl-6-[123I]iodo-I-DOPA (OMID) - an amino acid derivative for tumour imaging with SPECT

    International Nuclear Information System (INIS)

    Starting from the convincing first results in clinics and the interesting biological behaviour of 3-O-methyl-6-[18F]fluoro-I-DOPA ([18F]OMFD)(1) we synthesize the iodine labelled amino acid analogue [123I]OMID, using the same tin organic precursor. The product is stable in vitro and in vivo. Initial biological data are described. (orig.)

  11. The role of catechol-O-methyl transferase Val(108/158Met polymorphism (rs4680 in the effect of green tea on resting energy expenditure and fat oxidation: a pilot study.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available INTRODUCTION: Green tea(GT is able to increase energy expenditure(EE and fat oxidation(FATox via inhibition of catechol-O-methyl transferase(COMT by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMT(H(Val/Val genotype, and low-activity COMT(L(Met/Met genotype. METHODS: Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years of whom 7 with the COMT(H-genotype and 7 with the COMT(L-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL consumption. RESULTS: At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (p<0.05. After GT vs. PL, EE(GT: 62.2 vs. PL: 35.4 kJ.3.5 hrs; p<0.01, RQ(GT: 0.80 vs. PL: 0.83; p<0.01, FATox(GT: 18.3 vs. PL: 15.3 g/d; p<0.001 and CHOox(GT: 18.5 vs. PL: 24.3 g/d; p<0.001 were significantly different for subjects carrying the COMT(H genotype, but not for subjects carrying the COMT(L genotype (EE, GT: 60.3 vs. PL: 51.7 kJ.3.5 hrs; NS, (RQ, GT: 0.81 vs. PL: 0.81; NS, (FATox, GT: 17.3 vs. PL: 17.0 g/d; NS, (CHOox, GT: 22.1 vs. PL: 21.4 g/d; NS. CONCLUSION: Subjects carrying the COMT(H genotype increased energy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMT(L genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter

  12. The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin, a mechanistic insight

    NARCIS (Netherlands)

    Lemanska, K.; Woude, van der H.; Szymusiak, H.; Boersma, M.G.; Gliszczynska-Swiglo, A.; Rietjens, I.M.C.M.; Tyrakowska, B.

    2004-01-01

    The biological effect of flavonoids can be modulated in vivo due to metabolism. The O-methylation of the catechol group in the molecule by catechol O-methyl transferase is one of the important metabolic pathways of flavonoids. In the present study, the consequences of catechol O-methylation for the

  13. Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

    Science.gov (United States)

    Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A; Bruner, Steven D; Shen, Ben

    2008-05-23

    Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation into the neocarzinostatin chromophore are catalyzed by five enzymes NcsB, NcsB1, NcsB2, NcsB3, and NcsB4. Here we report the biochemical characterization of NcsB1, unveiling that: (i) NcsB1 is an S-adenosyl-L-methionine-dependent O-methyltransferase; (ii) NcsB1 catalyzes regiospecific methylation at the 7-hydroxy group of its native substrate, 2,7-dihydroxy-5-methyl-1-naphthoic acid; (iii) NcsB1 also recognizes other dihydroxynaphthoic acids as substrates and catalyzes regiospecific O-methylation; and (iv) the carboxylate and its ortho-hydroxy groups of the substrate appear to be crucial for NcsB1 substrate recognition and binding, and O-methylation takes place only at the free hydroxy group of these dihydroxynaphthoic acids. These findings establish that NcsB1 catalyzes the third step in the biosynthesis of the naphthoic acid moiety of the neocarzinostatin chromophore and further support the early proposal for the biosynthesis of the naphthoic acid and its incorporation into the neocarzinostatin chromophore with free naphthoic acids serving as intermediates. NcsB1 represents another opportunity that can now be exploited to produce novel neocarzinostatin analogs by engineering neocarzinostatin biosynthesis or applying directed biosynthesis strategies. PMID:18387946

  14. Experimental and theoretical studies on the inclusion complexation of syringic acid with alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin.

    Science.gov (United States)

    Song, Le Xin; Wang, Hai Ming; Xu, Peng; Yang, Yan; Zhang, Zi Qiang

    2008-04-01

    Intermolecular interactions of alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (CD) with syringic acid (Syr) in aqueous solution are investigated by fluorescence spectroscopy. The fluorescence intensity of Syr gradually increases with the addition of the CDs. The formation constants (K) of the host-guest inclusion complexes are determined using a nonlinear analysis. The association abilities of Syr with the CDs decrease in the order gamma->beta->alpha- approximately DMbeta-CD. Both the intrinsic binding abilities of the CDs and the structural effect of Syr are taken into consideration when comparing the K values. Based on the results of NMR experimental and theoretical PM3 calculations both in vacuo and in water, it is found that Syr stays near the wider rim of alpha-CD cavity. Both the number of substituted groups (NSG) in a guest and the molar volume ratio of the guest to host cavity (MVR) play an important role in forming the CD supramolecular complexes of a homologous series of phenol derivatives, such as 2-methoxylphenol (2-Mop), eugenol (Eug) and Syr, i.e., an appropriate NSG or MVR in an inclusion system, such as in 2-Mop-alpha-CD, Eug-beta-CD and Syr-gamma-CD systems, can maximize the intermolecular interaction between host and guest.

  15. Evaluation of gamma gluthamyl transferase and uric acid levels in arsenic exposed subject

    Directory of Open Access Journals (Sweden)

    Ceylan Bal

    2015-06-01

    Full Text Available Objective: Arsenic is a metal with a widespread industrial usage and causing oxidative stress. Studies shows serum uric acid and gamma gluthamyl transferase (GGT levels are increasing in oxidative stress. The aim of this study is to evaluate the effect of arsenic exposure on serum uric acid and GGT levels. Methods: 500 patients who refer to Ankara Occupational Disease Hospital between 2010 to 2014 for periodic examination and urinary arsenic, serum uric acid and serum GGT levels assessed are included in this study. 268 patients with urinary arsenic levels over 35μg/L are defined as exposed and below 35μg/L are controls. Results: Data of 500 patients were analysed. 268 of them had high urine arsenic levels and 232 had normal urine arsenic levels. In the high urine arsenic level group the median serum uric acid level was 5.4 (2.60-7.20 and median serum GGT level was 27 (10-51 in the other group with normal urine arsenic levels the median serum uric acid level was 4.9 (2.5-7 and median serum GGT level was 22 (10-52. The difference between two groups was statistically significant (p value: 0.002 and <0.001 respectively Conclusion: Arsenic exposure may be associated with hyperuricemia and high levels of GGT and with prospective studies the causal relationship between arsenic exposure and hyperuricemia and GGT can be revealed.

  16. An association study on Catechol-O-methyl transferase polymorphism and obsessive-compulsive disorder and obsessive-compulsive disorder comorbid with bipolar disorder%儿茶酚氧位甲基转移酶基因多态性与单纯强迫症及共病双相障碍强迫症的关联分析

    Institute of Scientific and Technical Information of China (English)

    刘玉平; 苗国栋; 徐昌武; 刘恩益

    2012-01-01

    目的 探讨中国汉族人群中儿茶酚氧位甲基转移酶(COMT)基因多态性与单纯强迫症以及共病双相障碍强迫症之间的关系.方法 按美国《精神疾病诊断与统计手册》(DSM-Ⅳ),对符合诊断标准的单纯强迫症患者(单纯强迫症组)86例、共病双相障碍的强迫症患者(共病组)76例和正常对照(正常对照组)120例分别应用聚合酶链式反应(PCR)及限制性片段长度多态性(RFLP)技术检测COMT基因的多态性,采用病例-对照的关联分析方法对3组基因型和等位基因频率进行分析.结果 3组COMT基因型符合Hardy-Weinberg平衡法则;COMT的基因型和等位基因频率分布在3组间差异无统计学意义(P>0.05);经性别分层后,3组中COMT基因型与等位基因频率的分布差异也无统计学意义(P>0.05).结论 COMT基因多态性与单纯强迫症及共病双相障碍的强迫症可能无关联.%Objective To explore the association between polymorphism of Catechol-O-methyl transferase (COMT) gene and the pathogenesis of obsessive-compulsive disorder (OCD) and obsessive-compulsive disorder comorbid with bipolar disorder (BD) in the Han nationality.Methods According to the Diagnostic and Statistical Manual of Mental Disorders( DSM-IV ),86 patients were recruited according to the diagnosis criteria of OCD and 76 patients were recruited according to the diagnosis criteria of BD and OCD.One hundred and twenty healthy persons were in the control group.All the subjects were genotyped directly with the polymerase chain reaction-restriction fragment length polymorphism technique.The case-control association analysis was adopted to analyze the frequencies of genotype and alleles among the three groups.Results The values of the genotypes of the three groups were consistent with the Hardy-Weinberg equilibrium; there were no significant differences among the three groups regarding genotypes or alleles of COMT gene.Even stratified by sex,the distribution

  17. Inclusion compounds of plant growth regulators in cyclodextrins. V. 4-Chlorophenoxyacetic acid encapsulated in beta-cyclodextrin and heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin.

    Science.gov (United States)

    Tsorteki, Frantzeska; Bethanis, Kostas; Pinotsis, Nikos; Giastas, Petros; Mentzafos, Dimitris

    2005-04-01

    The crystal structures of 4-chlorophenoxyacetic acid (4CPA) included in beta-cyclodextrin (beta-CD) and heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) have been studied by X-ray diffraction. The 4CPA/beta-CD complex crystallizes as a head-to-head dimer in the space group C2 in the Tetrad packing mode. The packing modes of some beta-CD dimeric complexes, having unique stackings, are also discussed. The 4CPA/TMbetaCD inclusion complex crystallizes in the space group P2(1) and its asymmetric unit contains two crystallographically independent complexes, complex A and complex B, exhibiting different conformations. The host molecule of complex A is significantly distorted, as a glucosidic residue rotated about the O4'-C1 and C4-O4 bonds forms an aperture where the guest molecule is accommodated. The phenyl moiety of the guest molecule of complex B is nearly perpendicular to the mean plane of the O4n atoms. The conformations of the guest molecules of the two complexes are similar. The crystal packing consists of antiparallel columns as in the majority of the TMbetaCD complexes published so far.

  18. Enzymatic aryl-O-methyl-14C labeling of model lignin monomers

    International Nuclear Information System (INIS)

    Aryl-O-methyl ethers are abundant in aerobic and anaerobic environments. In particular, lignin is composed of units of this type. Lignin monomers specifically radiolabeled in methoxy, side chain, and ring carbons have been synthesized by chemical procedures and are important in studies of lignin synthesis and degradation, humus formation, and microbial O-demethylation. In this paper attention is drawn to an enzymatic procedure for preparing O-methyl-14C-labeled aromatic lignin monomers which has not previously been exploited in microbial ecology and physiology studies and which has several advantages compared with chemical synthesis procedures. O-[methyl-14C]vanillic and O-[methyl-14C]ferulic acids were prepared with S-[methyl-14C]adenosyl-L-methionine as the methyl donor, using commercially obtained porcine liver catechol-O-methyltransferase (EC 2.1.1.6). The specific activity of the methylated products was the same as that of the methyl donor, a maximum of about 58 μCi/μmol, and the yields were 42% (vanillate) and 35% (ferulate). Thus lignin monomers are readily prepared as O-methylated products of the catechol-O-methyltransferase reaction and, with this enzyme method of preparation, would be more widely available than labeled compounds which require chemical synthesis

  19. Separation of catechins and O-methylated (-)-epigallocatechin gallate using polyamide thin-layer chromatography.

    Science.gov (United States)

    Wang, Kunbo; Chen, Qincao; Lin, Yong; Yu, Shuangshang; Lin, Haiyan; Huang, Jianan; Liu, Zhonghua

    2016-04-01

    Thin-layer chromatography (TLC) method for the separation and quantitative determination of seven related compounds: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me) and (-)-epigallocatechin- 3-O-(4-O-methyl) gallate (EGCG4″Me) has been developed. The above-mentioned seven compounds have been resolved using polyamide TLC plates using a double-development with methanol followed by acetone/acetic acid (2:1, v/v). In addition, separation of the phenolic acids namely gallic acid, chlorogenic acid, and caffeic acid was achieved using the same solvent system. The applicability of the method was checked by screening of extracts of green, black, oolong, white tea and tea cultivars leaves. PMID:26990737

  20. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  1. Feruloyl-CoA:monolignol transferase

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  2. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.

    Science.gov (United States)

    Lindenkamp, Nicole; Schürmann, Marc; Steinbüchel, Alexander

    2013-09-01

    In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating

  3. Regiospecific O-Methylation of Naphthoic Acids Catalyzed by NcsB1, an O-Methyltransferase Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin*S⃞

    OpenAIRE

    Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A.; Bruner, Steven D.; Shen, Ben

    2008-01-01

    Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic gene cluster and proposed that the biosynthesis of the naphthoic acid moiety and its incorporation in...

  4. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee.

    Science.gov (United States)

    Zhu, Bao Ting; Wang, Pan; Nagai, Mime; Wen, Yujing; Bai, Hyoung-Woo

    2009-01-01

    In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E(2) and 4-OH-E(2), respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E(2) in a concentration-dependent manner, with IC(50) values of 1.3-1.4 and 6.3-12.5 microM, respectively, and they also inhibited the O-methylation of 4-OH-E(2), with IC(50) values of 0.7-0.8 and 1.3-3.1 microM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E(2), but it exerted a weaker inhibition of the O-methylation of 4-OH-E(2). Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.

  5. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Lieke B van Alphen

    Full Text Available Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.

  6. KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules.

    Science.gov (United States)

    Willis, Lisa M; Whitfield, Chris

    2013-12-17

    Capsular polysaccharides (CPSs) are high-molecular-mass cell-surface polysaccharides, that act as important virulence factors for many pathogenic bacteria. Several clinically important Gram-negative pathogens share similar systems for CPS biosynthesis and export; examples include Escherichia coli, Campylobacter jejuni, Haemophilus influenzae, Neisseria meningitidis, and Pasteurella multocida. Each CPS contains a serotype-specific repeat-unit structure, but the glycans all possess a lipid moiety at their reducing termini. In E. coli and N. meningitidis, the predominant lipid is a lysophosphatidylglycerol moiety that is attached to the repeat-unit domain of the CPS via multiple residues of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), referred to as a poly-Kdo linker. The Kdo residues are β-linked, suggesting that they are synthesized by retaining glycosyltransferases. To date, the only characterized Kdo transferases are the inverting enzymes that catalyze the α-linkages found in lipopolysaccharide. Here, we identify two conserved proteins from CPS assembly systems, KpsC and KpsS, as the β-Kdo-transferases and demonstrate in vitro reconstitution of poly-Kdo linker assembly on a fluorescent phosphatidylglycerol acceptor. KpsS adds the first Kdo residue, and this reaction product is then extended by KpsC. Cross-complementation experiments demonstrate that the E. coli and N. meningitidis protein homologs are functionally conserved.

  7. Vapour-phase O-methylation of Catechol with Methanol on Ti-containing Phosphate Catalysts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ti-containing phosphate(Ti-P-O) catalysts with different molar ratios of P to Ti(0-2.0) were synthesized and characterized by XRD, N2-adsorption/desorption, IR and temperature-programmed desorption(TPD) methods. The catalytic properties of Ti-P-O samples in the vapor-phase O-methylation of catechol with methanol were also studied. The catechol conversion increases with the increase of the molar ratio of P to Ti in a range of 0-0.33, while a further increase in the P content leads to a decrease of the catalytic activity. Meanwhile, the selectivities of the catalysts to the main product(guaiacol) increase gradually with the increase of the molar ratio of P to Ti. The presence of relatively strong Lewis acidic and/or basic sites in the P-free catalyst should be responsible for the formation of C-alkylation products. The weak acid-base characteristics of the catalysts are favourable for the mono-O-methylation of catechol. In comparison with the Lewis acidic sites, the Br(o)nsted acidic sites on the catalysts are more active for the title reaction.

  8. Effects of 2'-O-methyl nucleotide substitution on EcoRI endonuclease cleavage activities.

    Directory of Open Access Journals (Sweden)

    Guojie Zhao

    Full Text Available To investigate the effect of sugar pucker conformation on DNA-protein interactions, we used 2'-O-methyl nucleotide (2'-OMeN to modify the EcoRI recognition sequence -TGAATTCT-, and monitored the enzymatic cleavage process using FRET method. The 2'-O-methyl nucleotide has a C3'-endo sugar pucker conformation different from the C2'-endo sugar pucker conformation of native DNA nucleotides. The initial reaction velocities were measured and the kinetic parameters, Km and Vmax were derived using Michaelis-Menten equation. Experimental results showed that 2'-OMeN substitutions for the EcoRI recognition sequence decreased the cleavage efficiency for A2, A3 and T4 substitutions significantly, and 2'-OMeN substitution for T5 residue inhibited the enzymatic activity completely. In contrast, substitutions for G1 and C6 could maintain the original activity. 2'-fluoro nucleic acid (2'-FNA and locked nucleic acid (LNA having similar C3'-endo sugar pucker conformation also demonstrated similar enzymatic results. This position-dependent enzymatic cleavage property might be attributed to the phosphate backbone distortion caused by the switch from C2'-endo to C3'-endo sugar pucker conformation, and was interpreted on the basis of the DNA-EcoRI structure. These 2'-modified nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property will have potential applications in genetic engineering and biomedicine.

  9. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.

    Science.gov (United States)

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.

  10. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    Science.gov (United States)

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  11. Transferases in Polymer Chemistry

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Loos, Katja; Palmans, ARA; Heise, A

    2010-01-01

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic polym

  12. Specific synthesis of neurostatin and gangliosides O-acetylated in the outer sialic acids using a sialate transferase.

    Directory of Open Access Journals (Sweden)

    Lorenzo Romero-Ramírez

    Full Text Available Gangliosides are sialic acid containing glycosphingolipids, commonly found on the outer leaflet of the plasma membrane. O-acetylation of sialic acid hydroxyl groups is one of the most common modifications in gangliosides. Studies on the biological activity of O-acetylated gangliosides have been limited by their scarcity in nature. This comparatively small change in ganglioside structure causes major changes in their physiological properties. When the ganglioside GD1b was O-acetylated in the outer sialic acid, it became the potent inhibitor of astroblast and astrocytoma proliferation called Neurostatin. Although various chemical and enzymatic methods to O-acetylate commercial gangliosides have been described, O-acetylation was nonspecific and produced many side-products that reduced the yield. An enzyme with O-acetyltransferase activity (SOAT has been previously cloned from the bacteria Campylobacter jejuni. This enzyme catalyzed the acetylation of oligosaccharide-bound sialic acid, with high specificity for terminal alpha-2,8-linked residues. Using this enzyme and commercial gangliosides as starting material, we have specifically O-acetylated the gangliosides' outer sialic acids, to produce the corresponding gangliosides specifically O-acetylated in the sialic acid bound in alpha-2,3 and alpha-2,8 residues. We demonstrate here that O-acetylation occurred specifically in the C-9 position of the sialic acid. In summary, we present a new method of specific O-acetylation of ganglioside sialic acids that permits the large scale preparation of these modified glycosphingolipids, facilitating both, the study of their mechanism of antitumoral action and their use as therapeutic drugs for treating glioblastoma multiform (GBM patients.

  13. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Science.gov (United States)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  14. Two Pear Glutathione S-Transferases Genes Are Regulated during Fruit Development and Involved in Response to Salicylic Acid, Auxin, and Glucose Signaling

    OpenAIRE

    Hai-Yan Shi; Zheng-Hong Li; Yu-Xing Zhang; Liang Chen; Di-Ying Xiang; Yu-Feng Zhang

    2014-01-01

    Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia) and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N) and Glutathione S-transferase, C-terminal domain (GST_C). Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG bou...

  15. Identification of Ononitol and O-methyl-scyllo-inositol in Pea Root Nodules

    DEFF Research Database (Denmark)

    Skøt, Leif; Egsgaard, Helge

    1984-01-01

    components were dominant in the carbohydrate pattern of the nodules formed by strain 1 a. The cyclitols were also present in the denodulated roots, but to a much smaller extent; in the above-ground plant parts only traces were found. The identification of ononitol and O-methyl-scyllo-inositol was established......Ononitol (4-O-methyl-myo-inositol) and O-methyl-scyllo-inositol were identified in pea (Pisum sativum L.) root nodules formed by twoRhizobium leguminosarum strains. Ononitol was the major soluble carbohydrate in nodules formed by strain 1045 while O-methyl-scyllo-inositol and two unidentified...

  16. Interplay of LNA and 2'-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: a molecular dynamics study using the revised AMBER force field and comparison with experimental results.

    Science.gov (United States)

    Yildirim, Ilyas; Kierzek, Elzbieta; Kierzek, Ryszard; Schatz, George C

    2014-12-11

    When used in nucleic acid duplexes, locked nucleic acid (LNA) and 2'-O-methyl RNA residues enhance the duplex stabilities, and this makes it possible to create much better RNA aptamers to target specific molecules in cells. Thus, LNA and 2'-O-methyl RNA residues are finding increasingly widespread use in RNA-based therapeutics. Herein, we utilize molecular dynamics (MD) simulations and UV melting experiments to investigate the structural and thermodynamic properties of 13 nucleic acid duplexes, including full DNA, RNA, LNA, and 2'-O-methyl RNA duplexes as well as hybrid systems such as LNA:RNA, 2'-O-methyl RNA:RNA, LNA/2'-O-methyl RNA:RNA, and RNA/2'-O-methyl RNA:RNA duplexes. The MD simulations are based on a version of the Amber force field revised specifically for RNA and LNA residues. Our results indicate that LNA and 2'-O-methyl RNA residues have two different hybridization mechanisms when included in hybrid duplexes with RNA wherein the former underwinds while the latter overwinds the duplexes. These computational predictions are supported by X-ray structures of LNA and 2'-O-methyl RNA duplexes that were recently presented by different groups, and there is also good agreement with the measured thermal stabilities of the duplexes. We find out that the "underwinding" phenomenon seen in LNA and LNA:RNA hybrid duplexes happens due to expansion of the major groove widths (Mgw) of the duplexes that is associated with decrease in the slide and twist values in base-pair steps. In contrast, 2'-O-methyl RNA residues in RNA duplexes slightly overwind the duplexes while the backbone is forced to stay in C3'-endo. Moreover, base-pair stacking in the LNA and LNA:RNA hybrid systems is gradually reduced with the inclusion of LNA residues in the duplexes while no such effect is seen in the 2'-O-methyl RNA systems. Our results show how competition between base stacking and structural rigidity in these RNA hybrid systems influences structures and stabilities. Even though both

  17. 磷酸铝负载钾催化剂表面酸碱性质对邻苯二酚O-单醚化催化性能的影响%Influence of Acid-Base Properties of K-Loaded Aluminophosphate Catalysts on Their Catalytic Behavior in the O-Methylation of Catechol

    Institute of Scientific and Technical Information of China (English)

    刘钢; 杨录新; 吴淑杰; 贾明君; 张文祥

    2014-01-01

    K-loaded aluminophosphates prepared by impregnation were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, N2 adsorption, and NH3 as wel as CO2 temperature-programed desorption (NH3-TPD, CO2-TPD). The results show that potassium was highly dispersed on the surface of the aluminophosphates. The amount of surface acidic and basic sites decreased upon adding a smal amount of potassium. With an increase in potassium, the amount of surface acid sites decreased and the amount of surface base sites did not obviously change. Vapor-phase O-methylation of catechol with methanol was carried out to investigate the catalytic performance of the K-loaded aluminophosphates. Selectivity toward guaiacol obviously increased when a smal amount of potassium was added. With an increase in the potassium content, selectivity toward guaiacol increased further and the conversion of catechol decreased. Combined with the characterization results, the surface weak acidic sites play an important role in improving the conversion of catechol and the surface weak basic sites are suitable for improving selectivity toward guaiacol.%采用浸渍法制备了磷酸铝负载钾催化剂,通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、氮吸附实验、CO2和NH3的程序升温脱附(CO2-TPD和NH3-TPD)等手段对催化剂进行了表征。结果表明钾高分散在磷酸铝样品表面;加入少量钾后样品表面的酸中心和碱中心的量同时减少;而随着钾量的增加表面碱量没有明显变化,酸量显著下降。催化剂在以邻苯二酚和甲醇为原料气相法一步合成愈创木酚反应中的活性结果显示:加入少量钾的样品上愈创木酚的选择性显著提高,随着钾量的增加,愈创木酚的选择性进一步增加,邻苯二酚的转化率降低。关联表征结果:催化剂表面弱酸中心对提高邻苯二酚的转化率起着重要作用,而表面弱碱中心对提高愈创木酚的选择性有利。

  18. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    Science.gov (United States)

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  19. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.

  20. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein, glutathione-S-transferase, acid phosphatase, and ATPase of freshwater crab Sinopotamon yangtsekiense.

    Science.gov (United States)

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui; Zou, Enmin

    2014-03-01

    Cadmium (Cd) is an environmental contaminant showing a variety of deleterious effects, including the potential threat for the ecological environment and human health via food chains. Low molecular weight chitosan (LMWC) has been demonstrated to be an effective antioxidant. Metallothionein (MT) mRNA levels and activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), acid phosphatase (ACP), Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as malondialdehyde (MDA) contents in the gills of the freshwater crab Sinopotamon yangtsekiense were analyzed in vivo in order to determine the injury of Cd exposure on the gill tissues as well as the protective effect of LMWC against this injury. The results showed that there was an apparent accumulation of Cd in the gills, which was lessened by the presence of LMWC. Moreover, Cd(2+) significantly increased the gill MT mRNA levels, ACP activity and MDA content while decreasing the activities of SOD, GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in the crabs relative to the control. Cotreatment with LMWC reduced the levels of MT mRNA and ACP but raised the activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in gill tissues compared with the crabs exposed to Cd(2+) alone. These results suggest that LMWC may exert its protective effect through chelating Cd(2+) to form LMWC-Cd(2+) complex, elevating the antioxidative activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as alleviating the stress pressure on MT and ACP, consequently protecting the cell from the adverse effects of Cd.

  1. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    Full Text Available Research from the Multiethnic Cohort (MEC demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA, a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005 SPMA/ml urine than Whites (2.67 [0.13] while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005. SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1 deletion explained between 14.2-31.6% (p = 5.4x10-157 and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9 of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.

  2. Establishing a relationship between prolactin and altered fatty acid β-Oxidation via carnitine palmitoyl transferase 1 in breast cancer cells

    International Nuclear Information System (INIS)

    Mammary carcinomas have been associated with a high-fat diet, and the rate of breast cancer in overweight post-menopausal women is up to 50% higher than in their normal-weight counterparts. Epidemiological studies suggest that prolactin (PRL) plays a role in the progression of breast cancer. The current study examined breast cancer as a metabolic disease in the context of altered fatty acid catabolism by examining the effect of PRL on carnitine palmitoyl transferase 1 (CPT1), an enzyme that shuttles long-chain fatty acids into the mitochondrial matrix for β-oxidation. The effect of PRL on the adenosine 5'-monophosphate-activated protein kinase (AMPK) energy sensing pathway was also investigated. MCF-7 and MDA-MB-231 breast cancer cells and 184B5 normal breast epithelial cells treated with 100 ng/ml of PRL for 24 hr were used as in vitro models. Real-time PCR was employed to quantify changes in mRNA levels and Western blotting was carried out to evaluate changes at the protein level. A non-radioactive CPT1 enzyme activity assay was established and siRNA transfections were performed to transiently knock down specific targets in the AMPK pathway. PRL stimulation increased the expression of CPT1A (liver isoform) at the mRNA and protein levels in both breast cancer cell lines, but not in 184B5 cells. In response to PRL, a 20% increase in CPT1 enzyme activity was observed in MDA-MB-231 cells. PRL treatment resulted in increased phosphorylation of the α catalytic subunit of AMPK at Thr172, as well as phosphorylation of acetyl-CoA carboxylase (ACC) at Ser79. A siRNA against liver kinase B1 (LKB1) reversed these effects in breast cancer cells. PRL partially restored CPT1 activity in breast cancer cells in which CPT1A, LKB1, or AMPKα-1 were knocked down. PRL enhances fatty acid β-oxidation by stimulating CPT1 expression and/or activity in MCF-7 and MDA-MB-231 breast cancer cells. These PRL-mediated effects are partially dependent on the LKB1-AMPK pathway, although

  3. Enzymatic Glycosylation by Transferases

    DEFF Research Database (Denmark)

    Blixt, Klas Ola; Razi, Nahid

    2008-01-01

    . Glycosyltransferases are now playing a key role for in vitro synthesis of oligosaccharides and the bacterial genome are increasingly utilized for cloning and over expression of active transferases in glycosylation reactions. This chapter highlights the recent progress towards preparative synthesis of oligosaccharides...

  4. Bacterial O-methylation of halogen-substituted phenols. [Rhodococcus; Acinetobacter

    Energy Technology Data Exchange (ETDEWEB)

    Allard, A.S.; Remberger, M.; Neilson, A.H.

    1987-04-01

    Two strains of bacteria capable of carrying out the O-methylation of phenolic compounds, one from the gram-positive genus Rhodococcus and one from the gram-negative genus Acinetobacter, were used to examine the O-methylation of phenols carrying fluoro-, chloro-, and bromo-substituents. Zero-order rates of O-methylation were calculated from data for the chloro- and bromophenols; there was no simple relationship between the rate of reaction and the structure of the substrates, and significant differences were observed in the responses of the two test organisms. For the gram-negative strain, the pattern of substitution was as important as the number of substituents. Hexachlorophene was resistant to O-methylation by both strains, and tetrabromobisphenol-A was O-methylated only by the gram-positive strain. It is suggested that in the natural environment, bacterial O-methylation of phenols carrying electron-attracting substituents might be a significant alternative to biodegradation.

  5. Genetic Basis for Rhizobium etli CE3 O-Antigen O-Methylated Residues That Vary According to Growth Conditions▿

    OpenAIRE

    Ojeda, Kristylea J.; Box, Jodie M.; Noel, K. Dale

    2009-01-01

    The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus ...

  6. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.

    Science.gov (United States)

    Reynolds, C Michael; Kalb, Suzanne R; Cotter, Robert J; Raetz, Christian R H

    2005-06-01

    Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of Ept

  7. Effect of 2'-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells.

    Science.gov (United States)

    Matsui, Masayuki; Threlfall, Richard N; Caruthers, Marvin H; Corey, David R

    2014-12-15

    Optimizing oligonucleotides as therapeutics will require exploring how chemistry can be used to enhance their effects inside cells. To achieve this goal it will be necessary to fully explore chemical space around the native DNA/RNA framework to define the potential of diverse chemical modifications. In this report we examine the potential of thiophosphonoacetate (thioPACE)-modified 2'-O-methyl oligoribonucleotides as inhibitors of human huntingtin (HTT) expression. Inhibition occurred, but was less than with analogous locked nucleic acid (LNA)-substituted oligomers lacking the thioPACE modification. These data suggest that thioPACE oligonucleotides have the potential to control gene expression inside cells. However, advantages relative to other modifications were not demonstrated. Additional modifications are likely to be necessary to fully explore any potential advantages of thioPACE substitutions. PMID:26865404

  8. Cocaine inhibits extraneuronal O-methylation of exogenous norepinephrine in nasal and oral tissues of the rabbit

    Energy Technology Data Exchange (ETDEWEB)

    de la Lande, I.S.; Parker, D.A.S.; Proctor, C.H.; Marino, V.; Mackay-Sim, A.

    1987-11-30

    Nasal mucosa (respirator and olfactory) and lingual gingiva of the rabbit were depleted of their sympathetic nerves by superior cervical ganglionectomy. In the innervated nasal mucosa, exogenous tritiated norepinephrine (/sup 3/H-NE) was metabolized mainly to tritiated 3,4-dihydroxyphenylethylene glycol (/sup 3/HDOPEG) and 3,4-dihydroxy mandelic acid (/sup 3/HDOMA), whereas after denervation it was metabolized mainly to tritiated normetanephrine (/sup 3/HNMN). In the denervated mucosa, cocaine(30umol/l) inhibited /sup 3/HNMN formation by 50-60%. Cocaine also inhibited /sup 3/HNMN formation by 60% in the denervated lingual gingiva. It is concluded that the tissues metabolize /sup 3/H-NE via a cocaine-sensitive extraneuronal uptake and O-methylating system similar to that which has been shown to be present in dental pulp. 17 references, 1 table.

  9. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize

    Science.gov (United States)

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxy...

  10. Structural analysis of the O-polysaccharide of the lipopolysaccharide from Azospirillum brasilense Jm6B2 containing 3-O-methyl-D-rhamnose (D-acofriose).

    Science.gov (United States)

    Boyko, Alevtina S; Dmitrenok, Andrey S; Fedonenko, Yuliya P; Zdorovenko, Evelina L; Konnova, Svetlana A; Knirel, Yuriy A; Ignatov, Vladimir V

    2012-07-01

    Two types of neutral O-polysaccharides were obtained by mild acid degradation of the lipopolysaccharide isolated by phenol-water extraction from the asymbiotic diazotrophic rhizobacterium Azospirillum brasilense Jm6B2. The following structure of the major O-polysaccharide was established by composition and methylation (ethylation) analyses, Smith degradation, and 1D and 2D (1)H and (13)C NMR spectroscopy: [structure: see text] where a non-stoichiometric (~60%) 3-O-methylation of D-rhamnose is indicated by italics.

  11. Influência do treinamento físico aeróbio no transporte mitocondrial de ácidos graxos de cadeia longa no músculo esquelético: papel do complexo carnitina palmitoil transferase Influence of aerobic physical training in the motochondrial transport of long chain fatty acids in the skeletal muscle: role of the carnitine palmitoil transferase

    Directory of Open Access Journals (Sweden)

    Alex Shimura Yamashita

    2008-04-01

    Full Text Available O ácido graxo (AG é uma importante fonte de energia para o músculo esquelético. Durante o exercício sua mobilização é aumentada para suprir as necessidades da musculatura ativa. Acredita-se que diversos pontos de regulação atuem no controle da oxidação dos AG, sendo o principal a atividade do complexo carnitina palmitoil transferase (CPT, entre os quais três componentes estão envolvidos: a CPT I, a CPT II e carnitina acilcarnitina translocase. A função da CPT I durante o exercício físico é controlar a entrada de AG para o interior da mitocôndria, para posterior oxidação do AG e produção de energia. Em resposta ao treinamento físico há um aumento na atividade e expressão da CPT I no músculo esquelético. Devido sua grande importância no metabolismo de lipídios, os mecanismos que controlam sua atividade e sua expressão gênica são revisados no presente estudo. Reguladores da expressão gênica de proteínas envolvidas no metabolismo de lipídios no músculo esquelético, os receptores ativados por proliferadores de peroxissomas (PPAR alfa e beta, são discutidos com um enfoque na resposta ao treinamento físico.Fatty acids are an important source of energy for the skeletal muscle. During exercise, their mobilization is increased to supply the muscle energetic needs. Many points of regulation act in the fatty acids metabolism, where the carnitine palmytoiltransferase (CPT complex is the main control system. Three compounds named CPT I, CPT II and carnitine acyl carnitine translocase (CACT are components of this system. Its function is to control the influx of fatty acids inside the mitochondria for posterior oxidation and energy production. There is a pronounced increase in both activity and gene expression of CPT I in the skeletal muscle in response to exercise. Due to its importance in lipid metabolism, the controlling mechanisms are reviewed in the present study. The modulation of gene expression by peroxisome

  12. The mycosubtilin synthetase of Bacillus subtilis ATCC6633 : A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase

    NARCIS (Netherlands)

    Duitman, EH; Hamoen, LW; Rembold, M; Venema, G; Seitz, H; Saenger, W; Bernhard, F; Reinhardt, R; Schmidt, M; Ullrich, C; Stein, T; Leenders, F; Vater, J

    1999-01-01

    Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a p-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Cl

  13. WaaA of the Hyperthermophilic Bacterium Aquifex aeolicus Is a Monofunctional 3-Deoxy-d-manno-oct-2-ulosonic Acid Transferase Involved in Lipopolysaccharide Biosynthesis*

    OpenAIRE

    Mamat, Uwe; Schmidt, Helgo; Munoz, Eva; Lindner, Buko; Fukase, Koichi; Hanuszkiewicz, Anna; WU, Jing; Meredith, Timothy C.; Ronald W Woodard; Hilgenfeld, Rolf; Mesters, Jeroen R.; Holst, Otto

    2009-01-01

    The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable K...

  14. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet.

    Directory of Open Access Journals (Sweden)

    Gaetano Serviddio

    Full Text Available There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH. The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I, the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD diet, administered for 4 weeks, was used to induce NASH in rats.We demonstrated that CPT-I activity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats.At the same time, the rate of total fatty acid oxidation to CO(2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed.

  15. Glutathione transferases and neurodegenerative diseases.

    Science.gov (United States)

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  16. A Sensitive Alternative for MicroRNA In Situ Hybridizations Using Probes of 2'-O-Methyl RNA + LNA

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Møller, Trine; Dufva, Martin;

    2011-01-01

    The use of short, high-affinity probes consisting of a combination of DNA and locked nucleic acid (LNA) has enabled the specific detection of microRNAs (miRNAs) by in situ hybridization (ISH). However, detection of low–copy number miRNAs is still not always possible. Here the authors show...... that probes consisting of 2'-O-methyl RNAs (2OMe) and LNA at every third base (2:1 ratio), under optimized hybridization conditions, excluding yeast RNA from the hybridization buffer, can provide superior performance in detection of miRNA targets in terms of sensitivity and signal-to-noise ratio compared...... to DNA + LNA probes. Furthermore, they show that hybridizations can be performed in buffers of 4M urea instead of 50% formamide, thereby yielding an equally specific but nontoxic assay. The use of 2OMe + LNA–based probes and the optimized ISH assay enable simple and fast detection of low–copy number mi...

  17. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  18. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    International Nuclear Information System (INIS)

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m7GpppN; cap 1, m7GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease

  19. 3-O-Methyl-6-[18F]fluoro-l-DOPA and its evaluation in brain tumour imaging

    International Nuclear Information System (INIS)

    3-O-Methyl-6-[18F]fluoro-l-DOPA (OMFD) is a major metabolite of 6-[18F]fluoro-L-DOPA. Although synthesis of OFMD was primarily established to study the dopaminergic system, as it is an amino acid analogue, uptake in experimental tumours has been found. The aim of this study was to evaluate the applicability of OMFD for brain tumour imaging and to obtain initial estimates of whole-body biodistribution and radiation dosimetry in humans. Nineteen patients with suspected or confirmed brain tumours were investigated with OMFD and dynamic brain PET, complemented by whole-body PET in seven patients. Tracer kinetics were compared for normal brain and intracerebral lesions. Tissue accumulation was quantified with standardised uptake values (SUVs). Whole-body distribution in combination with tracer kinetics from animal experiments was used for the calculation of radiation dosimetry data. On the basis of OMFD PET, viable brain tumour was suspected in 16 patients with SUVs of 3.0±0.8 and a tumour to non-tumour ratio of 1.9±0.5. Highest tumour and normal brain uptake occurred between 15 and 30 min, with a subsequent slow decrease. Late whole-body tracer distribution was uniform without specific organ accumulation. Elimination occurred via urine. The mean radiation dose to the whole body was estimated at 0.016 mSv/MBq, with the kidneys as dose-critical organ (0.033 mGy/MBq). In conclusion, OMFD enables the visualisation of brain tumours with SUVs similar to other fluorinated amino acids. The whole-body radiation exposure from OMFD is comparable to that from FDG imaging. (orig.)

  20. Selectivity and affinity of DNA triplex forming oligonucleotides containing the nucleoside analogues 2'-O-methyl-5-(3-amino-1-propynyl)uridine and 2'-O-methyl-5-propynyluridine.

    Science.gov (United States)

    Li, Hong; Miller, Paul S; Seidman, Michael M

    2008-11-21

    Triplex forming oligonucleotides (TFOs) containing the nucleoside analogues 2'-O-methyl-5-propynyluridine (1) and 2'-O-methyl-5-(3-amino-1-propynyl)uridine (2) were synthesized. The affinity and selectivity of triplex formation by these TFOs were studied by gel shift analysis, T(m) value measurement, and association rate assays. The results show that the introduction of 1 and 2 into TFOs can improve the stability of the triplexes under physiological conditions. Optimized distribution of 1 or 2 in the TFOs combined with a cluster of contiguous nucleosides with 2'-aminoethoxy sugars resulted in formation of triplexes with further enhanced stability and improved selectivity. PMID:18972052

  1. Selectivity and Affinity of DNA Triplex Forming Oligonucleotides Containing the Nucleoside Analogues 2′-O-Methyl-5-(3-amino-1-propynyl)uridine and 2′-O-Methyl-5-propynyluridine

    OpenAIRE

    Li, Hong; Miller, Paul S.; Seidman, Michael M.

    2008-01-01

    Triplex forming oligonucleotides (TFOs) containing the nucleoside analogues 2′-O-Methyl-5-propynyluridine (1) and 2′-O-Methyl-5-(3-amino-1-propynyl)uridine (2) were synthesized. The affinity and selectivity of triplex formation by these TFOs were studied by gel shift analysis, Tm value measurement, and association rate assays. The results show that the introduction of 1 and 2 into TFOs can improve the stability of the triplexes under physiological conditions. Optimized distribution of 1 or 2 ...

  2. Differential Genetic and Epigenetic Regulation of Catechol-O-Methyl-Transferase (COMT is Associated with Impaired Fear Inhibition in Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Seth Davin Norrholm

    2013-04-01

    Full Text Available The catechol-O-methyltransferase (COMT enzyme is critical for the catabolic regulation of synaptic dopamine, resulting in altered cortical functioning. The COMT Val158Met polymorphism has been implicated in human mental illness, with Met/Met homozygotes associated with increased susceptibility to posttraumatic stress disorder (PTSD. Our primary objective was to examine the intermediate phenotype of fear inhibition in PTSD stratified by COMT genotype (Met/Met, Val/Met, and Val/Val and differential gene regulation via methylation status at CpG sites in the COMT promoter region. More specifically, we examined the potential interaction of COMT genotype and PTSD diagnosis on fear-potentiated startle during fear conditioning and extinction and COMT DNA methylation levels (as determined using genomic DNA isolated from whole blood . Participants were recruited from medical and gynecological clinics of an urban hospital in Atlanta, Georgia. We found that individuals with the Met/Met genotype demonstrated higher fear-potentiated startle to the CS- (safety signal and during extinction of the CS+ (danger signal compared to Val/Met and Val/Val genotypes. The PTSD+ Met/Met genotype group had the greatest impairment in fear inhibition to the CS- (p=.006, compared to Val carriers. In addition, the Met/Met genotype was associated with DNA methylation at 4 CpG sites, 2 of which were associated with impaired fear inhibition to the safety signal. These results suggest that multiple differential mechanisms for regulating COMT function – at the level of protein structure via the Val158Met genotype and at the level of gene regulation via differential methylation - are associated with impaired fear inhibition in PTSD.

  3. Composition of a methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Fichtinger-Schepman, A.M.J.; Kamerling, J.P.; Jong, E.W. de; Bosch, L.; Westbroek, P.

    1979-01-01

    The water-soluble, acidic polysaccharide isolated from the coccoliths of the alga Emiliania huxleyi (Lohmann) Kamptner contains residues of the following sugars: L-galactose, D-glucose, D-mannose, L-mannose, L-rhamnose, L-arabinose, D-ribose, D-xylose, 6-O-methyl-D-mannose, 6-O-methyl-L-mannose, 2,3

  4. Structure and conformational analysis of spiroketals from 6-O-methyl-9(E-hydroxyiminoerythronolide A

    Directory of Open Access Journals (Sweden)

    Ana Čikoš

    2015-08-01

    Full Text Available Three novel spiroketals were prepared by a one-pot transformation of 6-O-methyl-9(E-hydroxyiminoerythronolide A. We present the formation of a [4.5]spiroketal moiety within the macrolide lactone ring, but also the unexpected formation of a 10-C=11-C double bond and spontaneous change of stereochemistry at position 8-C. As a result, a thermodynamically stable structure was obtained. The structures of two new diastereomeric, unsaturated spiroketals, their configurations and conformations, were determined by means of NMR spectroscopy and molecular modelling. The reaction kinetics and mechanistic aspects of this transformation are discussed. These rearrangements provide a facile synthesis of novel macrolide scaffolds.

  5. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  6. Glutathione transferases: a structural perspective.

    Science.gov (United States)

    Oakley, Aaron

    2011-05-01

    The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, dehydroascorbate reduction, Michael addition, and noncatalytic "ligandin" activity (ligand binding and transport). Since the first GST structure was determined in 1991, there has been an explosion in structural data across GSTs of all three families: the cytosolic GSTs, the mitochondrial GSTs, and the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG family). In this review, the major insights into GST structure and function will be discussed.

  7. A Facile Approach to Synthesis of the Di-O-methyl Ethers of (-)-Agatharesinol,(-)-Sugiresinol,(+)-Nyasol and (+)-Tetrahydronyasol

    Institute of Scientific and Technical Information of China (English)

    QUAN,Wei-Guo; YU,Bin-Xun; ZHANG,Ji-Yong; LIANG,Qi-Ren; SUN,Yong-Quan; SHE,Xue-Gong; PAN,Xin-Fu

    2007-01-01

    The facile enantioselective synthesis of the dj-O-methyl ethers of (-)-agatharesinol (1b), (-)-sugiresionl (2b),(+)-nyasol (3b) and (+)-tetrahydronyasol (4) were achieved in high yield. The absolute configuration of (+)-3a was confirmed via first total synthesis of (+)-3b and (+)-4.

  8. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils.

    Science.gov (United States)

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo

    2012-07-01

    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  9. Partial hypoxanthine-guanine phosphoribosyl transferase deficiency without elevated urinary hypoxanthine excretion

    NARCIS (Netherlands)

    van Dael, C. M. L.; Pierik, L. J. W. M.; Reijngoud, D. J.; Niezen-Koning, K. E.; van Diggelen, O. P.; van Spronsen, F. J.

    2007-01-01

    Partial hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficiency, also known as the Kelley-Seegmiller syndrome, can give rise to a wide range of neurological symptoms, and renal insufficiency. Biochemically, it is characterized by high uric acid concentrations in blood, high uric acid and

  10. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    Science.gov (United States)

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies. PMID:22865668

  11. A Convenient and Safe O-Methylation of Flavonoids with Dimethyl Carbonate (DMC

    Directory of Open Access Journals (Sweden)

    Maria Cristina Ginnasi

    2011-02-01

    Full Text Available Dietary flavonoids exhibit beneficial health effects. Several epidemiological studies have focused on their biological activities, including antioxidant, antibacterial, antiviral, anti-inflammatory and cardiovascular properties. More recently, these compounds have shown to be promising cancer chemopreventive agents in cell culture studies. In particular, O-methylated flavonoids exhibited a superior anticancer activity than the corresponding hydroxylated derivatives being more resistant to the hepatic metabolism and showing a higher intestinal absorption. In this communication we describe a convenient and efficient procedure in order to prepare a large panel of mono- and dimethylated flavonoids by using dimethyl carbonate (DMC, an ecofriendly and non toxic chemical, which plays the role of both solvent and reagent. In order to promote the methylation reaction under mild and practical conditions, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU was added in the solution; methylated flavonoids were isolated in high yields and with a high degree of purity. This methylation protocol avoids the use of hazardous and high toxic reagents (diazomethane, dimethyl sulfate, methyl iodide.

  12. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Bin Tu

    2015-04-01

    Full Text Available 3' uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2'-O-methylation on the 3' terminal ribose protects micro(miRNAs from 3' truncation and 3' uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo, but substantial 3' tailing of miRNAs still remains in heso1 loss-of-function mutants. In this study, we found that among nine other potential nucleotidyl transferases, UTP:RNA uridylyltransferase 1 (URT1 is the single most predominant nucleotidyl transferase that tails miRNAs. URT1 and HESO1 prefer substrates with different 3' end nucleotides in vitro and act cooperatively to tail different forms of the same miRNAs in vivo. Moreover, both HESO1 and URT1 exhibit nucleotidyl transferase activity on AGO1-bound miRNAs. Although these enzymes are able to add long tails to AGO1-bound miRNAs, the tailed miRNAs remain associated with AGO1. Moreover, tailing of AGO1-bound miRNA165/6 drastically reduces the slicing activity of AGO1-miR165/6, suggesting that tailing reduces miRNA activity. However, monouridylation of miR171a by URT1 endows the miRNA the ability to trigger the biogenesis of secondary siRNAs. Therefore, 3' tailing could affect the activities of miRNAs in addition to leading to miRNA degradation.

  13. Capreomycin susceptibility is increased by TlyA-directed 2'-O-methylation on both ribosomal subunits

    DEFF Research Database (Denmark)

    Monshupanee, Tanakarn; Johansen, Shanna K; Dahlberg, Albert E;

    2012-01-01

    of recombinant TlyA(II) Escherichia coli strains in competition shows that even subtle changes in the level of rRNA methylation lead to significant differences in susceptibility to sub-inhibitory concentrations of capreomycin. The findings reveal that 2'-O-methyls at both C1409 and C1920 play a role...... in facilitating the inhibitory effects of capreomycin and viomycin on the bacterial ribosome....

  14. The synthesis of [O-methyl-{sup 11}C]venlafaxine: a non-classical, fast-acting antidepressant

    Energy Technology Data Exchange (ETDEWEB)

    Gee, A.D.; Gjedde, A. [Aarhus Univ. Hospital, PET Center, Aarhus (Denmark); Smith, D.F. [Aarhus Univ. Psychiatric Hospital, Inst. for Biological Psychiatry, Risskov (Denmark)

    1997-01-01

    As part of our program to develop PET tracers for the 5-HT reuptake site, venlafaxine, a non-classical, fast-acting antidepressant, was selected as a candidate for labelling with {sup 11}C for in vivo evaluation. [O-methyl-{sup 11}C]venlafaxine was produced by the alkylation of O-desmethyl venlafaxine with [{sup 11}C]methyl iodide followed by HPLC purification and formulation. Radiochemically pure [O-methyl-{sup 11}C]venlafaxine was obtained in a 30 {+-} 5% decay corrected radiochemical yield and a specific activity > 50 GBq/{mu}mol(1.4 Ci/{mu}mol) at the end of synthesis. For a typical production starting with 46 GBq (1.3 Ci) [{sup 11}C]CO{sub 2}, 5.2 GBq (140 mCi) [O-methyl-{sup 11}C]venlafaxine was obtained as a sterile, formulated solution in a synthesis time of 30 min (counted from EOB). (Author).

  15. [{sup 14}C]Serotonin uptake and [O-methyl-{sup 11}C]venlafaxine kinetics in porcine brain

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.F. E-mail: dfsmith@inet.uni2.dk; Hansen, S.B.; Oestergaard, L.; Gee, A.D.; Danielsen, E.; Ishizu, K.; Bender, D.; Poulsen, P.H.; Gjedde, A

    2001-08-01

    As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-{sup 11}C]-labeled for PET. Synaptosomal studies showed that the active uptake of [{sup 14}C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphe region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-{sup 11}C]venlafaxine from blood to brain was highest in the hypothalamus, raphe region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-{sup 11}C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.

  16. 'Benifuuki' Green Tea Containing O-Methylated Catechin Reduces Symptoms of Japanese Cedar Pollinosis: A Randomized, Double- Blind, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Sawako Masuda

    2014-01-01

    Conclusions: 'Benifuuki' green tea containing a large amount of O-methylated EGCG reduced the symptoms of JCP and has potential as a complementary/alternative medicine for treating seasonal allergic rhinitis.

  17. Biosynthesis of 8-O-Methylated Benzoxazinoid Defense Compounds in Maize.

    Science.gov (United States)

    Handrick, Vinzenz; Robert, Christelle A M; Ahern, Kevin R; Zhou, Shaoqun; Machado, Ricardo A R; Maag, Daniel; Glauser, Gaetan; Fernandez-Penny, Felix E; Chandran, Jima N; Rodgers-Melnik, Eli; Schneider, Bernd; Buckler, Edward S; Boland, Wilhelm; Gershenzon, Jonathan; Jander, Georg; Erb, Matthias; Köllner, Tobias G

    2016-07-01

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxygenase (BX13) that catalyzes the conversion of DIMBOA-Glc into a new benzoxazinoid intermediate (TRIMBOA-Glc) by an uncommon reaction involving a hydroxylation and a likely ortho-rearrangement of a methoxy group. TRIMBOA-Glc is then converted to DIM2BOA-Glc by a previously described O-methyltransferase BX7. Furthermore, we identified an O-methyltransferase (BX14) that converts DIM2BOA-Glc to HDM2BOA-Glc. The role of these enzymes in vivo was demonstrated by characterizing recombinant inbred lines, including Oh43, which has a point mutation in the start codon of Bx13 and lacks both DIM2BOA-Glc and HDM2BOA-Glc, and Il14H, which has an inactive Bx14 allele and lacks HDM2BOA-Glc in leaves. Experiments with near-isogenic maize lines derived from crosses between B73 and Oh43 revealed that the absence of DIM2BOA-Glc and HDM2BOA-Glc does not alter the constitutive accumulation or deglucosylation of other benzoxazinoids. The growth of various chewing herbivores was not significantly affected by the absence of BX13-dependent metabolites, while aphid performance increased, suggesting that DIM2BOA-Glc and/or HDM2BOA-Glc provide specific protection against phloem feeding insects. PMID:27317675

  18. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L., E-mail: senent@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006 (Spain); Puzzarini, C., E-mail: cristina.puzzarini@unibo.it [Dipartimento di Chimica G. Ciamician, Università di Bologna, Via F. Selmi 2, I-40126 Bologna (Italy); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée (France); Domínguez-Gómez, R., E-mail: rosa.dominguez@upm.es [Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid, Madrid (Spain); Carvajal, M., E-mail: miguel.carvajal@dfa.uhu.es [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, 21071 Huelva (Spain)

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  19. Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

    Science.gov (United States)

    Scognamiglio, Immacolata; Di Martino, Maria Teresa; Campani, Virginia; Virgilio, Antonella; Galeone, Aldo; Gullà, Annamaria; Gallo Cantafio, Maria Eugenia; Tagliaferri, Pierosandro; Tassone, Pierfrancesco; Caraglia, Michele

    2014-01-01

    Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM. PMID:24683542

  20. Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Immacolata Scognamiglio

    2014-01-01

    Full Text Available Stable nucleic acid lipid vesicles (SNALPs encapsulating miR-34a to treat multiple myeloma (MM were developed. Wild type or completely 2′-O-methylated (OMet MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf in order to target MM cells overexpressing transferrin receptors (TfRs. The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM.

  1. [Structure and functions of glutathione transferases].

    Science.gov (United States)

    Fedets, O M

    2014-01-01

    Data about classification, nomenclature, structure, substrate specificity and role of many glutathione transferase's isoenzymes in cell functions have been summarised. The enzyme has been discovered more than 50 years ago. This family of proteins is updated continuously. It has very different composition and will have demand for system analysis for many years.

  2. Alteration of glutathione S-transferase properties during the development of Micromelalopha troglodyta larvae (Lepidoptera: Notodontidae)

    Institute of Scientific and Technical Information of China (English)

    TANG Fang; ZHANG Xiu-bo; LIU Yu-sheng; GAO Xi-wu

    2011-01-01

    Micromelalopha troglodyta (Graeser) is an important pest ofpoplar in China. Glutathione S-transferases (GSTs) are known to beresponsible for adaptation mechanisms of M. Troglodyta. The activitiesand kinetic constants of glutathione S-transferases in M. Troglodyta werestudied. Significant differences in glutathione S-transferase activity andkinetic characteristics were observed among five instars of M. Troglodytalarvae. Furthermore, the inhibition of glutathione S-transferase activity infive instars by 24 inhibitors was conducted. The results show the inhibi-tion of GST activity of different instars by 24 inhibitors was different.For GST activity in the 1st instar chlorpyrifos, lambda-cyhalothrin,endosulfan, abamectin, fipronil and pyridaben were the best inhibitorstested, and for GST activity in the 2nd instar, tannic acid and quercetinwere the most potent inhibitors tested, and for GST activity in the 3rdinstar, the inhibitory effects of quercetin, chlorpyrifos andlambda-cyhalothrin were the highest, and for GST activity in the 4thinstar, quercetin and lambda-cyhalothrin were the best inhibitors, and theinhibitory effect of pboxim was the highest for GST activity in the 5thinstar. Our results show that glutathione S-transferases in different iustarsare qualitatively different in isozyme composition and thus different insensitivity to inhibitors.

  3. Structural insight into the active site of a Bombyx mori unclassified glutathione transferase.

    Science.gov (United States)

    Hossain, Md Tofazzal; Yamamoto, Kohji

    2015-01-01

    Glutathione transferases (GSTs) are major detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here, we identify amino acid residues of an unclassified GST from Bombyx mori, bmGSTu-interacting glutathione (GSH). Site-directed mutagenesis of bmGSTu mutants indicated that amino acid residues Asp103, Ser162, and Ser166 contribute to catalytic activity.

  4. Purification and characterization of the Oligosaccharyl transferase

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  5. Glutathione Transferase (GST)-Activated Prodrugs

    OpenAIRE

    Andrea Calderan; Paolo Ruzza

    2013-01-01

    Glutathione transferase (formerly GST) catalyzes the inactivation of various electrophile-producing anticancer agents via conjugation to the tripeptide glutathione. Moreover, several data link the overexpression of some GSTs, in particular GSTP1-1, to both natural and acquired resistance to various structurally unrelated anticancer drugs. Tumor overexpression of these proteins has provided a rationale for the search of GST inhibitors and GST activated cytotoxic prodrugs. In the present review...

  6. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  7. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans

    Directory of Open Access Journals (Sweden)

    Cox Chad L

    2012-07-01

    Full Text Available Abstract Background Prospective studies in humans examining the effects of fructose consumption on biological markers associated with the development of metabolic syndrome are lacking. Therefore we investigated the relative effects of 10 wks of fructose or glucose consumption on plasma uric acid and RBP-4 concentrations, as well as liver enzyme (AST, ALT, and GGT activities in men and women. Methods As part of a parallel arm study, older (age 40–72, overweight and obese male and female subjects (BMI 25–35 kg/m2 consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wks. Fasting and 24-h blood collections were performed at baseline and following 10 wks of intervention and plasma concentrations of uric acid, RBP-4 and liver enzyme activities were measured. Results Consumption of fructose, but not glucose, led to significant increases of 24-h uric acid profiles (P P = 0.012, as well as plasma GGT activity (P = 0.04. Fasting plasma uric acid concentrations increased in both groups; however, the response was significantly greater in subjects consuming fructose (P = 0.002 for effect of sugar. Within the fructose group male subjects exhibited larger increases of RBP-4 levels than women (P = 0.024. Conclusions These findings suggest that consumption of fructose at 25% of energy requirements for 10 wks, compared with isocaloric consumption of glucose, may contribute to the development of components of the metabolic syndrome by increasing circulating uric acid, GGT activity, suggesting alteration of hepatic function, and the production of RBP-4.

  8. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  9. GalNAc-transferase specificity prediction based on feature selection method.

    Science.gov (United States)

    Lu, Lin; Niu, Bing; Zhao, Jun; Liu, Liang; Lu, Wen-Cong; Liu, Xiao-Jun; Li, Yi-Xue; Cai, Yu-Dong

    2009-02-01

    GalNAc-transferase can catalyze the biosynthesis of O-linked oligosaccharides. The specificity of GalNAc-transferase is composed of nine amino acid residues denoted by R4, R3, R2, R1, R0, R1', R2', R3', R4'. To predict whether the reducing monosaccharide will be covalently linked to the central residue R0(Ser or Thr), a new method based on feature selection has been proposed in our work. 277 nonapeptides from reference [Chou KC. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Sci 1995;4:1365-83] are chosen for training set. Each nonapeptide is represented by hundreds of amino acid properties collected by Amino Acid Index database (http://www.genome.jp/aaindex) and transformed into a numeric vector with 4554 features. The Maximum Relevance Minimum Redundancy (mRMR) method combining with Incremental Feature Selection (IFS) and Feature Forward Selection (FFS) are then applied for feature selection. Nearest Neighbor Algorithm (NNA) is used to build prediction models. The optimal model contains 54 features and its correct rate tested by Jackknife cross-validation test reaches 91.34%. Final feature analysis indicates that amino acid residues at position R3' play the most important role in the recognition of GalNAc-transferase specificity, which were confirmed by the experiments [Elhammer AP, Poorman RA, Brown E, Maggiora LL, Hoogerheide JG, Kezdy FJ. The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J Biol Chem 1993;268:10029-38; O'Connell BC, Hagen FK, Tabak LA. The influence of flanking sequence on the O-glycosylation of threonine in vitro. J Biol Chem 1992;267:25010-8; Yoshida A, Suzuki M, Ikenaga H, Takeuchi M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 1997;272:16884-8]. Our method can be used as a tool for predicting O

  10. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2015-04-01

    Full Text Available All types of small RNAs in plants, piwi-interacting RNAs (piRNAs in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1 is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.

  11. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution

    OpenAIRE

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a b...

  12. Glutathione S-transferases as risk factors in prostate cancer

    DEFF Research Database (Denmark)

    Autrup, Judith; Thomassen, L.H.; Olsen, J.H.;

    1999-01-01

    Glutathione S-transferases are enzymes involved in the metabolism of carcinogens and in the defence against reactive oxygen species. Genetic polymorphisms have been detected in glutathione S-transferases M1, T1 and P1, and some of these polymorphisms have been associated with an increased risk...

  13. 硝酸胍对邻甲基苯乙酮硝化的实验研究%Experiment Study on the Nitration of o-Methyl-acetophenone via Guandine Nitrate

    Institute of Scientific and Technical Information of China (English)

    张雄; 王莉

    2015-01-01

    2-Methyl-5-nitro-acetophenone and 2-methyl-3-nitro-acetophenone are important intermediates in organic synthesis. It is difficult to synthesize them using the classic nitration system based on concentrated nitric acid and concentrated sulfuric acid. The method was developed selecting guanidine nitrate as a nitrating agent which had double function of nitration and protection, the nitration of o-methyl-acetophenone was studied. 2-Methyl-5-nitro-acetophenone and 2-methyl-3-nitro-acetophenone were prepared. The effect of the reaction time, molar ratio of guanidine nitrate to o-methyl-acetophenone and the concentration of sulfuric acid to the yield and the position of reaction were studied. The optimal reaction conditions were as follows: reaction temperature was 0 ℃, reaction time was 5 h, molar ratio of guanidine nitrate to o-methyl-acetophenone was 1. 5 and the concentration of sulfuric acid was 85% sulfuric acid. 2-Methyl-5-nitro-acetophenone was the preferential nitration product. The product structure was identified by 1 H NMR. The purity of the product was analyzed by HPLC.%2-甲基-5-硝基-苯乙酮和2-甲基-3-硝基-苯乙酮是重要有机合成中间体,采用经典的浓硝酸和浓硫酸硝化体系很难合成到它们。采用具有硝化与保护双重作用的硝酸胍作为硝化试剂,研究了邻甲基苯乙酮的硝化反应。合成了2-甲基-5-硝基-苯乙酮和2-甲基-3-硝基-苯乙酮。考察了反应时间、反应物料比、反应溶液酸度对产物收率和位置选择性的影响。优化后的反应条件为:反应温度为0℃,反应时间5 h, n(硝酸胍)∶n(邻甲基苯乙酮)=1.5∶1。以85%的硫酸有利于硝基化反应,优势形成2-甲基-5-硝基-苯乙酮。用氢核共振谱验证了产物的结构,采用高效液相色谱对产物的纯度进行了分析。

  14. Nomenclature for mammalian soluble glutathione transferases.

    Science.gov (United States)

    Mannervik, Bengt; Board, Philip G; Hayes, John D; Listowsky, Irving; Pearson, William R

    2005-01-01

    The nomenclature for human soluble glutathione transferases (GSTs) is extended to include new members of the GST superfamily that have been discovered, sequenced, and shown to be expressed. The GST nomenclature is based on primary structure similarities and the division of GSTs into classes of more closely related sequences. The classes are designated by the names of the Greek letters: Alpha, Mu, Pi, etc., abbreviated in Roman capitals: A, M, P, and so on. (The Greek characters should not be used.) Class members are distinguished by Arabic numerals and the native dimeric protein structures are named according to their subunit composition (e.g., GST A1-2 is the enzyme composed of subunits 1 and 2 in the Alpha class). Soluble GSTs from other mammalian species can be classified in the same manner as the human enzymes, and this chapter presents the application of the nomenclature to the rat and mouse GSTs. PMID:16399376

  15. Dopamine transporter binding in rat striatum: a comparison of [O-methyl-{sup 11}C]{beta}-CFT and [N-methyl-{sup 11}C]{beta}-CFT

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Karmen K.; Hutchins, Gary D.; Mock, Bruce H.; Fei, Xiangshu; Winkle, Wendy L. [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States); Gitter, Bruce D.; Territo, Paul R. [Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2009-01-15

    Introduction: Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [{sup 11}C]{beta}-CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [{sup 11}C]{beta}-CFT is commonly labeled at the N-methyl position. However, labeling of [{sup 11}C]{beta}-CFT at the O-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the O-methylated form of [{sup 11}C]{beta}-CFT provides equivalent quantitative results to that of the more commonly reported N-methyl form. Methods: Four female Sprague-Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl-{sup 11}C]{beta}-CFT and once with [O-methyl-{sup 11}C]{beta}-CFT. DAT binding potentials (BP{identical_to}B'{sub avail}/K{sub d}) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function. Results: [N-Methyl-{sup 11}C]{beta}-CFT and [O-methyl-{sup 11}C]{beta}-CFT were synthesized with 40-50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258{+-}30 GBq/{mu}mol. Average BP values for right and left striata with [N-methyl-{sup 11}C]{beta}-CFT were 1.16{+-}0.08 and 1.23{+-}0.14, respectively. BP values for [O-methyl-{sup 11}C]{beta}-CFT were 1.18{+-}0.08 (right) and 1.22{+-}0.16 (left). Paired t tests demonstrated that labeling position did not affect striatal DAT BP. Conclusions: These results suggest that [O-methyl-{sup 11}C]{beta}-CFT is quantitatively equivalent to [N-methyl-{sup 11}C]{beta}-CFT in the rat striatum.

  16. Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase.

    Science.gov (United States)

    Yamamoto, Kohji; Suzuki, Mamoru; Higashiura, Akifumi; Nakagawa, Atsushi

    2013-09-01

    Glutathione transferases (GSTs) are major phase II detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here we report the crystal structure of an Omega-class glutathione transferase of Bombyx mori, bmGSTO, to gain insight into its catalytic mechanism. The structure of bmGSTO complexed with glutathione determined at a resolution of 2.5Å reveals that it exists as a dimer and is structurally similar to Omega-class GSTs with respect to its secondary and tertiary structures. Analysis of a complex between bmGSTO and glutathione showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTO mutants indicated that amino acid residues Leu62, Lys65, Lys77, Val78, Glu91 and Ser92 in the G-site contribute to catalytic activity.

  17. Structural characterization of the catalytic site of a Nilaparvata lugens delta-class glutathione transferase.

    Science.gov (United States)

    Yamamoto, Kohji; Higashiura, Akifumi; Hossain, Md Tofazzal; Yamada, Naotaka; Shiotsuki, Takahiro; Nakagawa, Atsushi

    2015-01-15

    Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.

  18. Inclusion phenomena of clove oil with alpha-, beta-, gamma- and heptakis (2,6-di-O-methyl)-beta-cyclodextrin.

    Science.gov (United States)

    Song, L X; Xu, P; Wang, H M; Yang, Y

    2009-01-01

    Inclusion interactions of alpha-, beta-, gamma- and heptakis (2,6-di-O-methyl)-beta-cyclodextrin (DMbeta-CD) as hosts with clove oil (an impure eugenol, I-Eug) as guest in aqueous solution were investigated by fluorescence emission spectra. The binding constants of different hosts to I-Eug in aqueous solution decreased in the order: gamma- > beta- > DMbeta- > alpha-CD. Two solid supramolecular inclusion complexes, I-Eug-beta-CD and I-Eug-gamma-CD, were prepared and characterised by nuclear magnetic resonance, powder X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. All the results proved the formation of I-Eug-CD. The inclusion differences between I-Eug and pure eugenol were discussed. The relative contents of the main component eugenol (Eug), second component (eugenol acetate, Eua) and others in I-Eug were found to be fairly different before and after being included by beta-CD, according to the data obtained from high performance liquid chromatography. This could be a practical method to extract the effective components (Eug and Eua) from I-Eug.

  19. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis.

    Science.gov (United States)

    Elefant, G R; Roldán, W H; Seeböck, A; Kosma, P

    2016-04-01

    Serodiagnosis of human toxocariasis is based on the detection of specific IgG antibodies by the enzyme-linked immunosorbent assay (ELISA) using Toxocara larvae excretory-secretory (TES) antigens, but its production is a laborious and time-consuming process being also limited by the availability of adult females of T. canis as source for ova to obtain larvae. Chemical synthesis of the di-O-methylated (DiM) glycan structure found in the TES antigens has provided material for studying the antibody reactivity in a range of mammalian hosts, showing reactivity with human IgM and IgG. In this study, we have evaluated the performance of the DiM glycan against a panel of sera including patients with toxocariasis (n = 60), patients with other helminth infections (n = 75) and healthy individuals (n = 94), showing that DiM is able to detect IgG antibodies with a sensitivity and specificity of 91·7% and 94·7%, respectively, with a very good agreement with the TES antigens (kappa = 0·825). However, cross-reactivity was observed in some sera from patients with ascariasis, hymenolepiasis and fascioliasis. These results show that the DiM glycan could be a promising antigenic tool for the serodiagnosis of human toxocariasis. PMID:26896376

  20. Synthesis of [O-methyl-{sup 11}C]fluvoxamine - a potential serotonin uptake site radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Matarrese, M.; Soloviev, D.; Fazio, F. [Consiglio Nazionale delle Ricerche, Milan (Italy); Todde, S.; Magni, F.; Colombo, D.; Galli Kienle, M. [Department of Medical Chemistry and Biochemistry, Milan (Italy)

    1997-06-01

    5-Methoxy-1-[4-(trifluoromethyl)-phenyl]-1-pentanone-0-(2-amin oethyl)oxime (fluvoxamine), a potent clinically used antidepressant, was labelled with carbon-11 (t{sub 1/2} = 20.4 min) as a potential radioligand for the non-invasive assessment of serotonin uptake sites in the human brain with positron emission tomography (PET). The two-step radiochemical synthesis consisted of 0-methylation of an amino-protected desmethyl precursor with [{sup 11}C]methyl iodide under mild conditions in the presence of tetrabutylammonium hydroxide in acetonitrile, followed by deprotection with trifluoroacetic acid. 5-[{sup 11}C]Methoxy-1-[4-(trifluoromethyl)-phenyl]-1-pentanone-0-(2-a minoethyl)oxime was obtained in > 98% radiochemical purity in 40 min with a radiochemical yield of 4 {+-} 2% (non-decay corrected) and a specific radioactivity of 1 {+-} 0.5 Ci/{mu}mol. 5-Hydroxy-1-[4-(trifluoromethyl)-phenyl]-1-pentanone-0-[2-(tert-bu toxycarbonylamino)ethyl]oxime, the precursor for the radiosynthesis of [{sup 11}C]fluvoxamine, was prepared by a convenient three-set synthesis from the pharmaceutical form of fluvoxamine maleate by converting it into the free base, demethylation by trimethyliodosilane and introduction of the BOC-protective group with di-tert-butyl dicarbonate. (author).

  1. Synthesis of two mono-deoxy β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation mechanism

    Institute of Scientific and Technical Information of China (English)

    Su Long Xiao; De Min Zhou; Ming Yang; Fei Yu; Li He Zhang; Pierre Sina(y); Yong Min Zhang

    2012-01-01

    Diisobutylaluminium hydride (DIBAL-H) promotes secondary rim regioselective bis-de-O-methylation of permethylated β-cyclodextrin (β-CD) to give diol 2.To gain an insight into the mechanism of this remarkable regioselective behavior,two corresponding permethylated β-CDs with an alcohol function at either 2-or 3-position were synthesized in our previous study.As a step further to this work,the two compounds were subjected to deoxygenation reaction with tributyltin hydride in the present of 2,2'-azobisisobutyronitrile affording the corresponding 2-and 3-deoxy permethylated β-CD derivatives (19 and 16).The structures of these two compounds were characterized by 1D and 2D NMR and HRMS.Compounds 16 and 19 were unable to react with DIBAL-H which suggests that O-2A and O-3B are necessary for DIBAL-H promoted bis-de-O-methylation reaction of permethvlated β-CD.

  2. Occurrence of antigenic (species-specific?) partially 3-O-methylated heteromannans in cell wall and soluble cellular (nonwall) components of Coccidioides immitis mycelia.

    OpenAIRE

    Wheat, R. W.; Woodruff, W W; Haltiwanger, R S

    1983-01-01

    Skin test-active, phenol-soluble, water-soluble (PSWS) extracts of Coccidioides immitis whole, defatted mycelia were compared with skin test-active, alkali-soluble, water-soluble (ASWS) extracts of mycelial cell walls. Both PSWS and ASWS extracts contained partially 3-O-methylated mannan. Composition analysis of both PSWS and ASWS extracts indicated mannose and glucose as major components, whereas 3-O-methylmannose and galactose were minor constituents. These heteromannans and glucans could b...

  3. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    Science.gov (United States)

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus.

  4. Systematic analysis of O-methyltransferase gene family and identification of potential members involved in the formation of O-methylated flavonoids in Citrus.

    Science.gov (United States)

    Liu, Xiaogang; Luo, Yan; Wu, Hongkun; Xi, Wanpeng; Yu, Jie; Zhang, Qiuyun; Zhou, Zhiqin

    2016-01-10

    The O-methylation of various secondary metabolites is mainly catalyzed by S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase (OMT) proteins that are encoded by the O-methyltransferase gene family. Citrus fruits are a rich source of O-methylated flavonoids that have a broad spectrum of biological activities, including anti-inflammatory, anticarcinogenic, and antiatherogenic properties. However, little is known about this gene family and its members that are involved in the O-methylation of flavonoids and their regulation in Citrus. In this study, 58 OMT genes were identified from the entire Citrus sinensis genome and compared with those from 3 other representative dicot plants. A comprehensive analysis was performed, including functional/substrate predictions, identification of chromosomal locations, phylogenetic relationships, gene structures, and conserved motifs. Distribution mapping revealed that the 58 OMT genes were unevenly distributed on the 9 citrus chromosomes. Phylogenetic analysis of 164 OMT proteins from C.sinensis, Arabidopsis thaliana, Populus trichocarpa, and Vitis vinifera showed that these proteins were categorized into group I (COMT subfamily) and group II (CCoAOMT subfamily), which were further divided into 10 and 2 subgroups, respectively. Finally, digital gene expression and quantitative real-time polymerase chain reaction analyses revealed that citrus OMT genes had distinct temporal and spatial expression patterns in different tissues and developmental stages. Interestingly, 18 and 11 of the 27 genes predicted to be involved in O-methylation of flavonoids had higher expression in the peel and pulp during fruit development, respectively. The citrus OMT gene family identified in this study might help in the selection of appropriate candidate genes and facilitate functional studies in Citrus. PMID:26407870

  5. Distribution of glutathione S-transferase isoenzymes in human kidney: basis for possible markers of renal injury.

    OpenAIRE

    Harrison, D J; Kharbanda, R; Cunningham, D S; McLellan, L I; Hayes, J. D.

    1989-01-01

    To determine whether the tissue distribution of glutathione S-transferase (GST) isoenzymes could define the precise nature of renal injury, 13 adult kidneys were studied, using specific antibodies raised against purified isoenzymes. Basic GST stained strongly proximal convoluted tubules and some medullary tubules; acidic GST stained strongly distal convoluted tubules and medullary tubules; neutral GST stained similarly to acidic GST, but weaker, and microsomal GST stained glomerular and inter...

  6. Biochemical genetics of glutathione-S-transferase in man.

    OpenAIRE

    Board, P G

    1981-01-01

    Glutathione-S-transferases from liver and erythrocytes have been separated by starch gel electrophoresis and localized by a specific staining procedure. The data suggest that the most active glutathione-S-transferases in liver are the products of two autosomal loci, GST1 and GST2. Both these loci are polymorphic, and there is evidence that a common null allele exists at the GST1 locus. The glutathione-S-transferase expressed in erythrocytes is the product of a third locus, GST3, and is not po...

  7. Benzene oxide is a substrate for glutathione S-transferases.

    Science.gov (United States)

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important.

  8. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    Directory of Open Access Journals (Sweden)

    Patience Marimo

    2016-01-01

    Full Text Available Glutathione transferases (GSTs are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT. The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1 was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT in malaria control programmes where resistance is mediated by GSTs.

  9. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  10. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy.

    Science.gov (United States)

    Verhaart, Ingrid E C; Heemskerk, Hans; Karnaoukh, Tatyana G; Kolfschoten, Ingrid G M; Vroon, Anne; van Ommen, Gert-Jan B; van Deutekom, Judith C T; Aartsma-Rus, Annemieke

    2012-03-01

    In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs. PMID:22017442

  11. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  12. Catechol-o-methyl transferase (COMT) val158met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls

    OpenAIRE

    Raznahan, Armin; Greenstein, Deanna; Lee, Yohan; Long, Robert; Clasen, Liv; Gochman, Pete; Addington, Anjene; GIEDD, JAY N.; Rapoport, Judith L.; Gogtay, Nitin

    2011-01-01

    Non-psychotic individuals at increased risk for schizophrenia show alterations in fronto-striatal dopamine signaling and cortical gray matter maturation reminiscent of those seen in schizophrenia. It remains unclear however if variations in dopamine signaling influence rates of structural cortical maturation in typically developing individuals, and whether such influences are disrupted in patients with schizophrenia and their non-psychotic siblings. We sought to address these issues by relati...

  13. Genetic Variation in the Catechol-O-Methyl Transferase Val108/158Met Is Linked to the Caudate and Posterior Cingulate Cortex Volume in Healthy Subjects: Voxel-Based Morphometry Analysis of Brain Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Keita Watanabe

    Full Text Available The effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism on brain morphology has been investigated but remains controversial. We hypothesized that a comparison between Val/Val and Val/Met individuals, which may represent the most different combinations concerning the effects of the COMT genotype, may reveal new findings. We investigated the brain morphology using 3-Tesla magnetic resonance imaging in 27 Val/Val and 22 Val/Met individuals. Voxel-based morphometry revealed that the volumes of the bilateral caudate and posterior cingulate cortex were significantly smaller in Val/Val individuals than in Val/Met individuals [right caudate: false discovery rate (FDR-corrected p = 0.048; left caudate: FDR-corrected p = 0.048; and bilateral posterior cingulate cortex: FDR-corrected p = 0.048]. This study demonstrates that interacting functional variants of COMT affect gray matter regional volumes in healthy subjects.

  14. Glutathione transferases in the bioactivation of azathioprine.

    Science.gov (United States)

    Modén, Olof; Mannervik, Bengt

    2014-01-01

    The prodrug azathioprine is primarily used for maintaining remission in inflammatory bowel disease, but approximately 30% of the patients suffer adverse side effects. The prodrug is activated by glutathione conjugation and release of 6-mercaptopurine, a reaction most efficiently catalyzed by glutathione transferase (GST) A2-2. Among five genotypes of GST A2-2, the variant A2*E has threefold-fourfold higher catalytic efficiency with azathioprine, suggesting that the expression of A2*E could boost 6-mercaptopurine release and adverse side effects in treated patients. Structure-activity studies of the GST A2-2 variants and homologous alpha class GSTs were made to delineate the determinants of high catalytic efficiency compared to other alpha class GSTs. Engineered chimeras identified GST peptide segments of importance, and replacing the corresponding regions in low-activity GSTs by these short segments produced chimeras with higher azathioprine activity. By contrast, H-site mutagenesis led to decreased azathioprine activity when active-site positions 208 and 213 in these favored segments were mutagenized. Alternative substitutions indicated that hydrophobic residues were favored. A pertinent question is whether variant A2*E represents the highest azathioprine activity achievable within the GST structural framework. This issue was addressed by mutagenesis of H-site residues assumed to interact with the substrate based on molecular modeling. The mutants with notably enhanced activities had small or polar residues in the mutated positions. The most active mutant L107G/L108D/F222H displayed a 70-fold enhanced catalytic efficiency with azathioprine. The determination of its structure by X-ray crystallography showed an expanded H-site, suggesting improved accommodation of the transition state for catalysis.

  15. O-Methyl cyclolaudenol

    Directory of Open Access Journals (Sweden)

    Nisar Hussain

    2009-06-01

    Full Text Available The title compound (systematic name: 3-methoxy-24-methyl-9,19-cyclolanost-25-ene, C32H54O, is a triterpenoid which has been isolated from Skimmia laureola. The three six-membered rings adopt chair, slightly distorted half-chair and distorted boat conformations, and the five-membered ring adopts an envelope conformation. All the rings are trans fused.

  16. Glutathione S-transferase pi localizes in mitochondria and protects against oxidative stress.

    OpenAIRE

    Goto, Shinji; Kawakatsu, Miho; Izumi, Shin-ichi; Urata, Yoshishige; Kageyama, Kan; Ihara, Yoshito; Koji, Takehiko; Kondo, Takahito

    2009-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes involved in the protection of cellular components against anti-cancer drugs or peroxidative stress. Previously we found that GST pi, an isoform of the GSTs, is transported into the nucleus. In the present study, we found that GST pi is present in mitochondria as well as in the cytosol and nucleus in mammalian cell lines. A construct comprising the 84 amino acid residues in the amino-terminal region of GST pi and green fluorescent p...

  17. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon

    OpenAIRE

    Espinoza, Herbert M.; Shireman, Laura M.; McClain, Valerie; Atkins, William; Gallagher, Evan P.

    2012-01-01

    The glutathione S-transferases (GSTs) provide cellular protection by detoxifying xenobiotics, maintaining redox status, and modulating secondary messengers, all of which are critical to maintaining olfaction in salmonids. Here, we characterized the major coho salmon olfactory GSTs (OlfGSTs), namely omega, pi, and rho subclasses. OlfGST omega contained an open reading frame of 720 bp and encoded a protein of 239 amino acids. OlfGST pi and OlfGST rho contained open reading frames of 727 and 681...

  18. Methylation-GC-MS analysis of arabinofuranose- and galactofuranose-containing structures: rapid synthesis of partially O-methylated alditol acetate standards

    Directory of Open Access Journals (Sweden)

    Sassaki Guilherme L.

    2005-01-01

    Full Text Available Arabinose and galactose were treated with MeOH containing traces of H2SO4 or HCl at 25ºC to give mixtures of their methyl alpha- and beta-furanosides, as shown by 1D and 2D nuclear magnetic resonance (NMR. Oxidation of the Me alpha,beta-Araf mixture with NaIO4 preferentially oxidised the beta-isomer, to give pure Me alpha-Araf . Each product was progressively O-methylated using the Purdie reagent (MeI/Ag2O at 25ºC and resulting mixtures of partially methylated glycosides (PMGs were rapidly assayed by thin layer chromatography (TLC first to favour higher yields of mono-O-methyl derivatives and later for products with higher degrees of methylation. The products were converted to complex mixtures of partially O-methylated alditol acetate derivatives (PMAAs by successive hydrolysis, reduction with NaBD4, and acetylation. These can be used as gas chromatography-mass spectrometry (GC-MS standards in methylation analysis of complex carbohydrates containing arabinofuranosyl and galactofuranosyl units. Of particular interest were the retention times and electron impact MS of the difficult to prepare alditol acetates of 5,6-Me2Gal, 2,5-Me2Gal, 2,5,6-Me3Gal, 3,5,6-Me3Gal, 5-MeAra, 2,5-Me2Ara, and 3,5-Me2Ara. The relative reactivities of hydroxyl groups for mixtures of Me alpha- and Me beta-Galf were HO-2 > HO-3 > HO-6 > HO-5, that of Me alpha and Me beta-Araf HO-2 > HO-3 > HO-5, and that of Me alpha-Araf HO-2 > HO-3 > HO-5.

  19. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1111, LB4823_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  20. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1511, LB4833_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  1. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C7H8O Methyl phenyl ether (VMSD1212, LB4828_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  2. Transferases for alkylation, glycosylation and phosphorylation

    NARCIS (Netherlands)

    D. Auriol; R. ter Halle; F. Lefèvre; D.F. Visser; G.E.R. Gordon; M.L. Bode; K. Mathiba; D. Brady; K. De Winter; T. Desmet; A. Cerdobbel; W. Soetaert; T. van Herk; A.F. Hartog; R. Wever; M. Brzezińska-rodak; M. Klimek-Ochab; E. Żymańczyk-Duda; J. Mukherjee; M.N. Gupta; W.B. Yin; S.M. Li; M. Gruber-Khadjawi

    2012-01-01

    This chapter contains sections titled: Industrial Production of Caffeic Acid-α-D-O-Glucoside Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA) Enzymatic Synthesis of Phosphorylate

  3. Characterization of glutathione-S-transferases in zebrafish (Danio rerio).

    Science.gov (United States)

    Glisic, Branka; Mihaljevic, Ivan; Popovic, Marta; Zaja, Roko; Loncar, Jovica; Fent, Karl; Kovacevic, Radmila; Smital, Tvrtko

    2015-01-01

    Glutathione-S-transferases (GSTs) are one of the key enzymes that mediate phase II of cellular detoxification. The aim of our study was a comprehensive characterization of GSTs in zebrafish (Danio rerio) as an important vertebrate model species frequently used in environmental research. A detailed phylogenetic analysis of GST superfamily revealed 27 zebrafish gst genes. Further insights into the orthology relationships between human and zebrafish GSTs/Gsts were obtained by the conserved synteny analysis. Expression of gst genes in six tissues (liver, kidney, gills, intestine, brain and gonads) of adult male and female zebrafish was determined using qRT-PCR. Functional characterization was performed on 9 cytosolic Gst enzymes after overexpression in E. coli and subsequent protein purification. Enzyme kinetics was measured for GSH and a series of model substrates. Our data revealed ubiquitously high expression of gstp, gstm (except in liver), gstr1, mgst3a and mgst3b, high expression of gsto2 in gills and ovaries, gsta in intestine and testes, gstt1a in liver, and gstz1 in liver, kidney and brain. All zebrafish Gsts catalyzed the conjugation of GSH to model GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and monochlorobimane (MCB), apart from Gsto2 and Gstz1 that catalyzed GSH conjugation to dehydroascorbate (DHA) and dichloroacetic acid (DCA), respectively. Affinity toward CDNB varied from 0.28 mM (Gstp2) to 3.69 mM (Gstm3), while affinity toward MCB was in the range of 5 μM (Gstt1a) to 250 μM (Gstp1). Affinity toward GSH varied from 0.27 mM (Gstz1) to 4.45 mM (Gstt1a). Turnover number for CDNB varied from 5.25s(-1) (Gstt1a) to 112s(-1) (Gstp2). Only Gst Pi enzymes utilized ethacrynic acid (ETA). We suggest that Gstp1, Gstp2, Gstt1a, Gstz1, Gstr1, Mgst3a and Mgst3b have important role in the biotransformation of xenobiotics, while Gst Alpha, Mu, Pi, Zeta and Rho classes are involved in the crucial physiological processes. In summary, this study provides the

  4. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris.

    Science.gov (United States)

    Chronopoulou, Evangelia; Madesis, Panagiotis; Asimakopoulou, Basiliki; Platis, Dimitrios; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2012-06-01

    Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.

  5. Simultaneous automatic determination of catecholamines and their 3-O-methyl metabolites in rat plasma by high-performance liquid chromatography using peroxyoxalate chemiluminescence reaction.

    Science.gov (United States)

    Tsunoda, M; Takezawa, K; Santa, T; Imai, K

    1999-05-01

    A highly specific and sensitive automated high-performance liquid chromatographic method for the simultaneous determination of catecholamines (CAs; norepinephrine, epinephrine, and dopamine) and their 3-O-methyl metabolites (normetanephrine, metanephrine, and 3-methoxytyramine) is described. Automated precolumn ion-exchange extraction of diluted plasma is coupled with HPLC separation of CAs and their 3-O-methyl metabolites on an ODS column, postcolumn coulometric oxidation, fluorescence derivatization with ethylenediamine, and finally peroxyoxalate chemiluminescence reaction detection. The detection limits were about 3 fmol for norepinephrine, epinephrine, and dopamine, 5 fmol for normetanephrine, and 10 fmol for metanephrine and 3-methoxytyramine (signal-to-noise ratio of 3). Fifty microliters of rat plasma was used and 4-methoxytyramine was employed as an internal standard. The relative standard deviations for the method (n = 5) were 2.5-7.6% for the intraday assay and 6.3-9.1% for the interday assay. The method was applicable to the determination of normetanephrine and metanephrine in 50 microl of rat plasma. PMID:10222014

  6. Pleiotropic effects of polymorphism of the gene diacylglycerol-O-transferase 1 (DGAT1) in the mammary gland tissue of dairy cows

    NARCIS (Netherlands)

    Mach Casellas, N.; Blum, Y.; Bannink, A.; Causeur, D.; Houee-Bigot, M.; Lagarrigue, S.; Smits, M.A.

    2012-01-01

    Microarray analysis was used to identify genes whose expression in the mammary gland of Holstein-Friesian dairy cows was affected by the nonconservative Ala to Lys amino acid substitution at position 232 in exon VIII of the diacylglycerol-O-transferase 1 (DGAT1) gene. Mammary gland biopsies of 9 hom

  7. Glutathione S-Transferase Isoenzymes from Streptomyces griseus

    OpenAIRE

    Dhar, Kajari; Dhar, Alok; Rosazza, John P. N.

    2003-01-01

    An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native Mrs of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH.

  8. METAL-INDUCED INHIBITION OF GLUTATHIONE S-TRANSFERASES

    Science.gov (United States)

    The glutathione S-transferases comprise a group of multi-functional enzymes involved in the biotransformation/detoxication of a broad spectrum of hydrophobic compounds bearing an electrophilic center. The enzymes facilitate the nucleophilic attack of the -SH group of reduced glut...

  9. Rational design of an organometallic glutathione transferase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.; (ISIC)

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  10. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center

    DEFF Research Database (Denmark)

    Long, K. S.; Hansen, L. K.; Jakobsen, L.;

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design...

  11. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    Science.gov (United States)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  12. Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents.

    Science.gov (United States)

    Bräutigam, Maria; Teusch, Nicole; Schenk, Tobias; Sheikh, Miriam; Aricioglu, Rocky Z; Borowski, Swantje H; Neudörfl, Jörg-Martin; Baumann, Ulrich; Griesbeck, Axel G; Pietsch, Markus

    2015-04-01

    The response to chemotherapy in cancer patients is frequently compromised by drug resistance. Although chemoresistance is a multifactorial phenomenon, many studies have demonstrated that altered drug metabolism through the expression of phase II conjugating enzymes, including glutathione transferases (GSTs), in tumor cells can be directly correlated with resistance against a wide range of marketed anticancer drugs. In particular, overexpression of glutathione transferase P1 (GSTP1) appears to be a factor for poor prognosis during cancer therapy. Former and ongoing clinical trials have confirmed GSTP1 inhibition as a principle for antitumor therapy. A new series of 1,2,4-trioxane GSTP1 inhibitors were designed via a type II photooxygenation route of allylic alcohols followed by acid-catalyzed peroxyacetalization with aldehydes. A set of novel inhibitors exhibit low micromolar to high nanomolar inhibition of GSTP1, revealing preliminary SAR for further lead optimization. Importantly, high selectivity over another two human GST classes (GSTA1 and GSTM2) has been achieved. The trioxane GSTP1 inhibitors may therefore serve as a basis for the development of novel drug candidates in overcoming chemoresistance.

  13. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    Science.gov (United States)

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  14. Tissue and Life Stage Specificity of Glutathione S-Transferase Expression in the Hessian Fly, Mayetiola destructor: Implications for Resistance to Host Allelochemicals

    OpenAIRE

    Mittapalli, Omprakash; Neal, Jonathan J.; Shukle, Richard H

    2007-01-01

    Two new Delta and Sigma glutathione S-transferases (GSTs) in the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), were characterized and transcription profiles described. The deduced amino acid sequences for the two M. destructor Delta GSTs (MdesGST-1 and MdesGST-3) showed high similarity with other insect Delta GSTs including the conserved catalytic serine residue. The deduced amino acid sequence for the M. destructor Sigma GST (MdesGST-2) showed high similarity with other insect ...

  15. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    OpenAIRE

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an ...

  16. Crystal Structure Analysis of 6,7-di-O-Methyl-Quercetagetin-3-O--D-Glucopyranoside dihydrate Isolated from Urena sinuata L

    Directory of Open Access Journals (Sweden)

    Adakarleny Sosa

    2011-12-01

    Full Text Available In the present work, the structural analysis of 6,7-di-O-methyl-quercetagetin-3-O-β-D-glucopyranoside dihydrate (I, which was isolated from Urena sinuata L. (dog wart collected in Táchira-Venezuela, was achieved by single crystal X-ray diffraction. Compound I crystallizes in the monoclinic system, space group C2 (No. 5 with unit cell parameters a = 29.289(3 Å; b = 6.6352(7 Å; c = 14.6533(13 Å; β = 113.636(6°; V = 2608.8(5 Å3; Z = 4. The structure refinement converged to R = 0.0421, wR2 = 0.1195, S = 1.02. This is the first X-ray report of this compound obtained from U. sinuata L.

  17. Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases

    Science.gov (United States)

    Lim, Cindy E.L.; Matthaei, Klaus I.; Blackburn, Anneke C.; Davis, Richard P.; Dahlstrom, Jane E.; Koina, Mark E.; Anders, M.W.; Board, Philip G.

    2004-01-01

    Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of α-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1−/− mice do not have demonstrable activity with maleylacetone and α-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate. PMID:15277241

  18. Benzyl esters of C2-C20 fatty acids and metabolically relevant carboxylic acids. Preparation and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1987-11-13

    Short-, medium- and long-chain fatty acids, and other types of metabolically relevant carboxylic acids like hydroxy-, keto-, aromatic and dicarboxylic acids, were analyzed by capillary gas chromatography. For separation, benzyl ester derivatives were used, prepared by reaction of the potassium carboxylates with benzyl bromide in acetonitrile catalyzed by a crown ether. The reaction conditions for quantitative benzylation were studied. Keto groups of ketocarboxylic acids were stabilized prior to benzylation by formation of O-methyl oximes using methoxyamine hydrochloride in aqueous-ethanolic solution. The separation of more than 45 carboxylic acids was achieved on a CP-Sil 5 CB fused-silica capillary column in less than 70 min. The electron impact mass spectra of ketocarboxylic acid O-methyl oxime benzyl esters PMID:3693495

  19. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo.

    Directory of Open Access Journals (Sweden)

    Kristy J Szretter

    Full Text Available Prior studies have shown that 2'-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2'-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT and a mutant in the NS5 gene (WNV-E218A lacking 2'-O methylation of the 5' viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1⁻/⁻ mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS and a greater than 16,000-fold decrease in LD(50 values in Ifit1⁻/⁻ compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1⁻/⁻ brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8⁺ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2'-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types.

  20. Glutathione S-transferases in human liver cancer.

    OpenAIRE

    Hayes, P C; May, L.; Hayes, J. D.; Harrison, D J

    1991-01-01

    An immunohistochemical study of glutathione S-transferase (GST) expression in hepatocellular carcinoma and cholangiocarcinoma is described. Unlike most animal models of hepatic malignancy pi class GST was not consistently overexpressed in hepatocellular carcinoma. This tumour type either predominantly expressed alpha class GST or failed to express GST. By contrast, cholangiocarcinoma always expressed pi class GST, presumably reflecting the tissue of origin, since in human biliary epithelium p...

  1. Analysis of the glutathione S-transferase (GST) gene family

    OpenAIRE

    Nebert Daniel W; Vasiliou Vasilis

    2004-01-01

    Abstract The glutathione S-transferase (GST) gene family encodes genes that are critical for certain life processes, as well as for detoxication and toxification mechanisms, via conjugation of reduced glutathione (GSH) with numerous substrates such as pharmaceuticals and environmental pollutants. The GST genes are upregulated in response to oxidative stress and are inexplicably overexpressed in many tumours, leading to problems during cancer chemotherapy. An analysis of the GST gene family in...

  2. Proton mobilities in crambin and glutathione S-transferase

    Science.gov (United States)

    Wanderlingh, U. N.; Corsaro, C.; Hayward, R. L.; Bée, M.; Middendorf, H. D.

    2003-08-01

    Using a neutron backscattering spectrometer, the temperature dependence of mean-square atomic displacements derived from window-integrated quasielastic spectra was measured for two D 2O-hydrated proteins: crambin and glutathione S-transferase. Analyses show that the anharmonic dynamics observed around and above 200 K is consistent with a description in terms of proton/deuteron jumps within asymmetric double-minimum potentials. Also determined were activation energies along with estimates of effective masses and average oscillator energies.

  3. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.

    Science.gov (United States)

    Yang, Rui; Cruz-Vera, Luis R; Yanofsky, Charles

    2009-06-01

    Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression. PMID:19329641

  4. Purification and properties of glutathione transferase from Issatchenkia orientalis.

    OpenAIRE

    Tamaki, H.; Kumagai, H.; Tochikura, T

    1989-01-01

    Glutathione transferase (GST) (EC 2.5.1.18) was purified from a cell extract of Issatchenkia orientalis, and two GST isoenzymes were isolated. They had molecular weights of 37,500 and 40,000 and were designated GST Y-1 and GST Y-2, respectively. GST Y-1 and GST Y-2 gave single bands with molecular weights of 22,000 and 23,500, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. GST Y-1 and GST Y-2 were immunologically distinguished from each other. GST Y-1 showed speci...

  5. Oxoaporphine alkaloids: conversion of lysicamine into liriodendronine and its 2-O-methyl ether, and antifungal activity.

    Science.gov (United States)

    Pabuccuoglu, V; Rozwadowska, M D; Brossi, A; Clark, A; Hufford, C D; George, C; Flippen-Anderson, J L

    1991-01-01

    Pschorr reaction of diazonium salt 7 in aqueous methanolic sulfuric acid afforded, besides lysicamine 2, the orange colored sulfate of oxodibenzopyrrocoline (8). The structure is fully supported by an X-ray analysis of its picrate salt. Selective ether cleavage of lysicamine (2) with 48% HBr afforded a hydrobromide of 9, and free betaine 9 on treatment with pyridine-water. Both compounds methylated on treatment with etherial diazomethane on nitrogen to give the known 2-O,N-dimethylliriodendronine (11). Liriodendronine (10) was obtained from lysicamine (2) on heating with pyridine HBr at 189 degrees C, and treatment with pyridine-water, as a dark violet betaine. Betaine 12 was obtained by heating 11.HCl to 200 degrees C. The quaternary salts of lysicamine, lysicamine methiodide (3) and lysicamine methosulfate (4) were comparable in anticandidal activity to liriodenine (1), but were not as active as liriodenine methiodide (13). PMID:2043039

  6. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  7. Molecular characterization of zeta class glutathione S-transferases from Pinus brutia Ten.

    Indian Academy of Sciences (India)

    E. Oztetik; F. Kockar; M. Alper; M. Iscan

    2015-09-01

    Glutathione transferases (GSTs; EC 2.5.1.18) play important roles in stress tolerance and metabolic detoxification in plants. In higher plants, studies on GSTs have focussed largely on agricultural plants. There is restricted information about molecular characterization of GSTs in gymnosperms. To date, only tau class GST enzymes have been characterized from some pinus species. For the first time, the present study reports cloning and molecular characterization of two zeta class GST genes, namely PbGSTZ1 and PbGSTZ2 from Pinus brutia Ten., which is an economically important pine native to the eastern Mediterranean region and have to cope with several environmental stress conditions. The PbGSTZ1 gene was isolated from cDNA, whereas PbGSTZ2 was isolated from genomic DNA. Sequence analysis of PbGSTZ1 and PbGSTZ2 revealed the presence of an open reading frame of 226 amino acids with typical consensus sequences of the zeta class plant GSTs. Protein and secondary structure prediction analysis of two zeta class PbGSTZs have shared common features of other plant zeta class GSTs. Genomic clone, PbGSTZ2 gene, is unexpectedly intronless. Extensive sequence analysis of PbGSTZ2, with cDNA clone, PbGSTZ1, revealed 87% identity at nucleotide and 81% identity at amino acid levels with 41 amino acids differences suggesting that genomic PbGSTZ2 gene might be an allelic or a paralogue version of PbGSTZ1.

  8. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons.

    Science.gov (United States)

    Zhao, Dan; Yang, Yantao; Qu, Na; Chen, Mingming; Ma, Zhao; Krueger, Christopher J; Behlke, Mark A; Chen, Antony K

    2016-09-01

    Molecular Beacons (MBs) composed of 2'-O-methyl RNA (2Me) and phosphorothioate (PS) linkages throughout the backbone (2Me/PSFULL MBs) have enabled long-term imaging of RNA in living cells, but excess PS modification can induce nonspecific binding, causing false-positive signals. In this study, we evaluate the intracellular stability of MBs composed of 2Me with various PS modifications, and found that false-positive signals could be reduced to marginal levels when the MBs possess a fully PS-modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). Additionally, 2Me/PSLOOP MBs exhibited uncompromised hybridization kinetics, prolonged functionality and >88% detection accuracy for single RNA transcripts, and could do so without interfering with gene expression or cell growth. Finally, 2Me/PSLOOP MBs could image the dynamics of single mRNA transcripts in the nucleus and the cytoplasm simultaneously, regardless of whether the MBs targeted the 5'- or the 3'-UTR. Together, these findings demonstrate the effectiveness of loop-domain PS modification in reducing nonspecific signals and the potential for sensitive and accurate imaging of individual RNAs at the single-molecule level. With the growing interest in the role of RNA localization and dynamics in health and disease, 2Me/PSLOOP MBs could enable new discoveries in RNA research. PMID:27261815

  9. Pluronic-PEI copolymers enhance exon-skipping of 2'-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice.

    Science.gov (United States)

    Wang, M; Wu, B; Lu, P; Tucker, J D; Milazi, S; Shah, S N; Lu, Q L

    2014-01-01

    A series of small-size polyethylenimine (PEI)-conjugated pluronic polycarbamates (PCMs) have been investigated for the ability to modulate the delivery of 2'-O-methyl phosphorothioate RNA (2'-OMePS) in vitro and in dystrophic mdx mice. The PCMs retain strong binding capacity to negatively charged oligomer as demonstrated by agarose gel retardation assay, with the formation of condensed polymer/oligomer complexes at a wide-range weight ratio from 1:1 to 20:1. The condensed polymer/oligomer complexes form 100-300 nm nanoparticles. Exon-skipping effect of 2'-OMePS was dramatically enhanced with the use of the most effective PCMs in comparison with 2'-OMePS alone in both cell culture and in vivo, respectively. More importantly, the effective PCMs, especially those composed of moderate size (2k-5kDa) and intermediate hydrophilic-lipophilic balance (7-23) of pluronics, enhanced exon-skipping of 2'-OMePS with low toxicity as compared with Lipofectamine-2000 in vitro or PEI 25k in vivo. The variability of individual PCM for delivery of antisense oligomer and plasmid DNA indicate the complexity of interaction between polymer and their cargos. Our data demonstrate the potential of PCMs to mediate delivery of modified antisense oligonucleotides to the muscle for treating muscular dystrophy or other appropriate myodegenerative diseases. PMID:24131982

  10. Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chio Mui; Zhou, Chun; Brunzelle, Joseph S.; Huang, Raven H.; (UIUC); (NWU)

    2010-01-28

    Small RNAs of {approx}20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.

  11. A Mannosyl Transferase Required for Lipopolysaccharide Inner Core Assembly in Rhizobium leguminosarum: Purification, substrate specificity, and expression in Salmonella waaC mutants*

    OpenAIRE

    Kanipes, Margaret I.; Ribeiro, Anthony A.; Lin, Shanhua; Cotter, Robert J.; Raetz, Christian R. H.

    2003-01-01

    The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-D-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo2-lipid IVA. LpcC containing a...

  12. A glutathione s-transferase confers herbicide tolerance in rice

    Directory of Open Access Journals (Sweden)

    Tingzhang Hu

    2014-07-01

    Full Text Available Plant glutathione S-transferases (GSTs have been a focus of attention due to their role in herbicide detoxification. OsGSTL2 is a glutathione S-transferase, lambda class gene from rice (Oryza sativa L.. Transgenic rice plants over-expressing OsGSTL2 were generated from rice calli by the use of an Agrobacterium transformation system, and were screened by a combination of hygromycin resistance, PCR and Southern blot analysis. In the vegetative tissues of transgenic rice plants, the over-expression of OsGSTL2 not only increased levels of OsGSTL2 transcripts, but also GST and GPX expression, while reduced superoxide. Transgenic rice plants also showed higher tolerance to glyphosate and chlorsulfuron, which often contaminate agricultural fields. The findings demonstrate the detoxification role of OsGSTL2 in the growth and development of rice plants. It should be possible to apply the present results to crops for developing herbicide tolerance and for limiting herbicide contamination in the food chain.

  13. Electrochemical evaluation of glutathione S-transferase kinetic parameters.

    Science.gov (United States)

    Enache, Teodor Adrian; Oliveira-Brett, Ana Maria

    2015-02-01

    Glutathione S-transferases (GSTs), are a family of enzymes belonging to the phase II metabolism that catalyse the formation of thioether conjugates between the endogenous tripeptide glutathione and xenobiotic compounds. The voltammetric behaviour of glutathione (GSH), 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione S-transferase (GST), as well as the catalytic conjugation reaction of GSH to CDNB by GST was investigated at room temperature, T=298.15K (25°C), at pH6.5, for low concentration of substrates and enzyme, using differential pulse (DP) voltammetry at a glassy carbon electrode. Only GSH can be oxidized; a sensitivity of 0.14nA/μM and a LOD of 6.4μM were obtained. The GST kinetic parameter electrochemical evaluation, in relation to its substrates, GSH and CDNB, using reciprocal Michaelis-Menten and Lineweaver-Burk double reciprocal plots, was determined. A value of KM~100μM was obtained for either GSH or CDNB, and Vmax varied between 40 and 60μmol/min per mg of GST.

  14. Spontaneous and 5-azacytidine-induced reexpression of ornithine carbamoyl transferase in hepatoma cells.

    OpenAIRE

    Delers, A; Szpirer, J; Szpirer, C; Saggioro, D.

    1984-01-01

    Rat hepatoma cells that do not synthesize the hepatic enzyme ornithine carbamoyl transferase spontaneously give rise to producing cells at a low frequency. Reexpression of this differentiation trait is strongly increased by 5-azacytidine treatment, suggesting that hypermethylation plays a critical role in the impaired expression of the ornithine carbamoyl transferase gene in hepatoma cells.

  15. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  16. Pleiotropic functions of glutathione S-transferase P.

    Science.gov (United States)

    Zhang, Jie; Grek, Christina; Ye, Zhi-Wei; Manevich, Yefim; Tew, Kenneth D; Townsend, Danyelle M

    2014-01-01

    Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.

  17. Glutathione analogue sorbents selectively bind glutathione S-transferase isoenzymes.

    Science.gov (United States)

    Castro, V M; Kelley, M K; Engqvist-Goldstein, A; Kauvar, L M

    1993-06-01

    Novel affinity sorbents for glutathione S-transferases (GSTs) were created by binding glutathione (GSH) analogues to Sepharose 6B. The GSH molecule was modified at the glycine moiety and at the group attached to the sulphur of cysteine. When tested by affinity chromatography in a flow-through microplate format, several of these sorbents selectively bound GST isoenzymes. gamma E-C(Hx)-phi G (glutathione with a hexyl moiety bound to cysteine and phenylglycine substituted for glycine) specifically bound rat GST 7-7, the Pi-class isoenzyme, from liver, kidney and small intestine. gamma E-C(Bz)-beta A (benzyl bound to cysteine and beta-alanine substituted for glycine) was highly selective for rat subunits 3 and 4, which are Mu-class isoenzymes. By allowing purification of the isoenzymes under mild conditions that preserve activity, the novel sorbents should be useful in characterizing the biological roles of GSTs in both normal animal and cancer tissues.

  18. Ghrelin O-Acyl Transferase: Bridging Ghrelin and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Andrew Shlimun

    2011-01-01

    Full Text Available Ghrelin O-acyl transferase (GOAT is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.

  19. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    Science.gov (United States)

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro.

  20. Heterologous expression and functional characterization of avian mu-class glutathione S-transferases.

    Science.gov (United States)

    Bunderson, Brett R; Kim, Ji Eun; Croasdell, Amanda; Mendoza, Kristelle M; Reed, Kent M; Coulombe, Roger A

    2013-08-01

    Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA

  1. 肝細胞におけるステロイド結合Glutathione S-transferase Isozymeの同定

    OpenAIRE

    本間, 久登

    1989-01-01

    The glutathione S-transferases (GSTs) are known to bind bilirubin, heme, bile acids, fatty acids, and other metabolites, and recently, evidence has been presented for binding of steroid hormones to GST 1-1 (Ligandin) (Litwack, G. et al.: Nature 234, 466, 1971) and to an anionic GST (Maruyama and Listowsky,: J. Biol. Chem. 259, 12447-12455, 1984). To determine which GST isozymes can function as a high affinity steroid binding protein in the rat liver, GSTs were purified by chromatofocusing col...

  2. Cloning of a glutathione S-transferase decreasing during differentiation of HL60 cell line

    International Nuclear Information System (INIS)

    By sequencing the Expressed Sequence Tags of human dermal papilla cDNA library, we identified a clone named K872 of which the expression decreased during differentiation of HL60 cell line. K872 plasmid DNA was isolated according to QIA plasmid extraction kit (Qiagen GmbH, Germany). The nucleotide sequencing was performed by Sanger's method with K872 plasmid DNA. The most updated GenBank EMBL necleic acid banks were searched through the internet by using BLAST (Basic Local Alignment Search Tools) program. Northern bots were performed using RNA isolated from various human tissues and cancer cell lines. The gene expression of the fusion protein was achieved by His-Patch Thiofusion expression system and the protein product was identified on SDS-PAGE. K872 clone is 1006 nucleotides long, and has a coding region of 675 nucleotides and a 3' non-coding region of 280 nucleotides. The presumed open reading frame starting at the 5' terminus of K872 encodes 226 amino acids, including the initiation methionine residue. The amino acid sequence deduced from the open reading frame of K872 shares 70% identity with that of rat glutathione S-transferase kappa 1 (rGSTK1). The transcripts were expressed inh a variety of human tissues and cancer cells. The levels of transcript were relatively high in those tissues such as heart, skeletal muscle, and peripheral blood leukocyte. It is noteworthy that K872 was found to be abundantly expressed in colorectal cancer and melanoma cell lines. Homology search result suggests that K872 clone is the human homolog of the rGSTK1 which is known to be involved in the resistance of cytotoxic therapy. We propose that meticulous functional analysis should be followed to confirm that

  3. Nuclear translocation of glutathione transferase omega is a progression marker in Barrett's esophagus

    DEFF Research Database (Denmark)

    Piaggi, Simona; Marchi, Santino; Ciancia, Eugenio;

    2009-01-01

    fraction of BE patients. This study was aimed to investigate the possible role of glutathione-S-transferase-omega 1 (GSTO1), a recently discovered member of the glutathione-S-transferase family, as a progression marker in the Barrett's disease in order to improve the diagnosis of Ni...... equally divided between nuclear, cytoplasmic and diffuse staining (2 each, respectively). Experiments in vitro showed that in human HeLa cancer cells, GSTO1 translocates into the nucleus as a consequence of heath shock. These findings suggested that the nuclear translocation of glutathione-S-transferase...

  4. Role of membrane-bound enzymes in an early response of aleurone tissue to gibberellic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E. (Washington Univ., St. Louis); Ben-Tal, Y.

    Treatment of aleurone layers of barley seed with gibberellic acid increases the observable phosphorylcholine glyceride transferase activity in a membrane fraction prepared from extracts of the aleurone cells. This gibberellic acid-dependent increase in glyceride transferase activity requires neither RNA synthesis nor protein synthesis. Membrane fractions prepared from mixtures of extracts of gibberellic acid-treated layers and control layers have a specific activity of glyceride transferase higher than expected on the basis of simple addition of the activities from the two sources. Therefore, some kind of activation is occurring. (auth)

  5. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Hsiao-Ling, E-mail: lily1001224@gmail.com [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Li, Chia-Jung, E-mail: 97751101@stmail.tcu.edu.tw [Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan (China); Huang, Lin-Huang, E-mail: yg1236@yahoo.com.tw [School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan (China); Chen, Chun-Yao, E-mail: cychen@mail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Tsai, Chun-Hao, E-mail: 100726105@stmail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Lin, Chun-Nan, E-mail: lincna@cc.kmu.edu.tw [Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung, Taiwan (China); Hsu, Hsue-Yin, E-mail: hsueyin@mail.tcu.edu.tw [Department of Life Sciences, Tzu Chi University, Hualien, Taiwan (China)

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reduced mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 μM. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 μM Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ► Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ► Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ► Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK

  6. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana

    Science.gov (United States)

    Liu, Shuchang; Liu, Feng; Jia, Haihong; Yan, Yan; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-06-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes in aerobic organisms. They play a crucial role in the detoxification of exogenous compounds, especially insecticides, and protection against oxidative stress. Most previous studies of GSTs in insects have largely focused on their role in insecticide resistance. Here, we isolated a theta class GST gene designated AccGSTT1 from Apis cerana cerana and aimed to explore its antioxidant and antibacterial attributes. Analyses of homology and phylogenetic relationships suggested that the predicted amino acid sequence of AccGSTT1 shares a high level of identity with the other hymenopteran GSTs and that it was conserved during evolution. Quantitative real-time PCR showed that AccGSTT1 is most highly expressed in adult stages and that the expression profile of this gene is significantly altered in response to various abiotic stresses. These results were confirmed using western blot analysis. Additionally, a disc diffusion assay showed that a recombinant AccGSTT1 protein may be roughly capable of inhibiting bacterial growth and that it reduces the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, these data indicate that AccGSTT1 may play an important role in antioxidant processes under adverse stress conditions.

  7. Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases.

    Science.gov (United States)

    Zhou, Huina; Brock, Joseph; Liu, Dan; Board, Philip G; Oakley, Aaron J

    2012-07-13

    The reduction of dehydroascorbate (DHA) to ascorbic acid (AA) is a vital cellular function. The omega-class glutathione transferases (GSTs) catalyze several reductive reactions in cellular biochemistry, including DHA reduction. In humans, two isozymes (GSTO1-1 and GSTO2-2) with significant DHA reductase (DHAR) activity are found, sharing 64% sequence identity. While the activity of GSTO2-2 is higher, it is significantly more unstable in vitro. We report the first crystal structures of human GSTO2-2, stabilized through site-directed mutagenesis and determined at 1.9 Å resolution in the presence and absence of glutathione (GSH). The structure of a human GSTO1-1 has been determined at 1.7 Å resolution in complex with the reaction product AA, which unexpectedly binds in the G-site, where the glutamyl moiety of GSH binds. The structure suggests a similar mode of ascorbate binding in GSTO2-2. This is the first time that a non-GSH-based reaction product has been observed in the G-site of any GST. AA stacks against a conserved aromatic residue, F34 (equivalent to Y34 in GSTO2-2). Mutation of Y34 to alanine in GSTO2-2 eliminates DHAR activity. From these structures and other biochemical data, we propose a mechanism of substrate binding and catalysis of DHAR activity.

  8. PLLA-PCys co-electrospun fibers for capture and elution of glutathione S-transferase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The copolymer poly(L-lactic acid)-b-poly(L-cysteine) (PLA-b-PCys) was co-electrospun with PLGA into ultrafine fibers. The reduced glutathione (GSH) was conjugated to the fiber surfaces via disulfide bonds. The glutathione S-transferase (GST) was captured onto the GSH fibers via specific substrate-enzyme interaction between the bound GSH and GST. The captured GST was eluted with free GSH aqueous solution and lyophilized to get pure GST powders. The results show that the GSH moieties on the fiber surface retain the bioactivity of the free GSH and thus they can bind specifically with GST and the GST in solution is captured onto the fiber surface. In addition, the bound GSH is not as active as free GSH so that the captured GST can be eluted off from the fiber by free GSH aqueous solution. Based on this principle, GST itself or its fused proteins can be separated and purified very easily. The preliminary purification efficiency is 6.5 mg·(gPCys)-1. Further improvements are undertaken.

  9. Crystallization and X-ray diffraction studies of glutathione S-transferase from Escherichia coli

    Science.gov (United States)

    Nishida, Motohiko; Harada, Shigeharu; Satow, Yoshinori; Inoue, Hideshi; Takahashi, Kenji

    1996-10-01

    Crystals of glutathione S-transferase from Escherichia coli have been obtained by use of polyethylene glycol 6000 as a precipitant. The crystallization was performed in the presence of a glutathione sulfonate inhibitor under the acidic condition, with combination of the sitting-drop vapour-diffusion and the macro-seeding procedures. The crystals are of a thin-plate shape with typical sizes of 1.0 × 0.5 × 0.1 mm, and are stable against X-ray irradiation. They belong to the space group P2 12 12 1 with cell parameters of a = 90.47 Å, b = 93.87 Å and c = 51.10 Å, and diffract X-rays at least up to 2.3 Å resolution. The solvent content is 48% in volume, when a homodimeric molecule of the enzyme is assumed to occupy an asymmetric unit of the crystal. The crystals are suitable for three-dimensional structural studies. Diffraction data of the native crystal have been collected.

  10. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals

    Science.gov (United States)

    Bocedi, A; Fabrini, R; Lai, O; Alfieri, L; Roncoroni, C; Noce, A; Pedersen, JZ; Ricci, G

    2016-01-01

    Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans. PMID:27551520

  11. Cefadroxil potency as cancer co-therapy candidate by glutathione s-transferase mechanism

    Directory of Open Access Journals (Sweden)

    Tri Yuliani

    2013-03-01

    Full Text Available Background: Glutathione S-transferases (GSTs havean important role in the detoxification of electrophiles,such as some anticancer drugs. Compounds with phenolicand/or α,b-unsaturated carbonyl group have been knownas GSTs inhibitor in vitro. Cefadroxil in vitro decreasedGST-Pi activity but not GSTs in rat kidney cytosol.GST inhibitor in a specific organ and of a specific classis needed for safety in cancer chemotherapy. The studyaims to observe the effect of cefadroxil on GSTs in vivoin rat kidney cytosol and then compare it to those seenfor liver, lung, and spleen in vivo.Methods: Cefadroxil was given twice a day byforcefeeding for five days. Rat kidney cytosol was thenprepared and its protein concentration was determined.Cytosolic total GST, GST-Mu and GST-Pi activitieswere monitored by a continuous spectrophotometricmethod using the following substrates: 1-chloro,2,4-dinitrobenzene (CDNB (non-specific substrate,1,2-dichloro-4-nitrobenzene (DCNB for GST-Mu, andethacrynic acid (EA for GST-Pi.Results: The data showed that cefadroxil significantlyincreased the activity of GSTs, GST-Mu, and GSTPiin rat kidney cytosol (8.75%, 47.81%, and 6.67%respectively.Conclusion: Cefadroxil did not inhibit GSTs, GST-Mu,and GST-Pi in rat kidney in vivo indicating that it doesnot inhibit chemotherapy detoxification by GSTs, GSTMu,and GST-Pi in normal kidney cells.

  12. Glutathione Transferase GSTπ In Breast Tumors Evaluated By Three Techniques

    Directory of Open Access Journals (Sweden)

    Rafael Molina

    1993-01-01

    Full Text Available The glutathione transferases are involved in intracellular detoxification reactions. One of these, GSTπ, is elevated in some breast cancer cells, particularly cells selected for resistance to anticancer agents. We evaluated GSTπ expression in 60 human breast tumors by three techniques, immunohistochemistry, Northern hybridization, and Western blot analysis. There was a significant positive correlation between the three methods, with complete concordance seen in 64% of the tumors. There was strong, inverse relationship between GSTπ expression and steroid receptor status with all of the techniques utili zed. [n addition, there was a trend toward higher GSTπ expression in poorly differentiated tumors, but no correlation was found between tumor GSTπ content and DNA ploidy or %S-phase. GSTπ expression was also detected in adjacent benign breast tissue as well as infiltrating lymphocytes; this expression may contribute to GSTπ measurements using either Northern hybridization or Western blot analysis. These re sults suggest that immunohistochemistry is the method of choice for measuring GSTπ in breast tumors.

  13. Glutathione S-transferase, incense burning and asthma in children.

    Science.gov (United States)

    Wang, I-J; Tsai, C-H; Chen, C-H; Tung, K-Y; Lee, Y L

    2011-06-01

    Incense burning is a popular practice in many family homes and temples. However, little is known about the effects of indoor incense burning and genetic polymorphisms on asthma. This study evaluated the effects of indoor incense burning and glutathione S-transferase (GST) genetic polymorphisms on asthma and wheeze. In 2007, 3,764 seventh-grade schoolchildren (mean±sd age 12.42±0.65 yrs) were evaluated using a standard questionnaire for information about respiratory symptoms and environmental exposures. Multiple logistic regressions were performed to assess the association between GST polymorphisms and incense burning frequency on asthma and wheeze, after adjusting for potential confounders. The frequency of incense burning at home was associated with increased risk of current asthma (p=0.05), medication use (p=0.03) and exercise wheeze (p=0.001). GST1 (GSTT1) null genotypes were associated with current asthma (OR 1.43, 95% CI 1.00-2.04) and medication use (OR 1.46, 95% CI 1.01-2.22). GSTT1 showed a significant interactive effect with incense burning on current asthma, current wheeze and nocturnal wheeze. The frequency of incense burning was associated with increased risk of current asthma, medication use, lifetime wheeze, nocturnal wheeze and exercise wheeze in an exposure-response manner among children with GSTT1 null genotype (pIncense burning is a risk factor for asthma and wheezing, especially in GSTT1 genetically susceptible children.

  14. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T;

    2014-01-01

    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms....... Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal...... in both the study of GalNAc-transferase regulation and in high-throughput screening for potential therapeutic regulators of specific GalNAc-transferases....

  15. Serum fucosyl transferase activity and serum fucose levels as diagnostic tools in malignancy.

    Directory of Open Access Journals (Sweden)

    Sen,Umi

    1983-12-01

    Full Text Available Glycoproteins play a significant role in neoplastic transformations. Both the levels of fucose and the activity of fucosyl transferase, which mediates the assembly of the oligosaccharide moieties of the glycoprotein chains, have been found to be elevated in neoplastic conditions. Since these elevations are common features of a variety of neoplastic cells, these two have been designated as non-specific markers of malignancy. In the present study, the fucose level and fucosyl transferase activity were determined in the sera of cancer patients and an attempt was made to establish a relationship between the two. It was found that both the fucose levels and fucosyl transferase activities showed considerable elevation in the five cancer groups studied, establishing them as useful diagnostic parameters. However, it was also observed that the rate of increased fucosyl transferase activity was not fully reflected in the resulting serum fucose levels in a few cases.

  16. Serum fucosyl transferase activity and serum fucose levels as diagnostic tools in malignancy.

    OpenAIRE

    Sen,Umi; Guha,Subhas; Chowdhury, J Roy

    1983-01-01

    Glycoproteins play a significant role in neoplastic transformations. Both the levels of fucose and the activity of fucosyl transferase, which mediates the assembly of the oligosaccharide moieties of the glycoprotein chains, have been found to be elevated in neoplastic conditions. Since these elevations are common features of a variety of neoplastic cells, these two have been designated as non-specific markers of malignancy. In the present study, the fucose level and fucosyl transferase activi...

  17. Glutathione S-transferase isoenzymes in relation to their role in detoxification of xenobiotics.

    OpenAIRE

    Vos, R.M.E.

    1989-01-01

    The glutathione S-transferases (GST) are a family of isoenzymes serving a major part in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic properties.The main function of the glutathione S-transferases isthe catalysisof the conjugation of electrophilic, hydrophobic compounds with the tripeptide glutathione (GSH). In addition, some of the isoenzymes are capab...

  18. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA. PMID:25893162

  19. Cloning and expressing a highly functional and substrate specific farnesoic acid o-methyltransferase from the Asian citrus psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Van Ekert, Evelien; Shatters, Robert G; Rougé, Pierre; Powell, Charles A; Smagghe, Guy; Borovsky, Dov

    2015-01-01

    The Asian citrus psyllid, Diaphorina citri, transmits a phloem-limited bacterium, Candidatus 'Liberibacter' asiaticus that causes citrus greening disease. Because juvenile hormone (JH) plays an important role in adult and nymphal development, we studied the final steps in JH biosynthesis in D. citri. A putative JH acid methyltransferase ortholog gene (jmtD) and its cognate cDNA were identified by searching D. citri genome database. Expression analysis shows expression in all life stages. In adults, it is expressed in the head-thorax, (containing the corpora allata), and the abdomen (containing ovaries and male accessory glands). A 3D protein model identified the catalytic groove with catalytically active amino acids and the S-adenosyl methionine (SAM)-binding loop. The cDNA was expressed in Escherichia coli cells and the purified enzyme showed high preference for farnesoic acid (FA) and homoFA (kcat of 0.752 × 10(-3) and 0.217 × 10(-3) s(-1), respectively) as compared to JH acid I (JHA I) (cis/trans/cis; 2Z, 6E, 10cis), JHA III (2E, 6E, 10cis), and JHA I (trans/cis/cis; 2E, 2Z, 10cis) (kcat of 0.081 × 10(-3), 0.013 × 10(-3), and 0.003 × 10(-3) s(-1), respectively). This suggests that this ortholog is a DcFA-o-methyl transferase gene (fmtD), not a jmtD, and that JH biosynthesis in D. citri proceeds from FA to JH III through methyl farnesoate (MF). DcFA-o-MT does not require Ca(2+), Mg(2+) or Zn(2+), however, Zn(2+) (1 mM) completely inhibits the enzyme probably by binding H115 at the active groove. This represents the first purified FA-o-MT from Hemiptera with preferred biological activity for FA and not JHA.

  20. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Qin, Guohua; Jia, Miao; Liu, Ting; Zhang, Xueyao; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2013-01-01

    Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni(2+)-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu(2+) and Cd(2+)). The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.

  1. Functional characterization of alpha-class glutathione s-transferases from the Turkey (meleagris gallopavo).

    Science.gov (United States)

    Kim, Ji Eun; Bunderson, Brett R; Croasdell, Amanda; Coulombe, Roger A

    2011-11-01

    Six Alpha-class glutathione S-transferase (GST) subunits were cloned from domestic turkey livers, which are one of the most susceptible animals known to the carcinogenic mycotoxin aflatoxin B₁. In most animals, GST dysfunction is a risk factor for susceptibility toward AFB₁, and we have shown that turkeys lack GSTs with affinity toward the carcinogenic intermediate exo-aflatoxin B(1)-8-9-epoxide (AFBO). Conversely, mice are resistant to AFB₁ carcinogenesis, due to high constitutive expression of mGSTA3 that has high affinity toward AFBO. When expressed in Escherichia coli, all six tGSTA subunits possessed conjugating activities toward substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), and cumene hydroperoxide (CHP) with tGSTA1.2 appearing most active. Interestingly, tGSTA1.1, which lacks one of the four Alpha-class signature motifs, possessed enzymatic activities toward all substrates. All had comparable activities toward AFBO conjugation, an activity absent in turkey liver cytosols. E. coli-expressed mGSTA3 conjugated AFBO with more than 3-fold greater activity than that of tGSTAs and had higher activity toward GST prototype substrates. Mouse hepatic cytosols had approximately 900-fold higher catalytic activity toward AFBO compared with those from turkey. There was no apparent amino acid profile in tGSTAs that might correspond to specificity toward AFBO, although tGSTA1.2, which had slightly higher AFBO-trapping ability, shared Tyr¹⁰⁸ with mGSTA3, a residue postulated to be critical for AFBO trapping activity in mammalian systems. The observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are silenced by one or more regulatory mechanisms.

  2. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation

    Science.gov (United States)

    Seo, Hyeon Gyu; Kim, Han Byeol; Kang, Min Jueng; Ryum, Joo Hwan; Yi, Eugene C.; Cho, Jin Won

    2016-01-01

    Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451–453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted. We also revealed that O-GlcNAcylation of Ser389, which resides in the tetratricopeptide repeats, plays an important role in the nuclear localisation of OGT. Our findings may explain how OGT, which possesses a NLS, exists in the nucleus and cytosol simultaneously. PMID:27713473

  3. Glutathione transferase classes alpha, pi, and mu: GSH activation mechanism.

    Science.gov (United States)

    Dourado, Daniel F A R; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2010-10-14

    Since the early 1960s, glutathione transferases (GSTs) have been described as detoxification enzymes. In fact, GSTs are the most important enzymes involved in the metabolism of electrophilic xenobiotic/endobiotic compounds. These enzymes are able to catalyze the nucleophilic addition of glutathione (GSH) sulfur thiolate to a wide range of electrophilic substrates, building up a less toxic and more soluble compound. Cytosolic classes alpha, pi, and mu are the most extensively studied GSTs. However, many of the catalytic events are still poorly understood. In the present work, we have resorted to density functional theory (DFT) and to potential of mean force (PMF) calculations to determine the GSH activation mechanism of GSTP1-1 and GSTM1-1 isoenzymes. For the GSTP1-1 enzyme, we have demonstrated that a water molecule, after an initial conformational rearrangement of GSH, can assist a proton transfer between the GSH cysteine thiol (GSH-SH) and the GSH glutamate alpha carboxylate (GSH-COO(-)) groups. The energy barrier associated with the proton transfer is 11.36 kcal·mol(-1). The GSTM1-1 enzyme shows a completely different behavior from the previous isoenzyme. In this case, two water molecules, positioned between the GSH-SH and the ξ N atom of His107, working like a bridge, are able to promote the proton transfer between these two active groups with an energy barrier of 7.98 kcal·mol(-1). All our results are consistent with all the enzymes kinetics and mutagenesis experimental studies.

  4. Analysis of Arabidopsis glutathione-transferases in yeast.

    Science.gov (United States)

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin

    2013-07-01

    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  5. Novel functional association of rat testicular membrane-associated cytosolic glutathione S transferases and cyclooxygenase in vitro

    Institute of Scientific and Technical Information of China (English)

    S. Neeraja; B. Ramakrishna; A. S. Sreenath; G. V. Reddy; P. R. K. Reddy; P. Reddanna

    2005-01-01

    Aim: To analyze the role of cytosolic glutathione S-transferases (cGSTs) and membrane-associated cytosolic GSTs (macGSTs) in prostaglandin biosynthesis and to evaluate the possible interaction between glutathione S-transferases (GSTs) and cyclooxygenase (COX) in vitro. Methods: SDS-PAGE analysis was undertaken for characterization of GSTs, thin layer chromatography (TLC) to monitor the effect of GSTs on prostaglandin biosynthesis from arachidonic acid (AA) and spectrophotometric assays were done for measuring activity levels of COX and GSTs. Results:SDS-PAGE analysis indicates that macGSTs have molecular weights in the range of 25-28 kDa. In a coupled assay involving GSTs, arachidonic acid and cyclooxygenase-1, rat testicular macGSTs produced prostaglandin E2 and F2α,while the cGSTs caused the generation of prostaglandin D2, E2 and F2α. In vitro interaction studies on GSTs and COX at the protein level have shown dose-dependent inhibition of COX activity by macGSTs and vice versa. This effect,however, is not seen with cGSTs. The inhibitory effect of COX on macGST activity was relieved with increasing concentrations of reduced glutathione (GSH) but not with 1-chloro 2,4-dinitrobenzene (CDNB). The inhibition of COX by macGSTs, on the other hand, was potentiated by glutathione. Conclusion: We isolated and purified macGSTs and cGSTs from rat testis and analyzed their involvement in prostaglandin biosynthesis. These studies reveal a reversible functional interaction between macGSTs and COX in vitro, with possible interactions between them at the GSH binding site of macGSTs.

  6. Differential substrate specificity and kinetic behavior of Escherichia coli YfdW and Oxalobacter formigenes formyl coenzyme A transferase.

    Science.gov (United States)

    Toyota, Cory G; Berthold, Catrine L; Gruez, Arnaud; Jónsson, Stefán; Lindqvist, Ylva; Cambillau, Christian; Richards, Nigel G J

    2008-04-01

    The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates oxalate catabolism in the obligate anaerobe Oxalobacter formigenes, O. formigenes formyl coenzyme A transferase (FRC). We now report the first detailed examination of the steady-state kinetic behavior and substrate specificity of recombinant, wild-type YfdW. Our studies confirm that YfdW is a formyl coenzyme A (formyl-CoA) transferase, and YfdW appears to be more stringent than the corresponding enzyme (FRC) in Oxalobacter in employing formyl-CoA and oxalate as substrates. We also report the effects of replacing Trp-48 in the FRC active site with the glutamine residue that occupies an equivalent position in the E. coli protein. The results of these experiments show that Trp-48 precludes oxalate binding to a site that mediates substrate inhibition for YfdW. In addition, the replacement of Trp-48 by Gln-48 yields an FRC variant for which oxalate-dependent substrate inhibition is modified to resemble that seen for YfdW. Our findings illustrate the utility of structural homology in assigning enzyme function and raise the question of whether oxalate catabolism takes place in E. coli upon the up-regulation of the yfdXWUVE operon under acidic conditions. PMID:18245280

  7. Imaging the norepinephrine transporter in humans with (S,S)-[{sup 11}C]O-methyl reboxetine and PET: problems and progress

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jean [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: logan@bnl.gov; Wang, Gene-jack; Telang, Frank; Fowler, Joanna S.; Alexoff, David; Zabroski, John; Jayne, Millard; Hubbard, Barbara; King, Payton; Carter, Pauline; Shea, Colleen; Xu, Youwen; Muench, Lisa; Schlyer, David [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Learned-Coughlin, Susan; Cosson, Valerie [GlaxoSmithKline, Research Triangle Park, NC 27709 (United States); Volkow, Nora D. [National Institute on Drug Abuse, Bethesda, MD 20892 (United States); Ding, Yu-shin [Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520-8048 (United States)

    2007-08-15

    Results from human studies with the PET radiotracer (S,S)-[{sup 11}C]O-methyl reboxetine ([{sup 11}C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K{sub i}=2-5 nM). Methods: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [{sup 11}C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. Results: [{sup 11}C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density {approx}40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24{+-}7%; 100 mg=31{+-}11%), these differences were not significant. The different blocking between MBR (average decrease=28{+-}10%) and THL (average decrease=17{+-}10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the

  8. Evaluation of the non-catalytic binding function of Ts26GST a glutathione transferase isoform of Taenia solium.

    Science.gov (United States)

    Plancarte, A; Romero, J R; Nava, G; Reyes, H; Hernández, M

    2014-03-01

    Taenia solium glutathione transferase isoform of 26.5 kDa (Ts26GST) was observed to bind non-catalytically to porphyrins, trans-trans-dienals, bile acids and fatty acids, as assessed by inhibition kinetics, fluorescence spectroscopy and competitive fluorescence assays with 8-anilino-1-naphthalene sulfonate (ANS). The quenching of Ts26GST intrinsic fluorescence allowed for the determination of the dissociation constants (KD) for all ligands. Obtained data indicate that Ts26GST binds to all ligands but with different affinity. Porphyrins and lipid peroxide products inhibited Ts26GST catalytic activity up to 100% in contrast with only 20-30% inhibition observed for bile acids and two saturated fatty acids. Non-competitive type inhibition was observed for all enzyme inhibitor ligands except for trans-trans-2,4-decadienal, which exhibited uncompetitive type inhibition. The dissociation constant value KD = 0.7 μM for the hematin ligand, determined by competitive fluorescence assays with ANS, was in good agreement with its inhibition kinetic value Ki = 0.3 μM and its intrinsic fluorescence quenching KD = 0.7 μM. The remaining ligands did not displace ANS from the enzyme suggesting the existence of different binding sites. In addition to the catalytic activity of Ts26GST the results obtained suggest that the enzyme exhibits a ligandin function with broad specificity towards nonsubstrate ligands.

  9. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases.

    Science.gov (United States)

    Piro, G; Zuppa, A; Dalessandro, G; Northcote, D H

    1993-01-01

    Membrane fractions and digitonin-solubilized enzymes prepared from stem segments isolated from the third internode of etiolated pea seedlings (Pisum sativum L. cv. Alaska) catalyzed the synthesis of a beta-1,4-[14C]mannan from GDP-D-[U-14C]-mannose, a mixed beta-1,3- and beta-1,4-[14C]glucan from GDP-D-[U-14C]-glucose and a beta-1,4-[14C]-glucomannan from both GDP-D-[U-14C]mannose and GDP-D-[U-14C]glucose. The kinetics of the membrane-bound and soluble mannan and glucan synthases were determined. The effects of ions, chelators, inhibitors of lipid-linked saccharides, polyamines, polyols, nucleotides, nucleoside-diphosphate sugars, acetyl-CoA, group-specific chemical probes, phospholipases and detergents on the membrane-bound mannan and glucan synthases were investigated. The beta-glucan synthase had different properties from other preparations which bring about the synthesis of beta-1,3-glucans (callose) and mixed beta-1,3- and beta-1,4- glucans and which use UDP-D-glucose as substrate. It also differed from xyloglucan synthase because in the presence of several concentrations of UDP-D-xylose in addition to GDP-D-glucose no xyloglucan was formed. Using either the membrane-bound or the soluble mannan synthase, GDP-D-glucose acted competitively in the presence of GDP-D-mannose to inhibit the incorporation of mannose into the polymer. This was not due to an inhibition of the transferase activity but was a result of the incorporation of glucose residues from GDP-D-glucose into a glucomannan. The kinetics and the composition of the synthesized glucomannan depended on the ratio of the concentrations of GDP-D-glucose and GDP-D-mannose that were available. Our data indicated that a single enzyme has an active centre that can use both GDP-D-mannose and GDP-D-glucose to bring about the synthesis of the heteropolysaccharide. PMID:7685647

  10. STUDY OF THE DELETION MUTATION OF GLUTATHIONE S TRANSFERASE M1 GENE AND ITS ROLE IN SUSCEPTIBILITY TO HEPATOCELLULAR CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    MA; Yun

    2001-01-01

    [1]Guengerich FP, Shimada T, Raney KD, et al. Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology [J]. Envir Health Perspectives 1992; 98:75.[2]Salagoric J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers [J]. Neoplasma 1998; 45:312.[3]Comstock KE, Sanderson BJ.S, Claflin SG, et al. GST1 gene deletion determined by polymerase chain reaction [J]. Nucleic Acids Research 1990; 18:3670.[4]Ma Yun, Deng Zhuolin, Le Chenyi, et al. The comparative study on mutational hot spot of p53 gene in hepatocellular carcinoma from AFB1 high and low risk area in Guangxi [J]. J Clin Exp Pthol 1997; 13:302.[5]McGlyNN KA, Rosvold EA, Lustbader ED, et al. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1 [J]. Proc Natl Acad Sci USA 1995; 92:2384..[6]Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and factors of hepatocellular carcinoma [J]. J Gastroenterol Hepatol 1997; 12:294.[7]Hu Ying, Shen Fumin. Association between GSTM1 gene polymorphism of primary hepatocellular carcinoma and mutation of p53 codon 249 [J]. Chin J Med Genet 1997; 14:76.[8]Hsieh LL, Huang RC, Yu MW, et al. L-myc, GSTM1 genetic polymorphism and hepatocellular carcinoma risk among hepatitis B carriers [J]. Cancer Lett 1996; 103:171.[9]Dong Chuanhui, Zi Xiaolin, Yu Shunzhang, et al. Relationship between deletion of glutathione S-transferase gene and susceptibility to primary hepatocellular carcinoma [J]. Chin J Public Health 1997; 16:141.[10]Chomarat P, Rice JM, Slagle BL, et al. Hepatitis B virus induced liver injury and altered expression of carcinogen metabolising enzymes: the role of the HBx protein [J]. Toxicol Lett 1998; 28:595.

  11. Characterization of Ser73 in Arabidopsis thaliana Glutathione S-transferase zeta class

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Glutathione S-transferases (GSTs) are ubiquitous detoxifying superfamily enzymes. The zeta class GST from Arabidopsis thaliana (AtGSTZ) can efficiently degrade dichloroacetic acid (DCA), which is a common carcinogenic contaminant in drinking water. Ser73 in AtGSTZ is a conserved residue at Glutathione binding site (G-site). Compared with the equivalent residues in other GSTs, the catalytic and structural properties of Ser73 were poorly investigated. In this article, site-saturation mutagenesis was performed to characterize the detailed role of Ser73. The DCA de.chlorinating (DCA-DC) activity showed that most of the mutants had less than 3% of the wild-type activity, except S73T and $73A showing 43.48% and 21.62% of the wild-type activity, respectively, indicating that position 73 in AtGSTZ showed low mutational substitutability. Kinetic experiments revealed that mutants S73T, $73A, and S73G showed low binding affinity and catalytic efficiency toward DCA, 1.8-, 3.1-, and 10.7- fold increases in KmDcA values and 4.0-, 9.6-, and 34.1- fold decreases in KcatDCA/KmDCA values, respectively, compared to the wild type. Thermostability and refolding experiments showed that the wild type maintalned more thermostability and recovered activity. These results demonstrated the important role of Set73 in catalytic activity and structural stability of the enzyme. Such properties of Set73 could be particularly crucial to the molecular evolution of AtGSTZ and might,therefore, help explain why Ser73 is conserved in all GSTs. This conclusion might provide insights into the directed evolution of the DCA-DC activity of AtGSTZ.

  12. Tunicamycin-induced inhibition of a glycolipid:GalNAc-transferase in guinea pig tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.K.; Basu, M.; Basu, S.

    1986-05-01

    It is not known how many glycosyltransferases are glycoprotein or phosphoprotein in nature. Post-translational modification of the glycosyltransferases and their regulation in normal and tumor cells are of the present interest. Recently, the authors established the biosynthesis in vitro of GbOse4Cer and GbOse5Cer from GbOse3Cer by two different GalNAc-transferases (GalNAcT-2 and GalNAcT-3) isolated from chemically transformed guinea pig tumor cells (104Cl and 106B). When these cells were incubated in the presence of tunicamycin (0.2-2 ..mu..g/ml), the activity of GalNAcT-2 (UDP-GalNAc:GbOse3Cer(..beta..1-3)GalNAcT) was inhibited (90%), whereas GalT-4 (UDP-Gal:LcOse3Cer(..beta..1-4)GalT) and GalT-5 (UDP-Gal:LcOse5Cer(..cap alpha..1-3)GalT) remained unchanged. The effect of tunicamycin was minimal within 6 hrs of treatment. However, 50% and 75% inhibition was observed after treatment of these cells for 12 and 24 hr, respectively. The inhibitory effect of tunicamycin on GalNAcT-2 can be reversed after 12-24 hr of its removal from the medium. The incorporation of (/sup 3/H)-leucine in total protein remained unchanged during tunicamycin treatment. The inhibition of glycoproteins was further confirmed by the inhibition (95%) of (2-/sup 3/H)Man incorporation in the acid precipitable material. When cells were grown in the presence of insulin, the GalNAcT-2 activity increased 2-fold. Involvement of a glycoprotein catalytic subunit or a modifier protein in the GalNAcT-2 catalyzed reaction is under investigation.

  13. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction

    Science.gov (United States)

    Huenchuguala, Sandro; Muñoz, Patricia; Zavala, Patricio; Villa, Mónica; Cuevas, Carlos; Ahumada, Ulises; Graumann, Rebecca; Nore, Beston F; Couve, Eduardo; Mannervik, Bengt; Paris, Irmgard; Segura-Aguilar, Juan

    2014-01-01

    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. PMID:24434817

  14. Interaction of glutathione transferase P1-1 with captan and captafol.

    Science.gov (United States)

    di Ilio, C; Sacchetta, P; Angelucci, S; Bucciarelli, T; Pennelli, A; Mazzetti, A P; Lo Bello, M; Aceto, A

    1996-07-12

    Glutathione transferase (GST, EC 2.5.1.18) P1-1 was strongly inhibited by captan and captafol in a time- and concentration-dependent manner. The IC50 values for captan and captafol were 5.8 microM and 1.5 microM, respectively. Time-course inactivation of GSTP1-1 by two pesticides was prevented by 3 microM of hexyl-glutathione, but not by methylglutathione. The fact that the inactivated enzyme recovered all the 5,5'-dithiobis(2-nitrobenzoic acid) titrable thiol groups, with concomitant recovery of all its original activity after treatment with 100 microM dithiothreitol, suggested that captan and captafol were able to induce the formation of disulfide bonds. That the inactivation of GSTP1-1 by captan and captafol involves the formation of disulfide bonds between the four cysteinil groups of the enzymes was confirmed by the SDS-PAGE experiments on nondenaturant conditions. In fact, on SDS-PAGE, GSTP1-1 as well as the cys47ala, cys101ala, and cys47ala/cys101ala GSTP1-1 mutants treated with captan and captafol showed several extra bands, with apparent molecular masses higher and lower than the molecular mass of native GSTP1-1 (23.5 kDa), indicating that both intra- and inter-subunit disulfide bonds were formed. These extra bands returned to the native 23.5 kDa band with concomitant restoration of activity when treated with dithiothreitol.

  15. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways.

    Science.gov (United States)

    Blackburn, Anneke C; Matthaei, Klaus I; Lim, Cindy; Taylor, Matthew C; Cappello, Jean Y; Hayes, John D; Anders, M W; Board, Philip G

    2006-02-01

    Glutathione S-transferase (GST) zeta (GSTZ1-1) plays a significant role in the catabolism of phenylalanine and tyrosine, and a deficiency of GSTZ1-1 results in the accumulation of maleylacetoacetate and its derivatives maleylacetone (MA) and succinylacetone. Induction of GST subunits was detected in the liver of Gstz1(-/-) mice by Western blotting with specific antisera and high-performance liquid chromatography analysis of glutathione affinity column-purified proteins. The greatest induction was observed in members of the mu class. Induction of NAD(P)H:quinone oxidoreductase 1 and the catalytic and modifier subunits of glutamate-cysteine ligase was also observed. Many of the enzymes that are induced in Gstz1(-/-) mice are regulated by antioxidant response elements that respond to oxidative stress via the Keap1/Nrf2 pathway. It is significant that diminished glutathione concentrations were also observed in the liver of Gstz1(-/-) mice, which supports the conclusion that under normal dietary conditions, the accumulation of electrophilic intermediates such as maleylacetoacetate and MA results in a high level of oxidative stress. Elevated GST activities in the livers of Gstz1(-/-) mice suggest that GSTZ1-1 deficiency may alter the metabolism of some drugs and xenobiotics. Gstz1(-/-) mice given acetaminophen demonstrated increased hepatotoxicity compared with wild-type mice. This toxicity may be attributed to the increased GST activity or the decreased hepatic concentrations of glutathione, or both. Patients with acquired deficiency of GSTZ1-1 caused by therapeutic exposure to dichloroacetic acid for the clinical treatment of lactic acidosis may be at increased risk of drug- and chemical-induced toxicity. PMID:16278372

  16. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  17. Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas

    DEFF Research Database (Denmark)

    Mandel, U; Hassan, H; Therkildsen, M H;

    1999-01-01

    GalNAc-T1, -T2, and -T3. Application of this panel of novel antibodies revealed that GalNAc- transferases are differentially expressed in different cell lines, in spermatozoa, and in oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc......Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc: polypeptide N -acetyl-galactosaminyltransferases (GalNAc-transferases). Individual GalNAc-transferases appear to have different functions and Northern analysis indicates that they are differently expressed in different organs....... This suggests that O-glycosylation may vary with the repertoire of GalNAc-transferases expressed in a given cell. In order to study the repertoire of GalNAc-transferases in situ in tissues and changes in tumors, we have generated a panel of monoclonal antibodies (MAbs) with well defined specificity for human...

  18. Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.

    Science.gov (United States)

    Patel, Kinnari B; Toh, Evelyn; Fernandez, Ximena B; Hanuszkiewicz, Anna; Hardy, Gail G; Brun, Yves V; Bernards, Mark A; Valvano, Miguel A

    2012-05-01

    Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.

  19. Puromycin-rRNA interaction sites at the peptidyl transferase center

    DEFF Research Database (Denmark)

    Rodriguez-Fonseca, Christina; Phan, Hien; Long, Katherine Sarah;

    2000-01-01

    of puromycin. They include A2439, G2505, and G2553 for E. coli, and G2058, A2503, G2505, and G2553 for Hf. gibbonsii (using the E. coli numbering system). Reproducible enhanced reactivities were also observed at A508 and A1579 within domains I and III, respectively, of E. coli 23S rRNA. In further experiments......The binding site of puromycin was probed chemically in the peptidyl-transferase center of ribosomes from Escherichia coli and of puromycin-hypersensitive ribosomes from the archaeon Haloferax gibbonsii. Several nucleotides of the 23S rRNAs showed altered chemical reactivities in the presence......S rRNA. These data strongly support the concept that puromycin, along with other peptidyl-transferase antibiotics, in particular the streptogramin B drugs, bind to an RNA structural motif that contains several conserved and accessible base moieties of the peptidyl transferase loop region...

  20. Activity Detection of GalNAc Transferases by Protein-Based Fluorescence Sensors In Vivo.

    Science.gov (United States)

    Song, Lina; Bachert, Collin; Linstedt, Adam D

    2016-01-01

    Mucin-type O-glycosylation occurring in the Golgi apparatus is an important protein posttranslational modification initiated by up to 20 GalNAc-transferase isozymes with largely distinct substrate specificities. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and misregulation causes human diseases. Here we describe the use of protein-based fluorescence sensors that traffic in the secretory pathway to monitor GalNAc-transferase activity in living cells. The sensors can either be "pan" or isozyme specific. PMID:27632006

  1. Activity Detection of GalNAc Transferases by Protein-Based Fluorescence Sensors In Vivo.

    Science.gov (United States)

    Song, Lina; Bachert, Collin; Linstedt, Adam D

    2016-01-01

    Mucin-type O-glycosylation occurring in the Golgi apparatus is an important protein posttranslational modification initiated by up to 20 GalNAc-transferase isozymes with largely distinct substrate specificities. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and misregulation causes human diseases. Here we describe the use of protein-based fluorescence sensors that traffic in the secretory pathway to monitor GalNAc-transferase activity in living cells. The sensors can either be "pan" or isozyme specific.

  2. Origin and evolution of the Peptidyl Transferase Center from proto-tRNAs

    Directory of Open Access Journals (Sweden)

    Sávio T. Farias

    2014-01-01

    Full Text Available We tested the hypothesis of Tamura (2011 [3] that molecules of tRNA gave origin to ribosomes, particularly to the Peptidyl Transferase Center (PTC of the 23S ribosomal RNA. We reconstructed the ancestral sequences from all types of tRNA and compared them in their sequences with the current PTC of 23S ribosomal RNA from different organisms. We built an ancestral sequence of proto-tRNAs that showed a remarkable overall identity of 50.53% with the catalytic site of PTC. We conclude that the Peptidyl Transferase Center was indeed originated by the fusion of ancestral sequences of proto-tRNA.

  3. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  4. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    Science.gov (United States)

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  5. The role of human demographic history in determining the distribution and frequency of transferase-deficient galactosaemia mutations

    NARCIS (Netherlands)

    J.M. Flanagan; G. McMahon; S.H. Brendan Shia; P. Fitzpatrick; O. Tighe; C. O'Neill; P. Briones; L. Gort; L. Kozak; A. Magee; E. Naughten; B. Radomyska; M. Schwartz; J.S. Shin; W.M. Strobl; L.A. Tyfield; H.R. Waterham; H. Russell; G. Bertorelle; J.K.V. Reichardt; P.D. Mayne; D.T. Croke

    2010-01-01

    Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To bette

  6. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  7. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    Science.gov (United States)

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.

  8. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.D.; Gilligan, D.; Beckett, G.J. (Edinburgh Univ. (UK). Dept. of Clinical Chemistry); Chapman, B.J. (Royal Infirmary, Edinburgh (UK))

    1983-10-31

    A purification scheme is described for six human hepatic glutathione S-transferases from a single liver. Five of the transferases comprised Ya monomers and had a molecular mass of 44000. The remaining enzyme comprised Yb monomers and had a molecular mass of 47000. Data are presented demonstrating that there are at least two distinct Ya monomers. A radioimmunoassay has been developed that has sufficient precision and sensitivity to allow direct measurement of glutathione S-transferase concentrations in unextracted plasma. A comparison of aminotransferase and glutathione S-transferase levels, in three patients who had taken a paracetamol overdose, indicated that glutathione S-transferase measurements provided a far more sensitive index of hepatocellular integrity than the more conventional aminotransferase measurements.

  9. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman;

    2008-01-01

    total meat intake and red meat intake and breast cancer risk were confined to intermediate/fast N-acetyl transferase 2 acetylators (P-interaction=0.03 and 0.04). Our findings support an association between meat consumption and breast cancer risk and that N-acetyl transferase 2 polymorphism has......The aim of this study was to investigate whether polymorphisms in N-acetyl transferase 1 and 2 modify the association between meat consumption and risk of breast cancer. A nested case-control study was conducted among 24697 postmenopausal women included in the 'Diet, Cancer and Health' cohort study...... increment in intake. Compared with slow acetylators, the IRR (95% confidence interval) among fast N-acetyl transferase 1 acetylators was 1.43 (1.03-1.99) and 1.13 (0.83-1.54) among intermediate/fast N-acetyl transferase 2 acetylators. Interaction analyses revealed that the positive associations between...

  10. Simultaneous determination of C2-C22 non-esterified fatty acids and other metabolically relevant carboxylic acids in biological material by gas chromatography of their benzyl esters.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1988-03-18

    A method for the simultaneous determination of non-esterified short-, medium- and long-chain fatty acids and other types of metabolically relevant carboxylic acids such as hydroxy, keto, aromatic and dicarboxylic acids in biological material by capillary gas chromatography of benzyl ester derivatives is described. Sample preparation avoiding incomplete isolation of carboxylic acids consisted of deproteinization and extraction with ethanol, fixation of carboxylic acids as carboxylates, removal of interfering compounds such as neutral lipids by hexane extraction and amino acids, acyl carnitines and other cations by cation-exchange chromatography, derivatization of keto groups of ketocarboxylic acids into O-methyl oximes and benzyl ester formation by reaction of the potassium carboxylates with benzyl bromide via crown ether catalysis. The sample preparation conditions were investigated, showing the usefulness of this method for quantitative determinations. Chromatograms obtained from human serum, human urine and rat heart ventricle and concentrations of carboxylic acids in these specimens are presented. PMID:3372640

  11. Glutathione S-transferase isoenzymes in relation to their role in detoxification of xenobiotics.

    NARCIS (Netherlands)

    Vos, R.M.E.

    1989-01-01

    The glutathione S-transferases (GST) are a family of isoenzymes serving a major part in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic properties.

  12. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Science.gov (United States)

    2010-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  13. The role of glutathione S-transferase and claudin-1 gene polymorphisms in contact sensitization

    DEFF Research Database (Denmark)

    Ross-Hansen, K; Linneberg, A; Johansen, J D;

    2013-01-01

    BACKGROUND: Contact sensitization is frequent in the general population and arises from excessive or repeated skin exposure to chemicals and metals. However, little is known about its genetic susceptibility. OBJECTIVES: To determine the role of polymorphisms of glutathione S-transferase (GST) genes...

  14. Differential roles of tau class glutathione S-transferases in oxidative stress

    DEFF Research Database (Denmark)

    Kilili, Kimiti G; Atanassova, Neli; Vardanyan, Alla;

    2004-01-01

    The plant glutathione S-transferase BI-GST has been identified as a potent inhibitor of Bax lethality in yeast, a phenotype associated with oxidative stress and disruption of mitochondrial functions. Screening of a tomato two-hybrid library for BI-GST interacting proteins identified five homologous...

  15. Effect of glutathione S-transferases on the survival of patients with acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Autrup, Judith; Hokland, Peter; Pedersen, Lars;

    2002-01-01

    The objective of the study was to investigate the effect of genetic polymorphisms in glutathione S-transferases (GST) on the survival of acute myeloid leukaemia patients receiving adriamycin induction therapy. A total of 89 patients were included in the study. Patients who carried at least one GSTM...

  16. Glutathione transferase activity and oocyte development in copepods exposed to toxic phytoplankton

    DEFF Research Database (Denmark)

    Kozlowsky-Suzuki, Betina; Koski, Marja; Hallberg, Eric;

    2009-01-01

    Organisms present a series of cellular mechanisms to avoid the effects of toxic compounds. Such mechanisms include the increase in activity of detoxification enzymes [e.g., 7-ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST)I, which could explain the low retention of ingested...

  17. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D.; Zhong, Guo; Smeltz, Marci; James, Margaret O., E-mail: mojames@ufl.edu; McKenna, Robert, E-mail: mojames@ufl.edu

    2014-01-21

    Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.

  18. Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin

    NARCIS (Netherlands)

    Zanden, J.J. van; Hamman, O.B.; Iersel, M.L.P.S. van; Boeren, S.; Cnubben, N.H.P.; Lo Bello, M.; Vervoort, J.; Bladeren, P.J. van; Rietjens, I.M.C.M.

    2003-01-01

    In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 μM q

  19. A practical fluorogenic substrate for high-throughput screening of glutathione S-transferase inhibitors.

    Science.gov (United States)

    Fujikawa, Yuuta; Morisaki, Fumika; Ogura, Asami; Morohashi, Kana; Enya, Sora; Niwa, Ryusuke; Goto, Shinji; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Inoue, Hideshi

    2015-07-21

    We report a new fluorogenic substrate for glutathione S-transferase (GST), 3,4-DNADCF, enabling the assay with a low level of nonenzymatic background reaction. Inhibitors against Noppera-bo/GSTe14 from Drosophila melanogaster were identified by high throughput screening using 3,4-DNADCF, demonstrating the utility of this substrate.

  20. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: Identification and characterization

    NARCIS (Netherlands)

    K.W.A. Grinsven; S. Rosnowsky (Silke); S.W.H. van Weelden (Susanne); S. Pütz (Simone); M. van der Giezen (Mark); W. Martin (William); J.J. van Hellemond (Jaap); A.G.M. Tielens (Aloysius); K. Henze (Katrin)

    2008-01-01

    textabstractAcetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial euka

  1. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity.

    Science.gov (United States)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T; Clausen, Henrik; Linstedt, Adam D

    2014-10-31

    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms. Surprisingly, molecular probes to monitor GalNAc-transferase activity are lacking and there exist no effective global or isoform-specific inhibitors. Here we describe the development of T2- and T3-isoform specific fluorescence sensors that traffic in the secretory pathway. Each sensor yielded little signal when glycosylated but was strongly activated in the absence of its glycosylation. Specificity of each sensor was assessed in HEK cells with either the T2 or T3 enzymes deleted. Although the sensors are based on specific substrates of the T2 and T3 enzymes, elements in or near the enzyme recognition sequence influenced their activity and required modification, which we carried out based on previous in vitro work. Significantly, the modified T2 and T3 sensors were activated only in cells lacking their corresponding isozymes. Thus, we have developed T2- and T3-specific sensors that will be valuable in both the study of GalNAc-transferase regulation and in high-throughput screening for potential therapeutic regulators of specific GalNAc-transferases.

  2. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity

    DEFF Research Database (Denmark)

    Porse, B T; Rodriguez-Fonseca, C; Leviev, I;

    1996-01-01

    The present review attempts to deal with movement of tRNA substrates through the peptidyl transferase centre on the large ribosomal subunit and to explain how this movement is interrupted by antibiotics. It builds on the concept of hybrid tRNA states forming on ribosomes and on the observed movem...

  3. Habitual consumption of fruits and vegetables: associations with human rectal glutathione S-transferase

    NARCIS (Netherlands)

    Wark, P.A.; Grubben, M.J.A.L.; Peters, W.H.M.; Nagengast, F.M.; Kampman, E.; Kok, F.J.; Veer, van 't P.

    2004-01-01

    The glutathione (GSH)/glutathione S-transferase (GST) system is an important detoxification system in the gastrointestinal tract. A high activity of this system may benefit cancer prevention. The aim of the study was to assess whether habitual consumption of fruits and vegetables, especially citrus

  4. Glutathione-S-transferase genotype and p53 mutations in adenocarcinoma of the small intestine

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth Nørum; Kærlev, Linda; Teglbjærg, Peter Stubbe;

    2003-01-01

    Adenocarcinoma of the small intestine (ASI) is a rare disease of unknown aetiology. The glutathione S-transferase M1 (GSTM1) enzyme catalyses the detoxification of compounds involved in carcinogenesis of adenocarcinoma of the stomach, colon and lung, including constituents of tobacco smoke. We...... differences. Thus p53 does not seem to be the target of carcinogens acting in the small intestine....

  5. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae

    NARCIS (Netherlands)

    N. Pavlidi; V. Tseliou; M. Riga; R. Nauen; T. Van Leeuwen; N.E. Labrou; J. Vontas

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we fun

  6. Comparative Studies of Substrate and Inhibitor Specificity of Glutathione S-Transferases in Six Tissues of Oxya chinensis (Thunberg) (Orthoptera: Acrididae)

    Institute of Scientific and Technical Information of China (English)

    WU Hai-hua; ZHU Kun-yan; GUO Ya-ping; ZHANG Xiao-min; MA En-bo

    2008-01-01

    Specific activity, substrate specificity, and kinetic parameters (Km and Vmax) of glutathione S-transferases (GSTs) towards three substrates, 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), and p-nitrobenzene chloride (pNBC) were investigated in six tissues (foregut, midgut, hindgut, fat body, hemolymph, and muscle) of Oxya chinensis. In addition, the inhibition in vitro (ethacrynic acid, and Cibacron Blue 3GA) of Oxya chinensis in the six tissues was also investigated. Glutathione S-transferase activity was detected in all the six tissues examined. The rank order of GST activities towards CDNB was fat body > midgut > hindgut > muscle > foregut > hemolymph both in females and males. Glutathione 5-transferase activities in the fat body in females and males were 1.3- to 10.4-fold and 1.1- to 10.0-fold higher than those in the other tissues. The rank order of GST activities towards the other substrates changed slightly. From these results, it was inferred that GSTs in the fat body and midgut played important roles in detoxifying xenobiotics including insecticides and plant allelochemicals in O. chinensis. In the three substrates examined, CDNB seemed to be the best substrate, followed by pNBC and DCNB. The kinetic parameters of GSTs were different among the six tissues. This suggested that GSTs in different tissues have various affinities and catalytic efficiency to substrates. In vitro inhibition study showed that the median inhibition concentration (IC50) values of the two inhibitors to GSTs from the six tissues were different. The results suggested that the two inhibitors have different inhibition potency to GSTs from the different tissues. The observed changes in kinetic parameters and inhibition in vitro among the six tissues of the insect might suggest that the number and structure of isoenzymes and their rate of expression varied for the different tissues.

  7. Fenofibrate Therapy in Carnitine Palmitoyl Transferase Type 2 Deficiency

    Directory of Open Access Journals (Sweden)

    I. Hamilton-Craig

    2012-01-01

    Full Text Available Bezafibrate therapy has been shown to improve beta-oxidation of fatty acids and to reduce episodes of rhabdomyolysis in patients with carnitine palmitoyltransferase type-2 (CPT2 deficiency. We report the efficacy of fenofibrate in a patient with CPT2 deficiency, in whom beta-oxidation was improved but an episode of rhabdomyolysis nevertheless occurred. This suggests additional methods to avoid rhabdomyolysis in patients with CPT2 deficiency should accompany fibrate therapy, including avoidance of muscular overexertion, dehydration, and heat exposure.

  8. Proteomic and immunochemical characterization of glutathione transferase as a new allergen of the nematode Ascaris lumbricoides.

    Directory of Open Access Journals (Sweden)

    Nathalie Acevedo

    Full Text Available Helminth infections and allergy have evolutionary and clinical links. Infection with the nematode Ascaris lumbricoides induces IgE against several molecules including invertebrate pan-allergens. These antibodies influence the pathogenesis and diagnosis of allergy; therefore, studying parasitic and non-parasitic allergens is essential to understand both helminth immunity and allergy. Glutathione transferases (GSTs from cockroach and house dust mites are clinically relevant allergens and comparative studies between them and the GST from A. lumbricoides (GSTA are necessary to evaluate their allergenicity. We sought to analyze the allergenic potential of GSTA in connection with the IgE response to non-parasitic GSTs. IgE to purified GSTs from Ascaris (nGSTA and rGSTA, house dust mites (rDer p 8, nBlo t 8 and rBlo t 8, and cockroach (rBla g 5 was measured by ELISA in subjects from Cartagena, Colombia. Also, multidimensional proteomic approaches were used to study the extract of A. lumbricoides and investigate the existence of GST isoforms. We found that among asthmatics, the strength of IgE levels to GSTA was significantly higher than to mite and cockroach GSTs, and there was a strong positive correlation between IgE levels to these molecules. Specific IgE to GSTA was found in 13.2% of controls and 19.5% of asthmatics. In addition nGSTA induced wheal and flare in skin of sensitized asthmatics indicating that it might be of clinical relevance for some patients. Frequency and IgE levels to GSTA were higher in childhood and declined with age. At least six GST isoforms in A. lumbricoides bind human IgE. Four isoforms were the most abundant and several amino acid substitutions were found, mainly on the N-terminal domain. In conclusion, a new allergenic component of Ascaris has been discovered; it could have clinical impact in allergic patients and influence the diagnosis of mite and cockroach allergy in tropical environments.

  9. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris.

    Science.gov (United States)

    Chronopoulou, Evangelia; Madesis, Panagiotis; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2014-01-01

    Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous proteins in plants that play important roles in stress tolerance and in the detoxification of toxic chemicals and metabolites. In this study, we systematically examined the catalytic diversification of a GST isoenzyme from Phaseolus vulgaris (PvGST) which is induced under biotic stress treatment (Uromyces appendiculatus infection). The full-length cDNA of this GST isoenzyme (termed PvGSTU3-3) with complete open reading frame, was isolated using RACE-RT and showed that the deduced amino acid sequence shares high homology with the tau class plant GSTs. PvGSTU3-3 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase, thioltransferase, and dehydroascorbate reductase. In addition, its K m for GSH is about five to ten times lower compared to other plant GSTs, suggesting that PvGSTU3-3 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g., oxidative stress). Its ability to conjugate GSH with isothiocyanates may provide an additional role for this enzyme to act as a regulator of the released isothiocyanates from glucosinolates as a response of biotic stress. Molecular modeling showed that PvGSTU3-3 shares the same overall fold and structural organization with other plant cytosolic GSTs, with major differences at their hydrophobic binding sites (H-sites) and some differences at the level of C-terminal domain and the linker between the C- and N-terminal domains. PvGSTU3-3, in general, exhibits restricted ability to bind xenobiotics in a nonsubstrate manner, suggesting that the biological role of PvGSTU3-3, is restricted mainly to the catalytic function. Our findings highlight the functional and catalytic diversity of plant GSTs and demonstrate their pivotal role for addressing biotic stresses in Phaseolus

  10. Proteomic and immunochemical characterization of glutathione transferase as a new allergen of the nematode Ascaris lumbricoides.

    Science.gov (United States)

    Acevedo, Nathalie; Mohr, Jens; Zakzuk, Josefina; Samonig, Martin; Briza, Peter; Erler, Anja; Pomés, Anna; Huber, Christian G; Ferreira, Fatima; Caraballo, Luis

    2013-01-01

    Helminth infections and allergy have evolutionary and clinical links. Infection with the nematode Ascaris lumbricoides induces IgE against several molecules including invertebrate pan-allergens. These antibodies influence the pathogenesis and diagnosis of allergy; therefore, studying parasitic and non-parasitic allergens is essential to understand both helminth immunity and allergy. Glutathione transferases (GSTs) from cockroach and house dust mites are clinically relevant allergens and comparative studies between them and the GST from A. lumbricoides (GSTA) are necessary to evaluate their allergenicity. We sought to analyze the allergenic potential of GSTA in connection with the IgE response to non-parasitic GSTs. IgE to purified GSTs from Ascaris (nGSTA and rGSTA), house dust mites (rDer p 8, nBlo t 8 and rBlo t 8), and cockroach (rBla g 5) was measured by ELISA in subjects from Cartagena, Colombia. Also, multidimensional proteomic approaches were used to study the extract of A. lumbricoides and investigate the existence of GST isoforms. We found that among asthmatics, the strength of IgE levels to GSTA was significantly higher than to mite and cockroach GSTs, and there was a strong positive correlation between IgE levels to these molecules. Specific IgE to GSTA was found in 13.2% of controls and 19.5% of asthmatics. In addition nGSTA induced wheal and flare in skin of sensitized asthmatics indicating that it might be of clinical relevance for some patients. Frequency and IgE levels to GSTA were higher in childhood and declined with age. At least six GST isoforms in A. lumbricoides bind human IgE. Four isoforms were the most abundant and several amino acid substitutions were found, mainly on the N-terminal domain. In conclusion, a new allergenic component of Ascaris has been discovered; it could have clinical impact in allergic patients and influence the diagnosis of mite and cockroach allergy in tropical environments.

  11. Role of genetic polymorphism of glutathione-s-transferase T1 and microsomal epoxide hydrolase in aflatoxin-associated hepatocellular carcinoma

    NARCIS (Netherlands)

    Tiemersma, E.W.; Omer, R.E.; Bunschoten, A.; Veer, van't P.; Kok, F.J.; Idrsi, M.O.; Kampman, E.

    2001-01-01

    Exposure to aflatoxins is a risk factor for hepatocellular carcinoma (HCC). Aflatoxins occur in peanut butter and are metabolized by genetically polymorphic enzymes such as glutathione-S-transferases encoded by glutathione-S-transferase mu 1 gene (GSTM1) and glutathione-S-transferase theta 1 gene (G

  12. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    Science.gov (United States)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  13. Functional dissection of the bipartite active site of the class I coenzyme A (CoA-transferase succinyl-CoA:acetate CoA-transferase

    Directory of Open Access Journals (Sweden)

    Jesse Ray Murphy

    2016-05-01

    Full Text Available Coenzyme A (CoA-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA analogue dethiaacetyl-CoA (1a in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  14. Molecular cloning and differential expression patterns of sigma and omega glutathione S-transferases from Venerupis philippinarum to heavy metals and benzo[a]pyrene exposure

    Science.gov (United States)

    Zhang, Linbao; Wu, Huifeng; Liu, Xiaoli; Chen, Leilei; Wang, Qing; Zhao, Jianmin; You, Liping

    2012-05-01

    Glutathione S-transferases (GSTs) are a class of enzymes that facilitate the detoxification of xenobiotics, and also play important roles in antioxidant defense. We identified two glutathione S-transferase isoforms (VpGSTS, sigma GST; VpGSTO, omega GST) from Venerupis philippinarum by RACE approaches. The open reading frames of VpGSTS and VpGSTO were of 612 bp and 729 bp, encoding 203 and 242 amino acids with an estimated molecular mass of 22.88 and 27.94 kDa, respectively. The expression profiles of VpGSTS and VpGSTO responded to heavy metals and benzo[a]pyrene (B[a]P) exposure were investigated by quantitative real-time RT-PCR. The expression of VpGSTS and VpGSTO were both rapidly up-regulated, however, they showed differential expression patterns to different toxicants. Cd displayed stronger induction of VpGSTS expression with an approximately 12-fold increase than that of VpGSTO with a maximum 6.4-fold rise. Cu exposure resulted in similar expression patterns for both VpGSTS and VpGSTO. For B[a]P exposure, the maximum induction of VpGSTO was approximately two times higher than that of VpGSTS. Altogether, these findings implied the involvement of VpGSTS and VpGSTO in host antioxidant responses, and highlighted their potential as a biomarker to Cd and B[a]P exposure.

  15. Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.

    Science.gov (United States)

    Mathieu, Yann; Prosper, Pascalita; Buée, Marc; Dumarçay, Stéphane; Favier, Frédérique; Gelhaye, Eric; Gérardin, Philippe; Harvengt, Luc; Jacquot, Jean-Pierre; Lamant, Tiphaine; Meux, Edgar; Mathiot, Sandrine; Didierjean, Claude; Morel, Mélanie

    2012-11-01

    Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.

  16. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome

    DEFF Research Database (Denmark)

    Poulsen, S M; Karlsson, M; Johansson, L B;

    2001-01-01

    centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous...... are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase...

  17. Conformational change of glutathione-S-transferase by its co-expression with prion domain of yeast Ure2p

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ure2 protein from Saccharomyces cerevisisae has a changeable structure similar to that ofrnammalian prion protein. Its N-terminal is the prion domain (PrD) consisting of 65 amino acids which plays a critical role in yeast prion development. In this study, PrD gene was recombinated with glutathione-S-transferase(GST) gene, and a soluble GST-PrD(sGST-PrD) fusion protein was expressed in E. coli. sGST-PrD could spontaneously polymerize into amyloid fibrils in vitro, displaying typical β-sheet-type structure; it had increased resistance to proteinase K and exhibited amvloid-like optical properties. Moreover, the aggregated GST-PrD(aGST-PrD) could induce sGST-PrD to aggregate into fibrils. These results indicate that PrD could change the conformation of GST moiety in a recombinant protein with PrD to form a prion-like chimeric protein, which proves that PrD has the ability to mediate a prion-like conversion of other proteins fused with it.

  18. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    Science.gov (United States)

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  19. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    Science.gov (United States)

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  20. Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity

    DEFF Research Database (Denmark)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G;

    2011-01-01

    UDP-GalNAc:polypeptide a-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection...... of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence...... on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate...

  1. Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

    OpenAIRE

    Kim, Yu-Jin; Lee, Ok Ran; Lee, Sungyoung; Kim, Kyung-Tack; Yang, Deok-Chun

    2012-01-01

    Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the G...

  2. Expression of glutathione S-transferases in normal and malignant pancreas: an immunohistochemical study.

    OpenAIRE

    Collier, J D; Bennett, M K; Hall, A.; Cattan, A R; Lendrum, R.; Bassendine, M F

    1994-01-01

    The glutathione S-transferases (GSTs) are a family of detoxification and metabolising enzymes, which have been linked with the susceptibility of tissues to environmental carcinogens and resistance of tumours to chemotherapy. Environmental carcinogens have been implicated in the pathogenesis of pancreatic carcinoma, which is also a tumour characterised by marked chemotherapeutic drug resistance. In this study 26 pancreatic adenocarcinoma and 12 normal pancreatic samples were examined immunohis...

  3. Predicted binding of certain antifilarial compounds with glutathione-S-transferase of human Filariids

    OpenAIRE

    Saeed, Mohd; Baig, Mohd. Hassan; Bajpai, Preeti; Srivastava, Ashwini Kumar; Ahmad, Khurshid; Mustafa, Huma

    2013-01-01

    Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chem...

  4. Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers

    OpenAIRE

    Probst-Hensch, Nicole M.; Imboden, Medea; Dietrich, Denise Felber; Barthélemy, Jean-Claude; Ackermann-Liebrich, Ursula; Berger, Wolfgang; Gaspoz, Jean-Michel; Schwartz, Joel David

    2008-01-01

    Background: Disturbances of heart rate variability (HRV) may represent one pathway by which second-hand smoke (SHS) and air pollutants affect cardiovascular morbidity and mortality. The mechanisms are poorly understood. Objectives: We investigated the hypothesis that oxidative stress alters cardiac autonomic control. We studied the association of polymorphisms in oxidant-scavenging glutathione S-transferase (GST) genes and their interactions with SHS and obesity with HRV. Methods: A total of ...

  5. Summarize of Glutathione S-transferases%谷胱甘肽S-转移酶综述

    Institute of Scientific and Technical Information of China (English)

    张飚; 李永清; 高轩

    2006-01-01

    谷胱甘肽S-转移酶(glutathioneS-transferases,GSTs)是由多个基因编码、具有多种功能的超基因家族酶,是多种生物体内的主要解毒系统.本文综述了GSTs的分型、结构等方面的研究进展.

  6. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    OpenAIRE

    Hubert Sytykiewicz; Grzegorz Chrzanowski; Paweł Czerniewicz; Iwona Sprawka; Iwona Łukasik; Sylwia Goławska; Cezary Sempruch

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was ...

  7. Frequency of Galactose-1-phosphate Uridyl Transferase Gene Mutations in Healthy Population of Croatia

    OpenAIRE

    Barišić, Karmela; Rumora, Lada; Grdić, Marija; JURETIĆ, DUBRAVKA

    2008-01-01

    Galactosemia is a human disease caused by deficient activity of each one of the three enzymes involved in galactose metabolism, galactokinase (GALK), galactose-1-phosphate uridyl transferase (GALT) and UDP-galactose-4-epimerase (GALE). Absence or deficiency of GALT activity results in classical galactosemia. This disorder exhibits allelic heterogeneity in different populations and ethnic groups. The aim of this study was to search for galactosemia mutations Q188R, N314D, and K285N in healthy ...

  8. Modeling analysis of GST (glutathione-S-transferases) from Wuchereria bancrofti and Brugia malayi

    OpenAIRE

    Bhargavi, Rayavarapu; Vishwakarma, Siddharth; Murty, Upadhyayula Suryanarayana

    2005-01-01

    GST (glutathione S-transferases) are a family of detoxification enzymes that catalyze the conjugation of reduced GSH (glutathione) to xenobiotic (endogenous electrophilic) compounds. GST from Wb (Wuchereria bancrofti) and Bm (Brugia malayi) are significantly different from human GST in sequence and structure. Thus, Wb-GST and Bm-GST are potential chemotherapeutic targets for anti-filarial treatment. Comparison of modeled Wb and Bm GST with human GST show structural difference between them. An...

  9. Nourseothricin N-acetyl transferase: a positive selection marker for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Bose S Kochupurakkal

    Full Text Available Development of Nourseothricin N-acetyl transferase (NAT as a selection marker for mammalian cells is described. Mammalian cells are acutely susceptible to Nourseothricin, similar to the widely used drug Puromycin, and NAT allows for quick and robust selection of transfected/transduced cells in the presence of Nourseothricin. NAT is compatible with other selection markers puromycin, hygromycin, neomycin, blasticidin, and is a valuable addition to the repertoire of mammalian selection markers.

  10. Genetic polymorphism for glutathione-S-transferase mu in asbestos cement workers.

    OpenAIRE

    Jakobsson, K; Rannug, A.; Alexandrie, A K; Rylander, L; Albin, M; Hagmar, L

    1994-01-01

    OBJECTIVE--To investigate whether a lack of glutathione-S-transferase mu (GSTM1) activity was related to an increased risk for adverse outcome after asbestos exposure. METHODS--A study was made of 78 male former asbestos cement workers, with retrospective cohort data on exposure, radiographical findings, and lung function. Venous blood samples were obtained for the analysis of GSTM1 polymorphism by the polymerase chain reaction technique. Chest x ray films were classified according to the Int...

  11. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin

    OpenAIRE

    Eudes, Aymerick; Pereira, Jose H.; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E.K.; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D.; Loqué, Dominique

    2016-01-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate prom...

  12. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14

    OpenAIRE

    Huang, Kun; Shaun S Sanders; Kang, Rujun; Carroll, Jeffrey B; Sutton, Liza; Wan, Junmei; Singaraja, Roshni; Young, Fiona B.; Liu, Lili; El-Husseini, Alaa; Davis, Nicholas G.; Hayden, Michael R.

    2011-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the huntingtin (HTT) protein. Huntingtin-interacting protein 14 (HIP14), one of 23 DHHC domain-containing palmitoyl acyl transferases (PATs), binds to HTT and robustly palmitoylates HTT at cysteine 214. Mutant HTT exhibits reduced palmitoylation and interaction with HIP14, contributing to the neuronal dysfunction associated with HD. In this study, we confirmed that, among 23 DHHC PATs, HIP14 and its homolog DHHC-13 (HIP14L) are t...

  13. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases

    OpenAIRE

    Vaute, Olivier; Nicolas, Estelle; Vandel, Laurence; Trouche, Didier

    2002-01-01

    The histone methyl transferase Suv39H1 is involved in silencing by pericentric heterochromatin. It specifically methylates K9 of histone H3, thereby creating a high affinity binding site for HP1 proteins. We and others have shown recently that it is also involved in transcriptional repression by the retinoblastoma protein Rb. Strikingly, both HP1 localisation and repression by Rb also require, at least in part, histone deacetylases. We found here that repression of a heterologous promoter by ...

  14. Proteomic and Immunochemical Characterization of Glutathione Transferase as a New Allergen of the Nematode Ascaris lumbricoides

    OpenAIRE

    Nathalie Acevedo; Jens Mohr; Josefina Zakzuk; Martin Samonig; Peter Briza; Anja Erler; Anna Pomés; Huber, Christian G.; Fatima Ferreira; Luis Caraballo

    2013-01-01

    Helminth infections and allergy have evolutionary and clinical links. Infection with the nematode Ascaris lumbricoides induces IgE against several molecules including invertebrate pan-allergens. These antibodies influence the pathogenesis and diagnosis of allergy; therefore, studying parasitic and non-parasitic allergens is essential to understand both helminth immunity and allergy. Glutathione transferases (GSTs) from cockroach and house dust mites are clinically relevant allergens and compa...

  15. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes.

    Science.gov (United States)

    Kalinina, E V; Chernov, N N; Novichkova, M D

    2014-12-01

    Over the last decade fundamentally new features have been revealed for the participation of glutathione and glutathione-dependent enzymes (glutathione transferase and glutaredoxin) in cell proliferation, apoptosis, protein folding, and cell signaling. Reduced glutathione (GSH) plays an important role in maintaining cellular redox status by participating in thiol-disulfide exchange, which regulates a number of cell functions including gene expression and the activity of individual enzymes and enzyme systems. Maintaining optimum GSH/GSSG ratio is essential to cell viability. Decrease in the ratio can serve as an indicator of damage to the cell redox status and of changes in redox-dependent gene regulation. Disturbance of intracellular GSH balance is observed in a number of pathologies including cancer. Consequences of inappropriate GSH/GSSG ratio include significant changes in the mechanism of cellular redox-dependent signaling controlled both nonenzymatically and enzymatically with the participation of isoforms of glutathione transferase and glutaredoxin. This review summarizes recent data on the role of glutathione, glutathione transferase, and glutaredoxin in the regulation of cellular redox-dependent processes.

  16. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop

    DEFF Research Database (Denmark)

    Douthwaite, S; Aagaard, C

    1993-01-01

    that are induced by mutations in the peptidyl transferase loop, and to determine how these changes affect drug interaction. Mutations at positions 2057 (G-->A) and 2058 (A-->G, or -->U), all of which confer drug resistance, induce a more open conformation in the peptidyl transferase loop. Erythromycin still......The antibiotic erythromycin inhibits protein synthesis by binding to the 50 S ribosomal subunit, where the drug interacts with the unpaired bases 2058A and 2059A in the peptidyl transferase loop of 23 S rRNA. We used a chemical modification approach to analyse conformational changes...... previously been shown to alter drug tolerances, gave no detectable effects on the structure of the peptidyl transferase loop or on erythromycin binding. Dual mutations at positions 2032 and 2058, however, induce a marked change in the rRNA conformation with opening of the phylogenetically conserved base...

  17. A study of the prognostic role of serum fucose and fucosyl transferase in cancer of the uterine cervix.

    OpenAIRE

    Sen, Urmi; Guha,Subhas; Chowdhury, J Roy

    1985-01-01

    Serum fucose levels and fucosyl transferase activities have been designated as nonspecific markers of malignancy, and play an important role in the diagnosis of different types of malignancies. In the present study, attempts were made to determine the prognostic significance of these markers in patients with cancer of the uterine cervix after therapy. It was found that both serum fucose and fucosyl transferase, which were elevated in untreated patients declined significantly in patients respo...

  18. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    Science.gov (United States)

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications. PMID:26078397

  19. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    Science.gov (United States)

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.

  20. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  1. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    Science.gov (United States)

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution. PMID:26034680

  2. Synthesis and in vivo evaluation of [O-methyl-11C](2R,4R)-4-hydroxy-2-[2-[2-[2-(3-methoxy)phenyl]ethyl]phenoxy] ethyl-1-methylpyrrolidine as a 5-HT2A receptor PET ligand

    International Nuclear Information System (INIS)

    The serotonin2A (5-HT2A) receptor is implicated in the pathophysiology of schizophrenia and mood disorders, and in vivo studies of this receptor would be of value in studying the pathophysiology of these disorders and in measuring the relationship of clinical response to receptor occupancy for 5-HT2A antagonists such as atypical antipsychotics. Therefore, (2R,4R)-4-hydroxy-2-[2-[2-[2-(3-methoxy)-phenyl]ethyl] phenoxy]ethyl-1-methylpyrrolidine (MPM) (13), a selective and high-affinity (K i=0.79 nM) 5HT2A antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue (2R,4R)-4-hydroxy-2-[2-[2-[2-(3-hydroxy)phenyl]ethyl]phenoxy] ethyl-1-methylpyrrolidine (12) with [11C]methyltriflate in order to determine the suitability of [11C]MPM to quantify 5-HT2A in living brain using PET. Desmethyl-MPM 12 and standard MPM were prepared, starting from 3-hydroxymethylphenol (2), in excellent yield. The yield obtained for radiolabeling was 40±5% (EOB), and the total synthesis time was 30 min at EOS. PET studies with [11C]MPM in baboon showed a distribution in the brain consistent with the known distribution of 5-HT2A receptors. The time-activity curves for the high-binding regions peaked at ∼45 min after injection. Blocking studies with M100907 demonstrated not only 38-57% blocking of tracer binding in brain regions known to have 5-HT2A receptors but also 38% blocking in cerebellum, which has a low 5-HT2A receptor concentration. Although [11C]MPM exhibits appropriate kinetics in baboon for imaging 5-HT2A receptors, its specific binding in cerebellum and higher proportion of nonspecific binding limit its usefulness for the in vivo quantification of 5-HT2A receptors with PET

  3. Effects of insulin-like growth factor-I and its analogue, long-R3-IGF-I, on intestinal absorption of 3-O-methyl-D-glucose are less pronounced than gut mucosal growth responses.

    Science.gov (United States)

    Garnaut, Sonja M; Howarth, Gordon S; Read, Leanna C

    2002-03-01

    The relationship between insulin-like growth factor-I (IGF-I) peptide-induced increases in bowel mass and functional improvement is unclear. We utilised three independent methods to investigate the effects of IGF-I peptides on intestinal absorption of the glucose analogue, 3-O-methyl-D-glucose (3MG) in rats. Rats received vehicle, IGF-I or the more potent analogue, long-R3-IGF-I via subcutaneously implanted mini-pump, for 7 days, at which time intestinal absorption was assessed by: (1) plasma 3MG appearance following oral gavage, (2) single-pass- or (3) recirculating-perfusion of a jejunal segment. 3MG (320 or 800 mg) was gavaged on day 7 to rats treated with vehicle, IGR-I or long-R3-IGF-I. With the lower 3MG dose, only long-R3-IGF-I increased (40%) the initial rate of 3MG appearance in plasma. IGF-I had no significant effect, whilst at the higher 3MG dose neither peptide was effective. Utilising perfusion techniques, long-R3-IGF-I, but not IGF-I, significantly increased 3MG uptake per cm of jejunum by up to 69%, although significance was lost when expressed as a function of tissue weight. Long-R3-IGF-I, but not native IGF-I, enhanced 3MG absorption from the intestinal lumen, presumably reflecting an increased mucosal mass rather than an up-regulation of specific epithelial glucose transporters. PMID:11999215

  4. Inherited glutathione-S-transferase deficiency is a risk factor for pulmonary asbestosis.

    Science.gov (United States)

    Smith, C M; Kelsey, K T; Wiencke, J K; Leyden, K; Levin, S; Christiani, D C

    1994-09-01

    Pulmonary diseases attributable to asbestos exposure constitute a significant public health burden, yet few studies have investigated potential genetic determinants of susceptibility to asbestos-related diseases. The glutathione-S-transferases are a family of conjugating enzymes that both catalyze the detoxification of a variety of potentially cytotoxic electrophilic agents and act in the generation of sulfadipeptide leukotriene inflammatory mediators. The gene encoding glutathione-S-transferase class mu (GSTM-1) is polymorphic; approximately 50% of Caucasian individuals have a homozygous deletion of this gene and do not produce functional enzyme. Glutathione-S-transferase mu (GST-mu) deficiency has been previously reported to be associated with smoking-induced lung cancer. We conducted a cross-sectional study to examine the prevalence of the homozygous deletion for the GSTM-1 gene in members of the carpentry trade occupationally exposed to asbestos. Members of the United Brotherhood of Carpenters and Joiners of America attending their 1991 National Union conference were invited to participate. Each participant was offered a chest X-ray and was asked to complete a comprehensive questionnaire and have their blood drawn. All radiographs were assessed for the presence of pneumoconiosis in a blinded fashion by a National Institute for Occupational Safety and Health-certified International Labor Office "B" reader. Individual GSTM-1 status was determined using polymerase chain reaction methods. Six hundred fifty-eight workers were studied. Of these, 80 (12.2%) had X-ray abnormalities associated with asbestos exposure. Individuals genetically deficient in GST-mu were significantly more likely to have radiographic evidence of nonmalignant asbestos-related disease than those who were not deficient (chi 2 = 5.0; P < 0.03).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Cefadroxil potency as cancer co-therapy candidate by glutathione s-transferase mechanism

    OpenAIRE

    Tri Yuliani; Sudibyo Martono; Sansan Sukamdani Tjipto; Muhammad Yusuf Putroutomo; Irwan Desyanto Raharjo Indartono

    2013-01-01

    Background: Glutathione S-transferases (GSTs) havean important role in the detoxification of electrophiles,such as some anticancer drugs. Compounds with phenolicand/or α,b-unsaturated carbonyl group have been knownas GSTs inhibitor in vitro. Cefadroxil in vitro decreasedGST-Pi activity but not GSTs in rat kidney cytosol.GST inhibitor in a specific organ and of a specific classis needed for safety in cancer chemotherapy. The studyaims to observe the effect of cefadroxil on GSTs in vivoin rat k...

  6. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    OpenAIRE

    Chin-Soon Chee; Irene Kit-Ping Tan; Zazali Alias

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was r...

  7. Physicochemical consequences of the perdeuteriation of glutathione S-transferase from S. japonicum

    OpenAIRE

    Brockwell, David; Yu, Lu; Cooper, Serena; Mccleland, Steven; Cooper, Alan; Attwood, David; Gaskell, Simon J.; Barber, Jill

    2001-01-01

    Glutathione S-transferase (GST) from Schistosoma japonicum has been prepared in both normal protiated (pGST) and fully deuteriated (dGST) form by recombinant DNA technology. Electrospray mass spectrometry showed that the level of deuteriation in dGST was 96% and was homogeneous across the sample. This result is attributed to the use of a deuterium-tolerant host Escherichia coli strain in the preparation of the protein. 10 heteroatom-bound deuteriums (in addition to the carbon-bound deuteriums...

  8. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Science.gov (United States)

    Hossain, M D Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  9. Mechanism of activation of mouse liver microsomal glutations S—transferase by paracetamol treatment

    Institute of Scientific and Technical Information of China (English)

    ZhenY; LouYJ

    2002-01-01

    Microsomal glutathion S-transferase(mGST) is one of the important detoxifcation enzymes in vivo,its modifying activation by drugs has been paid more attention to in pertinent field recently.This study was to explore the influence of paracetamol(Par) on mGST and its possible mechanism in vivo,and to further reveal the biological significance.Par is metabolized to N-acetyl-p-benzoquinone imine(NAPQI) by CYP2E1 and mGST is activated by sulfhydryl modification.

  10. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells

    International Nuclear Information System (INIS)

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-[14C] fucose and UDP-[14C]xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with [3H]fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles

  11. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT in E.coli

    Directory of Open Access Journals (Sweden)

    Wee Liang Kuan

    2010-08-01

    Full Text Available A synthetic gene encoding bovine terminal deoxynucleotidyl transferase (TdT was generated, cloned into an expression vector and expressed in E.coli. The effects of altering culture and induction conditions on the nature of recombinant protein production were investigated. This led to the expression of active recombinant bovine TdT in E.coli. After purification and characterisation, the activity of the enzyme was assessed in a biological assay for apoptosis. The process described in this report enables the economical production of TdT for high throughput applications.

  12. Micronuclei rate and hypoxanthine phosphoribosyl transferase mutation in radon-exposed rats

    Institute of Scientific and Technical Information of China (English)

    Fengmei Cui; Saijun Fan; Mingjiang Hu; Jihua Nie; Hongmei Li; Jian Tong

    2008-01-01

    The genetic changes in rats with radon exposure were studied by the micronucleus technology and detection of hypoxanthine phosphoribosyl transferase (hprt) mutations.The rate of the micronuclei in peripheral blood lymphocytes and tracheal-bronchial epithelial cells in the radon-inhaled rats was higher than that of the controls (P < 0.05).A similar result was obtained from the hprt assay,which showed a higher mutation frequency in radon-exposed rats.Our results suggested that micronuclei rate and hprt deficiency could be used as biomarkers for the genetic changes with radon exposure.

  13. Cloning and identification of four Mu-type glutathione S-transferases from the giant freshwater prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    Hui, Kai-Min; Hao, Fang-Yuan; Li, Wen; Zhang, Zhao; Zhang, Chi-Yu; Wang, Wen; Ren, Qian

    2013-08-01

    Glutathione S-transferases (GSTs) are essential components of the cellular detoxification system because of their capability to protect organisms against the toxicity of reactive oxygen species (ROSs). Four different GSTs (MrMuGST1-MrMuGST4) showing similarities with Mu-type GSTs were cloned from the hepatopancreas of Macrobrachium rosenbergii. These four GSTs have 219, 216, 218 and 219 amino acids in length, respectively. MrMuGST1-MrMuGST4 proteins all have a G-site in the N-terminus and an H-site in the C-terminus. Phylogenetic analysis reveals that four Mu-type GSTs are classified into two different clades (MrMuGST2 one clade; MrMuGST1, MrMuGST3 and MrMuGST4 other clades). Nonetheless, no site under positive selection was detected but rapid evolution was found in the few of MuGST genes. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that MrMuGST1 and MrMuGST2 transcripts were expressed in all detected tissues, however, MrMuGST3 and MrMuGST4 were just mainly expressed in hepatopancreas and intestines. Quantitative RT-PCR analysis showed that MrMuGST1 and MrMuGST2 were down-regulated upon Vibrio anguillarum challenge, whereas MrMuGST3 and MrMuGST4 were quickly up-regulated 2 h after the Vibrio challenge. Our results imply that different Mu-type GSTs may respond to Vibrio challenge with different manners.

  14. Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity.

    Science.gov (United States)

    Axarli, Irine; Muleta, Abdi W; Vlachakis, Dimitrios; Kossida, Sophia; Kotzia, Georgia; Maltezos, Anastasios; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2016-03-01

    A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated segments of the parental sequences and point mutations. Chimaeric GST sequences were expressed in Escherichia coli and their enzymatic activities towards CDNB (1-chloro-2,4-dinitrobenzene) and the herbicide fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether) were determined. A chimaeric clone (Sh14) with enhanced CDNB- and fluorodifen-detoxifying activities, and unusual co-operative kinetics towards CDNB and fluorodifen, but not towards GSH, was identified. The structure of Sh14 was determined at 1.75 Å (1 Å=0.1 nm) resolution in complex with S-(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a W114C point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 C114W mutant. It is suggested that the replacement of the bulky tryptophan residue by a smaller amino acid (cysteine) results in conformational changes of the active-site cavity, leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu(66) and Lys(104) at the dimer interface that triggers an allosteric effect and the communication between the hydrophobic sites.

  15. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

    Science.gov (United States)

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik; Gerken, Thomas A; Fritz, Timothy A; Tabak, Lawrence A

    2012-06-01

    Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.

  16. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    Directory of Open Access Journals (Sweden)

    L.C. Carnevali Jr

    2012-08-01

    Full Text Available We examined the capacity of high-intensity intermittent training (HI-IT to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g were randomly distributed into 3 groups: sedentary (Sed, N = 5, HI-IT (N = 10, and moderate-intensity continuous training (MI-CT, N = 10. The trained groups were exercised for 8 weeks with a 10% (HI-IT and a 5% (MI-CT overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01, as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01 and lipoprotein lipase (LPL; P < 0.05. Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1 in HI-IT (around 83%. We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.

  17. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    International Nuclear Information System (INIS)

    We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min−1·mg protein−1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a “time-efficient” strategy inducing metabolic adaptation

  18. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    Energy Technology Data Exchange (ETDEWEB)

    Carnevali, L.C. Jr. [Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Centro Universitário Ítalo-Brasileiro (Unítalo), São Paulo SP (Brazil); Eder, R.; Lira, F.S. [Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Lima, W.P. [Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Instituto Federal de Educação,Ciência e Tecnologia de São Paulo, São Paulo SP (Brazil); Gonçalves, D.C. [Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Zanchi, N.E. [Laboratorio de Nutrição e Metabolismo Aplicado à Atividade Motora, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo SP (Brazil); Centro de Pesquisa do Genoma Humano, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Nicastro, H. [Laboratorio de Nutrição e Metabolismo Aplicado à Atividade Motora, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo SP (Brazil); Lavoie, J.M. [Department of Kinesiology, University of Montreal, Montreal (Canada); Seelaender, M.C.L. [Grupo de Biologia Molecular da Célula, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-06-29

    We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min{sup −1}·mg protein{sup −1}) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a “time-efficient” strategy inducing metabolic adaptation.

  19. A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus.

    Science.gov (United States)

    Liu, Huihui; He, Jianyu; Zhao, Rongtao; Chi, Changfeng; Bao, Yongbo

    2015-08-01

    Glutathione S-transferases (GSTs) are the superfamily of phase II detoxification enzymes that play crucial roles in innate immunity. In this study, a pi-class GST homolog was identified from Mytilus coruscus (named as McGST1, KC525103). The full-length cDNA sequence of McGST1 was 621bp with a 5' untranslated region (UTR) of 70bp and a 3'-UTR of 201bp. The deduced amino acid sequence was 206 residues in length with theoretical pI/MW of 5.60/23.72kDa, containing the conserved G-site and diversiform H-site. BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of pi class GST family. The prediction of secondary structure displayed a preserved N-terminal and a C-terminal comprised with α-helixes. Quantitative real time RT-PCR showed that constitutive expression of McGST1 was occurred, with increasing order in mantle, muscle, gill, hemocyte, gonad and hepatopancreas. The stimulation of bacterial infection, heavy metals and 180CST could up-regulate McGST1 mRNA expression in hepatopancreas with time-dependent manners. The maximum expression appeared at 6h after pathogenic bacteria injected, with 10-fold in Vibrio alginolyticus and 16-fold in Vibrio harveyi higher than that of the control. The highest point of McGST1 mRNA appeared at different time for exposure to copper (10-fold at day 15), cadmium (9-fold at day10) and 180 CST (10-fold at day 15). These results suggested that McGST1 played a significant role in antioxidation and might potentially be used as indicators and biomarkers for detection of marine environmental pollution.

  20. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities

    DEFF Research Database (Denmark)

    Sørensen, T; White, T; Wandall, H H;

    1995-01-01

    Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N., an....... The identification of acceptor peptides that can be used to discriminate GalNAc-transferase activities is an important step toward understanding the molecular basis of GalNAc O-linked glycosylation in cells and organs and in pathological conditions.......Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N......., and Clausen, H. (1995) J. Biol. Chem. 270, 24156-24165). Here we report detailed studies of the acceptor substrate specificity of GalNAc-transferase purified by this scheme as well as the Gal-NAc-transferase activity, which, upon repeated affinity chromatography, evaded purification by this affinity ligand...

  1. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  2. Rescue of Drosophila Melanogaster l(2)35Aa lethality is only mediated by polypeptide GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11

    DEFF Research Database (Denmark)

    Bennett, Eric P; Chen, Ya-Wen; Schwientek, Tilo;

    2010-01-01

    conserved family of genes encoding polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human......)35Aa lethality. By use of genetic "domain swapping" experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A......, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11....

  3. THE EXPERIENCE OF THE TRANSFORMATION OF SOME CULTIVATED PLANTS WITH THE GENE UGT ENCODING THE SYNTHESIS OF UDPG-TRANSFERASE IN ORDER TO CHANGE THE HORMONAL STATUS

    Directory of Open Access Journals (Sweden)

    Rekoslavskaya N.I.

    2012-08-01

    Full Text Available The gene ugt/iaglu was isolated from cDNA library obtained from seedlings of Zea mays L. Positive clones prepared by Lambda ZAPII (Stratagene, USA procedure were screened via western blot with antibodies to UDPG-transferase from corn endosperm raised in rabbit serum. The plasmid pBluescript harboring the gene ugt/iaglu was placed into Escherichia coli (E.coli DH5a under T7/T3 promoter. The gene ugt/iaglu was sequenced and the size was determined as much as 1740 bp. The UDPG-transferase or by trivial name Indoleacetic acid (IAA - glucose synthase (IAGlu-synthase binds IAA with glucose from UDPG thereby making the temporary inactivation and storing of this phytohormone which is capable to be released after the demand from cells. Several cultivated plants were used for transfromation with the gene ugt/iaglu from corn: tomato, potato, lettuce, egg-plant, pepper, strawberry, cucumber, squash, aspen, poplar, pine and others. All plants transformed with the gene ugt/iaglu showed fast growth, better flowering and harvest. The insertion and expression of the gene ugt/iaglu was confirmed in transformed tomato, potato and aspen with PCR, RT-PCR, southern and northern blottings. The contents of free IAA and its bound form IAGlu were higher as much as twice in tomato, potato and aspen transformed with the gene ugt/iaglu. The harvest of tomato was 3-4 times higher in transgenic tomato. The amount of potato tubers and their whole masses were 1.5 - 2 times higher in transgenic potato of several varieties in comparison to control.

  4. Molecular cloning and differential expression patterns of sigma and omega glutathione S-transferases from Venerupis philippinarum to heavy metals and benzo[a]pyrene exposure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Linbao; WU Huifeng; LIU Xiaoli; CHEN Leilei; WANG Qing; ZHAO Jianmin; YOU Liping

    2012-01-01

    Glutathione S-transferases (GSTs) are a class of enzymes that facilitate the detoxification of xenobiotics,and also play important roles in antioxidant defense.We identified two glutathione S-transferase isoforms (VpGSTS,sigma GST; VpGSTO,omega GST) from Venerupis philippinarum by RACE approaches.The open reading frames of VpGSTS and VpGSTO were of 612 bp and 729 bp,encoding 203 and 242 amino acids with an estimated molecular mass of 22.88 and 27.94 kDa,respectively.The expression profiles of VpGSTS and VpGSTO responded to heavy metals and benzo[a]pyrene (B[a]P) cxposure were investigated by quantitative real-time RT-PCR.The expression of VpGSTS and VpGSTO were both rapidly up-regulated,however,they showed differential expression patterns to different toxicants.Cd displayed stronger induction of VpGSTS expression with an approximately 12-fold increase than that of VpGSTO with a maximum 6.4-fold rise.Cu exposure resulted in similar expression patterns for both VpGSTS and VpGSTO For B[a]P exposure,the maximum induction of VpGSTO was approximately two times higher than that of VpGSTS.Altogether,these findings implied the involvement of VpGSTS and VpGSTO in host antioxidant responses,and highlighted their potential as a biomarker to Cd and B[a]P exposure.

  5. Evolutionary divergence of Ure2pA glutathione transferases in wood degrading fungi.

    Science.gov (United States)

    Roret, Thomas; Thuillier, Anne; Favier, Frédérique; Gelhaye, Eric; Didierjean, Claude; Morel-Rouhier, Mélanie

    2015-10-01

    The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.

  6. Substrate profiling of glutathione S-transferase with engineered enzymes and matched glutathione analogues.

    Science.gov (United States)

    Feng, Shan; Zhang, Lei; Adilijiang, Gulishana; Liu, Jieyuan; Luo, Minkui; Deng, Haiteng

    2014-07-01

    The identification of specific substrates of glutathione S-transferases (GSTs) is important for understanding drug metabolism. A method termed bioorthogonal identification of GST substrates (BIGS) was developed, in which a reduced glutathione (GSH) analogue was developed for recognition by a rationally engineered GST to label the substrates of the corresponding native GST. A K44G-W40A-R41A mutant (GST-KWR) of the mu-class glutathione S-transferases GSTM1 was shown to be active with a clickable GSH analogue (GSH-R1) as the cosubstrate. The GSH-R1 conjugation products can react with an azido-based biotin probe for ready enrichment and MS identification. Proof-of-principle studies were carried to detect the products of GSH-R1 conjugation to 1-chloro-2,4-dinitrobenzene (CDNB) and dopamine quinone. The BIGS technology was then used to identify GSTM1 substrates in the Chinese herbal medicine Ganmaocongji.

  7. Binding properties of ferrocene-glutathione conjugates as inhibitors and sensors for glutathione S-transferases.

    Science.gov (United States)

    Martos-Maldonado, Manuel C; Casas-Solvas, Juan M; Téllez-Sanz, Ramiro; Mesa-Valle, Concepción; Quesada-Soriano, Indalecio; García-Maroto, Federico; Vargas-Berenguel, Antonio; García-Fuentes, Luís

    2012-02-01

    The binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH. Furthermore, it shows negative cooperativity with the affinity for the second binding site two orders of magnitude lower than that for the first one. We propose that the reason for such negative cooperativity is steric since, i) the obtained thermodynamic parameters do not indicate profound conformational changes upon GSFcSG binding and ii) docking studies have shown that, when bound, part of the first bound ligand invades the second site due to its large size. In addition, voltammetric measurements show a strong decrease of the peak current upon binding of ferrocene-glutathione conjugates to SjGST and provide very similar K values than those obtained by ITC. Moreover, the sensing ability, expressed by the sensitivity parameter shows that GSFcSG is much more sensitive than GSFc, for the detection of SjGST.

  8. Indication for joint replacement and glutathione s-transferases M1 and T1 genotypes.

    Science.gov (United States)

    Klein, Torsten; Selinski, Silvia; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    In most patients with osteoarthritis (OA), therapy-resistant pain is the indication for hip or knee replacement. Glutathione S-transferases, particularly glutathione S-transferase M1 (GSTM1), are involved in metabolism of highly reactive metabolites that may be generated by inflammatory processes. In total, 148 patients with indication for hip or knee replacement and 129 patients of the same hospital without indication for joint replacement were genotyped for GSTM1 and GSTT1 and interviewed by a newly developed questionnaire for occupational and nonoccupational risk factors of hip and/or knee osteoarthritis. Mean age was 70.9 yr in OA cases and 67.4 yr in controls. The frequency of GSTM1 negative in the OA case group was (45%) in the lower range compared to values in Caucasian general population (approximately 50%), whereas the frequency in the controls was normal (51%). The frequency of GSTT1 negative genotype in OA cases and controls was normal. The normal distribution of the GSTM1 negative genotype in patients with indication for hip or knee replacement indicates that the role GSTM1 in these patients is different from that in other aseptic inflammatory diseases such as ozone-related inflammatory reactions of the respiratory tract.

  9. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    Science.gov (United States)

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals.

  10. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  11. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity.

    Science.gov (United States)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G; Meldal, Morten; Holmér, Andreas P; Blixt, Ola; Cló, Emiliano; Levery, Steven B; Clausen, Henrik; Wandall, Hans H

    2011-09-16

    UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence specificity, whereas the primary function of the lectin domain is to increase affinity to previously glycosylated substrates. Whether the lectin domain also has peptide sequence selectivity has remained unclear. Using a glycopeptide array with a library of synthetic and recombinant glycopeptides based on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate an additional level of complexity in the initiation step of O-glycosylation by GalNAc-Ts.

  12. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    Science.gov (United States)

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  13. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    International Nuclear Information System (INIS)

    Glutathione S-transferases (GSTs) are a group of detoxifying enzymes that are found in animals, plants and microorganisms. Here, the crystallizations of two cyanobacterial GSTs are reported with the aim of determining their atomic structures. Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds

  14. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    Science.gov (United States)

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  15. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  16. Structure of Human O-GlcNAc Transferase and its Complex with a Peptide Substrate

    Energy Technology Data Exchange (ETDEWEB)

    M Lazarus; Y Nam; J Jiang; P Sliz; S Walker

    2011-12-31

    The essential mammalian enzyme O-linked {beta}-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 {angstrom} resolution) and as a ternary complex with UDP and a peptide substrate (1.95 {angstrom}). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

  17. Conductimetric assays for the hydrolase and transferase activities of phospholipase D enzymes.

    Science.gov (United States)

    Mezna, M; Lawrence, A J

    1994-05-01

    Measurement of solution electrical conductance (conductimetry) is a simple direct assay method for the protogenic, hydrolytic reactions catalyzed by all phospholipase enzymes. The technique is especially suitable for assay of phospholipase D (PLD) enzymes where cleavage of zwitterionic substrates reinforces the pH dependent conductance change and allows the method to be used over a much wider pH range than the equivalent titrimetric assay. The ability to detect zwitterion cleavage enables the method to assay reactions in which phospholipase D transfers neutral, or anionic, alcohol species to the zwitterionic substrates phosphatidyl choline and phosphatidyl ethanolamine. The method can follow the sequential attack by different phospholipases and provides a simple technique for investigating the effect of substrate structure on susceptibility to various phospholipase enzymes. The results confirm that PLD from Streptomyces chromofuscus can attack lysophospholipids, but cannot transfer primary alcohols to the phosphatidyl residue, while the PLD from savoy cabbage is an efficient transferase, but cannot attack lysophospholipids. The data suggest that the bacterial PLD fails to act as a transferase because it hydrolyzes the transphosphatidylation products. Some phosphatidyl alcohols are more highly susceptible to PLA2 attack than the parent phosphatidyl choline derivatives.

  18. Alternariol 9-O-methyl ether

    Directory of Open Access Journals (Sweden)

    Brett A. Neilan

    2012-05-01

    Full Text Available The title compound (AME; systematic name: 3,7-dihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one, C15H12O5, was isolated from an endophytic fungi Alternaria sp., from Catharanthus roseus (common name: Madagascar periwinkle. There is an intramolecular O—H...O hydrogen bond in the essentially planar molecule (r.m.s. deviation 0.02 Å. In the crystal, the molecule forms an O—H...O hydrogen bond with its centrosymmetric counterpart with four bridging interactions (two O—H...O and two C—H...O. The almost planar sheets of the dimeric units thus formed are stacked along b axis via C—H...π and π–π contacts [with C...C short contacts between aromatic moieties of 3.324 (3, 3.296 (3 and 3.374 (3 Å].

  19. A study of the prognostic role of serum fucose and fucosyl transferase in cancer of the uterine cervix.

    Directory of Open Access Journals (Sweden)

    Sen,Urmi

    1985-04-01

    Full Text Available Serum fucose levels and fucosyl transferase activities have been designated as nonspecific markers of malignancy, and play an important role in the diagnosis of different types of malignancies. In the present study, attempts were made to determine the prognostic significance of these markers in patients with cancer of the uterine cervix after therapy. It was found that both serum fucose and fucosyl transferase, which were elevated in untreated patients declined significantly in patients responsive to therapy at different follow-up intervals, but not in patients unresponsive to therapy.

  20. Characterization of a sigma class glutathione S-transferase gene in the larvae of the honeybee (Apis cerana cerana) on exposure to mercury.

    Science.gov (United States)

    Yu, Xiaoli; Sun, Rujiang; Yan, Huiru; Guo, Xingqi; Xu, Baohua

    2012-04-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes that are mainly involved in detoxification of endogenous and xenobiotic compounds and oxidative stress resistance in insects. In this study, we identified a sigma class GST from Apis cerana cerana (AccGSTs4). The open reading frame of cDNA was 612 bp and encoded a 203 amino acid polypeptide, which exhibited the structural motif and domain organization characteristic of GST. Homology and evolutionary analysis indicated that the induced amino acid sequence of AccGSTs4 belonged to an insect sigma class group. Expression analysis indicated that AccGSTs4 was presented in all stages of development with high level in 4th instar larvae. Immunolocalization further revealed the distribution of AccGSTs4 in 4th instar larvae. RT-qPCR showed that the transcripts of AccGSTs4 from the larvae were upregulated under dietary HgCl(2). The GST activity under stress was higher than the controls fed on HgCl(2)-free diet. Disc diffusion assay provided evidence of recAccGSTs4 resistance to long-term exposure of HgCl(2) stress. Additionally, analysis of 5'-flanking region further clarified the probable expression patterns of AccGSTs4. Taken together, our findings indicate that the larvae AccGSTs4 may play a role in mercury stress response, and it will help to protect honeybees from heavy metals. PMID:22248933

  1. Glutathione S-transferases variants as risk factors in Alzheimer's disease.

    Science.gov (United States)

    Wang, Tengfei

    2015-10-01

    Glutathione S-transferase (GST) was suggested as an important contributor to Alzheimer's disease (AD). The GSTs polymorphisms have been investigated as candidate genetic risk factors for AD, yet results remained uncertain. Therefore, we performed a meta-analysis to clarify the relationship of GSTs polymorphisms with the occurrence of AD. PubMed, Embase, Cochrane library and Alzgene databases were searched and potential literatures were selected. Pooled analyses and subgroup analyses were conducted, and also publication bias tests and cumulative meta-analysis. This meta-analysis suggested null associations between polymorphisms of GSTM1, GSTT1, GSTM3, GSTP1, GSTO1 and AD risk. GSTs variants may not have an impact on the morbidity of Alzheimer's disease. Further well designed researches are required to confirm these findings of the current study. PMID:25981226

  2. Atypical features of a Ure2p glutathione transferase from Phanerochaete chrysosporium.

    Science.gov (United States)

    Thuillier, Anne; Roret, Thomas; Favier, Frédérique; Gelhaye, Eric; Jacquot, Jean-Pierre; Didierjean, Claude; Morel-Rouhier, Mélanie

    2013-07-11

    Glutathione transferases (GSTs) are known to transfer glutathione onto small hydrophobic molecules in detoxification reactions. The GST Ure2pB1 from Phanerochaete chrysosporium exhibits atypical features, i.e. the presence of two glutathione binding sites and a high affinity towards oxidized glutathione. Moreover, PcUre2pB1 is able to efficiently deglutathionylate GS-phenacylacetophenone. Catalysis is not mediated by the cysteines of the protein but rather by the one of glutathione and an asparagine residue plays a key role in glutathione stabilization. Interestingly PcUre2pB1 interacts in vitro with a GST of the omega class. These properties are discussed in the physiological context of wood degrading fungi.

  3. Pharmacogenetics of azathioprine in inflammatory bowel disease: a role for glutathione-S-transferase?

    Science.gov (United States)

    Stocco, Gabriele; Pelin, Marco; Franca, Raffaella; De Iudicibus, Sara; Cuzzoni, Eva; Favretto, Diego; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2014-04-01

    Azathioprine is a purine antimetabolite drug commonly used to treat inflammatory bowel disease (IBD). In vivo it is active after reaction with reduced glutathione (GSH) and conversion to mercaptopurine. Although this reaction may occur spontaneously, the presence of isoforms M and A of the enzyme glutathione-S-transferase (GST) may increase its speed. Indeed, in pediatric patients with IBD, deletion of GST-M1, which determines reduced enzymatic activity, was recently associated with reduced sensitivity to azathioprine and reduced production of azathioprine active metabolites. In addition to increase the activation of azathioprine to mercaptopurine, GSTs may contribute to azathioprine effects even by modulating GSH consumption, oxidative stress and apoptosis. Therefore, genetic polymorphisms in genes for GSTs may be useful to predict response to azathioprine even if more in vitro and clinical validation studies are needed.

  4. Theoretical Study on GSH Activation Mechanism of a New Type of Glutathione Transferase Gtt2

    Institute of Scientific and Technical Information of China (English)

    LI Xue; WU Yun-jian; LI Zhuo; CHU Wen-ting; ZHANG Hong-xing; ZHENG Qing-chuan

    2012-01-01

    Glutathione transferases(GSTs) play an important role in the detoxification of xenobiotic/endobiotic toxic compounds.The a-,π-,and μ-classes of cytosolic GSTs have been studied extensively,while Gtt2 from Saccharomyces cerevisiae,a novel atypical GST,is still poorly understood.In the present study,we investigated the glutathione(GSH) activation mechanism of Gtt2 using the density functional theory(DFT) with the hybrid functional B3LYP.The computational results show that a water molecule could assist a proton transfer between the GSH thiol and the N atom of His133.The energy barrier of proton transfer is 46.0 kJ/mol.The GSH activation mechanism and the characteristics of active site are different from those of classic cytosolic GSTs.

  5. Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schlunzen, Frank; Zarivach, Raz; Harms, Jörg; Bashan, Anat; Tocilj, Ante; Albrecht, Renate; Yonath, Ada; Franceschi, Francois (WIS-I); (Max Planck Germany)

    2009-10-07

    Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.

  6. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hua; GE Ying

    2008-01-01

    A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content(GSH)and glutathione S-transferase(GST,EC 2.5.1.18)activity in rice seedlings.The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L.In rice shoots,GSH content and GST activity increased with the increasing Cd level,while in roots,GST was obviously inhibited by Cd treatments.Compared with shoots,the rice roots had higher GSH content and GST activity,indicating the ability of Cd detoxification was much higher in roots than in shoots.There was a significant correlation between Cd level and GSH content or GST activity,suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  7. Probing functions of the ribosomal peptidyl transferase center by nucleotide analog interference.

    Science.gov (United States)

    Erlacher, Matthias D; Polacek, Norbert

    2012-01-01

    The ribosome is a huge ribonucleoprotein complex in charge of protein synthesis in every living cell. The catalytic center of this dynamic molecular machine is entirely built up of 23S ribosomal RNA and therefore the ribosome can be referred to as the largest natural ribozyme known so far. The in vitro reconstitution approach of large ribosomal subunits described herein allows nucleotide analog interference studies to be performed. The approach is based on the site-specific introduction of nonnatural nucleotide analogs into the peptidyl transferase center, the active site located on the interface side of the large ribosomal subunit. This method combined with standard tests of ribosomal functions broadens the biochemical repertoire to investigate the mechanism of diverse aspects of translation considerably and adds another layer of molecular information on top of structural and mutational studies of the ribosome. PMID:22315072

  8. Crystal structure of Glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases.

    Science.gov (United States)

    Axarli, Irene; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2009-08-13

    Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of GmGSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement method at 2.7 A (1 A=0.1 nm) resolution. The bound GSH is located in a region formed by the beginning of alpha-helices H1, H2 and H3 in the N-terminal domain of the enzyme. Significant differences in the G-site (GSH-binding site) as compared with the structure determined in complex with Nb-GSH [S-(p-nitrobenzyl)-glutathione] were found. These differences were identified in the hydrogen-bonding and electrostatic interaction pattern and, consequently, GSH was found bound in two different conformations. In one subunit, the enzyme forms a complex with the ionized form of GSH, whereas in the other subunit it can form a complex with the non-ionized form. However, only the ionized form of GSH may form a productive and catalytically competent complex. Furthermore, a comparison of the GSH-bound structure with the Nb-GSH-bound structure shows a significant movement of the upper part of alpha-helix H4 and the C-terminal. This indicates an intrasubunit modulation between the G-site and the H-site (electrophile-binding site), suggesting that the enzyme recognizes the xenobiotic substrates by an induced-fit mechanism. The reorganization of Arg111 and Tyr107 upon xenobiotic substrate binding appears to govern the intrasubunit structural communication between the G- and H-site and the binding of GSH. The structural observations were further verified by steady-state kinetic analysis and site-directed mutagenesis studies.

  9. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily.

    Directory of Open Access Journals (Sweden)

    Katholiki Skopelitou

    Full Text Available In the present work, we report a novel class of glutathione transferases (GSTs originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701 with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H. This enzyme (designated as AtuGSTH1-1 was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl-glutathione (Nb-GSH. Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34, an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.

  10. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily.

    Science.gov (United States)

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.

  11. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

    Science.gov (United States)

    Lee, Won Jun; Zhu, Bao Ting

    2006-02-01

    We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the presence of caffeic acid or chlorogenic acid inhibited in a concentration-dependent manner the DNA methylation catalyzed by prokaryotic M.SssI DNA methyltransferase (DNMT) and human DNMT1. The IC50 values of caffeic acid and chlorogenic acid were 3.0 and 0.75 microM, respectively, for the inhibition of M.SssI DNMT-mediated DNA methylation, and were 2.3 and 0.9 microM, respectively, for the inhibition of human DNMT1-mediated DNA methylation. The maximal in vitro inhibition of DNA methylation was approximately 80% when the highest concentration (20 microM) of caffeic acid or chlorogenic acid was tested. Kinetic analyses showed that DNA methylation catalyzed by M.SssI DNMT or human DNMT1 followed the Michaelis-Menten curve patterns. The presence of caffeic acid or chlorogenic acid inhibited DNA methylation predominantly through a non-competitive mechanism, and this inhibition was largely due to the increased formation of S-adenosyl-L-homocysteine (SAH, a potent inhibitor of DNA methylation), resulting from the catechol-O-methyltransferase (COMT)-mediated O-methylation of these dietary catechols. Using cultured MCF-7 and MAD-MB-231 human breast cancer cells, we also demonstrated that treatment of these cells with caffeic acid or chlorogenic acid partially inhibited the methylation of the promoter region of the RARbeta gene. The findings of our present study provide a general mechanistic basis for the notion that a variety of dietary catechols can function as inhibitors of DNA methylation through increased formation of SAH during the COMT-mediated O-methylation of these dietary

  12. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    Science.gov (United States)

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  13. Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.

    Science.gov (United States)

    Federici, Luca; Masulli, Michele; Di Ilio, Carmine; Allocati, Nerino

    2010-09-01

    Since their discovery, bacterial glutathione (GSH)transferases have been characterized in terms of their ability to catalyse a variety of different reactions on a large set of toxic molecules of xenobiotic or endobiotic origin. Furthermore the contribution of different residues in the GSH-binding site to GSH activation has been extensively investigated. Little is known, however, about the contribution to catalysis and overall stability of single residues shaping the hydrophobic co-substrate binding site (H-site). Here we tackle this problem by site-directed mutagenesis of residues facing the H-site in the bacterial beta class GSH transferase from Proteus mirabilis. We investigate the behaviour of these mutants under a variety of conditions and analyse their activity against several co-substrates, representative of the different reactions catalyzed by bacterial GSH transferases. Our work shows that mutations at the H-site can be used to modulate activity at the level of the different catalytic mechanisms operating on the chosen substrates, each mutation showing a different fingerprint. This work paves the way for future studies aimed at improving the catalytic properties of beta class GSH transferases against selected substrates for bioremediation purposes.

  14. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were tr

  15. Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Vella, Pietro; Scelfo, Andrea; Jammula, Sriganesh;

    2013-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) activity is essential for embryonic stem cell (ESC) viability and mouse development. Ogt is present both in the cytoplasm and the nucleus of different cell types and catalyzes serine and threonine glycosylation. We have characterized...

  16. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres.

    Science.gov (United States)

    Durko, Margaret; Allen, Carol; Nalbantoglu, Josephine; Karpati, George

    2010-09-01

    Duchenne muscular dystrophy is a genetic muscle disease characterized by the absence of sub-sarcolemmal dystrophin that results in muscle fibre necrosis, progressive muscle wasting and is fatal. Numerous experimental studies with dystrophin-deficient mdx mice, an animal model for the disease, have demonstrated that extrasynaptic upregulation of utrophin, an analogue of dystrophin, can prevent muscle fibre deterioration and reduce or negate the dystrophic phenotype. A different approach for ectopic expression of utrophin relies on augmentation of CT-GalNAc transferase in muscle fibre. We investigated whether CT-GalNAc transferase overexpression in adult mice influence appearance of utrophin in the extrasynaptic sarcolemma. After electrotransfer of plasmid DNA carrying an expression cassette of CT-GalNAc transferase into tibialis anterior muscle of wild type and dystrophic mice, muscle sections were examined by immunofluorescence. CT-GalNAc transgene expression augmented sarcolemmal carbohydrate glycosylation and was accompanied by extrasynaptic utrophin. A 6-week time course study showed that the highest efficiency of utrophin overexpression in a plasmid harboured muscle fibres was 32.2% in CD-1 and 52% in mdx mice, 2 and 4 weeks after CT-GalNAc gene transfer, respectively. The study provides evidence that postnatal CT-GalNAc transferase overexpression stimulates utrophin upregulation that is inherently beneficial for muscle structure and strength restoration. Thus CT-GalNAc may provide an important therapeutic molecule for treatment of dystrophin deficiency in Duchenne muscular dystrophy.

  17. Immunohistochemical localization of glutathione-S-transferase and glutathione peroxidase in adult Syrian hamster tissues and during kidney development.

    OpenAIRE

    Oberley, T. D.; Oberley, L. W.; Slattery, A. F.; Elwell, J. H.

    1991-01-01

    Tissues from adult Syrian hamsters were studied with immunoperoxidase techniques using polyclonal antibodies to glutathione-S-transferase (rat liver and human placental enzymes) and human erythrocyte glutathione peroxidase. Most tissues immunostained similarly with these antibodies. Most notable was the cytoplasmic staining of mesenchyme tissues, especially smooth muscle, by all three antibodies. Epithelial cells stained distinctively, but usually less intensely than mesenchyme. Epithelial ce...

  18. Crystal structure of a murine α-class glutathione S-transferase involved in cellular defense against oxidative stress

    NARCIS (Netherlands)

    Krengel, Ute; Schröter, Klaus-Hasso; Hoier, Helga; Arkema, Anita; Kalk, Kor H.; Zimniak, Piotr; Dijkstra, Bauke W.

    1998-01-01

    Glutathione S-transferases (GSTs) are ubiquitous multifunctional enzymes which play a key role in cellular detoxification. The enzymes protect the cells against toxicants by conjugating them to glutathione. Recently, a novel subgroup of α-class GSTs has been identified with altered substrate specifi

  19. LIGNIFICATION IN TRANSGENICS DEFICIENT IN P-COUMARATE 3-HYDROXYLASE (C3H) AND THE ASSOCIATED HYDROXYCINNAMOYL TRANSFERASE (HCT)

    Science.gov (United States)

    The effects on lignification of downregulating most of the genes for enzymes on the monolignol biosynthetic pathway have been reasonably well studied in angiosperms. The exception to this is the crucial hydroxylase, cinnamate 3-hydroxylase (C3H), and its associated hydroxycinnamyl transferase (HCT),...

  20. SeGSTo, a novel glutathione S-transferase from the beet armyworm (Spodoptera exigua), involved in detoxification and oxidative stress.

    Science.gov (United States)

    Xu, Pengfei; Han, Ningning; Kang, Tinghao; Zhan, Sha; Lee, Kwang Sik; Jin, Byung Rae; Li, Jianhong; Wan, Hu

    2016-09-01

    Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu(2+) and Cd(2+)) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides. PMID:27230212

  1. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas [UC Irvine, 2212 Natural Sciences I, Irvine, CA 92697 (United States); Goulding, Celia W., E-mail: celia.goulding@uci.edu [UC Irvine, 2212 Natural Sciences I, Irvine, CA 92697 (United States); UC Irvine, 2302 Natural Sciences I, Irvine, CA 92697 (United States)

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  2. Orotate phosphoribosyl transferase mRNA expression and the response of cholangiocarcinoma to 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Chariya Hahnvajanawong; Jariya Chaiyagool; Wunchana Seubwai; Vajarabhongsa Bhudhisawasdi; Nisana Namwat; Narong Khuntikeo; Banchob Sripa

    2012-01-01

    AIM:To determine whether expression of certain enzymes related to 5-fluorouracil (5-FU) metabolism predicts 5-FU chemosensitivity in cholangiocarcinoma (CCA).METHODS:The histoculture drug response assay (HDRA) was performed using surgically resected CCA tissues.Tumor cell viability was determined morphologically with hematoxylin and eosin-and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-stained tissues.The mRNA expression of thymidine phosphorylase (TP),orotate phosphoribosyl transferase (OPRT),thymidylate synthase (TS),and dihydropyrimidine dehydrogenase (DPD) was determined with realtime reverse transcriptase-polymerase chain reaction.The levels of gene expression and the sensitivity to 5-FU were evaluated.RESULTS:Twenty-three CCA tissues were obtained from patients who had been diagnosed with intrahepatic CCA and who underwent surgical resection at Srinagarind Hospital,Khon Kaen University from 2007 to 2009.HDRA was used to determine the response of these CCA tissues to 5-FU.Based on the dose-response curve,200 μg/mL 5-FU was selected as the test concentration.The percentage of inhibition index at the median point was selected as the cut-off point to differentiate the responding and non-responding tumors to 5-FU.When the relationship between TP,OPRT,TS and DPD mRNA expression levels and the sensitivity of CCA tissues to 5-FU was examined,only OPRT mRNA expression was significantly correlated with the response to 5-FU.The mean expression level of OPRT was significantly higher in the responder group compared to the non-responder group (0.41 ± 0.25 vs 0.22 ± 0.12,P < 0.05).CONCLUSION:OPRT mRNA expression may be a useful predictor of 5-FU chemosensitivity of CCA.Whether OPRT mRNA could be used to predict the success of 5-FU chemotherapy in CCA patients requires confirmation in patients.

  3. A simple enzyme-substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment.

    Science.gov (United States)

    Coughlin, John; Masci, Allyson; Gronke, Robert S; Bergelson, Svetlana; Co, Carl

    2016-07-15

    Immobilized protein receptors and enzymes are tools for isolating or enriching ligands and substrates based on affinity. For example, glutathione S-transferase (GST) is fused to proteins as a tag for binding to its substrate glutathione (GSH) linked to solid supports. One issue with this approach is that high-affinity interactions between receptors and ligands require harsh elution conditions such as low pH, which can result in leached receptor. Another issue is the inherent nonspecific chemical conjugation of reactive groups such as N-hydroxysuccinimide (NHS) that couple lysines to solid supports; the nonspecificity of NHS may result in residue modifications near the binding site(s) of the receptor that can affect ligand specificity. In this study, a simple conjugation procedure is presented that overcomes these limitations and results in immobilized GST fusion proteins that are functional and specific. Here, the affinity of GST for GSH was used to generate an enzyme-substrate site-specific cross-linking reaction; GSH-Sepharose was preactivated with 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) and then incubated Fc gamma receptor IIIa (FcγRIIIa)-GST. The immobilized FcγRIIIa-GST more specifically bound glycosylated immunoglobulin G1s (IgG1s) and was used to enrich nonfucosylated IgG1s from weaker binding species. This technique can be used when modifications of amino acids lead to changes in activity. PMID:27063248

  4. Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Chang Chen

    2013-01-01

    Full Text Available Glutathione S-transferase (GST is the key enzyme in multidrug resistance (MDR of tumour. Inhibition of the expression or activity of GST has emerged as a promising therapeutic strategy for the reversal of MDR. Coniferyl ferulate (CF, isolated from the root of Angelica sinensis (Oliv. Diels (Radix Angelicae sinensis, RAS, showed strong inhibition of human placental GST. Its 50% inhibition concentration (IC50 was 0.3 μM, which was greater than a known GSTP1-1 inhibitor, ethacrynic acid (EA, using the established high-throughput screening model. Kinetic analysis and computational docking were used to examine the mechanism of GST inhibition by CF. Computational docking found that CF could be fully docked into the gorge of GSTP1-1. The further exploration of the mechanisms showed that CF was a reversible noncompetitive inhibitor with respect to GSH and CDNB, and it has much less cytotoxicity. Apoptosis and the expression of P-gp mRNA were evaluated in the MDR positive B-MD-C1 (ADR+/+ cell line to investigate the MDR reversal effect of CF. Moreover, CF showed strong apoptogenic activity and could markedly decrease the overexpressed P-gp. The results demonstrated that CF could inhibit GST activity in a concentration-dependent manner and showed a potential MDR reversal effect for antitumour adjuvant therapy.

  5. Glyceryl trinitrate metabolism in the quail embryo by the glutathione S-transferases leads to a perturbation in redox status and embryotoxicity.

    Science.gov (United States)

    Bardai, Ghalib K; Hales, Barbara F; Sunahara, Geoffrey I

    2013-07-01

    Exposure of stage 9 quail (Coturnix coturnix japonica) embryos to glyceryl trinitrate (GTN) induces malformations that were associated in previous studies with an increase in protein nitration. Increased nitration suggests metabolism of GTN by the embryo. The goals of this study were to characterize the enzymes and co-factors required for GTN metabolism by quail embryos, and to determine the effects of in ovo treatment with N-acetyl cysteine (NAC), a precursor of glutathione (GSH), on GTN embryotoxicity. GTN treatment of quail embryos resulted in an increase in nitrite, a decrease in total GSH, and an increase in the ratio of NADP(+)/NADPH, indicating that redox balance may be compromised in exposed embryos. Glutathione S-transferases (GSTs; EC 2.5.1.18) purified from the whole embryo (K(m) 0.84 mM; V(max) 36 μM/min) and the embryonic eye (K(m) 0.20 mM; V(max) 30 μM/min) had GTN-metabolizing activity (1436 and 34 nmol/min/mg, respectively); the addition of ethacrynic acid, an inhibitor of GST activity, decreased GTN metabolism. Peptide sequencing of the GST isozymes indicated that alpha- or mu-type GSTs in the embryo and embryonic eye had GTN metabolizing activity. NAC co-treatment partially protected against the effects of GTN exposure. Thus, GTN denitration by quail embryo GSTs may represent a key initial step in the developmental toxicity of GTN.

  6. Quantitative profiling of mRNA expression of glutathione S-transferase superfamily genes in various tissues of bighead carp (Aristichthys nobilis).

    Science.gov (United States)

    Li, Guangyu; Xie, Ping; Li, Huiying; Chen, Jun; Hao, Le; Xiong, Qian

    2010-01-01

    The expression of glutathione S-transferase (GST) is a crucial factor in determining the sensitivity of cells and organs in response to a variety of toxicants. In this study, we cloned the core nucleotide of alpha, kappa, mu, mGST, pi, rho, and theta-like GST genes from bighead carp (Aristichthys nobilis). Their derived amino acid sequences were clustered with other vertebrate GSTs in a phylogenetic tree, and the bighead carp GST sequences have the highest similarity with those from common carp and zebrafish. We quantified the constitutive mRNA transcription of GST isoforms in eight different tissues (liver, kidney, spleen, intestine, muscle, heart, brain, and gill). The information obtained from the present study could be distilled into a few generalized principles: multiple GST isoenzymes were ubiquitously expressed in all tissues; majority of GSTs had high constitutive expression in intestine, liver, and kidney. These findings are in agreement with the roles of these tissues in xenobiotic metabolism. At the same time, some unique findings were detected in the current experiment: (1) higher expression of most GSTs was observed in spleen; (2) the expression of GST pi was highest in almost all the studied tissues except muscle; the other two isoforms, GST alpha and rho, were also highly expressed in liver, kidney, intestine, spleen, heart, and brain of bighead carp. All these results strongly imply an important role of these GST isoforms in detoxification of ingested xenobiotics. PMID:20135640

  7. Fast non-chromatographic method to assay for xanthine-guanosine phosphoribosyl transferase

    Energy Technology Data Exchange (ETDEWEB)

    Fromont-Racine, M.; Pictet, R. (Universite Paris (France))

    1988-07-25

    The authors have compared two methods to separate xanthine (X) from xanthine monophosphate (XMP) in the xanthine-guanine phosphoribosyl transferase (XGPRT) assay. XGPRT, product of the bacterial gene Ecogpt is widely used in experiments using DNA transfer into mammalian cells as a marker enzyme to estimate promoter activity as well as to select recombinant cells. The usual method adopted to assay for XGPRT is to separate phosphorylated from unphosphorylated substrate by thin layer chromatography; after detection by autoradiography, the spots are cut and counted. Another way of separation is to spot the reaction mixture directly onto polyethyleneimine impregnated cellulose sheets. The XMP binds to the support and the unphosphorylated X is washed away with 0.1 M ammonium acetate. The first procedure, beside protein extraction, necessitates 4h chromatography and {approximately} 18h autoradiography while the second takes only 1h; thus the second should be the method of choice provided that the level of detection be as good. They report that indeed it combines sensitivity and reduced time.

  8. Role of glutathione S-transferases in the spinocerebellar ataxia type 2 clinical phenotype.

    Science.gov (United States)

    Almaguer-Gotay, D; Almaguer-Mederos, L E; Aguilera-Rodríguez, R; Estupiñán-Rodríguez, A; González-Zaldivar, Y; Cuello-Almarales, D; Laffita-Mesa, J M; Vázquez-Mojena, Y

    2014-06-15

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative and incurable hereditary disorder caused by a CAG repeat expansion mutation on ATXN2 gene. The identification of reliable biochemical markers of disease severity is of paramount significance for the development and assessment of clinical trials. In order to evaluate the potential use of glutathione-S-transferase (GST) activity as a biomarker for SCA2, a case-control study in 38 affected, presymptomatic individuals or healthy controls was conducted. An enlarged sample of 121 affected individuals was set to assess the impact of GST activity on SCA2 clinical expression. There was a significant increase in GST activity in affected individuals relative to controls, although sensibility and specificity were not high. GST activity was not significantly influenced by sex, age, disease duration or CAG repeat size and did not significantly influence disease severity markers. These findings show a disruption of in vivo GST activity in SCA2, suggesting a role for oxidative stress in the neurodegenerative process. PMID:24780439

  9. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Wang

    Full Text Available Phosphopantetheinyl transferases (PPTases, which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.

  10. Antioxidant Effect of Selenium-containing Glutathione S-Transferase in Rat Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    YIN Li; HAN Xiao; YU Yang; GUO Xiao; REN Li-qun; FANG Jing-qi; LIU Zhi-yi; YAN Gang-lin; WEI Jing-yan

    2012-01-01

    As one of the most important antioxidant enzymes,glutathione peroxidase(GPX) protects cells and tissues from oxidative damage,and plays an important role in cardiovascular and cerebrovascular injuries induced by oxidative stress.The antioxidant effect of selenium-containing glutathione S-transferase(Se-GST),a mimic of GPX was investigated on rat cardiomyocytes.To explore the protection function of Se-GST in hydrogen peroxide(H2O2) challenged rat cardiomyocytes,we examined malondialdehyde(MDA),lactate dehydrogenase(LDH),superoxide dismutase(SOD) and cell apoptosis.The results demonstrate exposure of rat cardiomyocytes to H2O2 for 6 and 12 h induced the significant increases of MDA,LDH and apoptosis rate of cardiomyocytes,but pretreatment of rat cardiomyocytes with Se-GST at 0.0005 or 0.001 unit/mL prevents oxidative stress induced by H2O2 with the decreases of cell apoptosis.All the results him Se-GST has antioxidant activity for oxidative stress challenged rat cardiomyocytes.

  11. Purification and Identification of Glutathione S-transferase in Rice Root under Cadmium Stress

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-hua; WU Ze-ying; JU Ting; GE Ying

    2013-01-01

    Cadmium (Cd) contamination in paddy soils poses a serious threat to the production and quality of rice.Among various biochemical processes related to Cd detoxification in rice,glutathione S-transferase (GST) plays an important role,catalyzing Cd complexation with glutathione (GSH) and scavenging reactive oxygen species (ROS) in cells.In this study,a hydroponic experiment was conducted to investigate the response of GST isozymes in rice roots upon Cd exposure.Results showed that the GST activity in rice roots was clearly enhanced by 50 μmol/L Cd treatment for 7 d.The GST isozymes were purified by ammonium sulphate precipitation,gel filtration chromatography and affinity chromatography.After being separated by SDS-PAGE and visualized by silver staining,GSTU6 was identified by in-gel digestion,MALDI-TOF-MS analysis and peptide mass fingerprint.The results confirm the vital function of tau class rice GST in Cd detoxification.

  12. Immunohistochemical localization of glutathione S-transferase-pi in human colorectal polyps

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the distribution of the placental form of glutathione-S-transferase (GST) in colon polyps in order to evaluate the role of GST-pi in these tissues. METHODS: Sixteen polyp tissues removed at colon- oscopy were examined. Tissues were investigated his- tologicaUy and ultrastructurally. GST-pi expression was also analysed immunohistochemically, using peroxidase anti-peroxidase (PAP) method and immunogold label- ling method, for light and electron microscope respec- tively. RESULTS: All polyp tissues examined were adenoma of low, mild and high- grade dysplasia as shown in the histopathological reports. Nevertheless, the examina- tion of the above specimens with electron microscope revealed that 3 of 9 adenoma of mild dysplasia had ultrastuctural features similar to high-grade dysplasia adenoma. GST-pi was variably expressed in adenoma, with the lowest relative levels occurring in low-grade adenoma and the highest levels found in high-grade adenoma. GST-pi was located mainly in undifferentiat- ed epithelial cells. GST-pi positive particles were found in the cytoplasm and especially in the nucleus adjacent to the nuclear membrane of these cells. CONCLUSION: The overexpression of GST-pi in mild- grade adenomas with significant subcellular changes and in the majority of high-grade dysplasia adenoma suggests that this might be related to the carcinogenetic proceeding. Immunohistochemical localization of GST-pi in combination with ultrastructural changes indicate that GST-pi might be a sensitive agent for the detection of preneoplastic transformations in adenoma.

  13. Glutathione S-transferase P1 ILE105Val polymorphism in occupationally exposed bladder cancer cases.

    Science.gov (United States)

    Kopps, Silke; Angeli-Greaves, Miriam; Blaszkewicz, Meinolf; Prager, Hans-Martin; Roemer, Hermann C; Lohlein, Dietrich; Weistenhofer, Wobbeke; Bolt, Hermann M; Golka, Klaus

    2008-01-01

    The genotype glutathione S-transferase P1 (GSTP1) influences the risk for bladder cancer among Chinese workers occupationally exposed to benzidine. Studies of Caucasian bladder cancer cases without known occupational exposures showed conflicting results. Research was thus conducted to define the role of GSTP1 genotypes in Caucasian bladder cancer cases with an occupational history of exposure to aromatic amines. DNA from 143 cases reported to the Industrial Professional Associations (Berufsgenossenschaften) in Germany from 1996 to 2004, who had contracted urothelial cancer due to occupational exposure, and 196 patients from one Department of Surgery in Dortmund, without known malignancy in their medical history, were genotyped using real-time polymerase chain reaction (PCR) (LightCycler) in relation to GSTP1 A1578G (Ile105Val) polymorphism. Among the subjects with bladder cancer, 46% presented the AA genotype, 39% the AG genotype, and 15% the GG genotype. In the surgical (noncancer) control group analyzed, 42% presented the AA genotype, 42% the AG genotype, and 16% the GG genotype. A subgroup of bladder cancer cases, represented by 46 painters, showed a distribution of 41% of the AA genotype, 48% of the AG genotype, and 11% of the GG genotype. Data indicated that in Caucasians exposed to aromatic amines the GSTP1 A1578G polymorphism did not appear to play a significant role as a predisposing factor for bladder cancer incidence.

  14. Purification and characterization of a glutathione S-transferase from Mucor mucedo.

    Science.gov (United States)

    Hamed, Ragaa R; Abu-Shady, Mohamed R; El-Beih, Fawkia M; Abdalla, Abdel-Monem A; Afifi, Ola M

    2005-01-01

    An intracellular glutathione transferase was purified to homogenity from the fungus, Mucor mucedo, using DEAE-cellulose ion-exchange and glutathione affinity chromatography. Gel filtration chromatography and SDS-PAGE revealed that the purified GST is a homodimer with approximate native and subunit molecular mass of 53 kDa and 23.4 kDa, respectively. The enzyme has a pI value of 4.8, a pH optimum at pH 8.0 and apparent activation energy (Ea) of 1.42 kcal mol(-1). The purified GST acts readily on CDNB with almost negligible peroxidase activity and the activity was inhibited by Cibacron Blue (IC50 0.252 microM) and hematin (IC50 3.55 microM). M. mucedo GST displayed a non-Michaelian behavior. At low (0.1-0.3 mM) and high (0.3-2 mM) substrate concentration, Km (GSH) was calculated to be 0.179 and 0.65 mM, whereas Km(CDNB) was 0.531 and 11 mM and k(cat) was 39.8 and 552 s(-1), respectively. The enzyme showed apparent pKa values of 6-6.5 and 8.0. PMID:16209109

  15. Glutathione S-Transferase Ω 1 variation does not influence age at onset of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Saft Carsten

    2004-03-01

    Full Text Available Abstract Background Huntington's disease (HD is a fully penetrant, autosomal dominantly inherited disorder associated with abnormal expansions of a stretch of perfect CAG repeats in the 5' part of the IT15 gene. The number of repeat units is highly predictive for the age at onset (AO of the disorder. But AO is only modestly correlated with repeat length when intermediate HD expansions are considered. Circumstantial evidence suggests that additional features of the HD course are based on genetic traits. Therefore, it may be possible to investigate the genetic background of HD, i.e. to map the loci underlying the development and progression of the disease. Recently an association of Glutathione S-Transferase Ω 1 (GSTO1 and possibly of GSTO2 with AO was demonstrated for, both, Alzheimer's (AD and Parkinson's disease (PD. Methods We have genotyped the polymorphisms rs4925 GSTO1 and rs2297235 GSTO2 in 232 patients with HD and 228 controls. Results After genotyping GSTO1 and GSTO2 polymorphisms, firstly there was no statistically significant difference in AO for HD patients, as well as secondly for HD patients vs. controls concerning, both, genotype and allele frequencies, respectively. Conclusion The GSTO1 and GSTO2 genes flanked by the investigated polymorphisms are not comprised in a primary candidate region influencing AO in HD.

  16. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT).

    Science.gov (United States)

    Nölke, Thilo; Schwan, Carsten; Lehmann, Friederike; Østevold, Kristine; Pertz, Olivier; Aktories, Klaus

    2016-07-12

    Hypervirulent Clostridium difficile strains, which are associated with increased morbidity and mortality, produce the actin-ADP ribosylating toxin Clostridium difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here, we show that septins (SEPT) are essential for CDT-induced protrusion formation. SEPT2, -6, -7, and -9 accumulate at predetermined protrusion sites and form collar-like structures at the base of protrusions. The septin inhibitor forchlorfenuron or knockdown of septins inhibits protrusion formation. At protrusion sites, septins colocalize with the GTPase Cdc42 (cell division control protein 42) and its effector Borg (binder of Rho GTPases), which act as up-stream regulators of septin polymerization. Precipitation and surface plasmon resonance studies revealed high-affinity binding of septins to the microtubule plus-end tracking protein EB1, thereby guiding incoming microtubules. The data suggest that CDT usurps conserved regulatory principles involved in microtubule-membrane interaction, depending on septins, Cdc42, Borgs, and restructuring of the actin cytoskeleton. PMID:27339141

  17. Genetic Variations of Glutathione S-Transferase Influence on Blood Cadmium Concentration

    Directory of Open Access Journals (Sweden)

    Nitchaphat Khansakorn

    2012-01-01

    Full Text Available The glutathione S-transferases (GSTs are involved in biotransformation and detoxification of cadmium (Cd. Genetic polymorphisms in these genes may lead to interindividual variation in Cd susceptibility. The objective of this study was to assess the association of GSTs (GSTT1, GSTM1, and GSTP1 Val105Ile polymorphisms with blood Cd concentrations in a nonoccupationally exposed population. The 370 blood samples were analyzed for Cd concentration and polymorphisms in GSTs genes. Geometric mean of blood Cd among this population was 0.46±0.02 μg/L (with 95% CI; 0.43–0.49 μg/L. Blood Cd concentrations in subjects carrying GSTP1 Val/Val genotype were significantly higher than those with Ile/Ile and Ile/Val genotypes. No significant differences in blood Cd concentrations among individual with gene deletions of GSTT1 and GSTM1 were observed. GSTP1/GSTT1 and GSTP1/GSTM1 combinations showed significantly associated with increase in blood Cd levels. This study indicated that polymorphisms of GSTP1 combined with GSTT1 and/or GSTM1 deletion are likely to influence on individual susceptibility to cadmium toxicity.

  18. Expression profiling of selected glutathione transferase genes in Zea mays (L. seedlings infested with cereal aphids.

    Directory of Open Access Journals (Sweden)

    Hubert Sytykiewicz

    Full Text Available The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24 in the tissues of two maize (Zea mays L. varieties (relatively resistant Ambrozja and susceptible Tasty Sweet that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L. or monophagous grain aphid (Sitobion avenae L.. Simultaneously, insect-triggered generation of superoxide anion radicals (O2•- in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23 or 24 hpi (gst1, gst18 and gst24 compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  19. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype. PMID:25365518

  20. Glutathione-S-transferases in lung and sputum specimens, effects of smoking and COPD severity

    Directory of Open Access Journals (Sweden)

    Merikallio Heta

    2008-12-01

    Full Text Available Abstract Background Oxidative stress plays a potential role in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD. Glutathione S-transferases (GSTs detoxify toxic compounds in tobacco smoke via glutathione-dependent mechanisms. Little is known about the regulation and expression of GSTs in COPD lung and their presence in airway secretions. Methods GST alpha, pi and mu were investigated by immunohistochemistry in 72 lung tissue specimens and by Western analysis in total lung homogenates and induced sputum supernatants from non-smokers, smokers and patients with variable stages of COPD severity. Results GST alpha was expressed mainly in the airway epithelium. The percentage of GST alpha positive epithelial cells was lower in the central airways of patients with very severe (Stage IV COPD compared to mild/moderate COPD (p = 0.02. GST alpha by Western analysis was higher in the total lung homogenates in mild/moderate COPD compared to cases of very severe disease (p Conclusion This study indicates the presence of GST alpha and pi especially in the epithelium and sputum supernatants in mild/moderate COPD and low expression of GST alpha in the epithelium in cases of very severe COPD. The presence of GSTs in the airway secretions points to their potential protective role both as intracellular and extracellular mediators in human lung.

  1. Immunoprophylactic potential of filarial glutathione-s-transferase in lymphatic filariaisis

    Institute of Scientific and Technical Information of China (English)

    BalM; MandalN; AcharyKG; DasMK; KarSK

    2011-01-01

    Objective:To elucidates the immunoprophylactic potential of glutathion-s-transferase (GST) from cattle filarial parasite Setaria digitata (S. digitata) against lymphatic filariasis. Methods:GST was purified through affinity chromatography (SdGST) and chacterized by SDS-PAGE and Nano-LC MS/MS analysis. Antibody isotypes to SdGST were measured by ELISA. Antibody dependant cellular cytotoxicity (ADCC) was performed in vitro using sera from immunized animals and immune individuals. T-cell proliferation and cytokine response to SdGST in different groups of filariasis were measured. Immunoprophylactic potential of SdGST was evaluate in animal model. Results: SdGST exhibited 30-fold enhancement of enzyme activity over crude parasitic extract. It was found to be 26 kDa by SDS-PAGE. Nano LC-MS/MS analysis followed by blast search showed 100%homology with Dirofilaria immitis (D. immitis) and only 43%with Homo sapiens (H. sapiens). Immunoblotting analysis showed putatively immune individuals carry significant level of antibodies to SdGST as compared with microfilaraemics. Immunized sera and sera endemic normal could neutralize the enzymatic activity of SdGST and inducing in vitro cytotoxicity of microfilariae. Peripheral blood mononuclear cells (PBMC) from endemic normals upon stimulation with SdGST showed a mixed type of Th1/Th2 response. SdGST immunization clear microfilariae from circulation in S. digitata implanted mastomys. Conclusions:The heterologous GST could be potentially developed as a vaccine candidate against lymphatic filarial parasite.

  2. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.

    Science.gov (United States)

    Brenke, Jara K; Salmina, Elena S; Ringelstetter, Larissa; Dornauer, Scarlett; Kuzikov, Maria; Rothenaigner, Ina; Schorpp, Kenji; Giehler, Fabian; Gopalakrishnan, Jay; Kieser, Arnd; Gul, Sheraz; Tetko, Igor V; Hadian, Kamyar

    2016-07-01

    In high-throughput screening (HTS) campaigns, the binding of glutathione S-transferase (GST) to glutathione (GSH) is used for detection of GST-tagged proteins in protein-protein interactions or enzyme assays. However, many false-positives, so-called frequent hitters (FH), arise that either prevent GST/GSH interaction or interfere with assay signal generation or detection. To identify GST-FH compounds, we analyzed the data of five independent AlphaScreen-based screening campaigns to classify compounds that inhibit the GST/GSH interaction. We identified 53 compounds affecting GST/GSH binding but not influencing His-tag/Ni(2+)-NTA interaction and general AlphaScreen signals. The structures of these 53 experimentally identified GST-FHs were analyzed in chemoinformatic studies to categorize substructural features that promote interference with GST/GSH binding. Here, we confirmed several existing chemoinformatic filters and more importantly extended them as well as added novel filters that specify compounds with anti-GST/GSH activity. Selected compounds were also tested using different antibody-based GST detection technologies and exhibited no interference clearly demonstrating specificity toward their GST/GSH interaction. Thus, these newly described GST-FH will further contribute to the identification of FH compounds containing promiscuous substructures. The developed filters were uploaded to the OCHEM website (http://ochem.eu) and are publicly accessible for analysis of future HTS results. PMID:27044684

  3. Purification and characterization of a glutathione S-transferase from Mucor mucedo.

    Science.gov (United States)

    Hamed, Ragaa R; Abu-Shady, Mohamed R; El-Beih, Fawkia M; Abdalla, Abdel-Monem A; Afifi, Ola M

    2005-01-01

    An intracellular glutathione transferase was purified to homogenity from the fungus, Mucor mucedo, using DEAE-cellulose ion-exchange and glutathione affinity chromatography. Gel filtration chromatography and SDS-PAGE revealed that the purified GST is a homodimer with approximate native and subunit molecular mass of 53 kDa and 23.4 kDa, respectively. The enzyme has a pI value of 4.8, a pH optimum at pH 8.0 and apparent activation energy (Ea) of 1.42 kcal mol(-1). The purified GST acts readily on CDNB with almost negligible peroxidase activity and the activity was inhibited by Cibacron Blue (IC50 0.252 microM) and hematin (IC50 3.55 microM). M. mucedo GST displayed a non-Michaelian behavior. At low (0.1-0.3 mM) and high (0.3-2 mM) substrate concentration, Km (GSH) was calculated to be 0.179 and 0.65 mM, whereas Km(CDNB) was 0.531 and 11 mM and k(cat) was 39.8 and 552 s(-1), respectively. The enzyme showed apparent pKa values of 6-6.5 and 8.0.

  4. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    Energy Technology Data Exchange (ETDEWEB)

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip (SVIMR-A); (Melbourne)

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  5. Transcriptional Responses of Glutathione Transferase Genes in Ruditapes philippinarum Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bruno Reis

    2015-04-01

    Full Text Available Glutathione Transferases (GSTs are phase II detoxification enzymes known to be involved in the molecular response against microcystins (MCs induced toxicity. However, the individual role of the several GST isoforms in the MC detoxification process is still unknown. In this study, the time-dependent changes on gene expression of several GST isoforms (pi, mu, sigma 1, sigma 2 in parallel with enzymatic activity of total GST were investigated in gills and hepatopancreas of the bivalve Ruditapes philippinarum exposed to pure MC-LR (10 and 100 µg/L. No significant changes in GST enzyme activities were found on both organs. In contrast, MC-LR affected the transcriptional activities of these detoxification enzymes both in gills and hepatopancreas. GST transcriptional changes in gills promoted by MC-LR were characterized by an early (12 h induction of mu and sigma 1 transcripts. On the other hand, the GST transcriptional changes in hepatopancreas were characterized by a later induction (48 h of mu transcript, but also by an early inhibition (6 h of the four transcripts. The different transcription patterns obtained for the tested GST isoforms in this study highlight the potential divergent physiological roles played by these isoenzymes during the detoxification of MC-LR.

  6. Glutathione S-transferase P influences redox and migration pathways in bone marrow.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available To interrogate why redox homeostasis and glutathione S-transferase P (GSTP are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs from both wild type (WT and knockout (Gstp1/p2(-/- mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+-ATPase regulate Ca(2+ fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/- cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected

  7. Prevalence of glutathione S-transferase gene deletions and their effect on sickle cell patients

    Directory of Open Access Journals (Sweden)

    Pandey Sanjay

    2012-01-01

    Full Text Available BACKGROUND: Glutathione S-transferase gene deletions are known detoxification agents and cause oxidative damage. Due to the different pathophysiology of anemia in thalassemia and sickle cell disease, there are significant differences in the pathophysiology of iron overload and iron-related complications in these disorders. OBJECTIVE: The aim of this study was to estimate the frequency of the GSTM1 and GSTT1 genotypes in sickle cell disease patients and their effect on iron status. METHODS: Forty sickle cell anemia and sixty sickle ß-thalassemia patients and 100 controls were evaluated to determine the frequency of GST gene deletions. Complete blood counts were performed by an automated cell analyzer. Hemoglobin F, hemoglobin A, hemoglobin A2 and hemoglobin S were measured and diagnosis of patients was achieved by high performance liquid chromatography with DNA extraction by the phenol-chloroform method. The GST null genotype was determined using multiplex polymerase chain reaction and serum ferritin was measured using an ELISA kit. Statistical analysis was by EpiInfo and GraphPad statistics software. RESULTS: An increased frequency of the GSTT1 null genotype (p-value = 0.05 was seen in the patients. The mean serum ferritin level was higher in patients with the GST genotypes than in controls; this was statistically significant for all genotypes except GSTM1, however the higher levels of serum ferritin were due to blood transfusions in patients. CONCLUSION: GST deletions do not play a direct role in iron overload of sickle cell patients.

  8. Trichinella spiralis: low vaccine potential of glutathione S-transferase against infections in mice.

    Science.gov (United States)

    Li, Ling Ge; Wang, Zhong Quan; Liu, Ruo Dan; Yang, Xuan; Liu, Li Na; Sun, Ge Ge; Jiang, Peng; Zhang, Xi; Zhang, Gong Yuan; Cui, Jing

    2015-06-01

    We have previously reported that Trichinella spiralis glutathione-S-transferase (TsGST) gene is an up-regulated gene in intestinal infective larvae (IIL) compared to muscle larvae (ML). In this study, the TsGST gene was cloned, and recombinant TsGST (rTsGST) was produced. Anti-rTsGST serum recognized the native TsGST by Western blotting in crude antigens of ML, adult worm (AW) and newborn larvae (NBL) of T. spiralis, but not in ML excretory-secretory (ES) antigens. Expression of TsGST was observed in all different developmental stages (IIL, AW, NBL and ML). An immunolocalization analysis identified TsGST in the cuticle, stichosome and genital primordium of the parasite. The rTsGST had GST enzymatic activity. After a challenge infection with T. spiralis larvae, mice immunized with rTsGST displayed a 35.71% reduction in adult worms and a 38.55% reduction in muscle larvae. The vaccination of mice with rTsGST induced the Th1/Th2-mixed type of immune response with Th2 predominant (high levels of IgG1) and partial protective immunity against T. spiralis infection. PMID:25757368

  9. Optical biosensor consisting of glutathione-S-transferase for detection of captan.

    Science.gov (United States)

    Choi, Jeong-Woo; Kim, Young-Kee; Song, Sun-Young; Lee, In-ho; Lee, Won-Hong

    2003-10-15

    The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 microg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min.

  10. Induction of Epoxide Hydrolase, Glucuronosyl Transferase, and Sulfotransferase by Phenethyl Isothiocyanate in Male Wistar Albino Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Faizal Abdull Razis

    2014-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin. The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT, N-acetyltransferase (NAT, glucuronosyl transferase (UDP, and epoxide hydrolase (EH following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake, 0.6 µmol/g (medium dose, and 6.0 µmol/g (high dose, and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.

  11. Gamma-Glutamyl Transferase Levels in Patients with Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nurbanu Gurbuzer

    2014-01-01

    Full Text Available Objective. The aim of this study was to investigate the relationship between gamma-glutamyl transferase (GGT levels, cerebrovascular risk factors, and distribution of cerebral infarct areas in patients with acute ischemic stroke (AIS. Patients and Methods. Sixty patients with AIS and 44 controls who had not cerebrovascular disease were included in the study. The patients were divided into four groups according to the location of the infarct area and evaluated as for GGT levels and the presence of diabetes mellitus (DM, hypertension (HT, and hyperlipidemia (HL. Results. The frequency of DM, HT, and HL and gender distributions were similar. The mean GGT levels were significantly higher in patients with AIS and those with relatively larger areas of infarction (P<0.05. Increased mean GGT levels were found in the subgroup with hypertension, higher LDL-cholesterol, and triglyceride levels among cases with AIS (P<0.05. Conclusion. Higher GGT levels in AIS patients reinforce the relationship of GGT with inflammation and oxidative stress. The observation of higher GGT levels in patients with relatively larger areas of infarction is indicative of a positive correlation between increases in infarct areas and elevated GGT levels.

  12. Measurement of mouse liver glutathione S-transferase activity by the integrated method

    Institute of Scientific and Technical Information of China (English)

    廖飞; 李甲初; 康格非; 曾昭淳; 左渝萍

    2003-01-01

    Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transferase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the others and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation ln [Am/(Am-Ai)]+Ai/(ε×Km)=(Vm/Km)×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the others, this integrated method was reliable to measure the activity of enzyme on two substrates, and substrate concentration of the lower one close to its apparent Km was able to be used.

  13. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

    Science.gov (United States)

    Wang, Yue-Yue; Li, Yu-Dong; Liu, Jian-Bo; Ran, Xin-Xin; Guo, Yuan-Yang; Ren, Ni-Ni; Chen, Xin; Jiang, Hui; Li, Yong-Quan

    2014-01-01

    Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.

  14. Effects of glutathione S-transferase M1 and T1 deletions on epilepsy risk among a Tunisian population.

    Science.gov (United States)

    Chbili, Chahra; B'chir, Fatma; Ben Fredj, Maha; Saguem, Bochra-Nourhène; Ben Amor, Sana; Ben Ammou, Sofiene; Saguem, Saad

    2014-09-01

    Glutathione-S-transferases enzymes are involved in the detoxification of several endogenous and exogenous substances. In this present study, we evaluated the effects of two glutathione-S-transferase polymorphisms, (GSTM1 and GSTT1) on epilepsy risk susceptibility in a Tunisian population. These polymorphisms were analyzed in 229 healthy subjects and 98 patients with epilepsy, using a polymerase chain reaction (PCR). Odds ratio (ORs) was used for analyzing results. The study results demonstrated that individuals with the GSTM1 null genotype were at an increased risk of developing epilepsy [OR=3.80, 95% confidence interval (CI) (2.15-4.78)], whereas no significant effects were observed between individuals with GSTT1 null genotype and epilepsy risk [OR=1.15, 95% CI (0.62-2.12)]. These genotyping finding revealed that the absence of GSTM1 activity could be contributor factor for the development of epilepsy disease.

  15. Action of glycosyl transferases upon "Bombay" (Oh) erythrocytes. Conversion to cells showing blood-group H and A specificities.

    Science.gov (United States)

    Schenkel-Brunner, H; Prohaska, R; Tuppy, H

    1975-08-15

    Individuals of the rare "Bombay" (Oh) blood-group phenotype lacking, due to a genetic defect, the alpha(1-2)fucosyl transferase, which is responsible for converting blood-group H precursor substances to H-specific structures. Treatment with GDP-fucose and alpha(1-2)fucosyl transferase prepared from gastric mucosa of O individuals to transform native or ficin-treated "Bombay" erythrocytes into cells phenotypically resembling O cells. The transformation was achieved, however, after prior incubation of the "Bombay" erythrocytes with neuraminidase, indicating that blood-group H precursor molecules on the surface of these cells are masked by sialyl residues. Blood-group A specificity was conferred upon neuraminidase-treated "Bombay" cells by enzymatic transfer of alpha-N-acetylgalactosamine residues, in addition to alpha-fucose residues.

  16. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    OpenAIRE

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2011-01-01

    The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the u...

  17. Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor

    OpenAIRE

    Lourdes Muñoz; Nikolay Dimov; Gerard Carot-Sans; Bula, Wojciech P.; Angel Guerrero; Gardeniers, Han J. G. E.

    2012-01-01

    Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis is achieved in a novel microfluidic system, designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an "artificial gland", i.e. a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce a...

  18. Molecular characterization of two galactosemia mutations: correlation of mutations with highly conserved domains in galactose-1-phosphate uridyl transferase.

    OpenAIRE

    Reichardt, J K; Packman, S; Woo, S L

    1991-01-01

    Galactosemia is an autosomal recessive disorder of human galactose metabolism caused by deficiency of the enzyme galactose-1-phosphate uridyl transferase (GALT). The molecular basis of this disorder is at present not well understood. We report here two missense mutations which result in low or undetectable enzymatic activity. First, we identified at nucleotide 591 a transition which substitutes glutamine 188 by arginine. The mutated glutamine is not only highly conserved in evolution (conserv...

  19. Dual Localization of Glutathione S-Transferase in the Cytosol and Mitochondria: Implications in Oxidative Stress, Toxicity and Disease

    OpenAIRE

    Raza, Haider

    2011-01-01

    Glutathione (GSH) conjugating enzymes, glutathione S-transferases (GSTs) are present in different subcellular compartments including cytosol, mitochondria, endoplasmic reticulum, nucleus and plasma membrane. The regulation and function of GSTs have implications in cell growth, oxidative stress, as well as in disease progression and prevention. Of the several mitochondria localized forms, GSTK (GST kappa) is mitochondria-specific since it contains N-terminal canonical and cleavable mitochondri...

  20. Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor)

    OpenAIRE

    Liao, Chong-Yu; Zhang, Kun; Niu, Jin-Zhi; Ding, Tian-Bo; Zhong, Rui; Xia, Wen-Kai; Dou, Wei; Wang, Jin-Jun

    2013-01-01

    The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs) genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed th...

  1. A fluorescent assay amenable to measuring production of beta-D-glucuronides produced from recombinant UDP-glycosyl transferase enzymes.

    Science.gov (United States)

    Trubetskoy, O V; Shaw, P M

    1999-05-01

    Beta-glucuronidase cleavage of 4-methylumbelliferyl beta-D-glucuronide generates the highly fluorescent compound, 4-methylumbelliferone. We show that other beta-D-glucuronide compounds act as competitors in this assay. The 4-methylumbelliferyl beta-D-glucuronide cleavage assay can easily be adapted to high throughput formats to detect the presence of beta-D glucuronides generated using recombinant glycosyl transferase preparations.

  2. Relationship between gamma-glutamyl transferase and glucose intolerance in first degree relatives of type 2 diabetics patients

    OpenAIRE

    Sassan Haghighi; Massoud Amini; Zahra Pournaghshband; Peyvand Amini; Silva Hovsepian

    2011-01-01

    Background: Considering that serum gamma-glutamyl transferase (GGT) activity could reflect several different processes relevant to diabetes pathogenesis and the increasing rate of type 2 diabetes worldwide, the aim of this study was to assess the association between serum GGT concentrations and glucose intolerance, in the first-degree relatives (FDR) of type 2 diabetic patients. Methods: In this descriptive study, 30-80 years old, non diabetic FDRs of type 2 diabetic patients were studie...

  3. Effect of trans-acting factor on rat glutathione S-transferase P1 gene transcription regulation in tumor cells

    Institute of Scientific and Technical Information of China (English)

    刘东远; 廖名湘; 左瑾; 方福德

    2002-01-01

    Objective To investigate the effect of trans-acting factor(s) on rat glutathione S-transferase P1 gene (rGSTP1) transcription regulation in tumor cells. Methods The binding of trans-acting factor(s) to two enhancers of the rGSTP1 gene, glutathione S-transferase P enhancer Ⅰ (GPEI) and glutathione S-transferase P enhancer Ⅱ-1 (GPEⅡ-1), was identified by an electrophoretic mobility shift assay (EMSA). The molecular weight of trans-acting factor was measured in a UV cross-linking experiment. Results Trans-acting factor interacting with the core sequence of GPEI (cGPEI) were found in human cervical adenocarcinoma cell line (HeLa) and rat hepatoma cell line (CBRH7919). These proteins were not expressed in normal rat liver. Although specific binding proteins that bound to GPEⅡ-1 were detected in all three cell types, a 64 kDa binding protein that exists in HeLa and CBRH7919 cells was absent in normal rat liver. Conclusion cGPEI, GPEII specific binding proteins expressed in HeLa and CBRH7919 cells may play an important role in the high transcriptional level of the rGSTP1 gene in tumor cells.

  4. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.

    Science.gov (United States)

    Chrysostomou, Constantine; Quandt, Erik M; Marshall, Nicholas M; Stone, Everett; Georgiou, George

    2015-03-20

    Microbial arsenate resistance is known to be conferred by specialized oxidoreductase enzymes termed arsenate reductases. We carried out a genetic selection on media supplemented with sodium arsenate for multicopy genes that can confer growth to E. coli mutant cells lacking the gene for arsenate reductase (E. coli ΔarsC). We found that overexpression of glutathione S-transferase B (GstB) complemented the ΔarsC allele and conferred growth on media containing up to 5 mM sodium arsenate. Interestingly, unlike wild type E. coli arsenate reductase, arsenate resistance via GstB was not dependent on reducing equivalents provided by glutaredoxins or a catalytic cysteine residue. Instead, two arginine residues, which presumably coordinate the arsenate substrate within the electrophilic binding site of GstB, were found to be critical for transferase activity. We provide biochemical evidence that GstB acts to directly reduce arsenate to arsenite with reduced glutathione (GSH) as the electron donor. Our results reveal a pathway for the detoxification of arsenate in bacteria that hinges on a previously undescribed function of a bacterial glutathione S-transferase.

  5. Neuroantibodies (NAB) in African-American Children: Associations with Gender, Glutathione-S-Transferase (GST)Pi Polymorphisms (SNP) and Heavy Metals

    Science.gov (United States)

    CONTACT (NAME ONLY): Hassan El-Fawal Abstract Details PRESENTATION TYPE: Platform or Poster CURRENT CATEGORY: Neurodegenerative Disease | Biomarkers | Neurotoxicity, Metals KEYWORDS: Autoantibodies, Glutathione-S-Transferase, DATE/TIME LAST MODIFIED: DATE/TIME SUBMITTED: Abs...

  6. Assignment of Biochemical Functions to Glycosyl Transferase Genes Which Are Essential for Biosynthesis of Exopolysaccharides in Sphingomonas Strain S88 and Rhizobium leguminosarum

    OpenAIRE

    Pollock, Thomas J.; van Workum, Wilbert A. T.; Thorne, Linda; Mikolajczak, Marcia J.; Yamazaki, Motohide; Kijne, Jan W.; Armentrout, Richard W.

    1998-01-01

    Glycosyl transferases which recognize identical substrates (nucleotide-sugars and lipid-linked carbohydrates) can substitute for one another in bacterial polysaccharide biosynthesis, even if the enzymes originate in different genera of bacteria. This substitution can be used to identify the substrate specificities of uncharacterized transferase genes. The spsK gene of Sphingomonas strain S88 and the pssDE genes of Rhizobium leguminosarum were identified as encoding glucuronosyl-(β1→4)-glucosy...

  7. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril

    Science.gov (United States)

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K = 80-11 700 M-1 for 2,6-ANS and 50-195 M-1 for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  8. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Haberzettl, Petra; Jagatheesan, Ganapathy; Baba, Shahid [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Merchant, Michael L. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40292 (United States); Prough, Russell A. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States); Williams, Jessica D. [University of Cincinnati College of Medicine, Internal Medicine, Cincinnati, OH 45267 (United States); Prabhu, Sumanth D. [Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, AL 35294 (United States); Bhatnagar, Aruni [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292 (United States); Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292 (United States)

    2015-06-01

    High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100–300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK·MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein–acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1–5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10–20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity. - Graphical abstract: Cyclophosphamide (CY) treatment results in P450-mediated metabolic formation of phosphoramide mustard and acrolein (3-propenal). Acrolein is either metabolized and

  9. Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide.

    Directory of Open Access Journals (Sweden)

    Alexandra Audemard-Verger

    Full Text Available To investigate association between genetic polymorphisms of GST, CYP and renal outcome or occurrence of adverse drug reactions (ADRs in lupus nephritis (LN treated with cyclophosphamide (CYC. CYC, as a pro-drug, requires bioactivation through multiple hepatic cytochrome P450s and glutathione S transferases (GST.We carried out a multicentric retrospective study including 70 patients with proliferative LN treated with CYC. Patients were genotyped for polymorphisms of the CYP2B6, CYP2C19, GSTP1, GSTM1 and GSTT1 genes. Complete remission (CR was defined as proteinuria ≤0.33g/day and serum creatinine ≤124 µmol/l. Partial remission (PR was defined as proteinuria ≤1.5g/day with a 50% decrease of the baseline proteinuria value and serum creatinine no greater than 25% above baseline.Most patients were women (84% and 77% were Caucasian. The mean age at LN diagnosis was 41 ± 10 years. The frequency of patients carrying the GST null genotype GSTT1-, GSTM1-, and the Ile→105Val GSTP1 genotype were respectively 38%, 60% and 44%. In multivariate analysis, the Ile→105Val GSTP1 genotype was an independent factor of poor renal outcome (achievement of CR or PR (OR = 5.01 95% CI [1.02-24.51] and the sole factor that influenced occurrence of ADRs was the GSTM1 null genotype (OR = 3.34 95% CI [1.064-10.58]. No association between polymorphisms of cytochrome P450s gene and efficacy or ADRs was observed.This study suggests that GST polymorphisms highly impact renal outcome and occurrence of ADRs related to CYC in LN patients.

  10. Detection and adequacy evaluation of erythrocyte glutathione transferase on levels of circulating toxins in hemodialysis patients.

    Science.gov (United States)

    Yin, Rui; Qiu, Hui; Zuo, Huaiyun; Cui, Min; Zhai, Nailiang; Zheng, Hongguang; Zhang, Dewei; Huo, Ping; Hong, Min

    2016-08-01

    To explore detection and adequacy evaluation of erythrocyte glutathione S transferase (GST) on levels of circulating toxins in hemodialysis patients in Qinhuangdao region in China, this study divided 84 cases of long-term, end-stage hemodialysis patients into 2 groups: one group of 33 cases of adequate hemodialysis (spKt/V ≥ 1.3) and another group of 51 cases of inadequate hemodialysis (spKt/V GST, creatinine, high sensitivity C-reactive protein (hs-CRP), transferrin saturation (TSAT), parathyroid hormone (PTH), interleukin-2,6,8 (IL-2,6,8) and tumor necrosis factor-a (TNF-a) in the hemodialysis group were significantly higher than those in the control group (P GST, IL-2, 6, 8, and TNF-a levels in the inadequate hemodialysis group were significantly higher than in the adequate hemodialysis group (P GST and spKt/V, IL-2, IL-6, IL-8, and TNF-a have a positive correlation (P 0.05). There were 23 patients with levels of spKt/V ≥ 1.3 after adjusting the dialysis solution for 51 cases of inadequate hemodialysis patients, and the GST level after the adjustment was significantly lower than that before the adjustment, but still higher than that in the adequate dialysis group. This concludes that the maintenance of hemodialysis in patients has certain relevance on spKt/V and associated inflammatory factors. Through the study, it can be determined that GST can effectively respond to adequate hemodialysis, which has a guiding significance on adjusting the blood dialysis solution in clinical practice. PMID:27121915

  11. Glutathione S-Transferase Regulation in Calanus finmarchicus Feeding on the Toxic Dinoflagellate Alexandrium fundyense

    Science.gov (United States)

    Roncalli, Vittoria; Jungbluth, Michelle J.; Lenz, Petra H.

    2016-01-01

    The effect of the dinoflagellate, Alexandrium fundyense, on relative expression of glutathione S-transferase (GST) transcripts was examined in the copepod Calanus finmarchicus. Adult females were fed for 5-days on one of three experimental diets: control (100% Rhodomonas spp.), low dose of A. fundyense (25% by volume, 75% Rhodomonas spp.), and high dose (100% A. fundyense). Relative expression of three GST genes was measured using RT-qPCR on days 0.5, 1, 2 and 5 in two independent experiments. Differential regulation was found for the Delta and the Sigma GSTs between 0.5 to 2 days, but not on day 5 in both experiments. The third GST, a microsomal, was not differentially expressed in either treatment or day. RT-qPCR results from the two experiments were similar, even though experimental females were collected from the Gulf of Maine on different dates and their reproductive output differed. In the second experiment, expression of 39 GSTs was determined on days 2 and 5 using RNA-Seq. Global gene expression analyses agreed with the RT-qPCR results. Furthermore, the RNA-Seq measurements indicated that only four GSTs were differentially expressed under the experimental conditions, and the response was small in amplitude. In summary, the A. fundyense diet led to a rapid and transient response in C. finmarchicus in three cytosolic GSTs, while a fourth GST (Omega I) was significantly up-regulated on day 5. Although there was some regulation of GSTs in response the toxic dinoflagellate, the tolerance to A. fundyense by C. finmarchicus is not dependent on the long-term up-regulation of specific GSTs. PMID:27427938

  12. Ethnicity and glutathione S-transferase (GSTM1/GSTT1 polymorphisms in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Gattás G.J.F.

    2004-01-01

    Full Text Available The distribution of polymorphisms related to glutathione S-transferases (GST has been described in different populations, mainly for white individuals. We evaluated the distribution of GST mu (GSTM1 and theta (GSTT1 genotypes in 594 individuals, by multiplex PCR-based methods, using amplification of the exon 7 of CYP1A1 gene as an internal control. In São Paulo, 233 whites, 87 mulattos, and 137 blacks, all healthy blood-donor volunteers, were tested. In Bahia, where black and mulatto populations are more numerous, 137 subjects were evaluated. The frequency of the GSTM1 null genotype was significantly higher among whites (55.4% than among mulattos (41.4%; P = 0.03 and blacks (32.8%; P < 0.0001 from São Paulo, or Bahian subjects in general (35.7%; P = 0.0003. There was no statistically different distribution among any non-white groups. The distribution of GSTT1 null genotype among groups did not differ significantly. The agreement between self-reported and interviewer classification of skin color in the Bahian group was low. The interviewer classification indicated a gradient of distribution of the GSTM1 null genotype from whites (55.6% to light mulattos (40.4%, dark mulattos (32.0% and blacks (28.6%. However, any information about race or ethnicity should be considered with caution regarding the bias introduced by different data collection techniques, specially in countries where racial admixture is intense, and ethnic definition boundaries are loose. Because homozygous deletions of GST gene might be associated with cancer risk, a better understanding of chemical metabolizing gene distribution can contribute to risk assessment of humans exposed to environmental carcinogens.

  13. A role for glutathione transferase Omega 1 (GSTO1-1) in the glutathionylation cycle.

    Science.gov (United States)

    Menon, Deepthi; Board, Philip G

    2013-09-01

    The glutathionylation of intracellular protein thiols can protect against irreversible oxidation and can act as a redox switch regulating metabolic pathways. In this study we discovered that the Omega class glutathione transferase GSTO1-1 plays a significant role in the glutathionylation cycle. The catalytic activity of GSTO1-1 was determined in vitro by assaying the deglutathionylation of a synthetic peptide by tryptophan fluorescence quenching and in T47-D epithelial breast cancer cells by both immunoblotting and the direct determination of total glutathionylation. Mutating the active site cysteine residue (Cys-32) ablated the deglutathionylating activity of GSTO1-1. Furthermore, we demonstrate that the expression of GSTO1-1 in T47-D cells that are devoid of endogenous GSTO1-1 resulted in a 50% reduction in total glutathionylation levels. Mass spectrometry and immunoprecipitation identified β-actin as a protein that is specifically deglutathionylated by GSTO1-1 in T47-D cells. In contrast to the deglutathionylation activity, we also found that GSTO1-1 is associated with the rapid glutathionylation of cellular proteins when the cells are exposed to S-nitrosoglutathione. The common A140D genetic polymorphism in GSTO1 was found to have significant effects on the kinetics of both the deglutathionylation and glutathionylation reactions. Genetic variation in GSTO1-1 has been associated with a range of diseases, and the discovery that a frequent GSTO1-1 polymorphism affects glutathionylation cycle reactions reveals a common mechanism where it can act on multiple proteins and pathways.

  14. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity.

    Science.gov (United States)

    Ahmad, Shabbir; Thulasingam, Madhuranayaki; Palombo, Isolde; Daley, Daniel O; Johnson, Kenneth A; Morgenstern, Ralf; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2015-10-01

    Human microsomal glutathione transferase 2 (MGST2) is a trimeric integral membrane protein that belongs to the membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) family. The mammalian MAPEG family consists of six members where four have been structurally determined. MGST2 activates glutathione to form a thiolate that is crucial for GSH peroxidase activity and GSH conjugation reactions with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB). Several studies have shown that MGST2 is able to catalyze a GSH conjugation reaction with the epoxide LTA4 forming the pro-inflammatory LTC4. Unlike its closest homologue leukotriene C4 synthase (LTC4S), MGST2 appears to activate its substrate GSH using only one of the three potential active sites [Ahmad S, et al. (2013) Biochemistry. 52, 1755-1764]. In order to demonstrate and detail the mechanism of one-third of the sites reactivity of MGST2, we have determined the enzyme oligomeric state, by Blue native PAGE and Differential Scanning Calorimetry, as well as the stoichiometry of substrate and substrate analog inhibitor binding to MGST2, using equilibrium dialysis and Isothermal Titration Calorimetry, respectively. Global simulations were used to fit kinetic data to determine the catalytic mechanism of MGST2 with GSH and CDNB (1-chloro-2,4-dinitrobenzene) as substrates. The best fit was observed with 1/3 of the sites catalysis as compared with a simulation where all three sites were active. In contrast to LTC4S, MGST2 displays a 1/3 the sites reactivity, a mechanism shared with the more distant family member MGST1 and recently suggested also for microsomal prostaglandin E synthase-1.

  15. Resistance to acetaminophen-induced hepatotoxicity in glutathione S-transferase Mu 1-null mice.

    Science.gov (United States)

    Arakawa, Shingo; Maejima, Takanori; Fujimoto, Kazunori; Yamaguchi, Takashi; Yagi, Masae; Sugiura, Tomomi; Atsumi, Ryo; Yamazoe, Yasushi

    2012-01-01

    We investigated the role of glutathione S-transferases Mu 1 (GSTM1) in acetaminophen (APAP)-induced hepatotoxicity using Gstm1-null mice. A single oral administration of APAP resulted in a marked increase in plasma alanine aminotransferase accompanied by hepatocyte necrosis 24 hr after administration in wild-type mice, but its magnitude was unexpectedly attenuated in Gstm1-null mice. Therefore, it is suggested that Gstm1-null mice are resistant to APAP-induced hepatotoxicity. To examine the mechanism of this resistance in Gstm1-null mice, we measured phosphorylation of c-jun N-terminal kinase (JNK), which mediates the signal of APAP-induced hepatocyte necrosis, by Western blot analysis 2 and 6 hr after APAP administration. A marked increase in phosphorylated JNK was observed in wild-type mice, but the increase was markedly suppressed in Gstm1-null mice. Therefore, it is suggested that suppressed phosphorylation of JNK may be a main mechanism of the resistance to APAP-induced hepatotoxicity in Gstm1-null mice, although other possibilities of the mechanism cannot be eliminated. Additionally, phosphorylation of glycogen synthase kinase-3β and mitogen-activated protein kinase kinase 4, which are upstream kinases of JNK in APAP-induced hepatotoxicity, were also suppressed in Gstm1-null mice. A decrease in liver total glutathione 2 hr after APAP administration, which is an indicator for exposure to N-acetyl-p-benzoquinoneimine, the reactive metabolite of APAP, were similar in wild-type and Gstm1-null mice. In conclusion, Gstm1-null mice are considered to be resistant to APAP-induced hepatotoxicity perhaps by the suppression of JNK phosphorylation. This study indicates the novel role of GSTM1 as a factor mediating the cellular signal for APAP-induced hepatotoxicity.

  16. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae.

    Science.gov (United States)

    Pavlidi, Nena; Tseliou, Vasilis; Riga, Maria; Nauen, Ralf; Van Leeuwen, Thomas; Labrou, Nikolaos E; Vontas, John

    2015-06-01

    The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we functionally expressed and characterized three GSTs, two of the delta class (TuGSTd10, TuGSTd14) and one of the mu class (TuGSTm09), which had been previously associated with striking resistance phenotypes against abamectin and other acaricides/insecticides, by transcriptional studies. Functional analysis showed that all three GSTs were capable of catalyzing the conjugation of both 1-chloro-2,4 dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene(DCNB) to glutathione (GSH), as well as exhibiting GSH-dependent peroxidase activity toward Cumene hydroperoxide (CumOOH). The steady-state kinetics of the T. urticae GSTs for the GSH/CDNB conjugation reaction were determined and compared with other GSTs. The interaction of the three recombinant proteins with several acaricides and insecticides was also investigated. TuGSTd14 showed the highest affinity toward abamectin and a competitive type of inhibition, which suggests that the insecticide may bind to the H-site of the enzyme. The three-dimensional structure of the TuGSTd14 was predicted based on X-ray structures of delta class GSTs using molecular modeling. Structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of TuGSTd14.

  17. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk; TOPICAL

    International Nuclear Information System (INIS)

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results

  18. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Prachy; Mukherjee, Prasun K.; Sherkhane, Pramod D.; Kale, Sharad P. [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Eapen, Susan, E-mail: eapenhome@yahoo.com [Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Highlights: {yields} Transgenic plants expressing a TvGST gene were tested for tolerance, uptake and degradation of anthracene. {yields} Transgenic plants were more tolerant to anthracene and take up more anthracene from soil and solutions compared to control plants. {yields} Using in vitro T{sub 1} seedlings, we showed that anthracene-a three fused benzene ring compound was phytodegraded to naphthalene derivatives, having two benzene rings. {yields} This is the first time that a transgenic plant was shown to have the potential to phytodegrade anthracene. - Abstract: Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of {sup 14}C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T{sub 0} and T{sub 1}) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.

  19. Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study

    Directory of Open Access Journals (Sweden)

    Ackermann-Liebrich Ursula

    2007-01-01

    Full Text Available Abstract Background Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD. Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population. Methods We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF25–75 during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied. Results The associations of GST genotypes with FEV1, FVC, and FEF25–75 were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9 relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant. Conclusion Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population.

  20. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.

    Science.gov (United States)

    Taniuchi, K; Cerny, R L; Tanouchi, A; Kohno, K; Kotani, N; Honke, K; Saibara, T; Hollingsworth, M A

    2011-12-01

    O-linked glycans of secreted and membrane-bound proteins have an important role in the pathogenesis of pancreatic cancer by modulating immune responses, inflammation and tumorigenesis. A critical aspect of O-glycosylation, the position at which proteins are glycosylated with N-acetyl-galactosamine on serine and threonine residues, is regulated by the substrate specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferases (GalNAc-Ts). Thus, GalNAc-Ts regulate the first committed step in O-glycosylated protein biosynthesis, determine sites of O-glycosylation on proteins and are important for understanding normal and carcinoma-associated O-glycosylation. We have found that one of these enzymes, GalNAc-T3, is overexpressed in human pancreatic cancer tissues and suppression of GalNAc-T3 significantly attenuates the growth of pancreatic cancer cells in vitro and in vivo. In addition, suppression of GalNAc-T3 induces apoptosis of pancreatic cancer cells. Our results indicate that GalNAc-T3 is likely involved in pancreatic carcinogenesis. Modification of cellular glycosylation occurs in nearly all types of cancer as a result of alterations in the expression levels of glycosyltransferases. We report guanine the nucleotide-binding protein, α-transducing activity polypeptide-1 (GNAT1) as a possible substrate protein of GalNAc-T3. GalNAc-T3 is associated with O-glycosylation of GNAT1 and affects the subcellular distribution of GNAT1. Knocking down endogenous GNAT1 significantly suppresses the growth/survival of PDAC cells. Our results imply that GalNAc-T3 contributes to the function of O-glycosylated proteins and thereby affects the growth and survival of pancreatic cancer cells. Thus, substrate proteins of GalNAc-T3 should serve as important therapeutic targets for pancreatic cancers.

  1. Structural analysis of an epsilon-class glutathione transferase from housefly, Musca domestica.

    Science.gov (United States)

    Nakamura, Chihiro; Yajima, Shunsuke; Miyamoto, Toru; Sue, Masayuki

    2013-01-25

    Glutathione transferases (GSTs) play an important role in the detoxification of insecticides, and as such, they are a key contributor to enhanced resistance to insecticides. In the housefly (Musca domestica), two epsilon-class GSTs (MdGST6A and MdGST6B) that share high sequence homology have been identified, which are believed to be involved in resistance against insecticides. The structural determinants controlling the substrate specificity and enzyme activity of MdGST6s are unknown. The aim of this study was to crystallize and perform structural analysis of the GST isozyme, MdGST6B. The crystal structure of MdGST6B complexed with reduced glutathione (GSH) was determined at a resolution of 1.8 Å. MdGST6B was found to have a typical GST folding comprised of N-terminal and C-terminal domains. Arg113 and Phe121 on helix 4 were shown to protrude into the substrate binding pocket, and as a result, the entrance of the substrate binding pocket was narrower compared to delta- and epsilon-class GSTs from Africa malaria vector Anopheles gambiae, agGSTd1-6 and agGSTe2, respectively. This substrate pocket narrowing is partly due to the presence of a π-helix in the middle of helix 4. Among the six residues that donate hydrogen bonds to GSH, only Arg113 was located in the C-terminal domain. Ala substitution of Arg113 did not have a significant effect on enzyme activity, suggesting that the Arg113 hydrogen bond does not play a crucial role in catalysis. On the other hand, mutation at Phe108, located just below Arg113 in the binding pocket, reduced the affinity and catalytic activity to both GSH and the electrophilic co-substrate, 1-chloro-2,4-dinitrobenzene.

  2. Glutathione-S-transferases in lung and sputum specimens, effects of smoking and COPD severity

    Science.gov (United States)

    Harju, Terttu; Mazur, Witold; Merikallio, Heta; Soini, Ylermi; Kinnula, Vuokko L

    2008-01-01

    Background Oxidative stress plays a potential role in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Glutathione S-transferases (GSTs) detoxify toxic compounds in tobacco smoke via glutathione-dependent mechanisms. Little is known about the regulation and expression of GSTs in COPD lung and their presence in airway secretions. Methods GST alpha, pi and mu were investigated by immunohistochemistry in 72 lung tissue specimens and by Western analysis in total lung homogenates and induced sputum supernatants from non-smokers, smokers and patients with variable stages of COPD severity. Results GST alpha was expressed mainly in the airway epithelium. The percentage of GST alpha positive epithelial cells was lower in the central airways of patients with very severe (Stage IV) COPD compared to mild/moderate COPD (p = 0.02). GST alpha by Western analysis was higher in the total lung homogenates in mild/moderate COPD compared to cases of very severe disease (p < 0.001). GST pi was present in airway and alveolar epithelium as well as in alveolar macrophages. GST mu was expressed mainly in the epithelium. Both GST alpha and pi were detectable in sputum supernatants especially in patients with COPD. Conclusion This study indicates the presence of GST alpha and pi especially in the epithelium and sputum supernatants in mild/moderate COPD and low expression of GST alpha in the epithelium in cases of very severe COPD. The presence of GSTs in the airway secretions points to their potential protective role both as intracellular and extracellular mediators in human lung. PMID:19077292

  3. Glutathione S-Transferase Polymorphisms, Passive Smoking, Obesity, and Heart Rate Variability in Nonsmokers

    Science.gov (United States)

    Probst-Hensch, Nicole M.; Imboden, Medea; Dietrich, Denise Felber; Barthélemy, Jean-Claude; Ackermann-Liebrich, Ursula; Berger, Wolfgang; Gaspoz, Jean-Michel; Schwartz, Joel

    2008-01-01

    Background Disturbances of heart rate variability (HRV) may represent one pathway by which second-hand smoke (SHS) and air pollutants affect cardiovascular morbidity and mortality. The mechanisms are poorly understood. Objectives We investigated the hypothesis that oxidative stress alters cardiac autonomic control. We studied the association of polymorphisms in oxidant-scavenging glutathione S-transferase (GST) genes and their interactions with SHS and obesity with HRV. Methods A total of 1,133 nonsmokers > 50 years of age from a population-based Swiss cohort underwent ambulatory 24-hr electrocardiogram monitoring and reported on lifestyle and medical history. We genotyped GSTM1 and GSTT1 gene deletions and a GSTP1 (Ile105Val) single nucleotide polymorphism and analyzed genotype–HRV associations by multiple linear regressions. Results Homozygous GSTT1 null genotypes exhibited an average 10% decrease in total power (TP) and low-frequency-domain HRV parameters. All three polymorphisms modified the cross-sectional associations of HRV with SHS and obesity. Homozygous GSTM1 null genotypes with > 2 hr/day of SHS exposure exhibited a 26% lower TP [95% confidence interval (CI), 11 to 39%], versus a reduction of −5% (95% CI, −22 to 17%) in subjects with the gene and the same SHS exposure compared with GSTM1 carriers without SHS exposure. Similarly, obese GSTM1 null genotypes had, on average, a 22% (95% CI, 12 to 31%) lower TP, whereas with the gene present obesity was associated with only a 3% decline (95% CI, −15% to 10%) compared with nonobese GSTM1 carriers. Conclusions GST deficiency is associated with significant HRV alterations in the general population. Its interaction with SHS and obesity in reducing HRV is consistent with an impact of oxidative stress on the autonomous nervous system. PMID:19057702

  4. Labeling embryonic stem cells with enhanced green fluorescent protein on the hypoxanthineguanine phosphoribosyl transferase locus

    Institute of Scientific and Technical Information of China (English)

    滕路; 孟国良; 刑阳; 尚克刚; 王小珂; 顾军

    2003-01-01

    Objective To label embryonic stem (ES) cells with enhanced green fluorescent protein (EGF P) on the hypoxanthineguanine phosphoribosyl transferase (HPRT) gene locus for t he first time to provide a convenient and efficient way for cell tracking and ma nipulation in the studies of transplantation and stem cell therapy.Methods Homologous fragments were obtained by polymerase chain reaction (PCR), from whic h the gene targeting vector pHPRT-EGFP was constructed. The linearized vector was introduced into ES cells by electroporation. The G418r6TGr cell clones were obtained after selection with G418 and 6TG media. The integration patterns of these resistant cell clones were identified with Southern blotting.Results EGFP expressing ES cells on the locus of HPRT were successfu lly generated. They have normal properties, such as karyotype, viability and di fferentiation ability. The green fluorescence of EGFP expressing cells was main tained in propagation of the ES cells for more than 30 passages and in different iated cells. Cultured in suspension, the "green" ES cells aggregated and forme d embryoid bodies, retaining the green fluorescence at varying developmental sta ges. The "green" embryoid bodies could expand and differentiate into various t ypes of cells, exhibiting ubiquitous green fluorescence. Conclusions This generation of "green" targeted ES cells is described in an efficient proto col for obtaining the homologous fragments by PCR. Introducing the marker gene in the genome of ES cells, we should be able to manipulate them in vitro and use them as vehicles in cell-replacement therapy as well as for other biomedical a nd research purposes.

  5. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.

    Science.gov (United States)

    Eudes, Aymerick; Pereira, Jose H; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E K; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D; Loqué, Dominique

    2016-03-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels. PMID:26858288

  6. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  7. Glutathione S-transferase activity in follicular fluid from women undergoing ovarian stimulation: role in maturation.

    Science.gov (United States)

    Meijide, Susana; Hernández, M Luisa; Navarro, Rosaura; Larreategui, Zaloa; Ferrando, Marcos; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2014-10-01

    Female infertility involves an emotional impact for the woman, often leading to a state of anxiety and low self-esteem. The assisted reproduction techniques (ART) are used to overcome the problem of infertility. In a first step of the in vitro fertilization therapy women are subjected to an ovarian stimulation protocol to obtain mature oocytes, which will result in competent oocytes necessary for fertilization to occur. Ovarian stimulation, however, subjects the women to a high physical and psychological stress, thus being essential to improve ART and to find biomarkers of dysfunction and fertility. GSH is an important antioxidant, and is also used in detoxification reactions, catalysed by glutathione S-transferases (GST). In the present work, we have investigated the involvement of GST in follicular maturation. Patients with fertility problems and oocyte donors were recruited for the study. From each woman follicles at two stages of maturation were extracted at the preovulatory stage. Follicular fluid was separated from the oocyte by centrifugation and used as the enzyme source. GST activity was determined based on its conjugation with 3,4-dichloronitrobenzene and the assay was adapted to a 96-well microplate reader. The absorbance was represented against the incubation time and the curves were adjusted to linearity (R(2)>0.990). Results showed that in both donors and patients GST activity was significantly lower in mature oocytes compared to small ones. These results suggest that GST may play a role in the follicle maturation by detoxifying xenobiotics, thus contributing to the normal development of the oocyte. Supported by FIS/FEDER (PI11/02559), Gobierno Vasco (Dep. Educación, Universiades e Investigación, IT687-13), and UPV/EHU (CLUMBER UFI11/20 and PES13/58). The work was approved by the Ethics Committee of the UPV/EHU (CEISH/96/2011/RUIZLARREA), and performed according to the UPV/EHU and IVI-Bilbao agreement (Ref. 2012/01).

  8. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  9. [New synthesis of the anticoagulant pentasaccharide idraparinux and preparation of its analogues containing sulfonic acid moieties].

    Science.gov (United States)

    Herczeg, Mihály

    2012-01-01

    Two novel synthetic pathways were elaborated for the preparation of idraparinux, a heparin-related fully O-sulfated, O-methylated anticoagulant pentasaccharide. Both methods based upon a [2+3] block synthesis utilizing the same trisaccharide acceptor which was coupled to either a uronic acid disaccharide donor or its nonoxidized precursor. Two bioisosteric sulfonic acid analogues of idraparinux were also prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic acid esters were found to be excellent donors and acceptors in the glycosylation reactions. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of the reference compound idraparinux and the new sulfonic acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic acid moiety resulted in a notable decrease in the anti-Xa activity. PMID:23230650

  10. Rescue of Drosophila Melanogaster l(2)35Aa lethality is only mediated by polypeptide GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11.

    Science.gov (United States)

    Bennett, Eric P; Chen, Ya-Wen; Schwientek, Tilo; Mandel, Ulla; Schjoldager, Katrine ter-Borch Gram; Cohen, Stephen M; Clausen, Henrik

    2010-05-01

    The Drosophila l(2)35Aa gene encodes a UDP-N-acetylgalactosamine: Polypeptide N-acetylgalactosaminyltransferase, essential for embryogenesis and development (J. Biol. Chem. 277, 22623-22638; J. Biol. Chem. 277, 22616-22). l(2)35Aa, also known as pgant35A, is a member of a large evolutionarily conserved family of genes encoding polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human GALNT11 are thought to belong to a distinct subfamily. Recent in vitro studies have shown that pgant35A and pgant7, encoding enzymes from different subfamilies, prefer different acceptor substrates, whereas the orthologous pgant35A and human GALNT11 gene products possess, 1) conserved substrate preferences and 2) similar acceptor site preferences in vitro. In line with the in vitro pgant7 studies, we show that l(2)35Aa lethality is not rescued by ectopic pgant7 expression. Remarkably and in contrast to this observation, the human pgant35A ortholog, GALNT11, was shown not to support rescue of the l(2)35Aa lethality. By use of genetic "domain swapping" experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11.

  11. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    Science.gov (United States)

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.

  12. Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria

    Institute of Scientific and Technical Information of China (English)

    Hai-Dan Sun; Ya-Wei Ru; Dong-Juan Zhang; Song-Yue Yin; Liang Yin; Ying-Ying Xie; You-Fei Guan; Si-Qi Liu

    2012-01-01

    AIM:To survey glutathione (GSH) S-transferase (GST)isoforms in mitochondria and to reveal the isoforms' biological significance in diabetic mice.METHODS:The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches,namely,GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOFMS) and SDS-PAGE/LC ESI MS/MS.The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs.To evaluate the liver mitochondrial GSTs quantitatively,calibration curves were generated by the loading amounts of individual recombinant GST protein vs the relative intensities elicited from the Western blotting.An extensive comparison of the liver mitochondrial GSTs was conducted between normal and db/db diabetic mice.Student's t test was adopted for the estimation of regression and significant difference.RESULTS:Using GSH affinity/2DF/MALDI TOF/TOF MS,three GSTs,namely,alpha3,mu1 and pi1,were identified; whereas five GSTs,alpha3,mu1,pi1,kappa1 and zeta1,were detected in mouse liver mitochondria using SDS-PAGE/LC ESI MS/MS,of these GSTs,GST kappa1 was reported as a specific mitochondrial GST.The R2 values of regression ranged between values of about 0.86 and 0.98,which were acceptable for the quantification.Based on the measurement of the GST abundances in liver mitochondria of normal and diabetic mice,the four GSTs,alpha3,kappa1,mu1 and zeta1,were found to be almost comparable between the two sets of animals,whereas,lower GST pi1 was detected in the diabetic mice compared with normal ones,the signal of Western blotting in control and db/ db diabetic mice liver mitochondria is 134.61 ± 53.84vs 99.74 ± 46.2,with P < 0.05.CONCLUSION:Our results indicate that GSTs exist widely in mitochondria and its abundances of mitochondrial GSTs might be tissue-dependent and disease-related.

  13. Glutathione S-transferase activity in follicular fluid from women undergoing ovarian stimulation: role in maturation.

    Science.gov (United States)

    Meijide, Susana; Hernández, M Luisa; Navarro, Rosaura; Larreategui, Zaloa; Ferrando, Marcos; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2014-10-01

    Female infertility involves an emotional impact for the woman, often leading to a state of anxiety and low self-esteem. The assisted reproduction techniques (ART) are used to overcome the problem of infertility. In a first step of the in vitro fertilization therapy women are subjected to an ovarian stimulation protocol to obtain mature oocytes, which will result in competent oocytes necessary for fertilization to occur. Ovarian stimulation, however, subjects the women to a high physical and psychological stress, thus being essential to improve ART and to find biomarkers of dysfunction and fertility. GSH is an important antioxidant, and is also used in detoxification reactions, catalysed by glutathione S-transferases (GST). In the present work, we have investigated the involvement of GST in follicular maturation. Patients with fertility problems and oocyte donors were recruited for the study. From each woman follicles at two stages of maturation were extracted at the preovulatory stage. Follicular fluid was separated from the oocyte by centrifugation and used as the enzyme source. GST activity was determined based on its conjugation with 3,4-dichloronitrobenzene and the assay was adapted to a 96-well microplate reader. The absorbance was represented against the incubation time and the curves were adjusted to linearity (R(2)>0.990). Results showed that in both donors and patients GST activity was significantly lower in mature oocytes compared to small ones. These results suggest that GST may play a role in the follicle maturation by detoxifying xenobiotics, thus contributing to the normal development of the oocyte. Supported by FIS/FEDER (PI11/02559), Gobierno Vasco (Dep. Educación, Universiades e Investigación, IT687-13), and UPV/EHU (CLUMBER UFI11/20 and PES13/58). The work was approved by the Ethics Committee of the UPV/EHU (CEISH/96/2011/RUIZLARREA), and performed according to the UPV/EHU and IVI-Bilbao agreement (Ref. 2012/01). PMID:26461371

  14. Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells.

    Science.gov (United States)

    van Gisbergen, Marike W; Cebula, Marcus; Zhang, Jie; Ottosson-Wadlund, Astrid; Dubois, Ludwig; Lambin, Philippe; Tew, Kenneth D; Townsend, Danyelle M; Haenen, Guido R M M; Drittij-Reijnders, Marie-José; Saneyoshi, Hisao; Araki, Mika; Shishido, Yuko; Ito, Yoshihiro; Arnér, Elias S J; Abe, Hiroshi; Morgenstern, Ralf; Johansson, Katarina

    2016-06-01

    Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance

  15. Genetic polymorphisms in glutathione S-transferase T1 affect the surgical outcome of varicocelectomies in infertile patients

    Institute of Scientific and Technical Information of China (English)

    Kentaro Ichioka; Kanji Nagahama; Kazutoshi Okubo; Takeshi Soda; Osamu Ogawa; Hiroyuki Nishiyama

    2009-01-01

    Glutathione S-transferases (GSTs), superoxide dismutase 2 (SOD2) and NAD(P)H:quinone oxidoreductase 1 (NQO1) are anti-oxidant enzyme genes. Polymorphisms of GSTs, SOD2 and NQO1 have been reported to influence individual susceptibility to various diseases. In an earlier study, we obtained preliminary findings that a subset of glutathione S-transferase T1 (GSTT1)-wt patients with varicocele may exhibit good response to varicocelectomy. In this study, we extended the earlier study to determine the distribution of genotype of each gene in the infertile population and to evaluate whether polymorphism of these genes affects the results of surgical treatment of varicocele. We analyzed 72 infertile varicocele patients, 202 infertile patients without varicocele and 101 male controls. Genotypes of GSTs were determined by polymerase chain reaction (PCR). Genotyping of SOD2 and NQO1 was performed using the PCR-restriction fragment length polymorphism (PCR-RFLP) method. A significantly better response to varicocelectomy was found in patients with the GSTTI-wt genotype (63.2%) and NQO1-Ser/Ser genotype (80.0%) than in those with GSTT1-null genotype (35.3%) and NQO1-Pro/Pro or NQO1-Pro/Ser genotype (45.2%), respectively. The frequencies of glutathione S-transferase M1/T1, SOD2 and NQO1 genotypes did not differ significantly among the varicocele patients, idiopathic infertile patients and male controls. GSTT1 genotype is associated with improvement of semen parameters after varicocelectomy. As the number of patients with NQO1-Ser/Ser genotype was not sufficient to reach definite conclusions, the association of NQO1 genotype with varicoceleetomy requires further investigation.

  16. Comparative study on glutathione transferases of rat brain and testis under the stress of phenobarbitol and β-methylcholanthrene

    Institute of Scientific and Technical Information of China (English)

    THYAGARAJU K.; HEMAVATHI B.; VASUNDHARA K.; RAO A.D.; DEVI K.N.

    2005-01-01

    A comparative study was made on the tissue specific expression of glutathione transferases (GST) in brain and testis after exposure of rat to phenobarbitol (PB) and 3-methylcholanthrene (MC). Glutathione transferases, a family of multifunctional proteins are involved in intracellular transport processes and in detoxication of electrophilic xenobiotics by catalyzing reactions such as conjugation, isomerization, reduction and thiolysis. On purification, the yield of GST proteins by affinity chromatography was 39% in testis and 32% in brain. The affinity purified testis GSTs were resolved by chromatofocusing into six anionic and four cationic isozymes, and in brain glutathione transferases were resolved into four anionic and three cationic isozymes, suggesting the presence of multiple isozymes with Yc, Yb, Y3 and Yδ in both of them. In testis and brain, these isozymes at identical pI values showed variable functions with a battery of substrates and the cationic isozymes of brain and testis showed identical properties in CHP (cumene hydroperoxide) at pH values of above 7.0. Substrate specificity studies and immunoblot analysis of testis and brain proteins revealed that they play a predominant role in the detoxication of phenobarbitol or 3-methylcholanthrene. Expression of the isozymes in testis and brain on exposure to PB and MC indicated elevated subunit variation. In both testis and brain, Yδ ofπclass was expressed on PB treatment and Yc of α class and Y3 of μ class was expressed in MC treated testis and only Yc was predominantly expressed in MC treated brain. Thus these subunits expression is considered as markers for carcinogenesis and specific to chemical toxicity under phenobarbitol and 13-methylcholanthrene stress.

  17. Glutathione S-transferases gene polymorphisms and risk of male idiopathic infertility: a systematic review and meta-analysis.

    Science.gov (United States)

    Li, Xin; Pan, Jinhong; Liu, Qigui; Xiong, Enqing; Chen, Zhiwen; Zhou, Zhansong; Su, Yongping; Lu, Gensheng

    2013-03-01

    The Glutathione S-transferases (GSTs) polymorphisms have been implicated in susceptibility to male idiopathic infertility, but study results are still controversial. To investigate the genetic associations between GSTs polymorphisms and risk of male idiopathic infertility, a systematic review and meta-analysis were performed. Meta-analysis was performed by pooling odds ratio (OR) with its corresponding 95 % confidence interval (95 % CI) form studies in electronic databases up to March 16, 2012. Glutathione S-transferase M 1 (GSTM1) null genotype, Glutathione S-transferase T 1 (GSTT1) null genotype, and dual null genotype of GSTM1/GSTT1 were analyzed independently. 14 eligible studies with a total of 1,845 idiopathic infertility males and 1,729 controls were included. There were 13 studies on GSTM1 polymorphism, 10 ones on GSTT1 polymorphism and 5 ones on GSTM1-GSTT1 interaction analysis. Meta-analyses of total relevant studies showed GSTM1 null genotype was significantly associated with an increased risk of male idiopathic infertility (OR = 1.40, 95 % CI 1.07-1.84, P OR = 0.015). The GSTM1-GSTT1 interaction analysis showed dual null genotype of GSTM1/GSTT1 was also significantly associated with increased risk of male idiopathic infertility (OR = 1.85, 95 % CI 1.07-3.21, P OR = 0.028). Subgroup analyses by ethnicity showed the associations above were still statistically significant in Caucasians (For GSTM1, OR = 1.51, 95 % CI 1.11-2.05, P OR = 0.009; For GSTM1/GSTT1, OR = 2.10, 95 % CI 1.51-2.91, P OR < 0.001). This meta-analysis suggests GSTM1 null genotype contributes to increased risk of male idiopathic infertility in Caucasians, and males with dual null genotype of GSTM1/GSTT1 are particularly susceptible to developing idiopathic infertility.

  18. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    Science.gov (United States)

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. PMID:27234208

  19. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    Directory of Open Access Journals (Sweden)

    Fucini Paola

    2004-04-01

    Full Text Available Abstract Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this r

  20. Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro.

    Directory of Open Access Journals (Sweden)

    Michael P Trombley

    Full Text Available Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs, including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS by the addition of positively charged moieties, such as phosphoethanolamine (PEA, confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.

  1. Characterization and heterospecific expression of cDNA clones of genes in the maize GSH S-transferase multigene family.

    OpenAIRE

    Grove, G; Zarlengo, R P; Timmerman, K P; Li, N Q; Tam, M F; Tu, C P

    1988-01-01

    We have isolated from a constructed lambda gt11 expression library two classes of cDNA clones encoding the entire sequence of the maize GSH S-transferases GST I and GST III. Expression of a full-length GST I cDNA in E. coli resulted in the synthesis of enzymatically active maize GST I that is immunologically indistinguishable from the native GST I. Another GST I cDNA with a truncated N-terminal sequence is also active in heterospecific expression. Our GST III cDNA sequence differs from the ve...

  2. Glutathione-S-Transferase: A Minor Allergen in Birch Pollen due to Limited Release from Hydrated Pollen

    OpenAIRE

    Stephan Deifl; Christian Zwicker; Eva Vejvar; Claudia Kitzmüller; Gabriele Gadermaier; Birgit Nagl; Susanne Vrtala; Peter Briza; Zlabinger, Gerhard J.; Beatrice Jahn-Schmid; Fatima Ferreira; Barbara Bohle

    2014-01-01

    Background Recently, a protein homologous to glutathione-S-transferases (GST) was detected in prominent amounts in birch pollen by proteomic profiling. As members of the GST family are relevant allergens in mites, cockroach and fungi we investigated the allergenic relevance of GST from birch (bGST). Methodology bGST was expressed in Escherichia coli, purified and characterized by mass spectrometry. Sera from 217 birch pollen-allergic patients were tested for IgE-reactivity to bGST by ELISA. T...

  3. Cloning and expression of a cDNA encoding a maize glutathione-S-transferase in E. coli.

    OpenAIRE

    Moore, R. E.; Davies, M S; O'Connell, K M; Harding, E I; Wiegand, R C; Tiemeier, D C

    1986-01-01

    The isolation and characterization of a family of maize glutathione-S-transferases (GST's) has been described previously. These enzymes are designated GSTs I, II and III based on size, substrate specificity and responsiveness to safeners. GST III has been shown to act on the herbicide alachlor as well as the commonly used substrate 1-chloro-2,4-dinitrobenzene (CDNB). Clones were isolated from a maize cDNA library in lambda gt10. Three clones contained the entire coding region for GST III. The...

  4. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin

    DEFF Research Database (Denmark)

    Poulsen, S M; Kofoed, C; Vester, B

    2000-01-01

    investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact...... transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop...

  5. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides.

    Science.gov (United States)

    Begum, Parvin; Hashidoko, Yasuyuki; Islam, Md Tofazzal; Ogawa, Yuko; Tahara, Satoshi

    2002-01-01

    The EtOAc soluble constituents of the unripe fruits of Ginkgo biloba showed motility inhibition followed by lysis of zoospores of the phytopathogenic Aphanomyces cochlioides. We purified 22:1-omega7-anacardic acid (1), 24:1-omega9-anacardic acid (2) and 22:0-anacardic acid (3), together with other related compounds, 21:1-omega7-cardol (4) and 21:1-omega7-cardanol (5) from the crude extracts of Ginkgo fruits. Amongst them, compound 1 was a major active agent in quality and quantity, and showed potent motility inhibition (98% in 30 min) followed by lysis (55% in 3 h) of the zoospores at 1 x 10(-7) M. The 2-O-methyl derivative (1-c) of 1 displayed antibacterial activity against Bacillus subtilis, but practically inactive to Escherichia coli. A brief study on structure-activity relationships revealed that a carboxyl group on the aromatic ring and an unsaturated side chain in the anacardic acid derivative are important for strong motility inhibitory and lytic activities against the zoospore. PMID:12440727

  6. Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal Igκ in insect cells.

    Science.gov (United States)

    Horynová, Milada; Takahashi, Kazuo; Hall, Stacy; Renfrow, Matthew B; Novak, Jan; Raška, Milan

    2012-02-01

    The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system.

  7. Catalytic features and crystal structure of a tau class glutathione transferase from Glycine max specifically upregulated in response to soybean mosaic virus infections.

    Science.gov (United States)

    Skopelitou, Katholiki; Muleta, Abdi W; Papageorgiou, Anastassios C; Chronopoulou, Evangelia; Labrou, Nikolaos E

    2015-02-01

    The plant tau class glutathione transferases (GSTs) play important roles in biotic and abiotic stress tolerance in crops and weeds. In this study, we systematically examined the catalytic and structural features of a GST isoenzyme from Glycine max (GmGSTU10-10). GmGSTU10-10 is a unique isoenzyme in soybean that is specifically expressed in response to biotic stress caused by soybean mosaic virus (SMV) infections. GmGSTU10-10 was cloned, expressed in Escherichia coli, purified and characterized. The results showed that GmGSTU10-10 catalyzes several different reactions and exhibits wide substrate specificity. Of particular importance is the finding that the enzyme shows high antioxidant catalytic function and acts as hydroperoxidase. In addition, its Km for GSH is significantly lower, compared to other plant GSTs, suggesting that GmGSTU10-10 is able to perform efficient catalysis under conditions where the concentration of reduced glutathione is low (e.g. oxidative stress). The crystal structure of GmGSTU10-10 was solved by molecular replacement at 1.6Å resolution in complex with glutathione sulfenic acid (GSOH). Structural analysis showed that GmGSTU10-10 shares the same overall fold and domain organization as other plant cytosolic GSTs; however, major variations were identified in helix H9 and the upper part of helix H4 that affect the size of the active site pockets, substrate recognition and the catalytic mechanism. The results of the present study provide new information into GST diversity and give further insights into the complex regulation and enzymatic functions of this plant gene superfamily.

  8. Identification of Immunodominant Th1-type T cell Epitopes from Schistosoma japonicum 28 kDa Glutathione-S-transferase, a Vaccine Candidate

    Institute of Scientific and Technical Information of China (English)

    Guang-Fu LI; Guan-Ling WU; Yong WANG; Zhao-Song ZHANG; Xin-Jun WANG; Min-Jun JI; Xiang ZHU; Feng LIU; Xiao-Ping CAI; Hai-Wei WU

    2005-01-01

    Th1-type cytokines produced by the stimulation of Th1-type epitopes derived from defined schistosome-associated antigens are correlated with the development of resistance to the parasite infection.Schistosoma mansoni 28 kDa glutathione-S-transferase (Sm28GST), a major detoxification enzyme, has been recognized as a vaccine candidate and a phase Ⅱ clinical trial has been carried out. Sheep immunized with recombinant Schistosoma japonicum 28GST (Sj28GST) have shown immune protection against the parasite infection. In the present study, six candidate peptides (P1, P2, P3, P4, P7 and P8) from Sj28GST were predicted, using software, to be T cell epitopes, and peptides P5 and P6 were designed by extending five amino acids at the N-terminal and C-terminal of P1, respectively. The peptide 190-211 aa in Sj28GST corresponding to the Th1-type epitope (190-211 aa) identified from Sm28GST was selected and named P9.The nine candidate peptides were synthesized or produced as the fusion protein with thioredoxin in the pET32c(+)/BL21(DE3) system. Their capacity to induce a Th1-type response in vitro was measured using lymphocyte proliferation, cytokine detection experiments and flow cytometry. The results showed that P6(73-86 aa) generated the strongest stimulation effect on T cells among the nine candidate peptides, and drove the highest level of IFN-γ and IL-2. Therefore, P6 is a functional Th1-type T cell epitope that is different from that in Sm28GST, and will be useful for the development of effective vaccines which can trigger acquired immunity against S. japonicum. Moreover, our strategy of identifying the Th1-type epitope by a combination of software prediction and experimental confirmation provides a convenient and cost-saving alternative approach to previous methods.

  9. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Mohd Shahab

    Full Text Available Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.

  10. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study.

    Directory of Open Access Journals (Sweden)

    Marija G Matic

    Full Text Available OBJECTIVE: We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. PATIENTS AND METHODS: A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR with corresponding 95% confidence interval (95%CI was calculated. RESULTS: The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032. The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001. The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001. The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002. Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067. CONCLUSION: Null or low-activity genotypes of the

  11. Nicotinamide phosphoribosyl transferase (Nampt is required for de novo lipogenesis in tumor cells.

    Directory of Open Access Journals (Sweden)

    Sarah C Bowlby

    Full Text Available Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+, a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+ in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt in maintaining de novo lipogenesis in prostate cancer (PCa cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK and phosphorylation of acetyl-CoA carboxylase (ACC. In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.

  12. A simple colorimetric assay for specific detection of glutathione-S transferase activity associated with DDT resistance in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Evangelia Morou

    Full Text Available BACKGROUND: Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. METHODOLOGY/PRINCIPAL FINDINGS: We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. CONCLUSIONS/SIGNIFICANCE: The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control.

  13. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties.

    Science.gov (United States)

    Arockiaraj, Jesu; Gnanam, Annie J; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Chaurasia, Mukesh Kumar; Pasupuleti, Mukesh; Ramaswamy, Harikrishnan; Arasu, Abirami; Sathyamoorthi, Akila

    2014-08-10

    Glutathione S-transferases play an important role in cellular detoxification and may have evolved to protect cells against reactive oxygen metabolites. In this study, we report the molecular characterization of glutathione s-transferase-theta (GST-θ) from freshwater prawn Macrobrachium rosenbergii. A full length cDNA of GSTT (1417 base pairs) was isolated and characterized bioinformatically. Exposure to virus (white spot syndrome baculovirus or M. rosenbergii nodovirus), bacteria (Aeromonas hydrophila or Vibrio harveyi) or heavy metals (cadmium or lead) significantly increased the expression of GSTT (P<0.05) in hepatopancreas. Recombinant GST-θ with monochlorobimane substrate had an optimum activity at pH7.5 and 35 °C. Furthermore recombinant GST-θ activity was abolished by the denaturants triton X-100, Gua-HCl, Gua-thiocyanate, SDS and urea in a dose-dependent manner. Overall, the results suggest a potential role for M. rosenbergii GST-θ in detoxification and possibly conferring immune protection.

  14. Lipoprotein N-acyl transferase (Lnt1) is dispensable for protein O-mannosylation by Streptomyces coelicolor.

    Science.gov (United States)

    Córdova-Dávalos, Laura Elena; Espitia, Clara; González-Cerón, Gabriela; Arreguín-Espinosa, Roberto; Soberón-Chávez, Gloria; Servín-González, Luis

    2014-01-01

    A protein glycosylation system related to that for protein mannosylation in yeast is present in many actinomycetes. This system involves polyprenyl phosphate mannose synthase (Ppm), protein mannosyl transferase (Pmt), and lipoprotein N-acyl transferase (Lnt). In this study, we obtained a series of mutants in the ppm (sco1423), lnt1 (sco1014), and pmt (sco3154) genes of Streptomyces coelicolor, which encode Ppm, Lnt1, and Pmt, to analyze their requirement for glycosylation of the heterologously expressed Apa glycoprotein of Mycobacterium tuberculosis. The results show that both Ppm and Pmt were required for Apa glycosylation, but that Lnt1 was dispensable for both Apa and the bacteriophage φC31 receptor glycosylation. A bacterial two-hybrid assay revealed that contrary to M. tuberculosis, Lnt1 of S. coelicolor does not interact with Ppm. The D2 catalytic domain of M. tuberculosisPpm was sufficient for complementation of an S. coelicolor double mutant lacking Lnt1 and Ppm, both for Apa glycosylation and for glycosylation of φC31 receptor. On the other hand, M. tuberculosisPmt was not active in S. coelicolor, even when correctly localized to the cytoplasmic membrane, showing fundamental differences in the requirements for Pmt activity in these two species.

  15. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source

  16. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver

    International Nuclear Information System (INIS)

    Acute cadmium intoxication affects glutathione S-transferase (GST) in rat liver. It has been found that 24 h after i.p. cadmium administration to rats, at a dose of 2.5 mg CdCl2 kg-1 body weight, the activity of this enzyme in liver cytosol increased by 40%. A less stimulatory effect persisted till 48 h and thereafter the enzyme activity normalized. Since, GST isoenzymes belong to different classes in mammalian tissues, we used quantitative immunoassays to verify which family of GST isoenzymes is influenced by this intoxication. Only alpha-class glutathione S-transferase (α-GST) proteins were detected in rat liver cytosol and their level increased by about 25%, 24 h after cadmium treatment. No pi-GST isoforms were found in liver cytosol from either normal or cadmium-treated rats. Co-administration of actinomycin D with cadmium normalized both the protein level and the activity of α-GST, suggesting that some effect occurs on enzyme transcription of these isoenzymes by this metal. On the other hand, it seems unlikely that the stimulatory effect is due to the high level of peroxides caused by lipid peroxidation, since Vitamin E administration strongly reduced the TBARS level, but did not cause any GST activity decrease

  17. Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus

    Energy Technology Data Exchange (ETDEWEB)

    LaCourse, E. James, E-mail: james.la-course@liverpool.ac.u [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Hernandez-Viadel, Mariluz; Jefferies, James R. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); Svendsen, Claus; Spurgeon, David J. [Centre for Ecology and Hydrology, Huntingdon PE28 2LS (United Kingdom); Barrett, John [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom); John Morgan, A.; Kille, Peter [Biosciences, University of Cardiff, Cardiff CF10 3TL (United Kingdom); Brophy, Peter M. [Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA (United Kingdom)

    2009-08-15

    The earthworm Lumbricus rubellus (Hoffmeister, 1843) is a terrestrial pollution sentinel. Enzyme activity and transcription of phase II detoxification superfamily glutathione transferases (GST) is known to respond in earthworms after soil toxin exposure, suggesting GST as a candidate molecular-based pollution biomarker. This study combined sub-proteomics, bioinformatics and biochemical assay to characterise the L. rubellus GST complement as pre-requisite to initialise assessment of the applicability of GST as a biomarker. L. rubellus possesses a range of GSTs related to known classes, with evidence of tissue-specific synthesis. Two affinity-purified GSTs dominating GST protein synthesis (Sigma and Pi class) were cloned, expressed and characterised for enzyme activity with various substrates. Electrospray ionisation mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) following SDS-PAGE were superior in retaining subunit stability relative to two-dimensional gel electrophoresis (2-DE). This study provides greater understanding of Phase II detoxification GST superfamily status of an important environmental pollution sentinel organism. - This study currently provides the most comprehensive view of the Phase II detoxification enzyme superfamily of glutathione transferases within the important environmental pollution sentinel earthworm Lumbricus rubellus.

  18. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Wanius, E-mail: wanius@if.sc.usp.br [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Travensolo, Regiane F. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Rodrigues, Nathalia C.; Muniz, João R. C. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Caruso, Célia S. [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Lemos, Eliana G. M. [Laboratório de Bioquímica de Microrganismos e de Plantas, Departamento de Tecnologia, UNESP, Jaboticabal (Brazil); Araujo, Ana Paula U. [Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Carrilho, Emanuel, E-mail: wanius@if.sc.usp.br [Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil); Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos (Brazil)

    2008-02-01

    Glutathione S-transferase from X. fastidiosa (xfGST) has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.23 Å. Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 Å, α = 63.45, β = 80.66, γ = 94.55°. xfGST crystals diffracted to 2.23 Å resolution on a rotating-anode X-ray source.

  19. In-house preparation of hydrogels for batch affinity purification of glutathione S-transferase tagged recombinant proteins

    Directory of Open Access Journals (Sweden)

    Buhrman Jason S

    2012-09-01

    Full Text Available Abstract Background Many branches of biomedical research find use for pure recombinant proteins for direct application or to study other molecules and pathways. Glutathione affinity purification is commonly used to isolate and purify glutathione S-transferase (GST-tagged fusion proteins from total cellular proteins in lysates. Although GST affinity materials are commercially available as glutathione immobilized on beaded agarose resins, few simple options for in-house production of those systems exist. Herein, we describe a novel method for the purification of GST-tagged recombinant proteins. Results Glutathione was conjugated to low molecular weight poly(ethylene glycol diacrylate (PEGDA via thiol-ene “click” chemistry. With our in-house prepared PEGDA:glutathione (PEGDA:GSH homogenates, we were able to purify a glutathione S-transferase (GST green fluorescent protein (GFP fusion protein (GST-GFP from the soluble fraction of E. coli lysate. Further, microspheres were formed from the PEGDA:GSH hydrogels and improved protein binding to a level comparable to purchased GSH-agarose beads. Conclusions GSH containing polymers might find use as in-house methods of protein purification. They exhibited similar ability to purify GST tagged proteins as purchased GSH agarose beads.

  20. The role of human demographic history in determining the distribution and frequency of transferase-deficient galactosaemia mutations.

    LENUS (Irish Health Repository)

    Flanagan, J M

    2010-02-01

    Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa.

  1. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site.

    Science.gov (United States)

    Wongsantichon, Jantana; Robinson, Robert C; Ketterman, Albert J

    2015-10-20

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme.

  2. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients

    DEFF Research Database (Denmark)

    Buchard, Anders; Eefsen, Martin; Semb, Synne;

    2012-01-01

    The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival in these pat......The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival...

  3. A novel splice site mutation in neonatal carnitine palmitoyl transferase II deficiency.

    NARCIS (Netherlands)

    Smeets, R.J.P.; Smeitink, J.A.M.; Semmekrot, B.A.; Scholte, H.R.; Wanders, R.J.; Heuvel, L.P.W.J. van den

    2003-01-01

    Mitochondrial beta-oxidation of long-chain fatty acids requires the concerted action of three tightly integrated membrane-bound enzymes (carnitine palmitoyltransferase I and II and carnitine/acylcarnitine translocase) that transport them into mitochondria. Neonatal onset of carnitine palmitoyltransf

  4. A mannosyl transferase required for lipopolysaccharide inner core assembly in Rhizobium leguminosarum. Purification, substrate specificity, and expression in Salmonella waaC mutants.

    Science.gov (United States)

    Kanipes, Margaret I; Ribeiro, Anthony A; Lin, Shanhua; Cotter, Robert J; Raetz, Christian R H

    2003-05-01

    The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-d-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo(2)-lipid IV(A). LpcC containing an N-terminal His(6) tag was assayed using GDP-mannose as the donor and Kdo(2)-[4'-(32)P]lipid IV(A) as the acceptor and was purified to near homogeneity. Sequencing of the N terminus confirmed that the purified enzyme is the lpcC gene product. Mild acid hydrolysis of the glycolipid generated in vitro by pure LpcC showed that the mannosylation occurs on the inner Kdo residue of Kdo(2)-[4'-(32)P]lipid IV(A). A lipid acceptor substrate containing two Kdo moieties is required by LpcC, since no activity is seen with lipid IV(A) or Kdo-lipid IV(A). The purified enzyme can use GDP-mannose or, to a lesser extent, ADP-mannose (both of which have the alpha-anomeric configuration) for the glycosylation of Kdo(2)-[4'-(32)P]lipid IV(A). Little or no activity is seen with ADP-glucose, UDP-glucose, UDP-GlcNAc, or UDP-galactose. A Salmonella typhimurium waaC mutant, which lacks the enzyme for incorporating the inner l-glycero-d-manno-heptose moiety of LPS, regains LPS with O-antigen when complemented with lpcC. An Escherichia coli heptose-less waaC-waaF deletion mutant expressing the R. leguminosarum lpcC gene likewise generates a hybrid LPS species consisting of Kdo(2)-lipid A plus a single mannose residue. Our results demonstrate that heterologous lpcC expression can be used to modify the structure of the Salmonella and E. coli LPS cores in living cells.

  5. 2-甲基-β-环糊精作为手性选择剂对5种药物对映体的毛细管电泳拆分研究%Chiral separation of five basic drug enantiomer by capillary electrophoresis with 2-O-methylated-β-cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    马晓伟; 左莉华; 徐淑英; 郭兴杰

    2012-01-01

    Objective To establish a capillary electrophoresis(CE)method for separating homatropine methyl bromide,ofloxacin,ketoconazole,liarozole and carvedilol. Methods 2-O-methylated-β-cyclodextrin(2-O-M-β-CD) was used as a chiral selector. The influence of buffer pH,2-O-M-β-CD concentration,buffer concentration on separation was investigated. Results Under the conditions tested, homatropine methylbromide, ofloxacin,ketocona2ole,liarozole, carvedilol were separated with the maximum resolution factors of 3. 6, 2. 8,1.7,1.5,1.4.respectively. Conclusions This CE method for separating enantiomers has advantages of the short analysis time,good reproducibility and high sensitivity.%目的 以2-甲基-β-环糊精(2-O-methylated-β-cyclodextrin,2-O-M-β-CD)为手性添加剂,利用毛细管电泳法(capillary electrophoresis,CE)对消旋体药物甲溴后马托品、氧氟沙星、酮康唑、利阿唑和卡维地洛进行拆分研究.方法 考察了背景电解质溶液的pH值、2-O-M-β-CD浓度、缓冲盐浓度对分离的影响,优化了分离条件.结果 在最佳分离条件下,甲溴后马托品、氧氟沙星、酮康唑、利阿唑对映体达到完全分离,分离度分别为3.6、2.8、1.7、1.5;卡维地洛对映体分离度达到1.4.结论所建立的毛细管电泳法适于除卡维地洛外其余4种药物的对映体分离.

  6. Yeast One-hybrid System Used to Identify the Binding Proteins for Rat Glutathione S-transferase P Enhancer I

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Methods Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI).Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. Results cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated, The binding of c-Jun and ANT to GPEI core sequence were confirmed. Conclusions Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  7. Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro.

    Science.gov (United States)

    Klaus, Anna; Zorman, Sarah; Berthier, Alexandre; Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe

    2013-01-01

    AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions.

  8. Genetic Polymorphisms Analysis of Glutathione S-transferase M1 and T1 in Children with Acute Lymphoblastic Leukemia

    Institute of Scientific and Technical Information of China (English)

    王军; 张利; 冯建飞; 王宏; 朱绍先; 胡豫; 李玉香

    2004-01-01

    Summary: The relationship between glutathione S-transferases (GSTs) M1, T1 genotype and childhood acute lymphoblastic leukemia (ALL) was investigated. GSTM1 and GSTT1 genotypes in genomic DNA from 67 children with ALL and 146 healthy controls were analyzed by using the multiplex polymerase chain reaction (PCR). The frequencies of GSTM1, M1-T1 null genotypes in ALL children were significantly higher than in the healthy controls (76.12 % versus 52.74 %, OR=2.856, P<0.001;50. 74 % versus 24. 66 %, OR=3. 148, P<0.001, respectively). However,there was no significant relationship between GSTT1 null genotype and ALL of children (61.19 %versus 49.32 %, OR=1. 621, P>0.05). It was suggested that GSTM1 null genotype might be a risk genotype of childhood ALL, while there as no correlation between GSTT1 null genotype and childhood ALL.

  9. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    DEFF Research Database (Denmark)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael;

    2015-01-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present...... the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy...... and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity...

  10. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics

    DEFF Research Database (Denmark)

    Kirillov, Stanislav; Porse, Bo Torben; Vester, Birthe;

    1997-01-01

    Determining how antibiotics inhibit ribosomal activity requires a detailed understanding of the interactions and relative movement of tRNA, mRNA and the ribosome. Recent models for the formation of hybrid tRNA binding sites during the elongation cycle have provided a basis for re-evaluating earlier......RNA-ribosome binding. Nevertheless, these relatively weak interactions determine the unidirectional movement of tRNAs through the ribosome and, moreover, they appear to be particularly susceptible to perturbation by antibiotics. Here we summarise current ideas relating particularly to the movement of the 3'-ends of t......RNA through the ribosome and consider possible inhibitory mechanisms of the peptidyl transferase antibiotics....

  11. Genetic polymorphism of human glutathione S-transferase A1 gene in mainland Chinese and its association with phenotype

    Institute of Scientific and Technical Information of China (English)

    JiePING; HuiWANG

    2005-01-01

    AIM Human glutathione S-transferase A1 (GSTA1) is an important phase Ⅱ metabolizing enzyme involved in the metabolism of many therapeutic drugs and is responsible for the metabolic detoxification of numerous promutagens and procarcinogens. The genetic polymorphism of GSTA1 has important implications for drug efficacy and cancer susceptibility. In this study, we determined the distribution of GSTA1 genetic polymorphism in Mainland Chinese. And we also investigated whether there exists the potential phenotype alterations caused by the genetic polymorphism in human. METHODS Genomic DNA was ex-tracted from peripheral blood of 140 Chinese people and 16 liver tissues obtained from non-liverish patients who underwent partial hepatectomy. And then the genotypes of human GSTA1 gene were analyzed by polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP).

  12. Mimicking Insect Communication: Release and Detection of Pheromone, Biosynthesized by an Alcohol Acetyl Transferase Immobilized in a Microreactor

    Science.gov (United States)

    Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.

    2012-01-01

    Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372

  13. Mimicking insect communication: release and detection of pheromone, biosynthesized by an alcohol acetyl transferase immobilized in a microreactor.

    Directory of Open Access Journals (Sweden)

    Lourdes Muñoz

    Full Text Available Infochemical production, release and detection of (Z,E-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an "artificial gland", i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered.

  14. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects.

    Science.gov (United States)

    Shi, Houxia; Pei, Lianghong; Gu, Shasha; Zhu, Shicheng; Wang, Yanyun; Zhang, Yi; Li, Bin

    2012-11-01

    Glutathione S-transferases are important detoxification enzymes involved in insecticide resistance. Sequencing the Tribolium castaneum genome provides an opportunity to investigate the structure, function, and evolution of GSTs on a genome-wide scale. Thirty-six putative cytosolic GSTs and 5 microsomal GSTs have been identified in T. castaneum. Furthermore, 40, 35, 13, 23, and 32 GSTs have been discovered the other insects, Drosophila, Anopheles, Apis, Bombyx, and Acyrthosiphon, respectively. Phylogenetic analyses reveal that insect-specific GSTs, Epsilon and Delta, are the largest species-specific expanded GSTs. In T. castaneum, most GSTs are tandemly arranged in three chromosomes. Particularly, Epsilon GSTs have an inverted long-fragment duplication in the genome. Other four widely distributed classes are highly conserved in all species. Given that GSTs specially expanded in Tribolium castaneum, these genes might help to resist poisonous chemical environments and produce resistance to kinds of different insecticides.

  15. Glutathione S-transferase M1 and T1 genotypes and endometriosis risk: a case-controlled study

    Institute of Scientific and Technical Information of China (English)

    林俊; 张信美; 钱羽力; 叶英辉; 石一复; 徐开红; 徐键云

    2003-01-01

    Objective To investigate the correlation between glutathione S-transferase (GST) M1 and T1 genotypes and endometriosis risk (EM). Methods Polymerase chain reaction (PCR) technique was used to detect the presence or absence of the GSTM1 and GSTT1 genes in genomic DNA isolated from the blood samples of 68 Han Chinese women with endometriosis and 28 without endometriosis. Results The frequencies of GSTM1 and GSTT1 null genotypes in women with endometriosis were 0.721 (49/68) and 0.779 (53/68), respectively, and in women without endometriosis were 0.429 (12/28) and 0.321 (9/28), respectively. There was a significant difference with regard to the frequencies of GSTM1 and GSTT1 null genotypes between the women with and without endometriosis (P0.05). Conclusion GSTM1 and GSTT1 null genotypes may be risk factors for the development of endometriosis.

  16. Micro-plasticity of genomes as illustrated by the evolution of glutathione transferases in 12 Drosophila species.

    Directory of Open Access Journals (Sweden)

    Chonticha Saisawang

    Full Text Available Glutathione transferases (GST are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family.

  17. Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul [Kyungpook National University College of Medicine, Taegu (Korea, Republic of); Shin, Sei One [Yeungnam University College of Medicine, Taegu (Korea, Republic of)

    2001-12-15

    Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x- irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed.

  18. Effect of Methyl Jasmonic Acid on Baccatin Ⅲ Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianfeng; GUO Zhigang

    2006-01-01

    As baccatin Ⅲ is an immediate diterpenoid precursor of taxol, the increase of baccatin Ⅲ is beneficial to the biosynthesis of taxol. Addition of methyl jasmonic acid (M J) enhances the activity of 10- deaceyle baccatin (DAB) Ⅲ acetyl transferase which catalyzes the bioconversion from 10-DAB Ⅲ to beccatin Ⅲ. In this paper, the baccatin Ⅲ content was increased by 174% by the addition of 100 μmol/L MJ in suspension cultures of Taxus cuspidate. Induction by MJ also increased the expression of a 49.0-kDa protein. This paper describes the cell free acetylation of 10-DAB Ⅲ in crude extracts of enzyme from the suspension cultures of Taxus cuspidate. The reaction product was confirmed by high performance liquid chromatograph (HPLC). About 25.0% of the 10-DAB Ⅲ was acetylized into baccatin Ⅲ on the 4th day with 100 μmol/L MJ.The 10-DAB Ⅲ acetyl transferase activity reached a peak on the 2nd day with 100 μmol/L M J, with 54.7% of the 10-DAB Ⅲ transformed into baccatin Ⅲ. The baccatin Ⅲ content increased with the increase of 10-DAB Ⅲ acetyl transferase activity, although the biosynthesis was delayed by more than 24 h. The remarkable induction of MJ on baccatin Ⅲ biosynthesis shows a promising way to increase the production of taxol.

  19. Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms

    DEFF Research Database (Denmark)

    Porse, B T; Garrett, R A

    1999-01-01

    nucleotides in the peptidyl transferase loop of 23 S rRNA, including the two mutated nucleotides. An rRNA footprinting study, performed both in vivo and in vitro, on the A and B components complexed to Bacillus megaterium ribosomes, indicated that similar drug-induced effects occur on free ribosomes and...

  20. Glutathione S-transferase phenotypes in relation to genetic variation and fruit and vegetable consumption in an endoscopy-based population.

    NARCIS (Netherlands)

    Tijhuis, M.J.; Visker, M.H.P.W.; Aarts, J.; Peters, W.H.M.; Roelofs, H.M.J.; Camp, L.O. den; Rietjens, I.M.C.M.; Boerboom, A.M.A.; Nagengast, F.M.; Kok, F.J.; Kampman, E.

    2007-01-01

    High glutathione S-transferase (GST) activity may contribute to colorectal cancer prevention. Functional polymorphisms are known in the GSTM1, GSTT1, GSTA1 and GSTP1 genes. The influence of these GST polymorphisms and recent fruit and vegetable consumption on GST levels and activity has not been inv

  1. GLUTATHIONE-S-TRANSFERASE ACTIVITY AND ISOENZYME COMPOSITION IN BENIGN OVARIAN-TUMORS, UNTREATED MALIGNANT OVARIAN-TUMORS, AND MALIGNANT OVARIAN-TUMORS AFTER PLATINUM CYCLOPHOSPHAMIDE CHEMOTHERAPY

    NARCIS (Netherlands)

    VANDERZEE, AGJ; VANOMMEN, B; MEIJER, C; HOLLEMA, H; VANBLADEREN, PJ; DEVRIES, EGE

    1992-01-01

    Glutathione S-transferase (GST) isoenzyme composition, isoenzyme quantities and enzymatic activity were investigated in benign (n = 4) ovarian tumours and malignant ovarian tumours, before (n = 20) and after (n = 16) chemotherapy. Enzymatic activity of GST in cytosols was measured by determining 1-c

  2. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2

    Science.gov (United States)

    GSTZs (zeta class glutathione transferases) belong to a highly conserved subfamily of soluble GSTs found in species ranging from fungi and plants to animals. GSTZ is identical to MAAI (maleylacetoacetate isomerase), which functions in tyrosine catabolism by catalyzing the isomerization of MAA (maley...

  3. INDUCTION OF DNA-PROTEIN CROSSLINKS BY THE METABOLISM OF DICHLOROMETHANE IN V79 CELL LINES TRANSFECTED WITH THE MURINE GLUTATHIONE-S-TRANSFERASE THETA 1 GENE

    Science.gov (United States)

    Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and...

  4. Conjugation of isoprene monoepoxides with glutathione, catalyzed by α, μ, π and θ-class glutathione S-transferases of rat and man

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Venekamp, J.C.; Salmon, F.G.C.; Bladeren, P.J. van

    1999-01-01

    In the present study, the enzymatic conjugation of the isoprene monoepoxides 3,4 epoxy-3-methyl-1-butene (EPOX-I) and 3,4-epoxy-2-methyl-1-butene (EPOX-II) with glutathione was investigated, using purified glutathione S-transferases (GSTs) of the α, μ, π and θ-class of rat and man. HPLC analysis of

  5. Correlation of Rutin Accumulation with 3-O-Glucosyl Transferase and Phenylalanine Ammonia-lyase Activities During the Ripening of Tomato Fruit

    NARCIS (Netherlands)

    Capanoglu, E.; Beekwilder, J.; Matros, A.; Boyacioglu, D.; Hall, R.D.; Mock, H.P.

    2012-01-01

    In tomato, the predominant flavonoid is quercetin-3-rutinoside (rutin). In this study, we aim to investigate the phenylalanine ammonia-lyase (PAL) and the quercetin-3-O-glucosyl transferase (3-GT) reactions in the formation of rutin during tomato fruit ripening. Tomatoes of the Moneymaker variety at

  6. Succinyl-CoA:acetoacetate transferase deficiency : identification of a new patient with a neonatal onset and review of the literature

    NARCIS (Netherlands)

    Niezen-Koning, K E; Wanders, R J; Ruiter, J P; Ijlst, L; Visser, G; Reitsma-Bierens, W C; Heijmans, Hugo; Reijngoud, D J; Smit, G P

    1997-01-01

    UNLABELLED: We describe the clinical symptoms and biochemical findings of a patient with succinyl-CoA:acetoacetate transferase deficiency who presented in the neonatal period and review the current literature on this subject. Our patient was initially suspected to have distal renal tubular acidosis,

  7. Succinyl-CoA : acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature

    NARCIS (Netherlands)

    NiezenKoning, KE; Ijlst, L; Visser, G; ReitsmaBierens, WCC; Heymans, HSA; Reijngoud, DJ; Smit, GPA; Ruiter, Jos P. N.

    1997-01-01

    We describe the clinical symptoms and biochemical findings of a patient with succinyl-CoA:acetoacetate transferase deficiency who presented in the neonatal period and review the current literature on this subject. Our patient was initially suspected to have distal renal tubular acidosis, and subsequ

  8. High-throughput genotyping of copy number variation in glutathione S-transferases M1 and T1 using real-time PCR in 20,687 individuals

    DEFF Research Database (Denmark)

    Norskov, M.S.; Frikke-Schmidt, R.; Loft, S.;

    2009-01-01

    OBJECTIVES: Characteristic for the genes encoding glutathione S-transferase (GST) M1 and GSTT1 is a null allele, suggested to increase susceptibility to chronic diseases. We report an optimized method for the determination of copy number variation (CNV) in GST genes. DESIGN AND METHODS: Real...

  9. Copy number variation in glutathione S-transferases M1 and T1 and ischemic vascular disease: four studies and meta-analyses

    DEFF Research Database (Denmark)

    Nørskov, Marianne S; Frikke-Schmidt, Ruth; Loft, Steffen;

    2011-01-01

    Glutathione S-transferases (GSTs) M1 and T1 detoxify products of oxidative stress and may protect against atherosclerosis and ischemic vascular disease (IVD). We tested the hypothesis that copy number variation (CNV) in GSTM1 and GSTT1 genes, known to be associated with stepwise decreases...

  10. No elevation of glutathione S-transferase-a1-1 by amiodarone loading in intensive care unit patients with atrial fibrillation.

    NARCIS (Netherlands)

    Hilkens, M.; Pickkers, P.; Peters, W.H.M.; Hoeven, J.G. van der

    2009-01-01

    Hepatocellular toxicity is a putative side-effect of amiodarone. The hepatic detoxification enzyme glutathione S-transferase-A1-1 (GSTA1-1) is a sensitive indicator of hepatocellular damage. We investigated the occurrence of subclinical liver injury, as measured by plasma GSTA1-1 in intensive care u

  11. Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45

    NARCIS (Netherlands)

    Hylckama Vlieg, Johan E.T. van; Kingma, Jaap; Kruizinga, Wim; Janssen, Dick B.

    1999-01-01

    A glutathione S transferase (GST) with activity toward 1,2-eposy-2-methyl-3-butene (isoprene monoxide) and cis-1,2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45, The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione (GSH)-

  12. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    OpenAIRE

    Francesco Panza; Vincenza Frisardi; Cristiano Capurso; Alessia D'Introno; Colacicco, Anna M.; Alessandra Di Palo; Imbimbo, Bruno P; Gianluigi Vendemiale; Antonio Capurso; Vincenzo Solfrizzi

    2009-01-01

    A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD), with particular emphasis on S-adenosylmethionine (SAM) and polyunsaturated fatty acids (PUFA). Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST) activity. AD is accomp...

  13. Adipose Tissue Fatty Acid Storage Factors: Effects of Depot, Sex and Fat Cell Size

    OpenAIRE

    Hames, Kazanna C.; Koutsari, Christina; Santosa, Sylvia; Bush, Nikki C.; Jensen, Michael D.

    2015-01-01

    Background/Objectives Patterns of postabsorptive adipose tissue fatty acid storage correlate with sex-specific body fat distribution. Some proteins and enzymes participating in this pathway include CD36 (facilitated transport), acyl-CoA synthetases (ACS; the first step in fat metabolism), and diacylglycerol acetyl-transferase (DGAT; the final step of triglyceride synthesis). Our goal was to better define CD36, ACS and DGAT in relation to sex, subcutaneous fat depots, and adipocyte size. Subje...

  14. Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo: characterization and role in resistance to the carcinogenic mycotoxin aflatoxin B1.

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    Full Text Available Domestic turkeys (Meleagris gallopavo are one of the most susceptible animals known to the toxic effects of the mycotoxin aflatoxin B1 (AFB1, a potent human hepatocarcinogen, and universal maize contaminant. We have demonstrated that such susceptibility is associated with the inability of hepatic glutathione S-transferases (GSTs to detoxify the reactive electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO. Unlike their domestic counterparts, wild turkeys, which are relatively AFB1-resistant, possess hepatic GST-mediated AFBO conjugating activity. Here, we characterized the molecular and functional properties of hepatic alpha-class GSTs (GSTAs from wild and domestic turkeys to shed light on the differences in resistance between these closely related strains. Six alpha-class GST genes (GSTA amplified from wild turkeys (Eastern and Rio Grande subspecies, heritage breed turkeys (Royal Palm and modern domestic (Nicholas strain turkeys were sequenced, and catalytic activities of heterologously-expressed recombinant enzymes determined. Alpha-class identity was affirmed by conserved GST domains and four signature motifs. All GSTAs contained single nucleotide polymorphisms (SNPs in their coding regions: GSTA1.1 (5 SNPs, GSTA1.2 (7, GSTA1.3 (3, GSTA2 (3, GSTA3 (1 and GSTA4 (2. E. coli-expressed GSTAs possessed varying activities toward GST substrates 1-chloro-2,4-dinitrobenzene (CDNB, 1,2-dichloro-4-nitrobenzene (DCNB, ethacrynic acid (ECA, cumene hydroperoxide (CHP. As predicted by their relative resistance, livers from domestic turkeys lacked detectable GST-mediated AFBO detoxification activity, whereas those from wild and heritage birds possessed this critical activity, suggesting that intensive breeding and selection resulted in loss of AFB1-protective alleles during domestication. Our observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are down-regulated, silenced, or

  15. Alpha-class glutathione S-transferases in wild turkeys (Meleagris gallopavo): characterization and role in resistance to the carcinogenic mycotoxin aflatoxin B1.

    Science.gov (United States)

    Kim, Ji Eun; Bunderson, Brett R; Croasdell, Amanda; Reed, Kent M; Coulombe, Roger A

    2013-01-01

    Domestic turkeys (Meleagris gallopavo) are one of the most susceptible animals known to the toxic effects of the mycotoxin aflatoxin B1 (AFB1), a potent human hepatocarcinogen, and universal maize contaminant. We have demonstrated that such susceptibility is associated with the inability of hepatic glutathione S-transferases (GSTs) to detoxify the reactive electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). Unlike their domestic counterparts, wild turkeys, which are relatively AFB1-resistant, possess hepatic GST-mediated AFBO conjugating activity. Here, we characterized the molecular and functional properties of hepatic alpha-class GSTs (GSTAs) from wild and domestic turkeys to shed light on the differences in resistance between these closely related strains. Six alpha-class GST genes (GSTA) amplified from wild turkeys (Eastern and Rio Grande subspecies), heritage breed turkeys (Royal Palm) and modern domestic (Nicholas strain) turkeys were sequenced, and catalytic activities of heterologously-expressed recombinant enzymes determined. Alpha-class identity was affirmed by conserved GST domains and four signature motifs. All GSTAs contained single nucleotide polymorphisms (SNPs) in their coding regions: GSTA1.1 (5 SNPs), GSTA1.2 (7), GSTA1.3 (3), GSTA2 (3), GSTA3 (1) and GSTA4 (2). E. coli-expressed GSTAs possessed varying activities toward GST substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), cumene hydroperoxide (CHP). As predicted by their relative resistance, livers from domestic turkeys lacked detectable GST-mediated AFBO detoxification activity, whereas those from wild and heritage birds possessed this critical activity, suggesting that intensive breeding and selection resulted in loss of AFB1-protective alleles during domestication. Our observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are down-regulated, silenced, or

  16. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina;

    2013-01-01

    the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2'-O-methyl RNAs (2'OMe) with two types of backbone linkages...... (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were...... either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo...

  17. Chloromycetin resistance of clinically isolated E coli is conversed by using EGS technique to repress the chloromycetin acetyl transferase

    Institute of Scientific and Technical Information of China (English)

    Mei-Ying Gao; Chuan-Rui Xu; Ru Chen; Shou-Gui Liu; Jiang-Nan Feng

    2005-01-01

    AIM: To explore the possibility of repression of chloromycetin (Cm) acyl transferase by using external guided sequence (EGS) in order to converse the clinical Ecoli isolates from Cm- resistant to Cm- sensitive.METHODS: EGS directed against chloromycetin acetyl transferase gene (cat) was cloned to vector pEGFP-C1 which contains the kanamycin (Km) resistance gene.The recombinant plasmid pEGFP-C1+EGScat1+cat2 was constructed and the blank vector without EGS fragment was used as control plasmids. By using the CaCl2 transformation method, the recombinant plasmids were introduced into the clinically isolated Cm resistant but Km sensitive E colistrains. Transformants were screened on LB agar plates containing Km. Extraction of plasmids and PCR were applied to identify the positive clones.The growth curve of EGS transformed bacteria cultured in broth with Cm resistance was determined by using spectrophotometer at A600. Drug sensitivity was tested in solid culture containing Cm by using KB method.RESULTS: Transformation studies were carried out on 16 clinically isolated Cm-resistant (250 μg/mLof Cm) E colistrains by using pEGFP-C1-EGScat1cat2 recombinant plasmid. Transformants were screened on LB-agar plates containing Km after the transformation using EGS.Of the 16 tested strains, 4 strains were transformed successfully. Transformants with EGS plasmid showed growth inhibition when grown in liquid broth culture containing 200 μg/mL of Cm. In drug sensitivity test,these strains were sensitive to Cm on LB-agar plates containing 200 μg/mL of Cm. Extraction of plasmids and PCR amplification showed the existence of EGS plasmids in these four transformed strains. These results indicated that the Cat of the four clinical isolates had been suppressed and the four strains were converted to Cm sensitive ones.CONCLUSION: The EGS directed against Cat is able to inhibit the expression of Cat, and hence convert Cmresistant bacteria to Cm-sensitive ones. Thus, the EGS has the

  18. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility.

    Science.gov (United States)

    Safarinejad, Mohammad Reza; Safarinejad, Saba; Shafiei, Nayyer; Safarinejad, Shiva

    2013-10-01

    The glutathione-S-transferases (GSTs) comprise a class of enzymes that detoxify carcinogenic compounds by conjugating glutathione to facilitate their removal. Polymorphisms in GSTM1, GSTT1, and GSTP1 genes have been related to risk for bladder cancer. Studies focusing on GSTs gene variants relationship with the risk of bladder cancer have produced conflicting and inconsistent results. We examine the association between genetic polymorphism of glutathione S-transferase P1, GSTM1, GSTT1 genes and development of bladder transitional cell carcinoma (TCC). The study population consisted of 166 histologically confirmed male bladder TCC cases and 332 healthy male controls. Genotyping was done using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method and also investigated combined gene interactions. The GSTP1 Val/Val genotype was significantly associated with bladder cancer (OR = 4.32, 95% CI: 2.64-6.34), whereas the association observed for GSTM1 null (OR = 1.32, 95% CI: 0.82-2.62; P = 0.67) and GSTT1 null genotype (OR = 1.18, 95% CI: 0.79-1.67; P = 0.74) did not reach statistical significance. There was a significant multiple interaction between GSTM1, GSTT1, and GSTP1 genotypes in risk of bladder cancer (P for interaction = 0.02). The risk associated with the concurrent presence of GSTM1 positive and GSTP1 Ile/Val or Val/Val (OR = 3.71, 95% CI: 2.34-5.54) and GSTT1 positive and GSTP1 Ile/Val or Val/Val (OR = 2.66, 95% CI: 1.54-4.72) was statistically significant. Patients carrying GSTP1 Val/Val genotype were at increased risk for developing high-grade (OR = 7.68, 95% CI: 4.73-19.25) and muscle invasive (OR = 10.67, 95% CI: 6.34-21.75) bladder cancer. High risk for bladder TCC also was observed with respect to combined GSTT1 null/GSTP1 Ile/Val or Val/Val (OR = 4.76, 95% CI: 2.68-18.72) and GSTM1 null/GSTT1 null/GSTP1 Ile/Val or Val/Val (OR = 6.42, 95% CI: 4.76-14.72) genotype variant. This study suggests that the GSTP1 polymorphism

  19. Comparison of epsilon- and delta-class glutathione S-transferases: the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster.

    Science.gov (United States)

    Scian, Michele; Le Trong, Isolde; Mazari, Aslam M A; Mannervik, Bengt; Atkins, William M; Stenkamp, Ronald E

    2015-10-01

    Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Å resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.

  20. Folic Acid

    Science.gov (United States)

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  1. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  2. Potential use of acetylcholinesterase, glutathione-S-transferase and metallothionein for assessment of contaminated sediment in tropical chironomid, Chironomus javanus.

    Science.gov (United States)

    Somparn, A; Iwai, C B; Noller, B

    2015-11-01

    Heavy metals and organophosphorus insecticide is known to act as disruptors for the enzyme system, leading to physiologic disorders. The present study was conducted to investigate the potential use of these enzymes as biomarkers in assessment of contaminated sediments on tropical chironomid species. Acetylcholinesterase (AChE), glutathione-S-transferase (GST) and metallothionein (MT) activity was measured in the fourth-instar chironomid larvae, Chironomus javanus, Kieffer, after either 48-hr or 96-hr exposure to organophosphorus insecticide, chlorpyrifos (0.01- 0.25 mg kg(-1)) or heavy metal cadmium (0.1-25 mg kg(-1)). Exposure to chlorpyrifos (0.01 mg kg(-1)) at 48 and 96 hr significantly of AChE activity (64.2%-85.9%) and induced GST activity (33.9-63.8%) when compared with control (P GST activity (11.7-40%) and MT level (9.0%-70.5%) when compared with control (P impact of enzyme activity on chlorpyrifos and cadmium contamination. Activity of AChE, GST and MT could serve as potential biomarkers for assessment and biomonitoring the effects of insecticide and heavy metal contamination in tropical aquatic ecosystems. PMID:26688973

  3. Antioxidant defense markers modulated by glutathione S-transferase genetic polymorphism: results of lung cancer case-control study.

    Science.gov (United States)

    Reszka, Edyta; Wasowicz, Wojciech; Gromadzinska, Jolanta

    2007-12-01

    Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects. PMID:18850183

  4. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    Science.gov (United States)

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting. PMID:27415416

  5. Glutathione S-transferase SlGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants.

    Science.gov (United States)

    Zou, Xiaopeng; Xu, Zhibin; Zou, Haiwang; Liu, Jisheng; Chen, Shuna; Feng, Qili; Zheng, Sichun

    2016-03-01

    Spodoptera litura is polyphagous pest insect and feeds on plants of more than 90 families. In this study the role of glutathione S-transferase epilson 1 (slgste1) in S. litura in detoxification was examined. This gene was up-regulated in the midgut of S. litura at the transcriptional and protein levels when the insect fed on Brassica juncea or diet containing phytochemicals such as indole-3-carbinol and allyl-isothiocyanate that are metabolic products of sinigrin and glucobrassicin in B. juncea. The SlGSTE1 could catalyze the conjugation of reduced glutathione and indole-3-carbinol and allyl-isothiocyanate, as well as xanthotoxin, which is a furanocoumarin, under in vitro condition. When the expression of Slgste1 in the larvae was suppressed with RNAi, the larval growth and feeding rate were decreased. Furthermore, the up-regulated expression of the SlGSTE1 protein in the midgut of larvae that fed on different host plants was detected by 2-DE and ESI/MS analysis. The feeding adaptation from the most to the least of the larvae for the various host plants was Brassica alboglabra, Brassica linn. Pekinensis, Cucumis sativus, Ipomoea batatas, Arachis hypogaea and Capsicum frutescens. All the results together suggest that Slgste1 is a critical detoxifying enzyme that is induced by phytochmicals in the host plants and, inter alia, may be related to host plant adaptation of S. litura. PMID:26631599

  6. Evaluation of glutathione S-transferase genetic variants affecting type 2 diabetes susceptibility: a meta-analysis.

    Science.gov (United States)

    Tang, Song-Tao; Wang, Chang-Jiang; Tang, Hai-Qin; Zhang, Qiu; Wang, Yuan

    2013-11-10

    Genetic polymorphisms of glutathione S-transferases (GSTs) and type 2 diabetes mellitus (T2DM) risk have been widely studied, however, the results were somewhat conflicting. To evaluate the association of GSTs (GSTM1, GSTT1 and GSTP1) gene polymorphisms with T2DM, a meta-analysis was performed before October, 2012. ORs were pooled according to random-effects model. There were a total of 1354/1666 (n=9) cases/controls (studies) for GSTM1, 1271/1470 (n=8) for GSTT1, and 1205/1250 (n=7) for GSTM1. There were significant associations between GSTM1 polymorphism, GSTT1 polymorphism and T2DM in the contrast of present genotype vs. null genotype, with pooled OR=1.99 (95%CI=1.46-2.71) and OR=1.61 (95%CI=1.19-2.17), respectively. Yet no significant association of GSTP1 polymorphism and T2DM was showed. When stratified by ethnicity, the significant associations were also existed in Asians for GSTM1 and GSTT1, but not GSTP1. No publication bias but some extent of heterogeneity was observed. Finally, the accumulated evidence proved the obvious associations of GSTM1 and GSTT1 polymorphisms with an increased risk of T2DM.

  7. STUDY OF THE DELETION MUTATION OF GLUTATHIONE S TRANSFERASE M1 GENE AND ITS ROLE IN SUSCEPTIBILITY TO HEPATOCELLULAR CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objection: To investigate the glutathione S transferase M1 (GSTM1) gene inherent deletion and its relation to prevalence of hepatocellular carcinoma (HCC) in Guangxi, China. Methods: The GSTM1 gene polymorphism of 120 HCC patients and 100 healthy subjects both from the same high aflatoxin B1 (AFB1) contaminated area were detected using PCR technique with special primers. Another 40 patients from AFB1 low risk area were also tested. Results: In HCC high risk area, it was found that the frequencies of GSTM1 null genotype in HCC patients and healthy subjects were 59% and 51% respectively, with no significant difference. However, the frequency of GSTM1-null genotype in control group from AFB1 low risk area was lower than those from high risk area (P<0.01). Conclusion: Populations in this HCC endemic region show a higher rate of GSTM1-null genotype, which may be partially responsible for the susceptibility to AFB1 induced HCC. But the detoxification effect of GSTM1 alone is not sufficient to resist the genetic toxicity of AFB1, especially in those people who expose to excess AFB1. The GSTM1 gene deletion would not be suitable as an independent predictor of susceptibility to HCC.

  8. Different effects of nine clausenamide ennatiomers on liver glutathione biosynthesis and glutathione S-transferase activity in mice

    Institute of Scientific and Technical Information of China (English)

    Yu-qun WU; Li-de LIU; Hua-ling WEI; Geng-tao LIU

    2006-01-01

    Aim: To study the effects of nine synthetic clausenamide with different stereo structures on liver glutathione (GSH) biosynthesis and glutathione S-transferase (GST) activity in mice. Methods: The nine test compounds were racemic mixtures and their ennatiomers of clausenamide, neoclausenamide and epineoclausenamide. Mice were administered clausenamide 250 mg/kg once daily for 3 consecutive days, ig, and were killed 24 h after the last dosing. The mouse liver cytosol GSH and GST were determined with related biochemical methods. Results: Nine clausenamides exhibited different effects on liver GSH and GST. Of nine clausenamides, only (+) and (±)clausenamide markedly increased liver cytosol GSH content. The mechanism of increasing liver GSH content of (+)clausenamide is mainly due to stimulating the key limiting enzyme γ-glutamylcysteine synthetase (γ-GCS) activity for GSH biosynthesis. The other test clausenamides had no such effect on liver GSH. All of the nine clausenamides induced a significant increase of GST activity. Conclusion: The effects of clausenamide ennatiomers on liver GST and GSH varied with the alterations of their spatial structures. (+)Clausenamide stimulated liver GSH biosynthesis through enhancingγ-GCS activity.

  9. Aberrant methylation of Glutathione S-transferase P1 and E-cadherin in invasive ductal breast carcinoma and fibroadenoma

    Institute of Scientific and Technical Information of China (English)

    Wings Tjing Yung Loo; Mary Ngan Bing Cheung; Louis Wing Cheong Chow

    2010-01-01

    Objective To investigate the hypermethylation status of glutathione transferase P1(GSTP1) and E cadherin (ECAD), TSGs (tumor suppressor genes) in our breast cancer samples and explore their correlation with clinicopathological features of corresponding cancer patients. Methods One hundred and thirty six IDC (invasive ductal carcinoma) patients were recruited for analysis and 16 fibroadenoma patients acted as control. DNA extraction and methylation specific PCR (MSP) were subsequently performed preceded by pathological examination. Results The percentage of hypermethylated GSTP1 in carcinoma and fibroadenoma groups was 34.92% and 15.79% respectively and the percentage of hypermethylated ECAD in carcinomas and fibroadenomas was 18.00% and 0.00% respectively. Carcinoma had the highest percentage of c erbB2 overexpression being 54.55% among the clinicopathological parameters. Conclusion Hypermethylation patterns are frequent in IDC and seem to relate to c erbB2 overexpression, and such epigenetic change should not be neglected in fibroadenoma. Tumor methylation status in cancer patients can be determined at early stage and it may be a reference for better treatment planning.

  10. Glutathione S-Transferase P1 (GSTP1 gene polymorphism increases age-related susceptibility to hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kuo Wu-Hsien

    2010-03-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the most frequent malignant neoplasms in the world. Genetic polymorphism has been reported to be a factor increasing the risk of HCC. Phase II enzymes such as glutathione s-transferases (GSTP1, GSTA1 play important roles in protecting cells against damage induced by carcinogens. The aim of this study was to estimate the relationship of the GSTP1 and GSTA1 gene polymorphisms to HCC risk and clinico-pathological status. Methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP was used to measure GSTP1 (A→G and GSTA1 (C→T gene polymorphisms in 386 healthy controls and 177 patients with HCC. Results Neither gene polymorphism was associated with the clinico-pathological status of HCC and serum expression of liver-related clinico-pathological markers. No association between the GSTA1 gene polymorphism and HCC susceptibility was found. However, in the younger group, aged ≤ 57 years, individuals with AG or GG alleles of GSTP1 had a 2.18-fold (95%CI = 1.09-4.36; p = 0.02 and 5.64-fold (95%CI = 1.02-31.18; p = 0.04 risk, respectively, of developing HCC compared to individuals with AA alleles, after adjusting for other confounders. Conclusion AG and GG alleles of GSTP1 gene polymorphisms may be considered as factors increasing the susceptibility to and risk of HCC in Taiwanese aged ≤ 57 years.

  11. Metabolism of cisplatin in the organs of Rattus norvegicus: role of Glutathione S-transferase P1.

    Science.gov (United States)

    Nagar, Ritika; Khan, Amir Riyaz; Poonia, Anuj; Mishra, Pankaj Kishor; Singh, Simendra

    2015-03-01

    Glutathione S-transferases (GSTs) play an important role in the biotransformation of endogenous compounds and xenobiotics as well as in the metabolic inactivation of pharmacologically active substances, including anticancer drugs. Using cisplatin as the prototype drug, we investigated if any correlation exists between GSH levels, GSTs/GSTP1 activity and the fate of cisplatin in different organs of Rattus norvegicus. GSH-cisplatin complex was prepared, purified by anion-exchange chromatography and subjected to mass spectroscopic analysis which confirmed the structure to be diglutathione-monoplatinum (diglutathionylplatinum). Purified diglutathionylplatinum was used to quantify metabolite formed in different tissue homogenates. Specific GSTP1 activity was found to be highest in kidneys, which correlated positively with the levels of metabolite formed in renal tissues. Altogether, our results showed that cisplatin metabolism in different organs of rats correlated positively with specific GSTP1 activities and this enzyme may be a critical determinant of extent of cellular uptake or retention of cisplatin in renal and liver tissues.

  12. Expression of Presenilin-2 and Glutathione S Transferase π and Their Clinical Significance in Breast Infiltrating Ductal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    FANWei; WUXiaoting; ZHOUYejiang; ZHOUTong; HUANGXiong

    2005-01-01

    Objective: To investigate the expressions of presenilin-2 (PS2) and glutathione S transferase π (GSTπ) and their roles in prognosis and therapy of breast infiltrating ductal carcinoma. Methods:The paraffin-embedded specimens of 210 patients with breast infiltrating ductal carcinoma were examined by using LSAB immunohistochemistry for the expression of PS2 and GSTπ. Results: The expression rate of PS2 and GSTπ was 49.5% (104/210) and 48.1% (101/210) respectively. The 5-year and 10-year postoperative survival rates in 4 groups, from high to low, were group 1 (PS2 positive expression/GSTπ negative expression), group 2 (PS2 positive expression/GSTπ positive expression), group 3 (PS2 negative expression/GSTπ negative expression) and group 4 (PS2 negative expression/GSTπ positive expression) in turn. Conclusion: The prognosis of the group 1 was the best, followed by the group 2, group 3 and group 4 in turn. These results suggested that the reasonable use of endocrinotherapy and chemotherapy for patients with breast infiltrating ductal carcinoma is necessary.

  13. Genetic polymorphism of glutathione S-transferase T1 gene and susceptibility to idiopathic azoospermia or oligospermia in northwestern China

    Institute of Scientific and Technical Information of China (English)

    Qi-Fei Wu; Jun-Ping Xing; Kai-Fa Tang; Wei Xue; Min Liu; Jian-Hua Sun; Xin-Yang Wang; Xiao-Juan Jin

    2008-01-01

    Aim: To investigate the association of glutathione S-transferase T1 (GSTT1) gene polymorphism in patients with idiopathic azoospermia or oligospermia in the northwestern China population. Methods: In the case-control study, GSTT1 genotypes were identified by multiplex polymerase chain reaction (PCR) with peripheral blood DNA samples from 78 patients with idiopathic azoospermia, 103 patients with idiopathic oligospermia and 156 age-matched controls with normal sperm concentration and motility, according to the criteria adapted from World Health Organization guidelines. All of the patients and controls were from northwestern China. Results: There is a significant association between GSTT1 null genotype with idiopathic azoospermia risk (odds ratio [OR]: 2.36, 95% confidence interval [CI]:1.33-4.20, P = 0.003) or idiopathic oligospermia risk (OR: 2.00, 95% CI: 1.17-3.27, P = 0.010). Conclusion:GSTT1 null genotype is a predisposing risk factor for sporadic idiopathic azoospermia or oligospermia in north-western China.

  14. Expression of c-erbB-2 and glutathione S-transferase-pi in hepatocellular carcinoma and its adjacent tissue

    Institute of Scientific and Technical Information of China (English)

    Zhao-Shan Niu; Mei Wang

    2005-01-01

    AIM: To investigate the possible role of c-erbB-2 and glutathione S-transferase (GST-Pi) in primary hepatocellular carcinogenesis and the relationship between liver hyperplastic nodule (LHN), liver cirrhosis (LC), and hepatocellular carcinoma (HCC).METHODS: The expression of c-erbB-2 and GST-Pi was detected immunohistochemically in 41 tissue specimens of HCC and 77 specimens of its adjacent tissue.RESULTS: The positive expression of c-erbB-2 in LHN (28.6%) was significantly higher than that in LC (0%)(P = 0.032<0.05), but no significant difference was seen between HCC and LHN or LC (P>0.05,x2 = 0.002, 3.447).The positive expression of GST-Pi in HCC (89.6%) or LHN (71.1%) was significantly higher than that in LC (22.9%, P<0.001, x2= 49.91, 16.96). There was a significant difference between HCC and LHN (P<0.05,x2= 6.353).CONCLUSION: The c-erbB-2 expression is an early event in the pathogenesis of HCC. GST-Pi may be a marker enzyme for immunohistochemical detection of human HCC and its preneoplastic lesions. LHN seems to be a preneoplastic lesion related to hepatocarcinogenesis.

  15. Polymorphism of glutathione S-transferase mu 1 and theta 1 genes and hepatocellular carcinoma in southern Guangxi, China

    Institute of Scientific and Technical Information of China (English)

    Zhuo-Lin Deng; Yi-Ping Wei; Yun Ma

    2005-01-01

    AIM: Glutathione S-transferase mu 1 (GSTM1) and theta 1(GSTT1) genes are involved in the metabolism of a wide range of carcinogens, but deletions of the genes are commonly found in the population. The present study was undertaken to evaluate the association between GSTM1 and GSTT1 gene polymorphisms and hepatocellular carcinoma (HCC) risk.METHODS: The genetic polymorphisms were studied at an aflatoxin highly contaminated region in Guangxi, China.Polymerase chain reaction (PCR) technique was used to detect the presence or absence of the GSTM1 and GSTT1 genes in blood samples. The case group was composed of 181 patients of HCC identified by the pathologists and the control group was composed of 360 adults without any tumor.RFSULTS: The frequencies of GSTM1 and GSTT1 null genotypes in the control were 47.8% and 42.7%, while those in the HCC group were 64.6% and 59.7%, respectively. The differences between HCC group and control group were very significant (P<0.01). GSTM1 and GSTT1 combined null genotypes in HCC group and control group were 38.2% and 18.5%respectively, and the difference was significant (P<0.05).CONCLUSION: The GSTM1 and GSTT1 null genotypes are associated with an increased risk of HCC in a special geographic environment. Combination of the two null genotypes in an individual is substantially increased twice the risk of HCC.

  16. PABA/NO lead optimization: Improved targeting of cytotoxicity to glutathione S-transferase P1-overexpressing cancer cells.

    Science.gov (United States)

    Kim, Youseung; Maciag, Anna E; Cao, Zhao; Deschamps, Jeffrey R; Saavedra, Joseph E; Keefer, Larry K; Holland, Ryan J

    2015-08-01

    PABA/NO [O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino) diazen-1-ium-1,2-diolate] is a nitric oxide (NO)-releasing arylating agent designed to be selectively activated by reaction with glutathione (GSH) on catalysis by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancer cells. PABA/NO has proven active in several cancer models in vitro and in vivo, but its tendency to be metabolized via a variety of pathways, some that generate inactive metabolites and hydrolysis products, limits its potential as a drug. Here we show that a simple replacement of cyano for nitro at the 4 position to give compound 4b ('p-cyano-PABA/NO') has the dual effect of slowing the undesired side reactions while enhancing the proportion of NO release and arylating activity on catalysis by GSTP1. Compound 4b showed increased resistance to hydrolysis and uncatalyzed reaction with GSH, along with a more favorable product distribution in the presence of GSTP1. It also showed significant proapoptotic activity. The data suggest p-cyano-PABA/NO to be a more promising prodrug than PABA/NO, with better selectivity toward cancer cells.

  17. Computational QM/MM Study of the Reaction Mechanism of Human Glutathione S-Transferase A3-3

    Science.gov (United States)

    Calvaresi, Matteo; Stenta, Marco; Altoè, Piero; Bottoni, Andrea; Garavelli, Marco; Spinelli, Domenico

    2007-12-01

    Human Glutathione S-Transferase A3-3(hGSTA3-3) is the most efficient human steroid double-bond isomerase enzyme. It catalyzes the double bond isomerization of Δ5-androstene-3,17-dione (Δ5-AD) and Δ5-pregnene-3,20-dione (Δ5-PD). The isomerization products are the precursors of the steroid hormones testosterone and progesterone. We have carried out a QM/MM study to elucidate some interesting aspects of the enzyme catalytic mechanism. In particular, we have analyzed either a concerted or a stepwise reaction path. Moreover, we have attempted to rationalize the electrostatic effects on the catalytic activity of the residues surrounding the active site. Specifically, we have performed a "finger print" analysis to determine the electrostatic contribution of each aminoacid residue to the global electrostatic term, thus ranking the effect of the various aminoacids in the course of the reaction. In this way, we have highlighted the most important terms affecting the stabilization-destabilization of the enzyme.

  18. Glutathione-S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis in Chinese populations.

    Science.gov (United States)

    Chen, Xin-Ping; Xu, Da-Feng; Xu, Wei-Hua; Yao, Jia; Fu, Sheng-Miao

    2015-01-01

    In view of the controversies surrounding the glutathione-S-transferases (GST) M1/T1-endometriosis association, a meta-analysis of the GSTM1/GSTT1 genetic association studies of endometriosis was performed in Chinese populations. PubMed, Springer Link, OvidSP, and Chinese databases were searched for related studies. A total of nine studies on GSTM1-endometriosis involved 874 cases and 997 controls, and five studies on GSTT1 involved 404 cases and 513 controls were included in this meta-analysis. Overall, the null genotype of GSTM1/GSTT1 was significantly related to endometriosis risk in Chinese populations (GSTM1, OR = 2.21, 95% CI: 1.22-4.01; GSTT1, OR = 2.31, 95% CI: 1.34-3.99). In subgroup analyses stratified by ethnicity and source of controls, the same results were observed in Chinese Han and population-based studies. The sensitivity analysis confirmed the reliability and stability of the meta-analysis. No publication bias was found among studies by Egger's test. In conclusion, our meta-analysis supports that the GSTM1/GSTT1 null genotype might contribute to individual susceptibility to endometriosis in Chinese populations, especially in Chinese Han.

  19. Nicotinamide phosphoribosyl transferase (Nampt is a target of microRNA-26b in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Chenpeng Zhang

    Full Text Available A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt. However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3'-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116. In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.

  20. An acetylation site in lectin domain modulates the biological activity of polypeptide GalNAc-transferase-2

    DEFF Research Database (Denmark)

    Zlocowski, Natacha; Lorenz, Virginia; Bennett, Eric Paul;

    2013-01-01

    Abstract Polypeptide GalNAc-transferases (ppGalNAc-Ts) are a family of enzymes that catalyze the initiation of mucin-type O-glycosylation. All ppGalNAc-T family members contain a common (QXW)3 motif which is present in R-type lectin group. Acetylation site K521 is part of the QKW motif of ß......-trefoil in the lectin domain of ppGalNAc-T2. We used a combination of acetylation and site-directed mutagenesis approaches to examine the functional role of K521 in ppGalNAc-T2. Binding assays of non-acetylated and acetylated forms of the mutant ppGalNAc-T2K521Q to various naked and aGalNAc-glycosylated mucin peptides...... indicated that degree of interaction of lectin domain with aGalNAc depends on the peptide sequence of mucin. Studies of inhibitory effect of various carbohydrates on interactions of ppGalNAc-T2 with MUC1aGalNAc indicate that point K521Q mutation enhance the carbohydrate specificity of lectin domain for aGalNAc...

  1. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vakhrushev, Sergey Y; Kong, Yun;

    2012-01-01

    Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc...... to include proteome-wide discovery of unique functions of individual GalNAc-Ts. We used the GalNAc-T2 isoform implicated in dyslipidemia and the human HepG2 liver cell line to demonstrate unique functions of this isoform. We confirm that GalNAc-T2-directed site-specific O-glycosylation inhibits proprotein...... activation of the lipase inhibitor ANGPTL3 in HepG2 cells and further identify eight O-glycoproteins exclusively glycosylated by T2 of which one, ApoC-III, is implicated in dyslipidemia. Our study supports an essential role for GalNAc-T2 in lipid metabolism, provides serum biomarkers for GalNAc-T2 enzyme...

  2. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    Science.gov (United States)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael; Pallarés, María Carmen; Kong, Yun; Iglesias-Fernández, Javier; Bernardes, Gonçalo J. L.; Peregrina, Jesús M.; Rovira, Carme; Bernadó, Pau; Bruscolini, Pierpaolo; Clausen, Henrik; Lostao, Anabel; Corzana, Francisco; Hurtado-Guerrero, Ramon

    2015-05-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.

  3. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    Science.gov (United States)

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes.

  4. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells.

    Science.gov (United States)

    Peralta-Zaragoza, Oscar; Recillas-Targa, Félix; Madrid-Marina, Vicente

    2004-02-01

    Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors. PMID:15027905

  5. The Putative O-Linked N-Acetylglucosamine Transferase SPINDLY Inhibits Class I TCP Proteolysis to Promote Sensitivity to Cytokinin.

    Science.gov (United States)

    Steiner, Evyatar; Livne, Sivan; Kobinson-Katz, Tammy; Tal, Lior; Pri-Tal, Oded; Mosquna, Assaf; Tarkowská, Danuše; Mueller, Bruno; Tarkowski, Petr; Weiss, David

    2016-06-01

    Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) is a putative serine and threonine O-linked N-acetylglucosamine transferase (OGT). While SPY has been shown to suppress gibberellin signaling and to promote cytokinin (CK) responses, its catalytic OGT activity was never demonstrated and its effect on protein fate is not known. We previously showed that SPY interacts physically and functionally with TCP14 and TCP15 to promote CK responses. Here, we aimed to identify how SPY regulates TCP14/15 activities and how these TCPs promote CK responses. We show that SPY activity is required for TCP14 stability. Mutation in the putative OGT domain of SPY (spy-3) stimulated TCP14 proteolysis by the 26S proteasome, which was reversed by mutation in CULLIN1 (CUL1), suggesting a role for SKP, CUL1, F-box E3 ubiquitin ligase in TCP14 proteolysis. TCP14 proteolysis in spy-3 suppressed all TCP14 misexpression phenotypes, including the enhanced CK responses. The increased CK activity in TCP14/15-overexpressing flowers resulted from increased sensitivity to the hormone and not from higher CK levels. TCP15 overexpression enhanced the response of the CK-induced synthetic promoter pTCS to CK, suggesting that TCP14/15 affect early steps in CK signaling. We propose that posttranslational modification of TCP14/15 by SPY inhibits their proteolysis and that the accumulated proteins promote the activity of the CK phosphorelay cascade in developing Arabidopsis leaves and flowers. PMID:27208284

  6. Genome-Wide Analysis of the Glutathione S-Transferase Gene Family in Capsella rubella: Identification, Expression, and Biochemical Functions

    Science.gov (United States)

    He, Gang; Guan, Chao-Nan; Chen, Qiang-Xin; Gou, Xiao-Jun; Liu, Wei; Zeng, Qing-Yin; Lan, Ting

    2016-01-01

    Extensive subfunctionalization might explain why so many genes have been maintained after gene duplication, which provides the engine for gene family expansion. However, it is still a particular challenge to trace the evolutionary dynamics and features of functional divergences in a supergene family over the course of evolution. In this study, we identified 49 Glutathione S-transferase (GST) genes from the Capsella rubella, a close relative of Arabidopsis thaliana and a member of the mustard family. Capsella GSTs can be categorized into eight classes, with tau and phi GSTs being the most numerous. The expansion of the two classes mainly occurs through tandem gene duplication, which results in tandem-arrayed gene clusters on chromosomes. By integrating phylogenetic analysis, expression patterns, and biochemical functions of Capsella and Arabidopsis GSTs, functional divergence, both in gene expression and enzymatic properties, were clearly observed in paralogous gene pairs in Capsella (even the most recent duplicates), and orthologous GSTs in Arabidopsis/Capsella. This study provides functional evidence for the expansion and organization of a large gene family in closely related species.

  7. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae.

    Science.gov (United States)

    Qi, Zhongqiang; Liu, Muxing; Dong, Yanhan; Yang, Jie; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-04-01

    Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae. PMID:26810198

  8. Some novel features of glutathione transferase from juvenile catfish (Clarias gariepinus exposed to lindane-contaminated water

    Directory of Open Access Journals (Sweden)

    Yetunde Adedolapo Ojopagogo

    2015-03-01

    Full Text Available Catfish are hardy in nature and it is not known whether the presence of efficient detoxication enzymes is partly responsible for this trait. To investigate this, we have assessed induction of glutathione transferase (GST in 10-week-old juvenile catfish (Clarias gariepinus exposed to graded concentrations of lindane, an organochlorine insecticide, and characterised the purified enzyme from groups having the highest and statistically significant induction. Some of the unique properties observed for the purified enzyme are a high Km (1.72±0.21 mM for the electrophilic model substrate, 1-chloro-2,4-dinitrobenzene (CDNB and a very low catalytic rate (Vmax=0.130±0.010 units/mg protein. The kcat/Km being 55.4±0.2 M−1 s−1. The enzyme is present in high concentration in the organism, the main isoform accounts for about 5.6% of the total soluble protein, probably to compensate for the observed kinetic imperfection. Since these properties are generally not known for a detoxication enzyme, we suggest that they may form part of the organism׳s own adaptation to its polluted environment.

  9. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    Science.gov (United States)

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  10. Effect of Arsenic and Chromium on the Serum Amino-Transferases Activity in Indian Major Carp, Labeo rohita

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2007-09-01

    Full Text Available Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2 and Aspartate amino transferase (AST; EC 2.6.1.1 play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01 from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita.

  11. Non-enzymatic roles for the URE2 glutathione S-transferase in the response of Saccharomyces cerevisiae to arsenic.

    Science.gov (United States)

    Todorova, Tatina T; Kujumdzieva, Anna V; Vuilleumier, Stéphane

    2010-11-01

    The response of Saccharomyces cerevisiae to arsenic involves a large ensemble of genes, many of which are associated with glutathione-related metabolism. The role of the glutathione S-transferase (GST) product of the URE2 gene involved in resistance of S. cerevisiae to a broad range of heavy metals was investigated. Glutathione peroxidase activity, previously reported for the Ure2p protein, was unaffected in cell-free extracts of an ure2Δ mutant of S. cerevisiae. Glutathione levels in the ure2Δ mutant were lowered about threefold compared to the isogenic wild-type strain but, as in the wild-type strain, increased 2-2.5-fold upon addition of either arsenate (As(V)) or arsenite (As(III)). However, lack of URE2 specifically caused sensitivity to arsenite but not to arsenate. The protective role of URE2 against arsenite depended solely on the GST-encoding 3'-end portion of the gene. The nitrogen source used for growth was suggested to be an important determinant of arsenite toxicity, in keeping with non-enzymatic roles of the URE2 gene product in GATA-type regulation. PMID:20740275

  12. Glutathione S-Transferase activity and total thiol status in chronic alcohol abusers before and 30 days after alcohol abstinence

    Directory of Open Access Journals (Sweden)

    Manjunatha S Muttigi

    2009-05-01

    Full Text Available Background: Glutathione S Transferase (GST has been involved in detoxification process in the liver and its activity has been shown to be increased in alcohol abusers. In the current work we measured the GST activity, total thiol status, AST, ALT, and direct bilirubin in chronic alcohol abusers before and 30 days after alcohol abstinence and lifestyle modification. Methods: Serum and urine GST activity and total thiol status were determined using spectrophotometric methods and serum transaminases were determined using clinical chemistry analyzer. Results: We found,significant increase in serum and urine GST (p<0.001, AST (p<0.001, ALT (p<0.001, and decrease in total thiol status (p<0.001 in chronic alcohol abusers. GST activity significantly decreased (p<0.001 and total thiol status were improved significantly (p<0.001 30 days after alcohol abstinence and lifestyle modification. Conclusion: This study provides preliminary data to suggest the role of GST as prognostic indicator of alcohol abstinence with possible trend towards an improvement in liver function.

  13. Conserved Residues in the Subunit Interface of tau Glutathione S-transferase Affect Catalytic and Structural Functions

    Institute of Scientific and Technical Information of China (English)

    Cai-Ling Wang; Hai-Ling Yang

    2011-01-01

    The tau class glutathione S-transferases(GSTs)have important roles in stress tolerance and the detoxification of herbicides in crops and weeds.Structural investigations of a wheat tau GST(TaGSTU4) show two subunit interactions:a hydrogen bond between the Tyr93 and Pro65 from another subunit of the dimer,and two salt bridges between residues Glu78 and side chains of Arg95 and Arg99 in the opposite subunit.By investigating enzyme activities,kinetic parameters and structural characterizations,this study showed the following results:(i)the hydrogen bond interaction between the Tyr93 and Pro65 was not essential for dimerization,but contributed to the enzyme's catalytic activity,thermal stability and affinity towards substrates glutathione and 1-chloro-2,4-dinitrobenzene;and(ii)two salt bridges mainly contributed to the protein structure stability and catalysis.The results of this study form a structural and functional basis for rational design of more selective and environmentally friendly herbicides.

  14. Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products.

    Science.gov (United States)

    Sangeetha, P T; Ramesh, M N; Prapulla, S G

    2004-10-01

    Fructosyl transferase (FTase) production by Aspergillus oryzae CFR 202 was carried out by solid-state fermentation (SSF), using various agricultural by-products like cereal bran, corn products, sugarcane bagasse,cassava bagasse (tippi) and by-products of coffee and tea processing. The FTase produced was used for the production of fructo-oligosaccharides (FOS), using 60% sucrose as substrate. Among the cereal bran used, rice bran and wheat bran were good substrates for FTase production by A. oryzae CFR 202. Among the various corn products used, corn germ supported maximum FTase production, whereas among the by-products of coffee and tea processing used, spent coffee and spent tea were good substrates, with supplementation of yeast extract and complete synthetic media. FTase had maximum activity at 60 degrees C and pH 6.0. FTase was stable up to 40 degrees C and in the pH range 5.0-7.0. Maximum FOS production was obtained with FTase after 8 h of reaction with 60% sucrose. FTase produced by SSF using wheat bran was purified 107-fold by ammonium sulphate precipitation (30-80%), DEAE cellulose chromatography and Sephadex G-200 chromatography. The molecular mass of the purified FTase was 116.3 kDa by SDS-PAGE. This study indicates the potential for the use of agricultural by-products for the efficient production of FTase enzyme by A. oryzae CFR 202 in SSF, thereby resulting in value addition of those by-products.

  15. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    Directory of Open Access Journals (Sweden)

    José Carlos Martins

    2014-01-01

    Full Text Available Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs, in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  16. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase.

    Science.gov (United States)

    Chandrasena, R Esala P; Edirisinghe, Praneeth D; Bolton, Judy L; Thatcher, Gregory R J

    2008-07-01

    Estrogen exposure through early menarche, late menopause, and hormone replacement therapy increases the risk factor for hormone-dependent cancers. Although the molecular mechanisms are not completely established, DNA damage by quinone electrophilic reactive intermediates, derived from estrogen oxidative metabolism, is strongly implicated. A current hypothesis has 4-hydroxyestrone-o-quinone (4-OQE) acting as the proximal estrogen carcinogen, forming depurinating DNA adducts via Michael addition. One aspect of this hypothesis posits a key role for NAD(P)H-dependent quinone oxidoreductase (NQO1) in the reduction of 4-OQE and protection against estrogen carcinogenesis, despite two reports that 4-OQE is not a substrate for NQO1. 4-OQE is rapidly and efficiently trapped by GSH, allowing measurement of NADPH-dependent reduction of 4-OQE in the presence and absence of NQO1. 4-OQE was observed to be a substrate for NQO1, but the acceleration of NADPH-dependent reduction by NQO1 over the nonenzymic reaction is less than 10-fold and at more relevant nanomolar concentrations of substrate is less than 2-fold. An alternative detoxifying enzyme, glutathione-S-transferase, was observed to be a target for 4-OQE, rapidly undergoing covalent modification. These results indicate that a key role for NQO1 and GST in direct detoxification of 4-hydroxy-estrogen quinones is problematic. PMID:18588320

  17. Overexpression of glutathione transferase E7 in Drosophila differentially impacts toxicity of organic isothiocyanates in males and females.

    Directory of Open Access Journals (Sweden)

    Aslam M A Mazari

    Full Text Available Organic isothiocyanates (ITCs are allelochemicals produced by plants in order to combat insects and other herbivores. The compounds are toxic electrophiles that can be inactivated and conjugated with intracellular glutathione in reactions catalyzed by glutathione transferases (GSTs. The Drosophila melanogaster GSTE7 was heterologously expressed in Escherichia coli and purified for functional studies. The enzyme showed high catalytic activity with various isothiocyanates including phenethyl isothiocyanate (PEITC and allyl isothiocyanate (AITC, which in millimolar dietary concentrations conferred toxicity to adult D. melanogaster leading to death or a shortened life-span of the flies. In situ hybridization revealed a maternal contribution of GSTE7 transcripts to embryos, and strongest zygotic expression in the digestive tract. Transgenesis involving the GSTE7 gene controlled by an actin promoter produced viable flies expressing the GSTE7 transcript ubiquitously. Transgenic females show a significantly increased survival when subjected to the same PEITC treatment as the wild-type flies. By contrast, transgenic male flies show a significantly lower survival rate. Oviposition activity was enhanced in transgenic flies. The effect was significant in transgenic females reared in the absence of ITCs as well as in the presence of 0.15 mM PEITC or 1 mM AITC. Thus the GSTE7 transgene elicits responses to exposure to ITC allelochemicals which differentially affect life-span and fecundity of male and female flies.

  18. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro.

    Science.gov (United States)

    Hansen, Tina V A; Fryganas, Christos; Acevedo, Nathalie; Caraballo, Luis; Thamsborg, Stig M; Mueller-Harvey, Irene; Williams, Andrew R

    2016-08-01

    Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.

  19. Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor

    Directory of Open Access Journals (Sweden)

    Chong-Yu Liao

    2013-12-01

    Full Text Available The citrus red mite, Panonychus citri (McGregor, is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed that the seven GSTs genes in P. citri cloned in this study belong to three different cytosolic classes, including four in mu, two in delta and one in zeta. Among these seven GSTs genes, the relative expression level of PcGSTm1 was significantly higher in adult than in the other life stages (egg, larvae and nymph. Compared with the control, the mRNA levels of the seven GST genes did not change significantly following exposure to pyridaben at LC10. However, RT-qPCR results showed that, when exposed to LC10 of fenpropathrin, six GSTs gene (PcGSTm1, PcGSTm3, PcGSTm4, PcGSTd1, PcGSTd2 and PcGSTz1 transcripts increased in a time-dependent manner. This is the first insight into the molecular characteristics of GSTs gene cDNAs in P. citri. The elevated GSTs gene transcripts following exposure to fenpropathrin might be one of the mechanisms involved in detoxification of this acaricide.

  20. Identification and characterization of seven glutathione S-transferase genes from citrus red mite, Panonychus citri (McGregor).

    Science.gov (United States)

    Liao, Chong-Yu; Zhang, Kun; Niu, Jin-Zhi; Ding, Tian-Bo; Zhong, Rui; Xia, Wen-Kai; Dou, Wei; Wang, Jin-Jun

    2013-01-01

    The citrus red mite, Panonychus citri (McGregor), is a global citrus pest, and has developed severe resistance to several types of acaricides. However, the molecular mechanisms of resistance in this mite remain unknown. In this study, seven full-length cDNAs encoding glutathione S-transferases (GSTs) genes were identified and characterized in P. citri. The effects of pyridaben and fenpropathrin exposure on the expression of these genes were also investigated. Phylogenetic analysis revealed that the seven GSTs genes in P. citri cloned in this study belong to three different cytosolic classes, including four in mu, two in delta and one in zeta. Among these seven GSTs genes, the relative expression level of PcGSTm1 was significantly higher in adult than in the other life stages (egg, larvae and nymph). Compared with the control, the mRNA levels of the seven GST genes did not change significantly following exposure to pyridaben at LC10. However, RT-qPCR results showed that, when exposed to LC10 of fenpropathrin, six GSTs gene (PcGSTm1, PcGSTm3, PcGSTm4, PcGSTd1, PcGSTd2 and PcGSTz1) transcripts increased in a time-dependent manner. This is the first insight into the molecular characteristics of GSTs gene cDNAs in P. citri. The elevated GSTs gene transcripts following exposure to fenpropathrin might be one of the mechanisms involved in detoxification of this acaricide. PMID:24351815