WorldWideScience

Sample records for acid neural cell

  1. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    OpenAIRE

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.; Mahoney, Melissa J.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cel...

  2. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    OpenAIRE

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  3. Dehydroepiandroesteron Accompanied Retinoic Acid Enhances Differentiation of P19 Embryonal Stem Cells into Neural Cells

    Directory of Open Access Journals (Sweden)

    Hossein Azizi

    2009-01-01

    Full Text Available Objective: Dehydroepiandroesteron (DHEA is a neurosteroid with potential effect on neurogenesis,neuronal survival and proliferation of neural progenitor cells. However there is nodirect evidence for its biological effect during the differentiation of stem cell-derived neurons.The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblastsafter exposure to retinoic acid (RA. This study was initiated to assess the effect of DHEA onneural cells derived from p19 embryonal carcinoma stem cells.Materials and Methods: P19 cells were suspended in dulbecco’s modified eagle’s medium(DMED containing fetal bovine serum (FBS in bacterial-grade petri dishes in the presenceof RA, DHEA and RA+DHEA for 6 days. Then cells were trypsinized for dispersion and replacedin poly L- lysine (10μg/ml coated tissue culture dishes without RA and DHEA for 4days. The expression of neural markers Map-2, Tau, beta-tubulin III- clone Juj (Tuj1, astrocytemarker GFAP and the percent of neurotransmitters tyrosin hydroxylase, glutamate, serotoninand actyl cholin transferase were evaluated by flowcytometry, immunocytochemistryand RT-PCR analysis.Results: Flowcytometry analysis showed that about 63 ± 3% of the cells express neuronalmarker Tuj1 and about 5 ± 1% of the cells express tyrosine hydroxylase neurotransmittersin RA treated groups. However when RA and DHEA were added to the culture medium, Tuj1expression increased to about 74 ± 1% and tyrosine hydroxylase expression increased to23 ± 2%.Conclusion: Results showed that DHEA accompanied RA increased the number of Tuj1 anddopaminergic neurons that were derived from p19 embryonal carcinoma stem cells.

  4. Optimal time point for the transplantation of neural stem cells induced to differentiate with retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Shuxin Wang; Dengji Pan; Na Liu; Yongming Liu; Juan Chen; Houjie Ni; Zhouping Tang

    2011-01-01

    Previous studies have demonstrated that differentiated neural stem cells (NSCs) are more suitable for transplantation than non-differentiated NSCs. In this study, NSCs were expanded in vitro for two passages, induced with retinoic acid to differentiate, and harvested between 1-6 days later. They were subsequently cultured in artificial cerebrospinal fluid for an additional 3 days, during which their growth and morphology was monitored. NSCs induced for 4 days exhibited a peak rate of cells differentiating into neurons and robust growth. Our results indicate that the optimal time point for transplanting NSCs is following a 4-day period of induced differentiation.

  5. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  6. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Science.gov (United States)

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  7. Inducing dopaminergic differentiation of expanded rat mesencephalic neural stem cells by ascorbic acid in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Dongmei; HOU Lingling; LI Haimin; XIE Chao; JIAO Wencang; BAI Cixian; WANG Yaping; PEI Xuetao

    2004-01-01

    Ascorbic acid (AA) induced differentiation of neural stem cells (NSCs) into dopaminergic (DAergic) neurons is reported.NSCs derived from rat mesencephalon were maintained and expanded in a defined medium containing mitogens of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF).Compared with the control, ascorbic acid treatment led to more DAergic neuronal differentiation as indicated by the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT), which are specific markers of dopamine neurons.AA induction also enhanced expression of Nurr1 and Shh.PD98059, an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, could block AA-induced Nurr1, TH and DAT mRNA expression.The results might suggest a new strategy to provide enough dopaminergic cells for the therapy of Parkinson's disease (PD), and Nurr1 and ERK signaling pathway might participate in the AA-induced DAergic differentiation.

  8. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Directory of Open Access Journals (Sweden)

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  9. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Science.gov (United States)

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  10. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh; Guest, Martin; Nagar, Atulya; Wang, Yiqun; Ghebremeskel, Kebreab; Schmidt, Walter F

    2013-01-01

    Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence. PMID:23206328

  11. Synergistic Effect of Schwann Cells and Retinoic Acid on Differentiation and Synaptogenesis of Hippocampal Neural Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    XUE-BAO ZHANG; YUAN-SHAN ZENG; WEI ZHANG; YA-YUN CHEN; WEI ZHANG; YI XIONG; SUI-JUN CHEN

    2006-01-01

    Objective To investigate the synergistic effect of Schwann cells (YCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats. Methods The classical method for 2×2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs,and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis. Results After NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95. Conclusion SCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.

  12. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.

    Science.gov (United States)

    Sudwilai, Thitima; Ng, Jun Jye; Boonkrai, Chatikorn; Israsena, Nipan; Chuangchote, Surawut; Supaphol, Pitt

    2014-01-01

    Neuronal activities play critical roles in both neurogenesis and neural regeneration. In that sense, electrically conductive and biocompatible biomaterial scaffolds can be applied in various applications of neural tissue engineering. In this study, we fabricated a novel biomaterial for neural tissue engineering applications by coating electrospun poly(lactic acid) (PLA) nanofibers with a conducting polymer, polypyrole (PPy), via admicellar polymerization. Optimal conditions for polymerization and preparation of PPy-coated electrospun PLA nanofibers were obtained by comparing results from scanning electron microscopy, X-ray photoelectron spectrometer, and surface conductivity tests. In vitro cell culture experiments showed that PPy-coated electrospun PLA fibrous scaffold is not toxic. The scaffold could support attachment and migration of neural progenitor cells. Neurons derived from progenitor exhibited long neurite outgrowth under electrical stimulation. Our study concluded that PPy-coated electrospun PLA fibers had a good biocompatibility with neural progenitor cells and may serve as a promising material for controlling progenitor cell behaviors and enhancing neural repair. PMID:24933469

  13. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  14. Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Guoxin Nan; Ming Li; Weihong Liao; Jiaqiang Qin; Yujiang Cao; Youqiong Lu

    2009-01-01

    BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells.OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural sterm cells in a rat model of spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007.MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n=5), injury(n=20), and valproic acid (n=20) groups. Valproic acid was provided by Sigma, USA.METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1, 3 days, 1, 4, and 8 weeks post-injury.RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P<0.05).Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was nosignificant difference in nestin expression between the valproic acid and injury groups. At 1 week,there was a significant

  15. Subcellular distribution of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells within subventricular zone of adult rats

    Institute of Scientific and Technical Information of China (English)

    Zhining Li; Wenlong Lü; Hongyan Dong; Hongbin Fan; Ruiguo Dong; Tiejun Xu

    2011-01-01

    The subcellular localization of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immunogold-silver double staining. Results confirmed the presence of neural stem cells in the subventricular zone, which is a key neurogenic region in the central nervous system of adult mammals. The expression of N-methyl-D-aspartic acid receptor subunit 1 was higher than that of nestin and mainly distributed in the cell membrane, cytoplasm, rough endoplasmic reticulum and Golgi complex of neural stem cells.

  16. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  17. Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Moody

    2002-01-01

    Full Text Available The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.

  18. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  19. [Effect of salvianolic acid B on neural cells damage and neurogenesis after brain ischemia-reperfusion in rats].

    Science.gov (United States)

    Zhong, Jing; Tang, Min-ke; Zhang, Yan; Xu, Qiu-ping; Zhang, Jun-tian

    2007-07-01

    This study is to observe the effect of salvianolic acid B (Sal B) on neural cells damage and neurogenesis in sub-granular zone (SGZ) and sub-ventricular zone (SVZ) after brain ischemia-reperfusion (I/R) in rats. A modified middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia-reperfusion was used. The rats were divided into four groups: sham control group, ischemia-reperfusion group, Sal B 1 and 10 mg x kg(-1) groups. Sal B was consecutively administrated once a day by ip injection after MCAO. The neurogenesis in SGZ and SVZ was investigated by BrdU method 7 days after MCAO. The Nissl staining for neurons in the hippocampal CA1 and cerebral cortex was performed 14 days after MCAO. A beam-walking test was used to monitor the motor function recovery. We found that brain ischemia resulted in an increase of BrdU positive cells both in ipsilateral SGZ and SVZ at 7th day after MCAO. Sal B (10 mg x kg(-1)) significantly increased further the number of BrdU positive cells both in SGZ and SVZ (P loss and improved motor function recovery after brain ischemia in rats.

  20. Effects of folic acid on in vitro astrocytic differentiation of neural stem cells from neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Xumei Zhang; Guowei Huang; Zhihong Tian; Guanglei Wang; Dalin Ren

    2009-01-01

    ary acidic protein/BrdU-positive ceils (P<0.05), and significantly decreased Ngn1 protein expression (P<0.05).CONCLUSION: Folic acid promotes astrocytic differentiation of NSCs, which might be related to downregulation of Ngnl protein expression.

  1. Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B.

    Directory of Open Access Journals (Sweden)

    Pengwei Zhuang

    Full Text Available BACKGROUND: Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. METHODOLOGY AND PRINCIPAL FINDINGS: We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs. The screening results showed that salvianolic acid B (Sal B displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor, but neither U0126 (ERK inhibitor nor DAPT (Notch inhibitor inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. SIGNIFICANCE: Sal B could maintain the NSPCs self-renew and promote proliferation, which was mediated by PI3K/Akt signal pathway. And delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. These findings suggested that Sal B may act as a potential drug in treatment of brain injury or neurodegenerative diseases.

  2. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    Science.gov (United States)

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. PMID:27044662

  3. Retinoic acid enhances expression of neural specific genes in Sca-1+ cells of mouse fetal liver through activating protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Gexiu Liu; Yuan Zhang; Dongmei He

    2006-01-01

    BACKGROUND: Interstitial stem cell is characterized by multiple differentiations,and retinoic acid (RA) can induce differentiation of stromal cells into nerve tissue cells in fetal liver of mice, so, its signal transduction pathway should be discussed to trigger differentiation.OBJECTIVE: To study the effect of RA on expression of neural specific gene and its signal transduction in fetal liver of mice.DESIGN: Paired controlled study on the basis of cell.SETTING: Institute of Hematology, Medical College of Jinan University.MATERIALS: The experiment was completed in the Institute of Hematology, Medical College of Jinan University from April to December 2005. C57BL/6 mice, of clean grade, aged 8-10 weeks, weighting 20-35 g,10 females and 4 males, were selected in this study.METHODS: Sca-1+ cells in fetal liver were prepared with MACS kit and cultured with DMEM + 10% fetal bovine serum (FBS). On the fourth day, it was added with or without protein kinase C (PKC) inhibitor chelerythrine chloride (3 μmol/L) and 5×10-7 mol/L RA for 24 hours, and then incubated in serum-free medium for 5 days. Expressions of genes were assayed by Western blotting and semi-quantitative RT-PCR.MAIN OUTCOME MEASURES: Expression of neural specific gene NF-L, NF-H, BF-1 and TH.RESULTS: Expression of neural specific gene NF-L, NF-H, BF-1 and TH was significantly increased after treatment with RA and they were increased 5.06, 5.15, 4.63 and 3.33 times, respectively. However, chelerythrine chloride could inhibit expression of neural specific gene NF-L, NF-H, BF-1 and TH induced by RA.CONCLUSION: RA can promote the expression of neural specific genes in Sca-1+ cells of fetal liver, and its pathway may be related to PKC.

  4. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

    Directory of Open Access Journals (Sweden)

    Johanna E Simkin

    Full Text Available Vagal neural crest cells (VNCCs arise in the hindbrain, and at (avian embryonic day (E 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1-2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.

  5. Neural stem cell derived tumourigenesis

    OpenAIRE

    Francesca Froldi; Milán Szuperák; Cheng, Louise Y.

    2015-01-01

    In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we wil...

  6. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  7. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  8. The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Romani, Sveva; Illi, Barbara; De Mori, Roberta; Savino, Mauro; Gleeson, Joseph G; Valente, Enza Maria

    2014-01-01

    The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.

  9. Expression of Hyaluronan and the Hyaluronan-Binding Proteoglycans Neurocan, Aggrecan and Versican by Neural Stem Cells and Neural Cells Derived from Embryonic Stem Cells

    OpenAIRE

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-01-01

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans agg...

  10. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells.

    Science.gov (United States)

    Lim, Teck Chuan; Toh, Wei Seong; Wang, Li-Shan; Kurisawa, Motoichi; Spector, Myron

    2012-04-01

    Transplanted or endogenous neural stem cells often lack appropriate matrix in cavitary lesions in the central nervous system. In this study, gelatin-hydroxyphenylpropionic acid (Gtn-HPA), which could be enzymatically crosslinked with independent tuning of crosslinking degree and gelation rate, was explored as an injectable hydrogel for adult neural stem cells (aNSCs). The storage modulus of Gtn-HPA could be tuned (449-1717 Pa) to approximate adult brain tissue. Gtn-HPA was cytocompatible with aNSCs (yielding high viability >93%) and promoted aNSC adhesion. Gtn-HPA demonstrated a crosslinking-based approach for preconditioning aNSCs and increased the resistance of aNSCs to oxidative stress, improving their viability from 8-15% to 84% when challenged with 500 μM H(2)O(2). In addition, Gtn-HPA was able to modulate proliferation and migration of aNSCs in relation to the crosslinking degree. Finally, Gtn-HPA exhibited bias for neuronal cells. In mixed differentiation conditions, Gtn-HPA increased the proportion of aNSCs expressing neuronal marker β-tubulin III to a greater extent than that for astrocytic marker glial fibrillary acidic protein, indicating an enhancement in differentiation towards neuronal lineage. Between neuronal and astrocytic differentiation conditions, Gtn-HPA also selected for higher survival in the former. Overall, Gtn-HPA hydrogels are promising injectable matrices for supporting and influencing aNSCs in ways that may be beneficial for brain tissue regeneration after injuries.

  11. Neural Tube Defects, Folic Acid and Methylation

    Directory of Open Access Journals (Sweden)

    Henk J. Blom

    2013-09-01

    Full Text Available Neural tube defects (NTDs are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.

  12. Producing Insulin from Neural Cells

    OpenAIRE

    Yuichi Hori; Xueying Gu; Xiaodong Xie; Kim, Seung K.

    2005-01-01

    BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals t...

  13. Neural Stem Cells and Glioblastoma

    OpenAIRE

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neura...

  14. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    XIA Lei; WAN Hong; HAO Shu-yu; LI De-zhi; CHEN Gang; GAO Chuan-chuan; LI Jun-hua

    2013-01-01

    Background Various tissue engineering strategies have been developed to facilitate axonal regeneration after spinal cord injury.This study aimed to investigate whether neural stem cells (NSCs) could survive in poly(L-lactic-co-glycolic acid) (PLGA) scaffolds and,when cografted with Schwann cells (SCs),could be induced to differentiate towards neurons which form synaptic connection and eventually facilitate axonal regeneration and myelination and motor function.Methods NSCs and SCs which were seeded within the directional PLGA scaffolds were implanted in hemisected adult rat spinal cord.Control rats were similarly injured and implanted of scaffolds with or without NSCs.Survival,migration,differentiation,synaptic formation of NSCs,axonal regeneration and myelination and motor function were analyzed.Student's t test was used to determine differences in surviving percentage of NSCs.One-way analysis of variance (ANOVA) was used to determine the differences in the number of axons myelinated in the scaffolds,the mean latency and amplitude of cortical motor evoked potentials (CMEPs) and Basso,Beattie & Bresnahan locomotor rating scale (BBB) score.The X2 test was used to determine the differences in recovery percentage of CMEPs.Results NSCs survived,but the majority migrated into adjacent host cord and died mostly.Survival rate of NSCs with SCs was higher than that of NSCs without SCs ((1.7831±0.0402)% vs.(1.4911±0.0313)%,P <0.001).Cografted with SCs,NSCs were induced to differentiate towards neurons and might form synaptic connection.The mean number of myelinated axons in PLGA+NSCs+SCs group was more than that in PLGA+NSCs group and in PLGA group ((110.25±30.46) vs.(18.25±3.30) and (11.25±5.54),P <0.01).The percentage of CMEPs recovery in PLGA+NSCs+SCs group was higher than in the other groups (84.8% vs.50.0% and 37.5%,P <0.05).The amplitude of CMEPs in PLGA+NSCs+SCs group was higher than in the other groups ((1452.63±331.70) μV vs.(428.84±193.01)

  15. Neural tube defect and folic acid.

    Science.gov (United States)

    Wani, M A

    2000-01-01

    Neural tube defect (NTD) is a group of congenital anomalies, which include anencephaly, encephalocele, iniencephaly, meningocele, myelomeningocele, myeloschisis, lipomeningocele, and rashischisis. Congenital malformations of the central nervous system constitute more than half of all congenital malformations with an incidence of 1-2/1000 births. The condition is thought to arise from multifactorial etiology with a distinct genetic predisposition. This paper discusses the pathogenesis of NTD and explores the use of folic acid for the prevention of this serious congenital malformation. Two studies, which have shown a significant protective effect of folic acid use on NTD prevention in high-risk mothers, are cited. In considering the effectiveness of folic acid supplementation on NTD prevention, obstetricians, pediatricians, neonatologists, and family doctors are called to initiate a collective effort to increase awareness among women in the childbearing age on the need of daily multivitamin intake with folic acid prior to pregnancy.

  16. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  17. A Facile Approach for the Mass Production of Submicro/Micro Poly (Lactic Acid) Fibrous Mats and Their Cytotoxicity Test towards Neural Stem Cells

    Science.gov (United States)

    2016-01-01

    Despite many of the studies being conducted, the electrospinning of poly (lactic acid) (PLA), dissolved in its common solvents, is difficult to be continuously processed for mass production. This is due to the polymer solution droplet drying. Besides, the poor stretching capability of the polymer solution limits the production of small diameter fibers. To address these issues, we have examined the two following objectives: first, using an appropriate solvent system for the mass production of fibrous mats with fine-tunable fiber diameters; second, nontoxicity of the mats towards Neural Stem Cell (NSC). To this aim, TFA (trifluoroacetic acid) was used as a cosolvent, in a mixture with DCM (dichloromethane), and the solution viscosity, surface tension, electrical conductivity, and the continuity of the electrospinning process were compared with the solutions prepared with common single solvents. The binary solvent facilitated PLA electrospinning, resulting in a long lasting, stable electrospinning condition, due to the low surface tension and high conductivity of the binary-solvent system. The fiber diameter was tailored from nano to micro by varying effective parameters and examined by scanning electron microscopy (SEM) and image-processing software. Laminin-coated electrospun mats supported NSC expansion and spreading, as examined using AlamarBlue assay and fluorescent microscopy, respectively.

  18. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    Science.gov (United States)

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process.

  19. Neural differentiation of human embryonic stem cells

    OpenAIRE

    Dhara, Sujoy K.; Stice, Steven L.

    2008-01-01

    Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the integration of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to new and novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special...

  20. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway

    Directory of Open Access Journals (Sweden)

    Arenas Ernest

    2008-12-01

    Full Text Available Abstract Background Valproic acid (VPA, a commonly used mood stabilizer that promotes neuronal differentiation, regulates multiple signaling pathways involving extracellular signal-regulated kinase (ERK and glycogen synthase kinase3β (GSK3β. However, the mechanism by which VPA promotes differentiation is not understood. Results We report here that 1 mM VPA simultaneously induces differentiation and reduces proliferation of basic fibroblast growth factor (bFGF-treated embryonic day 14 (E14 rat cerebral cortex neural progenitor cells (NPCs. The effects of VPA on the regulation of differentiation and inhibition of proliferation occur via the ERK-p21Cip/WAF1 pathway. These effects, however, are not mediated by the pathway involving the epidermal growth factor receptor (EGFR but via the pathway which stabilizes Ras through β-catenin signaling. Stimulation of differentiation and inhibition of proliferation in NPCs by VPA occur independently and the β-catenin-Ras-ERK-p21Cip/WAF1 pathway is involved in both processes. The independent regulation of differentiation and proliferation in NPCs by VPA was also demonstrated in vivo in the cerebral cortex of developing rat embryos. Conclusion We propose that this mechanism of VPA action may contribute to an explanation of its anti-tumor and neuroprotective effects, as well as elucidate its role in the independent regulation of differentiation and inhibition of proliferation in the cerebral cortex of developing rat embryos.

  1. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  2. Neonatal Maternal Separation Alters the Capacity of Adult Neural Precursor Cells to Differentiate into Neurons Via Methylation of Retinoic Acid Receptor Gene Promoter

    OpenAIRE

    Boku, Shuken; Toda, Hiroyuki; Nakagawa, Shin; Kato, Akiko; Inoue, Takeshi; Koyama, Tsukasa; Hiroi, Noboru; Kusumi, Ichiro

    2015-01-01

    BACKGROUND: Early life stress is thought to contribute to psychiatric disorders, but the precise mechanisms underlying this link are poorly understood. As neonatal stress decreases adult hippocampal neurogenesis, which, in turn, functionally contributes to many behavioral phenotypes relevant to psychiatric disorders, we examined how in vivo neonatal maternal separation (NMS) impacts the capacity of adult hippocampal neural precursor cells via epigenetic alterations in vitro. METHODS: Rat pups...

  3. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    Science.gov (United States)

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  4. Immunological control of adult neural stem cells

    OpenAIRE

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many patholog...

  5. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells

    Institute of Scientific and Technical Information of China (English)

    万虹; 安沂华; 张泽舜; 张亚卓; 王忠诚

    2003-01-01

    Objective To explore the factors which induce differentiation of embryonic neural stem cells. Methods Rat embryonic neural stem cells were co-cultured with newborn rat Schwann cells in serum-free medium. The phenotype and specific-markers including tubulin-β, glial fibrillary acidic protein (GFAP) and galactorcerebroside (GalC), were domonstrated by phase contrast microscopy and double immunofluorescence staining. Results Overall, 80%±5% of neural stem cells protruded several elongated processes and expressed tubulin-β antigen at high levels, while 20±3% of them protruded several short processes and were GalC or GFAP positive. Conclusion The factors secreted by Schwann cells could induce rat embryonic neural stem cell to differentiate.

  6. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  7. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  8. Embryonic stem cell neurogenesis and neural specification.

    Science.gov (United States)

    Germain, Noélle; Banda, Erin; Grabel, Laura

    2010-10-15

    The prospect of using embryonic stem cell (ESC)-derived neural progenitors and neurons to treat neurological disorders has led to great interest in defining the conditions that guide the differentiation of ESCs, and more recently induced pluripotent stem cells (iPSCs), into neural stem cells (NSCs) and a variety of neuronal and glial subtypes. Over the past decade, researchers have looked to the embryo to guide these studies, applying what we know about the signaling events that direct neural specification during development. This has led to the design of a number of protocols that successfully promote ESC neurogenesis, terminating with the production of neurons and glia with diverse regional addresses and functional properties. These protocols demonstrate that ESCs undergo neural specification in two, three, and four dimensions, mimicking the cell-cell interactions, patterning, and timing that characterizes the in vivo process. We therefore propose that these in vitro systems can be used to examine the molecular regulation of neural specification. PMID:20589755

  9. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  10. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson’s disease rats after neural stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huifen Shi; Jie Song; Xuming Yang

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metab-olites in the brain of Parkinson’s disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homo-vanillic acid) content in the midbrain of Parkinson’s disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson’s disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons.

  11. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  12. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  13. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease.

    Science.gov (United States)

    Si, Lihui; Xu, Tianmin; Wang, Fengzhang; Liu, Qun; Cui, Manhua

    2012-04-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  14. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Lihui Si; Tianmin Xu; Fengzhang Wang; Qun Liu; Manhua Cui

    2012-01-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  15. Study of neural cells on organic semiconductor ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  16. Effect of midazolam on the proliferation of neural stem cells isolated from rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Sanjun Zhao; Yajing Zhu; Rui Xue; Yunfeng Li; Hui Lu; Weidong Mi

    2012-01-01

    In many recent studies,the inhibitory transmitter gamma-aminobutyric acid has been shown to modulate the proliferation,differentiation and survival of neural stem cells.Most general anesthetics are partial or allosteric gamma-aminobutyric acid A receptor agonists,suggesting that general anesthetics could alter the behavior of neural stem cells.The neuroprotective efficacy of general anesthetics has been recognized for decades,but their effects on the proliferation of neural stem cells have received little attention.This study investigated the potential effect of midazolam,an extensively used general anesthetic and allosteric gamma-aminobutyric acid A receptor agonist,on the proliferation of neural stem cells in vitro and preliminarily explored the underlying mechanism.The proliferation of neural stem cells was tested using both Cell Counting Kit 8 and bromodeoxyuridine incorporation experiments.Cell distribution analysis was performed to describe changes in the cell cycle distribution in response to midazolam.Calcium imaging was employed to explore the molecular signaling pathways activated by midazolam.Midazolam (30-90 μM) decreased the proliferation of neural stem cells in vitro.Pretreatment with the gamma-aminobutyric acid A receptor antagonist bicuculline or Na-K-2Cl cotransport inhibitor furosemide partially rescued this inhibition.In addition,midazolam triggered a calcium influx into neural stem cells.The suppressive effect of midazolam on the proliferation of neural stem cells can be partly attributed to the activation of gamma-aminobutyric acid A receptor.The calcium influx triggered by midazolam may be a trigger factor leading to further downstream events.

  17. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    OpenAIRE

    Emmanuelle Gruz-Gibelli; Natacha Chessel; Clélia Allioux; Pascale Marin; Françoise Piotton; Geneviève Leuba; Herrmann, François R.; Armand Savioz

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigat...

  18. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  19. Viability of dielectrophoretically trapped neural cortical cells in culture

    NARCIS (Netherlands)

    Heida, T.; Vulto, P.; Rutten, W.L.C.; Marani, E.

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  20. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  1. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  2. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Directory of Open Access Journals (Sweden)

    Emmanuelle Gruz-Gibelli

    2016-01-01

    Full Text Available The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer’s disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs in aging and Alzheimer’s disease. All-trans retinoic acid (RA, a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  3. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  4. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  5. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  6. Neural Stem Cells (NSCs) and Proteomics.

    Science.gov (United States)

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  7. [Neural tube defects and folic acid: a historical overview of a highly successful preventive intervention].

    Science.gov (United States)

    Vásquez, Adriana Ordoñez; Suarez-Obando, Fernando

    2015-12-01

    This article gives a broad overview of part of the historical evolution of medical knowledge about neural tube defects (NTD) and the discovery of vitamin B9 or folic acid, as well as some relevant research events that, over the course of several centuries, defined the relationships between the understanding of central nervous system embryology, the discovery of the vitamin, the correlation between folic acid and cell proliferation and lastly the development of preventive measures for this type of defects. This narrative allows us to examine historically relevant concepts underlying clinical actions with a populational impact that prevent NTDs via folic acid consumption prior to conception.

  8. Segmentation and Tracking of Neural Stem Cell

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  9. Retinoic acid induction of genes associated with neural tube developmental defects

    Institute of Scientific and Technical Information of China (English)

    Xinjun Li; Zhong Yang; Yi Zeng; Hong Xu; Hongli Li; Yangyun Han; Xiaodong Long; Chao You

    2010-01-01

    To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice.Previous studies have revealed seven differentially expressed genes involved in neural tube developmental defects. However, gene expression and regulation is a complex process. Therefore,gene expression differences between normal and defective neural tubes at 9.5 and 10.5 days were compared. A total of eight differentially expressed genes exhibited coincident alterations at embryonic 9.5 and 10.5 days. In mice with retinoic acid-induced neural tube defects, NeK7, IGFBP5,ZW10, Csf3r, PSMC6, Cdk5, and Rb1 expressions were downregulated, but Apoa-4 expression was upregulated. These results were confirmed by Northern blot hybridization. Results suggested that NeK7, IGFBP5, ZW10, Csf3r, PSMC6, Cdk5, Rb1, and Apoa-4 are important regulatory factors involved in neural tube defects.

  10. Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhenkun Wang; Xiaoyang Zhao; Zhonghua Liu; Liu Wang; Qi Zhou; Chao Sheng; Tianda Li; Fei Teng; Lisi Sang; Fenglin Cao; Ziwei Wang; Wanwan Zhu; Wei Li

    2012-01-01

    Rat is a valuable model for pharmacological and physiological studies.Germline-competent rat embryonic stem (rES) cell lines have been successfully established and the molecular networks maintaining the self-renewing,undifferentiated state of rES cells have also been well uncovered.However,little is known about the differentiation strategies and the underlying mechanisms of how these authentic rat pluripotent stem cells give rise to specific cell types.The aim of this study is to investigate the neural differentiation capacity of rES cells.By means of a modified procedure based on previous publications - combination of mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3) inhibitors (two inhibitors,"2i") with feeder-conditioned medium,we successfully obtained high-quality rat embryoid bodies (rEBs) from rES cells and then differentiated them to tripotent neural progenitors.These rES cell-derived neural progenitor cells (rNPCs) were capable of self-renewing and giving rise to all three neural lineages,including astrocytes,oligodendrocytes,and neurons.Besides,these rES cell-derived neurons stained positive for y-aminobutyric acid (GABA) and tyrosine hydroxylase (TH).In summary,we develop an experimental system for differentiating rES cells to tripotent neural progenitors,which may provide a powerful tool for pharmacological test and a valuable platform for studying the pathogenesis of many neurodegenerative disorders such as Parkinson's disease and the development of rat nervous system.

  11. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  12. Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferation▿

    OpenAIRE

    Sun, Guoqiang; Alzayady, Kamil; Stewart, Richard; Ye, Peng; Yang, Su; Li, Wendong; Shi, Yanhong

    2010-01-01

    Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is recruited by nuclear receptor TLX, an essential neural stem cell regulator, to the promoters of TLX...

  13. [Neural stem cells and Notch signalling].

    Science.gov (United States)

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  14. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?

    Institute of Scientific and Technical Information of China (English)

    Yan Ho Chan; Mingyong Gao; Wutian Wu

    2013-01-01

    Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+ from lead acetate [Pb (CH3COO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 200 μM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2+ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+ cytotoxicity.

  15. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Directory of Open Access Journals (Sweden)

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  16. Stat3 inhibition in neural lineage cells.

    Science.gov (United States)

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  17. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  18. Differentiation of Human Breast-Milk Stem Cells to Neural Stem Cells and Neurons

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2014-01-01

    Full Text Available Objectives. Human breast milk contains a heterogeneous population of cells that have the potential to provide a noninvasive source of cells for cell therapy in many neurodegenerative diseases without any ethical concern. The objectives of this study were to differentiate the breast milk-derived stem cells (BMDSC toward neural stem cells and then into the neurons and neuroglia. Materials and Methods. To do this, the BMDSC were isolated from human breast milk and cultured in Dulbecco’s modified Eagle medium/F12 (DMEM/F12 containing fibroblast growth factor (bFGF. The cells were then characterized by evaluation of the embryonic and stem cell markers. Then, the cells were exposed to culture medium containing 1% B27 and 2% N2 for 7–10 days followed by medium supplemented with B27, N2, bFGF 10 µg/mL, and endothelial growth factor (EGF 20 µg/mL. Then, the sphere-forming assay was performed. The spheres were then differentiated into three neural lineages by withdrawing growth factor in the presence of 5% FBS (fetal bovine serum. The immunofluorescence was done for β-tubulin III, O4, and GFAP (glial fibrillary acidic protein. Results. The results indicated that the cells expressed both embryonic and mesenchymal stem cell (MSC markers. They also showed neurospheres formation that was nestin-positive. The cells were also differentiated into all three neural lineages. Conclusion. The BMDSC can behave in the same way with neural stem cells. They were differentiated into oligodendrocytes, and astrocytes as well as neurons.

  19. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  20. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    OpenAIRE

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  1. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Institute of Scientific and Technical Information of China (English)

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  2. Lack of telomerase activity in rabbit bone marrow stromal cells during differentiation along neural pathway

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen-zhou; XU Ru-xiang; JIANG Xiao-dan; TENG Xiao-hua; LI Gui-tao; ZHOU Yü-xi

    2006-01-01

    Objective: To investigate telomerase activity in rabbit bone marrow stromal cells (BMSCs) during their committed differentiation in vitro along neural pathway and the effect of glial cell line-derived neurotrophic factor (GDNF) on the expression of telomerase.Methods: BMSCs were acquired from rabbit marrow and divided into control group, GDNF (10 ng/ml) group.No. ZL02134314. 4) supplemented with 10% fetal bovine serum (FBS) was used to induce BMSCs differentiation along neural pathway. Fluorescent immunocytochemistry was employed to identify the expressions of Nestin, neuronspecific endase (NSE), and gial fibrillary acidic protein (GFAP). The growth curves of the cells and the status of cell cycles were analyzed, respectively. During the differentiation, telomerase activitys were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (TRAP-ELISA).Results: BMSCs were successfully induced to differentiate along neural pathway and expressed specific markers of fetal neural epithelium, mature neuron and glial cells. Telomerase activities were undetectable in BMSCs during differentiation along neural pathway. Similar changes of cell growth curves, cell cycle status and telomerase expression were observed in the two groups.Conclusions: Rabbit BMSCs do not display telomerase activity during differentiation along neural pathway. GDNF shows little impact on proliferation and telomerase activity of BMSCs.

  3. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  4. Elements of a neural stem cell niche derived from embryonic stem cells.

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Morrison, Jason A; Maruniak, Joel A; Katz, Martin L; Kirk, Mark D

    2007-12-01

    Recent studies show that adult neural tissues can harbor stem cells within unique niches. In the mammalian central nervous system, neural stem cell (NSC) niches have been identified in the dentate gyrus and the subventricular zone (SVZ). Stem cells in the well-characterized SVZ exist in a microenvironment established by surrounding cells and tissue components, including transit-amplifying cells, neuroblasts, ependymal cells, blood vessels, and a basal lamina. Within this microenvironment, stem cell properties, including proliferation and differentiation, are maintained. Current NSC culture techniques often include the addition of molecular components found within the in vivo niche, such as mitogenic growth factors. Some protocols use bio-scaffolds to mimic the physical growth environment of living tissue. We describe a novel NSC culture system, derived from embryonic stem (ES) cells, that displays elements of an NSC niche in the absence of exogenously applied mitogens or complex physical scaffolding. Mouse ES cells were neuralized with retinoic acid and plated on an entactin-collagen-laminin-coated glass surface at high density (250,000 cells/cm(2)). Six to eight days after plating, complex multicellular structures consisting of heterogeneous cell types developed spontaneously. NSC and progenitor cell proliferation and differentiation continued within these structures. The identity of cellular and molecular components within the cultures was documented using RT-PCR, immunocytochemistry, and neurosphere-forming assays. We show that ES cells can be induced to form structures that exhibit key properties of a developing NSC niche. We believe this system can serve as a useful model for studies of neurogenesis and stem cell maintenance in the NSC niche as well as for applications in stem cell transplantation.

  5. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  6. New mechanism for neural stem cell maintenance in early embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Teamning up with co-workers from Japan, UK and US,CAS biochemists have revealed a novel mechanism for maintaining neural stem cells in early embryos. Their work was published on the 6 August issue of Cell Development.

  7. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  8. Ulk4 Regulates Neural Stem Cell Pool.

    Science.gov (United States)

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331.

  9. Imprinted Zac1 in neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Guillaume Daniel; Udo Schmidt-Edelkraut; Dietmar Spengler; Anke Hoffmann

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes playan important role in brain development. On historicalgrounds, these two determinants have been largelystudied independently of each other. Recent evidencesuggests, however, that NSCs can reset select genomicimprints to prevent precocious depletion of the stemcell reservoir. Moreover, imprinted genes like thetranscriptional regulator Zac1 can fine tune neuronalvs astroglial differentiation of NSCs. Zac1 binds ina sequence-specific manner to pro-neuronal andimprinted genes to confer transcriptional regulation andfurthermore coregulates members of the p53-familyin NSCs. At the genome scale, Zac1 is a central hub ofan imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation anddifferentiation. Overall, transcriptional, epigenomic, andgenomic mechanisms seem to coordinate the functionalrelationships of NSCs and imprinted genes fromdevelopment to maturation, and possibly aging.

  10. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments

    Directory of Open Access Journals (Sweden)

    Sanna Maria

    2006-02-01

    Full Text Available Abstract Background It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential. Results In order to identify factors able to lead differentiation of stem cells towards cells of neural lineage, we isolated stromal cells from human adult bone marrow (BMSC. Cells were treated with: (1 TPA, forskolin, IBMX, FGF-1 or (2 retinoic acid and 2-mercaptoethanol (BME. Treatment (1 induced differentiation into neuron-like cells within 24 hours, while a longer treatment was required when using retinoic acid and BME. Morphological modifications were more dramatic after treatment (1 compared with treatment (2. In BMSC both treatments induced the expression of neural markers such as NF, GFAP, TUJ-1 and neuron-specific enolase. Moreover, the transcription factor Hes1 increased after both treatments. Conclusion Our study may contribute towards the identification of mechanisms involved in the differentiation of stem cells towards cells of neural lineage.

  11. Directed Differentiation of Human Embryonic Stem Cells into Neural Progenitors.

    Science.gov (United States)

    Banda, Erin; Grabel, Laura

    2016-01-01

    A variety of protocols have been used to produce neural progenitors from human embryonic stem cells. We have focused on a monolayer culture approach that generates neural rosettes. To initiate differentiation, cells are plated in a serum-free nutrient-poor medium in the presence of a BMP inhibitor. Depending on the cell line used, additional growth factor inhibitors may be required to promote neural differentiation. Long-term culture and addition of the Notch inhibitor DAPT can promote terminal neuronal differentiation. Extent of differentiation is monitored using immunocytochemistry for cell type-specific markers.

  12. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Directory of Open Access Journals (Sweden)

    Xiong Y

    2012-04-01

    Full Text Available Yi Xiong1,*, Ji-Xiang Zhu2,*, Zheng-Yu Fang1, Cheng-Guang Zeng2, Chao Zhang1, Guo-Long Qi3, Man-Hui Li1, Wei Zhang1, Da-Ping Quan2, Jun Wan1,41Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 2DSAPM Lab, PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 3Department of Medical Information, Medical Collage of Jinan University, Guangzhou, 4Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China*These authors contributed equally to this manuscriptAbstract: Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid (PLGA conduits and neurotrophin-3 (NT-3 to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs and Schwann cells (SCs were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80% were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury.Keywords: PLGA, NT-3, neural stem cells, Schwann cells, myelin sheath

  13. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers.

    Science.gov (United States)

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  14. 骨髓间充质干细胞复合聚乳酸-羟基乙酸材料治疗大鼠神经损伤的实验研究%Bone Marrow Mesenchymal Stem Cells Combined with Polylactic Glycolic Acid Scaffold for Rat Neural Injury

    Institute of Scientific and Technical Information of China (English)

    符厚圣; 周兴; 桂有富; 郑煜; 潘建刚

    2011-01-01

    Objectives To study separately the effect of bone marrow mesenchymal stem cells (BMSCs) and differentiated neural - like cells combined with polylactic glycolic acid ( PLGA ) scaffolds, both composite which restore to SD rat nerve injury. Methods BMSCs were cultured by differential adherence,and composited PLGA,via scanning electron microscope to investigate the information of BMSCs'adhesion, proliferation and induction into neural - like cells in the scaffolds. Bold scaffold, BMSCs - PLGA complex, and neural - like cells - PLGA complex were separately transplanted into SD rat models, with the injury for right sciatic nerve, and obsvered SD rat models during 60 days after operation. Results BMSCs and neural - like cells can be exactly adhere to, proliferate and grow on the PLGA;BMSCs and neural -like cells combined with PLGA, which can restore to nerve injury. Conclusions BMSCs and differentiated neural - like cells combined with polylactic glycolic acid (PLGA) scaffolds,which can be used as a method of tissue engineering,to treat neurogenic bladder caused by spinal cord injury and advanced diabetes.%目的 研究骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells,BMSCs)及其分化的神经样细胞分别与聚乳酸-羟基乙酸(polylactic glycolic acid,PLGA)支架材料复合修复大鼠神经损伤的效果.方法 将BMSCs复合PIGA培养,通过扫描电镜观察BMSCs在PLGA上的黏附、增殖并诱导分化成神经样细胞的情况;然后分别将单纯的PLGA、BMSCs-PLGA复合物以及神经样细胞-PLGA复合物分别移植入3组右侧坐骨神经损伤的SD大鼠模型中,术后观察三组动物60 d.结果 BMSCs及诱导分化生成的神经样细胞能在PLGA良好的黏附、增殖和生长;复合PLGA移植后能修复损伤的神经.结论 BMSCs及神经样细胞复合PLGA移植可作为组织工程治疗脊髓损伤及糖尿病晚期神经源性膀胱的一种方法.

  15. Elastic modulus affects the growth and differentiation of neural stem cells

    Directory of Open Access Journals (Sweden)

    Xian-feng Jiang

    2015-01-01

    Full Text Available It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes.

  16. PROLIFERATION AND DIFFERENTIATION OF NEURAL STEM CELLS IN ADULT RATS AFTER CEREBRAL INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ren-zhi Wang; Yong Yao; Zhi-hai Liu; Zhi-gang Lian; Yu-jie Zou; Yu-kui Wei

    2004-01-01

    Objective To investigate proliferation and differentiation of neural stem cells in adult rats after cerebral infarction.Methods Models of cerebral infarction in rats were made and the time-course expression of bromodeoxyuridine (BrdU), Musashil, glial fibrillary acidic protein (GFAP), and neuronal nuclear antigen (NeuN) were determined by immunohistochemistry and immunofluorescence staining. BrdU and Musashil were used to mark dividing neural stem cells. GFAP and NeuN were used to mark differentiating neural stem cells.Results Compared with controls, the number of BrdU-labeled and BrdU-labeled with Musashil-positive cells increased strikingly 1 day after cerebral infarction; approximately 6 fold with a peak 7 days later; markedly decreased 14 days later, but was still elevated compared with that of controls; decling to the control level 28 days later. The number of BrdU-labeled with GFAP-positive cells nearly remained unchanged in the hippocampus after cerebral infarction. The number of BrdU-labeled with NeuN-positive cells increased strikingly 14 days after cerebral infarction, reached maximum peak in the hippocampus 28 days after cerebral infarction in rats.Conclusion Cerebral infarction stimulate proliferation of inherent neural stem cells and most proliferated neural stem cells differentiate into neurons.

  17. Elastic modulus affects the growth and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.

  18. Differentiation of Human Bone Marrow Stromal Cells into Neural-Like Cells Induced by Sodium Ferulate in vitro

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zhifeng Deng; Xianliang Lai; Wei Tu

    2005-01-01

    Human marrow stromal cells (hMSCs) are multipotential stem cells, capable of differentiating into bone, cartilage,fat and muscle. Several recent reports demonstrated that hMSCs have been also differentiated into neural cells.However, only a few reported inducers are applicable for clinical use. This work is to explore the effects of sodium ferulate (SF) on differentiation of hMSCs into neural cells in vitro. We found that hMSCs could be induced to the cells with typical neural morphology when cultured with SF. The cells express neural proteins, such as nestin,neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP). About 30% of the hMSC-derived cells expressed nestin when cultured with SF for 3 h, but no expression was detected after 24 h. The percentages of positive cells for NSE or GFAP were about 67% and 39% separately at 6 h, and reached the plateau phage after treatment with SF for 3 days. The data suggest that SF can induce hMSCs to differentiate into neural-like cells in vitro.

  19. Adult neural stem cells-Functional potential and therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  20. Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse.

    Directory of Open Access Journals (Sweden)

    Rui Lan Zhang

    Full Text Available The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP positive neural stem cells that are in contact with the cerebrospinal fluid (CSF via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction.

  1. Stimulation of adult neural stem cells with a novel glycolipid biosurfactant

    OpenAIRE

    Stipcevic, Tamara; Knight, Christopher P.; Kippin, Tod E.

    2013-01-01

    Glycolipids are amphipatic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated, proliferative, multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3, is a glycolipid isolated from bacteria Pseudomonas...

  2. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  3. Role of neural precursor cells in promoting repair following stroke

    Institute of Scientific and Technical Information of China (English)

    Pooya DIBAJNIA; Cindi M MORSHEAD

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention.Two broad approaches to stem cell-based therapies have been taken:the transplantation of exogenous stem cells,and the activation of endogenous neural stem and progenitor cells (together termed neural precursors).Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results.Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate,migrate and differentiate into mature neurons in the uninjured adult brain.Studies have revealed that these neural precursor cell behaviours can be activated following stroke,whereby neural precursors will expand in number,migrate to the infarct site and differentiate into neurons.However,this innate response is insufficient to lead to functional recovery,making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery.Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.

  4. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    Science.gov (United States)

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  5. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    Science.gov (United States)

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used.

  6. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Institute of Scientific and Technical Information of China (English)

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  7. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  8. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Directory of Open Access Journals (Sweden)

    Biernat Wojciech

    2009-02-01

    Full Text Available Abstract Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA: exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP. Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+ and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8, as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.

  9. Intraspinal transplantation of mouse and human neural precursor cells

    OpenAIRE

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detec...

  10. Development of neural stem cell in the adult brain

    OpenAIRE

    Duan, Xin; Kang, Eunchai; Liu, Cindy Y.; Ming, Guo-li; Song, Hongjun

    2008-01-01

    New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechani...

  11. Neural Crest As the Source of Adult Stem Cells

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  12. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders

    Institute of Scientific and Technical Information of China (English)

    Shaoping Hou; Paul Lu

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important fron-tier ifelds in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cellsin vitro andin vivo and their potential treatments of neurological disorders.

  13. Role of polarized cell divisions in zebrafish neural tube formation.

    Science.gov (United States)

    Clarke, Jon

    2009-04-01

    Development of epithelial cell polarity and morphogenesis of a central lumen are essential prerequisites for the formation of the vertebrate neural tube. In teleost fish embryos this first involves the formation of a solid neural rod structure that then undergoes a process of cavitation to form a lumen. This process is initiated from a neural plate that has a distinct organization compared to other vertebrates, and involves complex cell intercalations and rearrangements. A key element is a mode of polarized cell division that generates daughters with mirror-image apico-basal polarity. These mirror-symmetric divisions have powerful morphogenetic influence because when they occur in ectopic locations they orchestrate the development of ectopic apical and basal specializations and the development of ectopic neural tubes.

  14. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    OpenAIRE

    Mattu Chetana Shivaraj; Guillaume Marcy; Guoliang Low; Jae Ryun Ryu; Xianfeng Zhao; Rosales, Francisco J.; Goh, Eyleen L.K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippoc...

  15. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    OpenAIRE

    Young, Stephanie Z.; Bordey, Angélique

    2009-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery tha...

  16. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  17. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  18. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    International Nuclear Information System (INIS)

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment

  19. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de [Department of Neurosurgery, University Hospital, Leipzig (Germany); Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany); Glien, Anja; Groba, Claudia; Schlichting, Nadine [Department of Neurosurgery, University Hospital, Leipzig (Germany); Kamprad, Manja [Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig (Germany); Meixensberger, Juergen [Department of Neurosurgery, University Hospital, Leipzig (Germany); Milosevic, Javorina [Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany)

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  20. File list: Unc.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_Stem_Cells hg19 Unclassified Neural Neural Stem Cells SRX71...0680,SRX710679,SRX710682,SRX710681,SRX710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  1. File list: Pol.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  2. File list: His.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX505088,S...67,SRX869076 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  3. File list: Pol.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  4. File list: Oth.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  5. File list: ALL.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  6. File list: ALL.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...,SRX869076,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  7. File list: His.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315276,SRX315277 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  8. File list: Unc.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  9. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  10. File list: Pol.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  11. File list: His.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX315277,SRX667383,SRX668241,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  12. File list: Pol.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  13. File list: Pol.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  14. File list: His.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  15. File list: Oth.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  16. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  17. File list: Pol.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  18. File list: Oth.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX3...SRX869081,SRX869082,SRX869071,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  19. File list: Oth.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  20. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  1. File list: Pol.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  2. File list: Pol.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  3. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  4. File list: His.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707369,...SRX707366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  5. File list: Oth.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX1...SRX869077,SRX869081,SRX869074,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  6. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  7. File list: Unc.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  8. File list: Pol.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  9. File list: Pol.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_Stem_Cells hg19 RNA polymerase Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  10. File list: ALL.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  11. File list: Unc.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  12. File list: Unc.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_Stem_Cells hg19 Unclassified Neural Neural Stem Cells SRX71...0680,SRX710679,SRX710682,SRX710681,SRX710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  13. File list: ALL.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...SRX869067,SRX1433432 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  14. File list: Oth.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  15. File list: Oth.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  16. File list: DNS.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  17. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  18. File list: His.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX505088,S...70,SRX869076 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  19. File list: His.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX869069,S...7,SRX1433432 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  20. File list: Pol.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Neural_Stem_Cells mm9 RNA polymerase Neural Neural Stem Cells http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  1. File list: Unc.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_Stem_Cells mm9 Unclassified Neural Neural Stem Cells SRX141...1156,SRX1411157 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  2. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  3. File list: ALL.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...,SRX869077,SRX869071 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  4. File list: Unc.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_Stem_Cells hg19 Unclassified Neural Neural Stem Cells SRX71...0680,SRX710679,SRX710682,SRX710681,SRX710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  5. File list: ALL.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  6. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  7. File list: His.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  8. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  9. File list: ALL.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_Stem_Cells mm9 All antigens Neural Neural Stem Cells ERX380...SRX1433431,SRX869084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  10. File list: His.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_Stem_Cells mm9 Histone Neural Neural Stem Cells SRX505088,S...2,SRX1433429 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  11. File list: Oth.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_Stem_Cells mm9 TFs and others Neural Neural Stem Cells SRX8...SRX869081,SRX869082,SRX869077,SRX869071 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  12. File list: Oth.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_Stem_Cells hg19 TFs and others Neural Neural Stem Cells SRX...534844,SRX534845,SRX707368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  13. File list: ALL.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_Stem_Cells hg19 All antigens Neural Neural Stem Cells SRX70...710683 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  14. File list: His.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Neural_Stem_Cells hg19 Histone Neural Neural Stem Cells SRX707366,...SRX707369 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  15. Electrical Property Characterization of Neural Stem Cells in Differentiation.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane and cytoplasm conductivity (σcytoplasm for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1 in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2 during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label

  16. Electrical Property Characterization of Neural Stem Cells in Differentiation

    Science.gov (United States)

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  17. Distinguishing hair cell from neural potentials recorded at the round window.

    Science.gov (United States)

    Forgues, Mathieu; Koehn, Heather A; Dunnon, Askia K; Pulver, Stephen H; Buchman, Craig A; Adunka, Oliver F; Fitzpatrick, Douglas C

    2014-02-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients. PMID:24133227

  18. Negative chemotaxis does not control quail neural crest cell dispersion.

    Science.gov (United States)

    Erickson, C A; Olivier, K R

    1983-04-01

    Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth 13(Suppl. 9), 133-161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a "putative" chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool. 108, 405-437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a "no man's land" forms between two confronted explants (Oldfield, 1963, Exp. Cell Res. 30, 125-138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed. PMID:6832483

  19. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    Science.gov (United States)

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.

  20. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  1. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    NARCIS (Netherlands)

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  2. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  3. Embryonic and adult neural stem cell research in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work done by investigators in China.

  4. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  5. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Xiao Han; Xiang Cheng; Xue-feng Tan; He-yan Zhao; Xin-hua Zhang

    2016-01-01

    Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after ifmbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a signiifcant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (em-bryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial ifbrillary acidic protein-positive cells detected. Our results show that cili-ary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.

  6. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  7. Immune Cells Exploit a Neural Circuit to Enter the CNS

    OpenAIRE

    Kevin J Tracey

    2012-01-01

    Multiple sclerosis (MS) is associated with the appearance of autoreactive T cells in the central nervous system. Using a mouse model of MS, Arima et al. now show that this attack begins at a specific spinal cord location. T cell entry into the CNS is regulated by a reflex neural circuit originating from leg muscle contractions.

  8. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  9. Neural tissue engineering using embryonic and induced pluripotent stem cells

    OpenAIRE

    Willerth, Stephanie M.

    2011-01-01

    With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in ...

  10. Distinct gene expression responses of two anticonvulsant drugs in a novel human embryonic stem cell based neural differentiation assay protocol.

    Science.gov (United States)

    Schulpen, Sjors H W; de Jong, Esther; de la Fonteyne, Liset J J; de Klerk, Arja; Piersma, Aldert H

    2015-04-01

    Hazard assessment of chemicals and pharmaceuticals is increasingly gaining from knowledge about molecular mechanisms of toxic action acquired in dedicated in vitro assays. We have developed an efficient human embryonic stem cell neural differentiation test (hESTn) that allows the study of the molecular interaction of compounds with the neural differentiation process. Within the 11-day differentiation protocol of the assay, embryonic stem cells lost their pluripotency, evidenced by the reduced expression of stem cell markers Pou5F1 and Nanog. Moreover, stem cells differentiated into neural cells, with morphologically visible neural structures together with increased expression of neural differentiation-related genes such as βIII-tubulin, Map2, Neurogin1, Mapt and Reelin. Valproic acid (VPA) and carbamazepine (CBZ) exposure during hESTn differentiation led to concentration-dependent reduced expression of βIII-tubulin, Neurogin1 and Reelin. In parallel VPA caused an increased gene expression of Map2 and Mapt which is possibly related to the neural protective effect of VPA. These findings illustrate the added value of gene expression analysis for detecting compound specific effects in hESTn. Our findings were in line with and could explain effects observed in animal studies. This study demonstrates the potential of this assay protocol for mechanistic analysis of specific compound-induced inhibition of human neural cell differentiation.

  11. Neural stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  12. Biological effect of velvet antler polypeptides on neural stem cells from embryonic rat brain

    Institute of Scientific and Technical Information of China (English)

    LU Lai-jin; CHEN Lei; MENG Xiao-ting; YANG Fan; ZHANG Zhi-xin; CHEN Dong

    2005-01-01

    Background Velvet antler polypeptides (VAPs), which are derived from the antler velvets, have been reported to maintain survival and promote growth and differentiation of neural cells and, especially the development of neural tissues. This study was designed to explore the influence of VAPs on neural stem cells in vitro derived from embryonic rat brain. Methods Neural stem cells derived from E12-14 rat brain were isolated, cultured, and expanded for 7 days until neural stem cell aggregations and neurospheres were generated. The neurospheres were cultured under the condition of different concentration of VAPs followed by immunocytochemistry to detect the differentiation of neural stem cells. Results VAPs could remarkablely promote differentiation of neural stem cells and most neural stem cells were induced to differentiate towards the direction of neurons under certain concentration of VAPs.Conclusion Neural stem cells can be successfully induced into neurons by VAPs in vitro, which could provide a basis for regeneration of the nervous system.

  13. File list: ALL.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  14. File list: ALL.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  15. File list: ALL.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  16. Dynamic neural network controller model of PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hatti, Mustapha [Nuclear Technologies Division, Nuclear Research Center of Birine, Ain Oussera, B.P 180, 17200 Djelfa (Algeria); Tioursi, Mustapha [Electrical Engineering Department, University of Sciences and Technology of Oran, B.P 1505, El M' Naouar, 31000 Oran (Algeria)

    2009-06-15

    This paper presents the artificial intelligence techniques to control a proton exchange membrane fuel cell system process, using particularly a methodology of dynamic neural network. In this work a dynamic neural network control model is obtained by introducing a delay line in the input of the neural network. A static production system including a PEMFC is subjected to variations of active and reactive power. Therefore the goal is to make the system follow these imposed variations. The simulation requires the modelling of the principal element (PEMFC) in dynamic mode. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for controlling, the stability of the identification and the tracking error were analyzed, and some reasons for the usefulness of this methodology are given. (author)

  17. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Institute of Scientific and Technical Information of China (English)

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  18. Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue.

    Science.gov (United States)

    Wong, Fong Kuan; Haffner, Christiane; Huttner, Wieland B; Taverna, Elena

    2014-05-01

    This microinjection protocol allows the manipulation and tracking of neural stem and progenitor cells in tissue at single-cell resolution. We demonstrate how to apply microinjection to organotypic brain slices obtained from mice and ferrets; however, our technique is not limited to mouse and ferret embryos, but provides a means of introducing a wide variety of membrane-impermeable molecules (e.g., nucleic acids, proteins, hydrophilic compounds) into neural stem and progenitor cells of any developing mammalian brain. Microinjection experiments are conducted by using a phase-contrast microscope equipped with epifluorescence, a transjector and a micromanipulator. The procedure normally takes ∼2 h for an experienced researcher, and the entire protocol, including tissue processing, can be performed within 1 week. Thus, microinjection is a unique and versatile method for changing and tracking the fate of a cell in organotypic slice culture.

  19. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    Science.gov (United States)

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  20. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  1. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  2. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Science.gov (United States)

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  3. Effects of cotransplantated Schwann cells and neural stem cells in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yan Zhan; Dihui Ma; Yu Zhang

    2011-01-01

    Schwann cells (SCs) are significantly better at promoting neural stem cell (NSCs) proliferation, differentiation and synaptic formation when cocultured with NSCs in vitro, compared with cultured in a single nerve growth factor. The present study transplanted NSCs and SCs into the brain of a rat model of Alzheimer's disease to investigate the effect of cotransplantation. Results show transplantation of both NSCs alone and NSCs + SCs significantly promoted learning and memory functions in Alzheimer's disease rats, decreased glial fibrillary acidic protein and calcium binding protein S100β expression, but increased expression of the cholinergic neuron marker choline acetyl transferase mRNA. The effect of NSCs + SCs cotransplantation was, however, more significant. NSCs and SCs cotransplantation significantly reduced the number of astrocytes and increased cholinergic neurons, facilitating the recovery of learning and memory function, compared with NSCs transplantation alone.

  4. Interplay between human microglia and neural stem/progenitor cells in an allogeneic co-culture model.

    Science.gov (United States)

    Liu, Jia; Hjorth, Erik; Zhu, Mingqin; Calzarossa, Cinzia; Samuelsson, Eva-Britt; Schultzberg, Marianne; Åkesson, Elisabet

    2013-11-01

    Experimental neural cell therapies, including donor neural stem/progenitor cells (NPCs) have been reported to offer beneficial effects on the recovery after an injury and to counteract inflammatory and degenerative processes in the central nervous system (CNS). The interplay between donor neural cells and the host CNS still to a large degree remains unclear, in particular in human allogeneic conditions. Here, we focused our studies on the interaction of human NPCs and microglia utilizing a co-culture model. In co-cultures, both NPCs and microglia showed increased survival and proliferation compared with mono-cultures. In the presence of microglia, a larger subpopulation of NPCs expressed the progenitor cell marker nestin, whereas a smaller group of NPCs expressed the neural markers polysialylated neural cell adhesion molecule, A2B5 and glial fibrillary acidic protein compared with NPC mono-cultures. Microglia thus hindered differentiation of NPCs. The presence of human NPCs increased microglial phagocytosis of latex beads. Furthermore, we observed that the expression of CD200 molecules on NPCs and the CD200 receptor protein on microglia was enhanced in co-cultures, whereas the release of transforming growth factor-β was increased suggesting anti-inflammatory features of the co-cultures. To conclude, the interplay between human allogeneic NPCs and microglia, significantly affected their respective proliferation and phenotype. Neural cell therapy including human donor NPCs may in addition to offering cell replacement, modulate host microglial phenotypes and functions to benefit neuroprotection and repair.

  5. Protective effects and its mechanism on neural cells after folic acid intervention in preeclampsia rat model%叶酸对子痫前期模型大鼠的脑保护作用及其机制

    Institute of Scientific and Technical Information of China (English)

    王军; 葛静; 杨丽娜; 薛丹; 李巨

    2011-01-01

    .37比较,均明显升高,差异有统计学意义(P<0.01);而低剂量组与高剂量组比较,差异无统计学意义(P>0.05).结论 叶酸对于子痫前期大鼠脑神经细胞有保护作用;其抗凋亡机制可能与抑制了NF-кB活化从而促进bcl-2的基因和蛋白表达有关.%Objective To investigate protective effects and mechanism of folic acid on brain neural cells in preeclampsia rat model.Methods Adult pregnant Wistar rats were randonly divided into 4 groups (n = 10 in each group).Rats in model group were injected intraperitoneally with homocysteine (Hcy,200 mg · kg-1 · d-1) daily and were injected subcutaneously every other day with monosodium glutamate (MSG,1 g · kg-1 · 48 h-1) from the 10th day of pregnancy to establish the model of preeclampsia. Lowdose folic acid (low dose group 10 ng · kg-1 · d-1) and high-dose folic acid (high dose group 20 mg · kg-1 · d-1 ) were given intragastric administration with folic acid tablets dissolved in saline daily at the same time of establishing model.Rats in control group were injected or intragastric administration with the same dose of saline as above up to the 20th day of pregnancy.Brain tissue was fixed on the 20th day of pregnancy, so was that plasma folic acid was measured with automatic electro-chemiluminescence.Rats' immunohistochemical staining.bcl-2 mRNA and protein expression changes were observed by using reverse transcription(RT) -PCR and western blot.Results ( 1 ) Plasma folate concentrations were ( 39.5 ± 3.4 )nmol/L in low dose group and (40.1 ±5.4) nmol/L in high dose group, which were all significantly higher than (26.9 ± 6.7 ) nmol/L in model group( P < 0.01 ).Plasma folate in low dose and high dose group did not show significant difference( P > 0.05 ); ( 2 ) Apoptosis cell were 48.2 ± 9.1 in low dose group and 44.7 ±8.3 in high dose group, which were significantly lower than 75.8 ± 10.1 in model group (P<0.01).However, apoptosis cell in low dose and high dose

  6. The prevention of neural tube defects by folic acid supplementation

    Directory of Open Access Journals (Sweden)

    H. W. Hitzeroth

    1993-05-01

    Full Text Available Neural tube defects, in particular spina bifida and anencephaly, are serious and relatively common congenital abnormalities worldwide. They also occur in South Africa and affect all population groups to varying degrees. The overall incidence in South Africa is approximately 1-2 per 1000 newborns. Higher incidences, up to 6 per 1000 newborns have been recorded in certain parts, especially in some rural areas of the country. In total as many as 1500 newborns could be affected by a neural tube defect each year. The precise aetiology of neural tube defects is still unknown.

  7. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    Science.gov (United States)

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  8. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    Directory of Open Access Journals (Sweden)

    Laura Jimenez

    2016-04-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP, which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC cells. Time-lapse and lineage analysis of Tg(snai1b:GFP embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  9. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa;

    2008-01-01

    Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic di...

  10. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions.

    Directory of Open Access Journals (Sweden)

    Slaven Erceg

    Full Text Available BACKGROUND: Human embryonic stem cells (hESC provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. METHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA or to human recombinant basic fibroblast growth factor (bFGF in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF and caudalizing (RA signals were confirmed by patch clamp analysis. CONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.

  11. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms.

    Science.gov (United States)

    Yang, Junning; Wu, Chuanshen; Stefanescu, Ioana; Jakobsson, Lars; Chervoneva, Inna; Horowitz, Arie

    2016-01-01

    Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion. PMID:27460990

  12. Adult human neural stem cell therapeutics: Currentdevelopmental status and prospect

    Institute of Scientific and Technical Information of China (English)

    Hyun Nam; Kee-Hang Lee; Do-Hyun Nam; Kyeung Min Joo

    2015-01-01

    Over the past two decades, regenerative therapies usingstem cell technologies have been developed for variousneurological diseases. Although stem cell therapy is anattractive option to reverse neural tissue damage and torecover neurological deficits, it is still under developmentso as not to show significant treatment effects in clinicalsettings. In this review, we discuss the scientific andclinical basics of adult neural stem cells (aNSCs), andtheir current developmental status as cell therapeuticsfor neurological disease. Compared with other typesof stem cells, aNSCs have clinical advantages, suchas limited proliferation, inborn differentiation potentialinto functional neural cells, and no ethical issues. Inspite of the merits of aNSCs, difficulties in the isolationfrom the normal brain, and in the in vitro expansion,have blocked preclinical and clinical study using aNSCs.However, several groups have recently developed noveltechniques to isolate and expand aNSCs from normaladult brains, and showed successful applications ofaNSCs to neurological diseases. With new technologiesfor aNSCs and their clinical strengths, previous hurdlesin stem cell therapies for neurological diseases could beovercome, to realize clinically efficacious regenerativestem cell therapeutics.

  13. [Fortification of food with folic acid diminishes the number of neural tube defects].

    Science.gov (United States)

    Brouwer, I A

    2008-01-26

    A recent study from a research group from Quebec showed a strong decrease in the number of births affected by a neural tube defect since folic acid fortification was introduced in Canada. The prevalence decreased from 1.58 neural tube defects per 1000 births before the introduction of folic acid fortification to 0.86 per 1000 births in the period of complete fortification. Although folic acid fortification of staple food is probably the most effective way to decrease the incidence of neural tube defects, more knowledge about possible health risks should be obtained before fortification is introduced. More research is needed to determine which population groups are at risk of possible negative effects of folic acid fortification and at which level of fortification. Until then, it is important to generate more attention and publicity in order to increase awareness and knowledge concerning folic acid and to promote its use before and after conception.

  14. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    International Nuclear Information System (INIS)

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  15. 3D Reconstitution of the Patterned Neural Tube from Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Andrea Meinhardt

    2014-12-01

    Full Text Available Inducing organogenesis in 3D culture is an important aspect of stem cell research. Anterior neural structures have been produced from large embryonic stem cell (ESC aggregates, but the steps involved in patterning such complex structures have been ill defined, as embryoid bodies typically contained many cell types. Here we show that single mouse ESCs directly embedded in Matrigel or defined synthetic matrices under neural induction conditions can clonally form neuroepithelial cysts containing a single lumen in 3D. Untreated cysts were uniformly dorsal and could be ventralized to floor plate (FP. Retinoic acid posteriorized cysts to cervical levels and induced localize FP formation yielding full patterning along the dorsal/ventral (DV axis. Correct spatial organization of motor neurons, interneurons, and dorsal interneurons along the DV axis was observed. This system serves as a valuable tool for studying morphogen action in 3D and as a source of patterned spinal cord tissue.

  16. 3D reconstitution of the patterned neural tube from embryonic stem cells.

    Science.gov (United States)

    Meinhardt, Andrea; Eberle, Dominic; Tazaki, Akira; Ranga, Adrian; Niesche, Marco; Wilsch-Bräuninger, Michaela; Stec, Agnieszka; Schackert, Gabriele; Lutolf, Matthias; Tanaka, Elly M

    2014-12-01

    Inducing organogenesis in 3D culture is an important aspect of stem cell research. Anterior neural structures have been produced from large embryonic stem cell (ESC) aggregates, but the steps involved in patterning such complex structures have been ill defined, as embryoid bodies typically contained many cell types. Here we show that single mouse ESCs directly embedded in Matrigel or defined synthetic matrices under neural induction conditions can clonally form neuroepithelial cysts containing a single lumen in 3D. Untreated cysts were uniformly dorsal and could be ventralized to floor plate (FP). Retinoic acid posteriorized cysts to cervical levels and induced localize FP formation yielding full patterning along the dorsal/ventral (DV) axis. Correct spatial organization of motor neurons, interneurons, and dorsal interneurons along the DV axis was observed. This system serves as a valuable tool for studying morphogen action in 3D and as a source of patterned spinal cord tissue.

  17. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2008-09-01

    Full Text Available Abstract Background Interactions of cells with the extracellular matrix (ECM are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC differentiation into neural progenitors and neurons. Results A reproducible protocol was used to generate highly homogenous neural progenitors or a mixed population of neural progenitors and neurons from hESCs. This defined adherent culture system allowed us to examine the effect of ECM molecules on neural differentiation of hESCs. hESC-derived differentiating embryoid bodies were plated on Poly-D-Lysine (PDL, PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, and cultured in neural differentiation medium. We found that the five substrates instructed neural progenitors followed by neuronal differentiation to differing degrees. Glia did not appear until 4 weeks later. Neural progenitor and neuronal generation and neurite outgrowth were significantly greater on laminin and laminin-rich Matrigel substrates than on other 3 substrates. Laminin stimulated hESC-derived neural progenitor expansion and neurite outgrowth in a dose-dependent manner. The laminin-induced neural progenitor expansion was partially blocked by the antibody against integrin α6 or β1 subunit. Conclusion We defined laminin as a key ECM molecule to enhance neural progenitor generation, expansion and differentiation into neurons from hESCs. The cell-laminin interactions involve α6β1 integrin receptors implicating a possible role of laminin/α6β1 integrin signaling in directed neural differentiation of hESCs. Since laminin acts in concert with other ECM molecules in vivo, evaluating cellular responses to the composition of the ECM is essential to clarify further the role of cell-matrix interactions in neural derivation of hESCs.

  18. Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment

    OpenAIRE

    Lathia, Justin D.; Heddleston, John M.; Venere, Monica; Jeremy N Rich

    2011-01-01

    Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.

  19. p73 regulates maintenance of neural stem cell

    International Nuclear Information System (INIS)

    Research highlights: → TAp73 is expressed in neural stem cells and its expression increases following their differentiation. → Neural stem cells from p73 null mice have a reduced proliferative potential. → p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. → Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  20. p73 regulates maintenance of neural stem cell

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Massimiliano [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Tucci, Paola [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy); Chen, Hailan; Knight, Richard A. [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Bano, Daniele; Nicotera, Pierluigi [Deutsche Zentrum fuer Neurodegenerative Erkrankungen (DZNE), Bonn (Germany); McKeon, Frank [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Melino, Gerry, E-mail: gm89@le.ac.uk [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy)

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  1. MicroRNAs as markers for neurally committed CD133+/CD34+ stem cells derived from human umbilical cord blood.

    Science.gov (United States)

    Hafizi, Maryam; Atashi, Amir; Bakhshandeh, Behnaz; Kabiri, Mahboubeh; Nadri, Samad; Hosseini, Reza Haji; Soleimani, Masoud

    2013-04-01

    Neural differentiation of the CD133+/CD34+ subpopulation of human umbilical cord blood stem cells was investigated, and neuro-miR (mir-9 and mir-124) expression was examined. An efficient induction protocol for neural differentiation of hematopoietic stem cells together with the exclusion of retinoic acid in this process was also studied. Transcription of some neural markers such as microtubule-associated protein-2, beta-tubulin III, and neuron-specific enolase was evaluated by real-time PCR, immunocytochemistry, and western blotting. Increased expression of neural indicators in the treated cells confirmed the appropriate neural differentiation, which supported the high efficiency of our defined neuronal induction protocol. Verified high expression of neuro-miRNAs along with neuronal specific proteins not only strengthens the regulatory role of miRNAs in determining stem cell fate but also introduces these miRNAs as novel indicators of neural differentiation. These data highlight the prominent therapeutic potential of hematopoietic stem cells for use in cell therapy of neurodegenerative diseases.

  2. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  3. Developing neural stem cell-based treatments for neurodegenerative diseases.

    Science.gov (United States)

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  4. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    International Nuclear Information System (INIS)

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  5. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  6. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation

    OpenAIRE

    Hillje, Anna-Lena; Pavlou, Maria Angeliki; Beckmann, Elisabeth; Worlitzer, Maik; Bahnassawy, Lamiaa; Lewejohann, Lars; Palm, Thomas; Schwamborn, Jens Christian

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells...

  7. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    Science.gov (United States)

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  8. Aebp2 as an epigenetic regulator for neural crest cells.

    Directory of Open Access Journals (Sweden)

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  9. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  10. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.

  11. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  12. Neural precursors derived from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Peng Hongmei; Chen Gui'an

    2005-01-01

    Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells, hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs).The EBs were then cultured in N2 medium containing bFGF in poly- L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2-3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4-5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeⅢ, GABA, serotonin and synaptophysin.Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS) in vitro.

  13. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    Science.gov (United States)

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  14. Immortalized neural progenitor cells for CNS gene transfer and repair.

    Science.gov (United States)

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  15. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    OpenAIRE

    Shengxiu Li; Guoqiang Sun; Kiyohito Murai; Peng Ye; Yanhong Shi

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analo...

  16. Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer's disease.

    Science.gov (United States)

    Chang, Keun-A; Kim, Jeong A; Kim, Saeromi; Joo, Yuyoung; Shin, Ki Young; Kim, Seonghan; Kim, Hye-Sun; Suh, Yoo-Hun

    2012-11-01

    Recent studies have proposed that chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. However, the effect of antidepressants on fetal neural stem cells (NSCs) has not been well defined. Our study shows the dose-dependent effects of fluoxetine on the proliferation and neural differentiation of NSCs. Fluoxetine, even at nanomolar concentrations, stimulated proliferation of NSCs and increased the number of βIII-tubulin (Tuj 1)- and neural nucleus marker (NeuN)-positive cells, but not glial fibrillary acidic protein (GFAP)-positive cells. These results suggest that fluoxetine can enhance neuronal differentiation. In addition, fluoxetine has protective effects against cell death induced by oligomeric amyloid beta (Aβ(42)) peptides. Taken together, these results clearly show that fluoxetine promotes both the proliferation and neuronal differentiation of NSCs and exerts protective effects against Aβ(42)-induced cytotoxicities in NSCs, which suggest that the use of fluoxetine is applicable for cell therapy for various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases by its actions in NSCs.

  17. Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration.

    Science.gov (United States)

    Rodrigo Albors, Aida; Tazaki, Akira; Rost, Fabian; Nowoshilow, Sergej; Chara, Osvaldo; Tanaka, Elly M

    2015-11-14

    Axolotls are uniquely able to mobilize neural stem cells to regenerate all missing regions of the spinal cord. How a neural stem cell under homeostasis converts after injury to a highly regenerative cell remains unknown. Here, we show that during regeneration, axolotl neural stem cells repress neurogenic genes and reactivate a transcriptional program similar to embryonic neuroepithelial cells. This dedifferentiation includes the acquisition of rapid cell cycles, the switch from neurogenic to proliferative divisions, and the re-expression of planar cell polarity (PCP) pathway components. We show that PCP induction is essential to reorient mitotic spindles along the anterior-posterior axis of elongation, and orthogonal to the cell apical-basal axis. Disruption of this property results in premature neurogenesis and halts regeneration. Our findings reveal a key role for PCP in coordinating the morphogenesis of spinal cord outgrowth with the switch from a homeostatic to a regenerative stem cell that restores missing tissue.

  18. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  19. Application of adult stem cells in neural tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Lihong Piao; Wei Wang

    2006-01-01

    OBJECTTIVE:To investigate the progress in finding,isolation and culture.proliferation and differentiation,and application in neural tissue engineering of adult stem cells(ASCs).DATA SOURCES:Using the terms"adult stem cells,nerve,tissue engineering".we searched the PubMed for adult stem ceils-related studies published in English from January 2001 to August 2006.Meanwhile,we also performed a China National Knowledge Infrastructure(CNKI)search for homochronous correlative literatures on the computer by inputting the terms"adult stem cells,nerve,tissue engineering"in Chinese.texts were searched for.Inclusive criteria:①Literatures about the sources,distribution,culture.proliferation and differentiation.and application in the repair of neural ASCs by tissue engineering.②Articles recommended either by randomized.blind or by other methods were not excluded.Exclusive criteria:①Embryonic stem cells.②Review,repetitive study,case report,Meta analysis. DATA EXTRACTION:Totally 1 278 articles related to ASCs were collected,32 were involved and the other 1 246 were excluded. DATA SYNTHESIS:Adult stem cell has the ability of self-renewal.unceasing proliferation and transdifferentiation.It has wide source,which does not involved in ethical problems.It has advantages over embryonic stem cell.Studies on the isolation and culture,induction and differentiation and application in neural ASCs by tissue engineering contribute to obtaining considerable ASCs,so as to provide experimental and theoretical bases for CONCLUSION:ASCs play a very important role in neural tissue engineering.

  20. Comparing neural networks: a benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP.

    Science.gov (United States)

    Heinke, D; Hamker, F H

    1998-01-01

    This article compares the performance of some recently developed incremental neural networks with the wellknown multilayer perceptron (MLP) on real-world data. The incremental networks are fuzzy ARTMAP (FAM), growing neural gas (GNG) and growing cell structures (GCS). The real-world datasets consist of four different datasets posing different challenges to the networks in terms of complexity of decision boundaries, overlapping between classes, and size of the datasets. The performance of the networks on the datasets is reported with respect to measure classification error, number of training epochs, and sensitivity toward variation of parameters. Statistical evaluations are applied to examine the significance of the results. The overall performance ranks in the following descending order: GNG, GCS, MLP, FAM. PMID:18255809

  1. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi Yousef

    2016-07-01

    Full Text Available Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293 packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR. Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF, glial fibrillary acidic protein (GFAP and Microtubule-associated protein 2 (MAP2 genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this

  2. Inhibition of glycogen synthase kinase-3 (GSK3) promotes the neural differentiation of full-term amniotic fluid-derived stem cells towards neural progenitor cells.

    Science.gov (United States)

    Gao, Liyang; Zhao, Mingyan; Ye, Wei; Huang, Jinzhi; Chu, Jiaqi; Yan, Shouquan; Wang, Chaojun; Zeng, Rong

    2016-08-01

    The amniotic fluid has a heterogeneous population of cells. Some human amniotic fluid-derived stem (hAFS) cells have been shown to harbor the potential to differentiate into neural cells. However, the neural differentiation efficiency of hAFS cells remains low. In this study, we isolated CD117-positive hAFS cells from amniotic fluid and then examined the pluripotency of these cells through the formation of embryoid bodies (EBs). Additionally, we induced the neural differentiation of these cells using neuroectodermal medium. This study revealed that the GSK3-beta inhibitor SB216763 was able to stimulate the proliferation of CD117-positive hAFS cells without influencing their undifferentiated state. Moreover, SB216763 can efficiently promote the neural differentiation of CD117-positive hAFS cells towards neural progenitor cells in the presence of DMEM/F12 and N2 supplement. These findings provide an easy and low-cost method to maintain the proliferation of hAFS cells, as well as induce an efficacious generation of neural progenitor cells from hAFS cells. Such induction of the neural commitment of hAFS cells may provide an option for the treatment of neurodegenerative diseases by hAFS cells-based therapies.

  3. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    Science.gov (United States)

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.

  4. Radiopharmaceutical Tracers for Neural Progenitor Cells

    International Nuclear Information System (INIS)

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine

  5. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    Science.gov (United States)

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  6. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  7. Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Zeltner, Nadja; Lafaille, Fabien G.; Fattahi, Faranak; Studer, Lorenz

    2014-01-01

    Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic develo...

  8. Efficient derivation of neural precursor cells, spinal motor neurons and midbrain dopaminergic neurons from human ES cells at 3% oxygen

    OpenAIRE

    Stacpoole, SRL; Bilican, B.; Webber, DJ; Luzhynskaya, A; He, XL; COMPSTON, A.; Karadottir, R.; Franklin, RJM; Chandran, S

    2011-01-01

    This protocol has been designed to generate neural precursor cells (NPCs) from human embryonic stem cells (hESCs) using a physiological oxygen (O2) level of 3% and chemically defined conditions. The first stage involves suspension culture of hESC colonies at 3% O2, where they acquire a neuroepithelial identity over two weeks. This timescale is comparable to that at 20% O2, but survival is enhanced. Sequential application of retinoic acid (RA) and purmorphamine (PM), from day 14 to 28, directs...

  9. Pipeline for Tracking Neural Progenitor Cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter;

    2012-01-01

    a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  10. Neural stem cells attacked by Zika virus.

    Science.gov (United States)

    Nguyen, Ha Nam; Qian, Xuyu; Song, Hongjun; Ming, Guo-Li

    2016-07-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases. PMID:27283801

  11. Adult neural stem cells in the mammalian central nervous system

    Institute of Scientific and Technical Information of China (English)

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  12. In vitro induced dopaminergic differentiation of expanded rat mesencephalic neural stem cell

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Dongmei; JIAO Wenchang; LI Haiming; ZHAO Lianxu; BAI Chixian; WANG Yaping; PEI Xuetao

    2003-01-01

    Neural stem cell (NSC) is the progenitor of the neural system with the character of self-renew and having the potential to differentiate into all the phenotypes in the central nervous system (CNS). NSC may serve as a source of cell transplantation for the treatment of neurodegenerative diseases to replace degenerative neurons. In this study, NSCs derived from E12.5 rat mesencephalon were maintained and expanded using a serum-free defined medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). While proliferating, the cells were immunoreactive for nestin and remained multipotent to generate neurons, astrocytes, and oligodendrocytes. After 15 times passage the total number of the cell expanded about 2.4×104 fold. Compared with untreated cultures, ascorbic acid (AA) treatment led to more dopaminergic (DAergic) differentitiation as indicated by the expression of tyrosine hydroxylase (TH). With the concentration increasing, more TH+ neurons were obtained. 100 μmol/L AA could lead to a increase more than 20-fold, and a concentration of 10 μmol/L could lead to nearly 5-fold increase in TH+ cells. However, the ratio of TH+ cells was not improved any longer with the AA increasing above the concentration of 100 μmol/L. The results demonstrate that expanded NSCs can be induced to differentiate into dopamine neurons in vitro, which can provide enough cell population for the cell transplantation, as a main intervention for the neurodegenerative diseases such as Parkinson's disease.

  13. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  14. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases.

    Science.gov (United States)

    Suksuphew, Sarawut; Noisa, Parinya

    2015-03-26

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.

  15. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  16. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    Science.gov (United States)

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  17. Neural stem cell-based treatment for neurodegenerative diseases.

    Science.gov (United States)

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury.

  18. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  19. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  20. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  1. Biological properties of neural progenitor cells isolated from the hippocampus of adult cynomolgus monkeys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background The existence of neurogenesis in the hippocampus of adult nonhuman primates has been confirmed in recent years, however, the biological properties of adult neural stem cells or neural progenitor cells (NPCs) from this region remain to be extensively explored. The present work was to investigate on the expansion of NSCs/NPCs from the hippocampus of adult cynomolgus monkeys and the examination of their characteristics in vitro.Methods NPCs isolated from the hippocampus of adult cynomolgus monkeys were expanded in vitro in serum-free media containing growth factors, and were then allowed to differentiate by removing mitotic factors. The expansion capacity of NPCs and their differentiation potential were assayed by immunohistochemical and immunocytochemical analysis.Results During primary culture, NPCs underwent cell division, proliferation and aggregation to form neurospheres that were growing in suspension. Without mitotic stimulation, most neurospheres adhered to the culture dish and started to differentiate. Eventually, nearly 12% of the differentiated cells expressed neuron specific marker-βIII-tubulin (Tuj1) and 84% expressed astrocyte specific marker-fibrillary acidic protein (GFAP). In addition, the expression of a neural stem cell marker, nestin, was found both in NPCs and in the subgranular zone of adult monkey hippocampus, where NPCs were originally derived. Conclusions NPCs from the hippocampus of adult cynomolgus monkeys can be expanded to some extent in vitro and are capable of differentiating into neurons and astrocytes. Further experiments to promote the in vitro proliferation capacity of NPCs will be required before adult NPCs can be used as a useful cell model for studying adult neurogenesis and cell replacement therapy using adult stem cells.

  2. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis.

    Science.gov (United States)

    Tonk, Elisa C M; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-01

    Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.

  3. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  4. Mouse neural stem cells cultured in vitro and expressing an exogenous gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are the multipotential, self-re- newing cells in central nerve system, and play an essential role in the development and differentiation of nerve system. Neural stem cells can be used to treat the nerve system diseases, especially, the transplantation of neural stem cells to rescue the degenerated neural cells has become a very promising therapeutic way. We successfully cultured neural stem cells isolated from the brains of embryonic mice in vitro and determined their distribution in the E17 mice brains. The neural stem cells were transfected with adenoviral vector carrying GFP (green fluorescence protein) gene and then highly expressed the exogenous gene. It paves the way for gene therapy of degenerative nerve system diseases.

  5. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  6. Methylmalonic Acid in Amniotic Fluid and Maternal Urine as a Marker for Neural Tube Defects

    Institute of Scientific and Technical Information of China (English)

    罗小平; 张炼; 魏虹; 刘皖君; 王慕逖; 宁琴

    2004-01-01

    To evaluate the implication of methymalonic acid (MMA) in the early diagnosis of neural tube defects (NTD), a quantitative assay for MMA was established by using gas chromatographymass spectrometry with stable isotope of MMA as an internal standard. Amniotic fluid and maternal urine MMA concentration, maternal serum folate, red blood cell folate and vitamin B12 levels were measured in the middle term of NTD-affected and normal pregnancies. Amniotic fluid and maternal urine MMA concentrations in the middle term of NTD affected pregnancies (1.4 ± 0.9 μmol/L, and 22.1 ± 12.6 nmol/μmol creatinine) were significantly higher than that of normal pregnancies (1.0±0.4μ mol/L, and 2.5± 1.1 nmol/μmol creatinine). There was no significant difference between normal and NTD pregnancies for serum folate, red blood cell folate and vitamin B12 levels.The results suggested that MMAs in amniotic fluid and maternal urine are sensitive markers for early diagnosis of NTD. Vitamin B12 is an active cofactor involved in the remethylation of homocycteine and its deficiency is an independent risk factor for NTD. MMA is a specific and sensitive marker for intracellular vitamin B12 deficiency. This study suggests that it is necessary to monitor the vitamin B12 deficiency and advocates vitamin B12 supplementation with folate prevention program.

  7. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube.

    Science.gov (United States)

    Chalasani, Kavita; Brewster, Rachel M

    2011-05-01

    Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.

  8. File list: NoD.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Neural_Stem_Cells mm9 No description Neural Neural Stem Cells ERX3...X380398,ERX028784,ERX629700,ERX629702 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  9. File list: InP.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Neural_Stem_Cells mm9 Input control Neural Neural Stem Cells SRX32...6209,SRX505085,SRX505089,SRX505087,SRX1000539,SRX1433428,SRX1000538,SRX1433431 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  10. File list: InP.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  11. File list: NoD.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Neural_Stem_Cells mm9 No description Neural Neural Stem Cells ERX3...X028786,ERX028784,ERX629700,ERX629702 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  12. File list: InP.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  13. File list: InP.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Neural_Stem_Cells mm9 Input control Neural Neural Stem Cells SRX32...6209,SRX505087,SRX505085,SRX505089,SRX1000538,SRX1433428,SRX1433431,SRX1000539 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  14. File list: InP.Neu.50.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Neural_Stem_Cells hg19 Input control Neural Neural Stem Cells SRX7...07365,SRX707367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Neural_Stem_Cells.bed ...

  15. File list: NoD.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Neural_Stem_Cells mm9 No description Neural Neural Stem Cells ERX3...X380398,ERX028784,ERX629702,ERX629700 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  16. File list: InP.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Neural_Stem_Cells mm9 Input control Neural Neural Stem Cells SRX32...6209,SRX505087,SRX505085,SRX505089,SRX1433428,SRX1433431,SRX1000539,SRX1000538 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  17. File list: InP.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX667382,SRX668239 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  18. File list: NoD.Neu.05.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Neural_Stem_Cells hg19 No description Neural Neural Stem Cells htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Neural_Stem_Cells.bed ...

  19. File list: InP.Neu.10.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Neural_Stem_Cells hg19 Input control Neural Neural Stem Cells SRX7...07365,SRX707367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Neural_Stem_Cells.bed ...

  20. File list: InP.Neu.20.AllAg.Neural_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Neural_Stem_Cells hg19 Input control Neural Neural Stem Cells SRX7...07365,SRX707367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.20.AllAg.Neural_Stem_Cells.bed ...

  1. File list: Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  2. File list: Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  3. File list: Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  4. File list: His.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  5. File list: ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  6. File list: DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural p...rogenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  7. File list: NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  8. File list: Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  9. File list: ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  10. File list: InP.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  11. File list: Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  12. File list: ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  13. File list: InP.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  14. File list: Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  15. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension.

    Science.gov (United States)

    Davidson, L A; Keller, R E

    1999-10-01

    We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

  16. Nanosized zinc oxide particles induce neural stem cell apoptosis

    Science.gov (United States)

    Deng, Xiaoyong; Luan, Qixia; Chen, Wenting; Wang, Yanli; Wu, Minghong; Zhang, Haijiao; Jiao, Zheng

    2009-03-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  17. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  18. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo.

    Science.gov (United States)

    Carradori, Dario; Saulnier, Patrick; Préat, Véronique; des Rieux, Anne; Eyer, Joel

    2016-09-28

    The replacement of injured neurons by the selective stimulation of neural stem cells in situ represents a potential therapeutic strategy for the treatment of neurodegenerative diseases. The peptide NFL-TBS.40-63 showed specific interactions towards neural stem cells of the subventricular zone. The aim of our work was to produce a NFL-based drug delivery system able to target neural stem cells through the selective affinity between the peptide and these cells. NFL-TBS.40-63 (NFL) was adsorbed on lipid nanocapsules (LNC) whom targeting efficiency was evaluated on neural stem cells from the subventricular zone (brain) and from the central canal (spinal cord). NFL-LNC were incubated with primary neural stem cells in vitro or injected in vivo in adult rat brain (right lateral ventricle) or spinal cord (T10). NFL-LNC interactions with neural stem cells were different depending on the origin of the cells. NFL-LNC showed a preferential uptake by neural stem cells from the brain, while they did not interact with neural stem cells from the spinal cord. The results obtained in vivo correlate with the results observed in vitro, demonstrating that NFL-LNC represent a promising therapeutic strategy to selectively deliver bioactive molecules to brain neural stem cells. PMID:27503706

  19. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.

    Science.gov (United States)

    Cavanaugh, Ann M; Huang, Jie; Chen, Jau-Nian

    2015-08-15

    Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.

  20. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Mohan C. Vemuri

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  1. The proteome of neural stem cells from adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Fütterer Carsten D

    2003-06-01

    Full Text Available Abstract Background Hippocampal neural stem cells (HNSC play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. Results Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5 protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca2+ signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. Conclusions The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before.

  2. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  3. EXPERIMENTAL STUDY ON PLASTICITY OF PROLIFERATED NEURAL STEM CELLS IN ADULT RATS AFTER CEREBRAL INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ren-zhi Wang; Zhi-gang Lian; Yang Song; Yong Yao

    2006-01-01

    Objective To investigate whether there is endogenous neural stem cell proliferation and whether these proliferated neural stem cells represent neural plasticity in the adult rats after cerebral infarction.Methods Cerebral infarction models of rats were established and the dynamic expression of bromodeoxyuridine (BrdU), BrdU/polysialylated neural cell adhesion molecule (PSA-NCAM) were determined by immunohistochemistry and immunofluorescence staining. BrdU was used to mark dividing neural stem cells. PSA-NCAM was used to mark the plasticity of neural stem cells.Results Compared with controls, the number of BrdU-positive cells in the subventricular zone (SVZ) and hippocampus increased significantly at 1st day after cerebral infarction (P<0.05), reached maximum at 7th day, decreased markedly at 14th day, but it was still elevated compared with that of the controls (P<0.05). The number of BrdU-labeled with PSA-NCAM-positive cells increased significantly at 7th day (P<0.05 ), reached maximum at 14th day,markedly decreased at 28th day, but it was still elevated compared with that of the controls (P<0.05). It was equal to 60% of the number of BrdU-positive cells in the same period.Conclusion Cerebral infarction may stimulate the proliferation of endogenous neural stem cells in situ and most proliferated neural stem cells represent neural plasticity.

  4. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord.

    Science.gov (United States)

    Wu, Min-Fei; Zhang, Shu-Quan; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San

    2015-09-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  5. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord

    Directory of Open Access Journals (Sweden)

    Min-fei Wu

    2015-01-01

    Full Text Available The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco′s modified Eagle′s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem

  6. Transplantation of erythropoietin gene-modiifed neural stem cells improves the repair of injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Min-fei Wu; Shu-quan Zhang; Rui Gu; Jia-bei Liu; Ye Li; Qing-san Zhu

    2015-01-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells culturedin vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was inject-ed with non-transfected neural stem cells. Dulbecco’s modified Eagle’s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1–4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythro-poietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoi-etin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythro-poietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  7. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Science.gov (United States)

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  8. Chemo-mechanical control of neural stem cell differentiation

    Science.gov (United States)

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  9. [Folic acid reduces the risk of neural tube defects: awareness and folate intake among pregnant women in 2006].

    Science.gov (United States)

    Kondo, Atsuo; Shimosuga, Yoichi; Oguchi, Hidenori; Shibata, Kanemitsu; Kurauchi, Osamu; Ichiko, Satoshi; Inoue, Hiromi; Tada, Katsuhiko; Yamada, Manshou; Kaseki, Nariaki; Narita, Osamu; Kusanishi, Hiroshi; Yamada, Yoshitaka; Yamamoto, Shin-Ichi; Ooura, Kuniaki; Takemura, Masahiko; Watanabe, Takanori; Ishihara, Osamu; Takeda, Akihiro; Watanabe, Junichiro; Wakita, Katsuji; Itoh, Kunihiko; Katoh, Sentoyo; Koyama, Masayasu; Oota, Shunji; Ninomiya, Keiu; Matsuzawa, Katsuji; Hujishima, Yoshiko; Ishida, Shoutarou; Okai, Ikuyo; Hayakawa, Chisa; Gotoh, Tohru

    2008-08-01

    Folic acid plays an important role in proliferating cells and tissues of the fetus. A randomized control trial demonstrated in 1991 that 4 mg of folic acid supplements successfully prevented 72% of recurrence of neural tube defects (NTDs) in women who had had afflicted pregnancy. In 2000, the Japanese Government recommended women of childbearing age to take 400 microgram of folate supplements per day from 4 weeks prior to and 12 weeks after conception. A questionnaire study was performed in pregnant women by post on their awareness of the role folic acid plays, their life style, and folate intake by dietary consumption. Thirty-five percent of 1,251 pregnant women were aware of the important role of folic acid in the critical stage of fetal development and 31% actually took the supplement. Information on folic acid was obtained through mass media in 47% of the women, through the internet in 17%, through healthcare providers in 13% and so forth. The food record analysis revealed that the dietary intake of folic acid averaged 341 microg/day that was 60 microg less than what was recommended by the Government and that 33 of 86 women took the supplement. Overall, a half of pregnant women are required to take 400 microg folate supplement per day. It is to be stressed that primary prevention of NTDs by periconceptional intake of folic acid is a major public health opportunity and that prevention is more important than cure in the management of NTDs.

  10. Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1

    Science.gov (United States)

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-01-01

    Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

  11. Neural stem cells and the regulation of adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Conover Joanne C

    2003-11-01

    Full Text Available Abstract Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ, which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.

  12. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    Science.gov (United States)

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  13. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Science.gov (United States)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  14. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    Science.gov (United States)

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  15. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  16. Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

    NARCIS (Netherlands)

    Sher, Falak; Boddeke, Erik; Copray, Sjef

    2011-01-01

    Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or

  17. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  18. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Directory of Open Access Journals (Sweden)

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  19. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  20. Neural stem cells and cell replacement therapy: making the right cells.

    Science.gov (United States)

    Bithell, Angela; Williams, Brenda P

    2005-01-01

    The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.

  1. Effects of Triclosan on Neural Stem Cell Viability and Survival.

    Science.gov (United States)

    Park, Bo Kyung; Gonzales, Edson Luck T; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  2. File list: NoD.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX298043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  3. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier;

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural ...

  4. File list: NoD.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346817,SRX346814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  5. File list: NoD.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX346817 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  6. File list: NoD.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX298043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  7. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Ying-bo Li; Yan Wang; Ji-ping Tang; Di Chen; Sha-li Wang

    2015-01-01

    Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent exper-iments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypox-ic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplantedvia intracerebroventricular injection. These tests conifrmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a signiifcantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-speciifc enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  8. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  9. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  10. Stem cell-based therapy in neural repair.

    Science.gov (United States)

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Dan-Yen; Chiu, Ing-Ming

    2013-01-01

    Cell-based therapy could aid in alleviating symptoms or even reversing the progression of neurodegenerative diseases and nerve injuries. Fibroblast growth factor 1 (FGF1) has been shown to maintain the survival of neurons and induce neurite outgrowth. Accumulating evidence suggests that combination of FGF1 and cell-based therapy is promising for future therapeutic application. Neural stem cells (NSCs), with the characteristics of self-renewal and multipotency, can be isolated from embryonic stem cells, embryonic ectoderm, and developing or adult brain tissues. For NSC clinical application, several critical problems remain to be resolved: (1) the source of NSCs should be personalized; (2) the isolation methods and protocols of human NSCs should be standardized; (3) the clinical efficacy of NSC transplants must be evaluated in more adequate animal models; and (4) the mechanism of intrinsic brain repair needs to be better characterized. In addition, the ideal imaging technique for tracking NSCs would be safe and yield high temporal and spatial resolution, good sensitivity and specificity. Here, we discuss recent progress and future development of cell-based therapy, such as NSCs, induced pluripotent stem cells, and induced neurons, in neurodegenerative diseases and peripheral nerve injuries. PMID:23806879

  11. 叶酸联合成体神经干细胞治疗创伤性脑损伤大鼠的实验%Study on Folic Acid Combined with Adult Neural Stem Cells in the Treatment of Traumatic Brain Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    刁波; 刘琴; 王丽萍; 张宜

    2012-01-01

    Objective To explore the folic acid and adult neural stem cells' joint influencing mechanism on the rat with Traumatic Brain Injury, and to find out its possible mechanism. Methods Divide 120 rats to 6 groups randomly—normal group, mode group, sham operation group, folacin injection group, adult stem cells transplant group, and folacin injection plus adult stem cells transplant group. Observe the morphological change under the microscope, then, do flow cytometry test and detect the expression of the neural stem cells' facial notation—CD105 、 CD45、CD44、 CD29. Examine the expression of neuron special enolase( NSE) and the expression of gelatinous fibre acidic protein (GFAP) with imimmofluorescenee. Examine the rats' ability to motor-coordinate and conform with balance beam. Test each group' s learning and memorizing ability by conducting the Morris water maze experiment. Then, conduct the HE chromosome and Brdu immunohistochemistry experiment to detect morphological change of the brain tissue. After this, do the enzyme-linked immunosorbent assay (ELISA) to detect the expression of brain-derived neurotrophic factor( BDNF) and the expression of nerve growth factor. The last but not least, use western blotting to examine the expression of related dead protein in the brain tissue;BCL-2、Bax、Caspase-3. Results The separated cells can be vitro subcultured, by doing flow cytometry test, we find that positive cells express CD44 and CD29 while negative express CD105, CD45. Cells induced by fetal bovine serum can produce NSE or GFAP positive cells. Experiments suggest that traumatic brain injured rats can significantly improve their behavior after jointly influenced by the folie acid and adult neural stem cells. Besides , they can also reduce brain tissue inflammation, restore damaged nerve cells, increase brain tissue of BDNF and NGFs content, increase BCL 2 expression, and lower the expression of Bax, caspase-3. Conclusion The folic acid combined with adull

  12. Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation.

    Science.gov (United States)

    Soria, Jose Miguel; Sancho-Tello, María; Esparza, M Angeles Garcia; Mirabet, Vicente; Bagan, Jose Vicente; Monleón, Manuel; Carda, Carmen

    2011-04-01

    This study is focused on the development of an in vitro hybrid system, consisting in a polymeric biomaterial covered by a dental pulp cellular stroma that acts as a scaffold offering a neurotrophic support for the subsequent survival and differentiation of neural stem cells. In the first place, the behavior of dental pulp stroma on the polymeric biomaterial based on ethyl acrylate and hydroxy ethyl acrylate copolymer was studied. For this purpose, cells from normal human third molars were grown onto 0.5-mm-diameter biomaterial discs. After cell culture, quantification of neurotrophic factors generated by the stromal cells was performed by means of an ELISA assay. In the second place, survival and differentiation of adult murine neural stem cells on the polymeric biomaterials covered by dental pulp stromal cells was studied. The results show the capacity of dental pulp cells to uniformly coat the majority of the material's surface and to secrete neurotrophic factors that become crucial for a subsequent differentiation of neural stem cells. The use of stromal cells cultured on scaffolding biomaterials provides neurotrophic pumps that may suggest new criteria for the design of cell therapy experiments in animal models to assist the repair of lesions in Central Nervous System.

  13. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Science.gov (United States)

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  14. Effect of Staurosporine on Neural Differentiation of CD133+ Umbilical Cord Blood Cells

    Directory of Open Access Journals (Sweden)

    Faezeh Faghihi

    2008-01-01

    Full Text Available Objective: CD133+ umbilical cord blood cells were identified as a hematopoieticstem cell which has the capacity for extensive self-renewal and differentiation.The aim of this study was to identify the effect of staurosporine (STS, a wellknownprotein kinase inhibitor on differentiation of CD133+ cells into neuralcells.Materials and Methods: CD133+ cells were enriched by immunomagneticbeads from human mononuclear cells of umbilical cord blood and the purityof higher than 94% was achieved by flowcytometry. Induction of differentiationwas performed by addition of STS (12.5, 25, and 50 nΜ. The differentiatedcells were evaluated by immunofluorescence and RT-PCR for neuron-specificproteins and transcripts.Results: STS-treated CD133+ cells expressed mRNA transcripts for neuronspecificneurofilament protein (NFM, and several basic helix-loop-helix(bHLH transcription factors important for early neurogenesis, including Otx2,Wnt1, and Hash1. The structural proteins characteristics of neurons includingβ-tubulinIII and Microtubule-Associated Protein-2 (MAP-2, were shown byimmunocytochemistry. STS-treated CD133+ cells also expressed the astrocytespecificmarker, glial fibrillary acidic protein (GFAP by immunofluorescence.Conclusion: The human cord blood-derived CD133+ hematopoietic stem cellscould differentiate into neural cell types of neuron-like cells and astrocytes bySTS treatment.

  15. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    OpenAIRE

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong; Cho, Yong-Beom

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was ob...

  16. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Directory of Open Access Journals (Sweden)

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  17. Folic acid and the decline in neural tube defects in Arkansas.

    Science.gov (United States)

    Mosley, Bridget S; Hobbs, Charlotte A; Flowers, Bettye S; Smith, Veronica; Robbins, James M

    2007-04-01

    Folic acid has been shown to reduce the risk of pregnancies affected by neural tube defects (NTDs) by as much as 70%. Cereal grains sold in the U.S. have been fortified with folic acid since 1998. The Arkansas Reproductive Health Monitoring System and the Arkansas Folic Acid Coalition have encouraged use of folic acid and monitored the impact of increased consumption of folic acid among Arkansans. NTDs in Arkansas have declined 40% since intervention programs were implemented. The greatest decline has been observed among white and Hispanic women. Efforts to encourage folic acid consumption should continue to target Arkansas women. NTDs include anencephaly and spina bifida. These birth defects result from incomplete closure of the fetal neural tube during the first month of pregnancy. Infants with anencephaly are born without all or most of their brain and die within a few days of life. Infants with spina bifida have varying degrees of impairment ranging from little noticeable disability to severe, lifelong disability. Folic acid, when taken in supplement form has been shown to reduce the risk of a pregnancy affected by a neural tube defect by as much as 70%. As a result of this finding, the U.S. Federal Drug Administration mandated that cereal grains sold in this country be fortified with at least 140 mcg of folic acid per 100 grams of grain by January 1, 1998. Prior to mandatory fortification, the March of Dimes and the U.S. Public Health Service released statements encouraging all women of reproductive age who are capable of becoming pregnant to take 400 mcg 'of synthetic folic acid daily. The Arkansas Reproductive Health Monitoring System (ARHMS) has monitored rates of NTDs in Arkansas since 1980. ARHMS is the lead agency of the Arkansas Folic Acid Coalition whose mission is to encourage folic acid use among all Arkansas women of reproductive age. In this report, we summarize efforts by ARHMS and the Arkansas Folic Acid Coalition to increase the awareness and

  18. Folic acid and the decline in neural tube defects in Arkansas.

    Science.gov (United States)

    Mosley, Bridget S; Hobbs, Charlotte A; Flowers, Bettye S; Smith, Veronica; Robbins, James M

    2007-04-01

    Folic acid has been shown to reduce the risk of pregnancies affected by neural tube defects (NTDs) by as much as 70%. Cereal grains sold in the U.S. have been fortified with folic acid since 1998. The Arkansas Reproductive Health Monitoring System and the Arkansas Folic Acid Coalition have encouraged use of folic acid and monitored the impact of increased consumption of folic acid among Arkansans. NTDs in Arkansas have declined 40% since intervention programs were implemented. The greatest decline has been observed among white and Hispanic women. Efforts to encourage folic acid consumption should continue to target Arkansas women. NTDs include anencephaly and spina bifida. These birth defects result from incomplete closure of the fetal neural tube during the first month of pregnancy. Infants with anencephaly are born without all or most of their brain and die within a few days of life. Infants with spina bifida have varying degrees of impairment ranging from little noticeable disability to severe, lifelong disability. Folic acid, when taken in supplement form has been shown to reduce the risk of a pregnancy affected by a neural tube defect by as much as 70%. As a result of this finding, the U.S. Federal Drug Administration mandated that cereal grains sold in this country be fortified with at least 140 mcg of folic acid per 100 grams of grain by January 1, 1998. Prior to mandatory fortification, the March of Dimes and the U.S. Public Health Service released statements encouraging all women of reproductive age who are capable of becoming pregnant to take 400 mcg 'of synthetic folic acid daily. The Arkansas Reproductive Health Monitoring System (ARHMS) has monitored rates of NTDs in Arkansas since 1980. ARHMS is the lead agency of the Arkansas Folic Acid Coalition whose mission is to encourage folic acid use among all Arkansas women of reproductive age. In this report, we summarize efforts by ARHMS and the Arkansas Folic Acid Coalition to increase the awareness and

  19. File list: Pol.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.iPS_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  20. File list: InP.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.iPS_derived_neural_cells hg19 Input control Pluripotent stem cell iPS derived... neural cells SRX702550 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  1. File list: DNS.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  2. File list: Pol.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.iPS_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  3. File list: DNS.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived... neural cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  4. File list: Unc.PSC.50.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.iPS_derived_neural_cells hg19 Unclassified Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.50.AllAg.iPS_derived_neural_cells.bed ...

  5. File list: Pol.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived... neural cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  6. File list: Unc.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_cells hg19 Unclassified Pluripotent stem cell hESC derived... neural cells SRX378284 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  7. File list: NoD.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.iPS_derived_neural_cells hg19 No description Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  8. File list: Unc.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.iPS_derived_neural_cells hg19 Unclassified Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  9. File list: DNS.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  10. File list: Unc.PSC.20.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.iPS_derived_neural_cells hg19 Unclassified Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.20.AllAg.iPS_derived_neural_cells.bed ...

  11. File list: DNS.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  12. File list: Pol.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived neural... cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  13. File list: Unc.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.AllAg.iPS_derived_neural_cells hg19 Unclassified Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  14. File list: NoD.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.mESC_derived_neural_cells mm9 No description Pluripotent stem cell mESC derived neural... cells SRX440736,SRX440731 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  15. File list: DNS.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  16. File list: DNS.PSC.20.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.20.AllAg.hESC_derived_neural_cells.bed ...

  17. File list: NoD.PSC.05.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.mESC_derived_neural_cells mm9 No description Pluripotent stem cell mESC derived neural... cells SRX440731,SRX440736 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.05.AllAg.mESC_derived_neural_cells.bed ...

  18. File list: DNS.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  19. File list: DNS.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  20. File list: Pol.PSC.20.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived neural... cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_cells.bed ...

  1. International retrospective cohort study of neural tube defects in relation to folic acid recommendations : are the recommendations working?

    NARCIS (Netherlands)

    Botto, LD; Lisi, A; Robert-Gnansia, E; Erickson, JD; Vollset, SE; Mastroiacovo, P; Botting, B; Cocchi, G; de Vigan, C; de Walle, H; Feijoo, M; Irgens, LM; McDonnell, B; Merlob, P; Ritvanen, A; Scarano, G; Siffel, C; Metneki, J; Stoll, C; Smithells, R; Goujard, J

    2005-01-01

    Objective To evaluate the effectiveness of policies and recommendations on folic acid aimed at reducing the occurrence of neural tube defects. Design Retrospective cohort study of births monitored by birth defect registries. Setting 13 birth defects registries monitoring rates of neural tube defects

  2. Daucosterol promotes the proliferation of neural stem cells.

    Science.gov (United States)

    Jiang, Li-hua; Yang, Nian-yun; Yuan, Xiao-lin; Zou, Yi-jie; Zhao, Feng-ming; Chen, Jian-ping; Wang, Ming-yan; Lu, Da-xiang

    2014-03-01

    Neural stem cells (NSCs) are self-regenerating cells, but their regenerative capacity is limited. The present study was conducted to investigate the effect of daucosterol (a sterolin) on the promotion of NSC proliferation and determine the corresponding molecular mechanism. Results of cell counting kit-8 (CCK-8) assay showed that daucosterol significantly increased the quantity of viable cells and the effectiveness of daucosterol was similar to that of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Flow cytometry detection of CFSE-labeled (CFSE, carboxyfluorescein diacetate succinimidyl ester) NSCs showed that Div Index (or the average number of cell divisions) and % Divided (or the percentage of cells that divided at least once) of the cells were increased, indicating that daucosterol increased the percentage of NSCs re-entering the cell cycle. mRNA microarray analysis showed that 333 genes that are mostly involved in the mitotic cell cycle were up-regulated. By contrast, 627 genes that are mostly involved in differentiation were down-regulated. In particular, insulin-like growth factor I (IGF1) was considered as an important regulatory gene that functionally promoted NSC proliferation, and the increased expression of IGF1 protein was validated by ELISA. In addition, the phosphorylation of AKT was increased, indicating that the proliferation-enhancing activity of daucosterol may be involved in IGF1-AKT pathway. Our study provided information about daucosterol as an efficient and inexpensive growth factor alternative that could be used in clinical medicine and research applications. PMID:24333794

  3. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    Science.gov (United States)

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  4. The Neural Network analysis for the single cell of Molten Carbonate Fuel cell (MCFC

    Directory of Open Access Journals (Sweden)

    S. K. Dhakad, S.C.soni, Pankaj Agrawal, Prashant Baredaer

    2012-11-01

    Full Text Available In the present work try to trained the performance and evolution for the single cell of the MCFC by using the Neural Network tool in the MAT-Lab software. The data used for the Neural Network training are, simulated results, these are obtained for the single cell of the MCFC [1].The analysis carried out for n input vectors (known input variables i.e. temperature and load current and power as output vector. Figure 2 shown simulated powers at the different values of input variables, as load current & temperature. Figures 3 shown the trained results are obtained using model in the form of approximate feed forward neural network for the 4 layers & 2:3:2 neurons. Power as the output vector of the MCFC is well compare to the simulated results shown in figure 5.

  5. Functional integration of human neural precursor cells in mouse cortex.

    Directory of Open Access Journals (Sweden)

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  6. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  7. The in vitro myelin formation in neurospheres of human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    杨立业; 郑佳坤; 刘相名; 惠国桢; 郭礼和

    2003-01-01

    Objective: To explore the culture conditions of human neural stem cells and to investigate the ultrastructure of neurospheres.Methods: The cells from the embryonic human cortices were mechanically dissociated. N2 medium was adapted to culture and expand the cells. The cells were identified by immunocytochemistry and EM was applied to examine the ultrastructure of neurospheres.Results: The neural stem cells from human embryonic brains were successfully cultured and formed typical neurospheres in suspension, and most of the cells expressed vimentin, which was a marker for neural progenitor cells, and the cells could differentiate into neurons, astrocytes and oligodendrocytes. In vitro myelin formation in neurospheres were observed at an early stage of culture.Conclusions: Human neural stem cells can be cultured from embryonic brains, can form the typical neurospheres in suspension in vitro and have the ability of myelinating, and may be potential source for transplantation in treating myelin disorders.

  8. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel;

    2011-01-01

    OBJECTIVE: The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become...

  9. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  10. 神经干细胞的研究%Advances in neural stem cells

    Institute of Scientific and Technical Information of China (English)

    张敬军; 刘焯霖

    2003-01-01

    Neural stem cells(NSCs)maintain the potential of proliferation and differentiation in nerve system.The research and application of NSCs have developed into a frontier of neuroscience in recent ysars.This review describes the specificity,contribution,regulation mechanism and application of NSCs.Neural stem cells play an important role in the nervous system of growth and reparation.

  11. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  12. The protective effect of magnesium sulfate against irradiation injury of neural stem cells in neonatal rats

    International Nuclear Information System (INIS)

    Objective: To study the protection of magnesium sulfate against radiation-induced injury of neural stem cells. Methods: Brain tissues of new-born Sprague-Dawley (SD) rats were dissociated to culture the neural stem cells. The neural stern cells were divided into 3 groups as blank control group, experimental control group and experimental group (with magnesium sulfate). Observe neural stem cell apoptosis after being irradiated with 2 Gy of gamma rays, detect the cell cycle by FCM on 24 h and 48 h after being irradiated with 2 Gy, 4 Gy. Results: Compared with the blank control group, the apoptosis of neural stem cells in the experimental control group was obvious, and the neural stem cells were blocked in G1, G2 phase obviously. Compared with the experimental control group, the number of the apoptotic cells in the experimental group decreased and the cell cycle blocking was also reduced significantly (P<0.05). Conclusion: Magnesium sulfate can alleviate the injury of neural stem cells; ease the apoptosis and the cell cycle blocking after irradiation. (authors)

  13. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement....... The cells have the potential of long-term culture and the ability to differentiate into neural and glial cells....

  14. Conversion of Fibroblasts to Neural Cells by p53 Depletion

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2014-12-01

    Full Text Available Conversion from fibroblasts to neurons has recently been successfully induced. However, the underlying mechanisms are poorly understood. Here, we find that depletion of p53 alone converts fibroblasts into all three major neural lineages. The induced neuronal cells express multiple neuron-specific proteins and generate action potentials and transmitter-receptor-mediated currents. Surprisingly, depletion does not affect the well-known tumorigenic p53 target, p21. Instead, knockdown of p53 upregulates neurogenic transcription factors, which in turn boosts fibroblast-neuron conversion. p53 binds the promoter of the neurogenic transcription factor Neurod2 and regulates its expression during fibroblast-neuron conversion. Furthermore, our method provides a high efficiency of conversion in late-passage fibroblasts. Genome-wide transcriptional analysis shows that the p53-deficiency-induced neurons exhibit an expression profile different from parental fibroblasts and similar to control-induced neurons. The results may help to understand and improve neural conversion mechanisms to develop robust neuron-replacement therapy strategies.

  15. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Santanu Banerjee

    Full Text Available During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  16. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Science.gov (United States)

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  17. Regulation of endogenous neural stem/progenitor cells for neural repair - factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    Directory of Open Access Journals (Sweden)

    Kimberly eChristie

    2013-01-01

    Full Text Available Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ of the lateral ventricles and the subgranular zone (SGZ of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioural outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem /precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.

  18. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    Directory of Open Access Journals (Sweden)

    Fahimeh Mirakhori

    2015-04-01

    Full Text Available In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications.

  19. Identification and culture of neural stem cells isolated from adult rat subventricular zone following fluid percussion brain injury

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To analyze proliferation and differentiation of glial fibrillary acid protein(GFAP)-and nestin-positive(GFAP+/nestin+)cells isolated from the subventricular zone following fluid percussion brain injury to determine whether GFAP+/nestin+ cells exhibit characteristics of neural stem cells.Methods Male Sprague-Dawley rats,aged 12 weeks and weighing 200-250 g,were randomly and evenly assigned to normal control group and model group.In the model group,a rat model of fluid percussion brain injury was es...

  20. Awareness of folic acid for neural tube defect prevention among Israeli women.

    Science.gov (United States)

    Ringel, S; Lahat, E; Elizov, T; Greenberg, R; Arieli, S; Afriat, R; Berkovitch, M

    1999-07-01

    The failure of neural tube closure during early embryogenesis results in a range of neural tube defects (NTD), the most common of which is spina bifida. The role of folic acid in reducing the rate of NTD has been well-established. Three recent cases of infants with NTD inspired this investigative study into the level of awareness and knowledge of folic acid and its function in the prevention of NTD among Israeli women. Of 920 women interviewed, only 51 (5.5%) had heard of folic acid, and 27 (2.8%) were reported to have taken it. The source of information and the motivation for self-medication were also explored with regard to socioeconomic and health profile. Awareness of folic acid was significant among women aged 17-29 years (P = 0.005) and those aged 30-39 years (P = 0.009), and among semireligious and nonreligious women (P = 0.008 and 0.01, respectively). Among women who were aware of folic acid, only nonreligious women tended to take it. No correlation was found between folic acid intake and age, religiosity, nationality, number of pregnancies, and health status among women who were aware of folic acid intake. The poor level of awareness, evident in our study, demands that the medical community broadcast the benefit of folic acid. Furthermore, government health initiatives, such as the addition of folic acid to flour preparations, may effectively ensure its appropriate daily intake. These improved education and prevention programs may forcibly reduce the rate of NTD-affected pregnancies.

  1. Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71.

    Science.gov (United States)

    Mitschka, Sibylle; Ulas, Thomas; Goller, Tobias; Schneider, Karin; Egert, Angela; Mertens, Jérôme; Brüstle, Oliver; Schorle, Hubert; Beyer, Marc; Klee, Kathrin; Xue, Jia; Günther, Patrick; Bassler, Kevin; Schultze, Joachim L; Kolanus, Waldemar

    2015-06-09

    Regulatory networks for differentiation and pluripotency in embryonic stem (ES) cells have long been suggested to be mutually exclusive. However, with the identification of many new components of these networks ranging from epigenetic, transcriptional, and translational to even post-translational mechanisms, the cellular states of pluripotency and early differentiation might not be strictly bi-modal, but differentiating stem cells appear to go through phases of simultaneous expression of stemness and differentiation genes. Translational regulators such as RNA binding proteins (RBPs) and micro RNAs (miRNAs) might be prime candidates for guiding a cell from pluripotency to differentiation. Using Trim71, one of two members of the Tripartite motif (Trim) protein family with RNA binding activity expressed in murine ES cells, we demonstrate that Trim71 is not involved in regulatory networks of pluripotency but regulates neural differentiation. Loss of Trim71 in mES cells leaves stemness and self-maintenance of these cells intact, but many genes required for neural development are up-regulated at the same time. Concordantly, Trim71(-/-) mES show increased neural marker expression following treatment with retinoic acid. Our findings strongly suggest that Trim71 keeps priming steps of differentiation in check, which do not pre-require a loss of the pluripotency network in ES cells.

  2. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    Directory of Open Access Journals (Sweden)

    Rajalaxmi Natarajan

    Full Text Available Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3 plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs. In vitro hNSCs primed with fibroblast growth factor 2 (FGF2 exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF, which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases.

  3. MR-based imaging of neural stem cells

    International Nuclear Information System (INIS)

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  4. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    Science.gov (United States)

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention. PMID:27604746

  5. A fast neural-network algorithm for VLSI cell placement.

    Science.gov (United States)

    Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail

    1998-12-01

    Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.

  6. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells.

    Science.gov (United States)

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R; Klar, Avihu; Labosky, Patricia A; Kalcheim, Chaya

    2013-06-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.

  7. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  8. Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Takeshi Kawauchi

    2012-04-01

    Full Text Available Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.

  9. Experimental Study on Treatment of Glioma by Embyonic Neural Stem Cell Transplnation in Rats

    Institute of Scientific and Technical Information of China (English)

    LUO Jie; ZHANG Li; TU Hanjun; HU Juntao; LI Xinjian; LI Dongsheng; LEI Ting

    2007-01-01

    The neural stem cells in Wistar rats were cultured in vitro, purified, and transplanted into C6 glioma model in order to observe their biological characters and provide a basic foundation for treatment of neurological diseases by neural stem cell transplantation. The cells at hippocampal area from gestation 15-day rats were cultured in vitro, and frozen and preserved in liquid nitrogen. C6 tu-mor-bearing models (n=25) and neural stem cells transplantation models (n=35) were established.When the tumor grew to 3 to 4 weeks,5 rats in each group were randomly selected for MRI examina-tion. At different intervals, the rats were perfused and sampled for HE staining, GFAP and BrdU im-munohistochemical staining. The results showed that after resuscitation of neural stem cells at 1-4 passages, the cell viability was 40%-63% with the difference being not significant. The cells could proliferate, passage, and most cells transplanted into glioma model survived. The mean survival time in neural stem cell transplantation group and control was 4.28 and 3.88 weeks respectively, and the average tumor size in the former was smaller than in the latter. It was concluded that embryonic neu- ral stem cells in rats could proliferate and differentiate, and after resuscitation the biological charac- teristic and viability of the cells were not influenced. Neural stem cells had inhibitory effects on the growth of glioma cells and could prolong the survival of rat model.

  10. Neural stem cells could serve as a therapeutic material forage-related neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Sarawut Suksuphew; Parinya Noisa

    2015-01-01

    Progressively loss of neural and glial cells is the keyevent that leads to nervous system dysfunctions anddiseases. Several neurodegenerative diseases, forinstance Alzheimer's disease, Parkinson's disease, andHuntington's disease, are associated to aging andsuggested to be a consequence of deficiency of neuralstem cell pool in the affected brain regions. Endogenousneural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cellsare responsible for the regeneration of new neurons torestore, in the normal circumstance, the functions of thebrain. Endogenous neural stem cells can be isolated,propagated, and, notably, differentiated to most celltypes of the brain. On the other hand, other types ofstem cells, such as mesenchymal stem cells, embryonicstem cells, and induced pluripotent stem cells can alsoserve as a source for neural stem cell production, thathold a great promise for regeneration of the brain. Thereplacement of neural stem cells, either endogenousor stem cell-derived neural stem cells, into impairedbrain is highly expected as a possible therapeutic meanfor neurodegenerative diseases. In this review, clinicalfeatures and current routinely treatments of agerelatedneurodegenerative diseases are documented.Noteworthy, we presented the promising evidence ofneural stem cells and their derivatives in curing suchdiseases, together with the remaining challenges toachieve the best outcome for patients.

  11. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  12. The homeostatic astroglia emerges from evolutionary specialization of neural cells.

    Science.gov (United States)

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-08-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377722

  13. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  14. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis.

    Science.gov (United States)

    Zigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B

    2014-02-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.

  15. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  16. Folic acid for the prevention of neural tube defects: the Danish experience.

    Science.gov (United States)

    Olsen, Sjurdur F; Knudsen, Vibeke Kildegaard

    2008-06-01

    Evidence from controlled trials suggests that ingestion of 0.4 mg of folic acid per day in the periconceptional period is effective in preventing neural tube defects (NTD). For this reason, most countries recommend that women planning pregnancy take folic acid supplements in the periconceptional period, and some countries even fortify stable foods with folic acid. Denmark exemplifies a country with a relatively conservative attitude with respect to taking action in these matters. In 1999, a national information campaign was launched that recommended women planning pregnancy take 0.4 mg of folic acid periconceptionally, but with the moderation that women who eat a healthy diet do not need to take folic acid supplement. The campaign was repeated during 2001. The results of the latter campaign were evaluated by using data from a national survey among pregnant women conducted simultaneously with the campaign by the Danish National Birth Cohort. An increase in the proportion of folic acid users took place concomitantly with the launching of the information events, but the increase was limited. Among women who did not plan their pregnancy, a small proportion had taken folic acid supplements periconceptionally, and this proportion did not change concomitantly with the campaign. Young age and low education were factors associated with low likelihood of taking folic acid. It seems that different and more efficient actions are needed if a more substantial proportion of Danish women and their fetuses are going to benefit from the knowledge that folic acid supplementation in the periconceptional period can prevent NTD.

  17. Folic acid supplement use in the prevention of neural tube defects.

    Science.gov (United States)

    Delany, C; McDonnell, R; Robson, M; Corcoran, S; Fitzpatrick, C; De La Harpe, D

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284/297 (96%), had heard of folic acid, and 178/297 (60%) knew that it could prevent NTD. Most, 270/297 (91%) had taken it during their pregnancy, but only 107/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  18. Folic acid supplement use in the prevention of neural tube defects.

    LENUS (Irish Health Repository)

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  19. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration.

    Science.gov (United States)

    Banerjee, Santanu; Gordon, Laura; Donn, Thomas M; Berti, Caterina; Moens, Cecilia B; Burden, Steven J; Granato, Michael

    2011-08-01

    Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.

  20. Opti mal Protocols to Expand Neural Stem Cells in Rotating Wall Vessel Bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionNeurodegenerative disorders exert on an enormous cost, both financially and emotionally, on afflicted individuals and their families for a long time. Fortunately, a neural stem cell (NSC) was identified in the adult central nervous system (CNS) and induced to proliferate untransformed in vitro~([1,2]). Neural stem cells are extremely primitive cells capable of self-maintenance and have the ability to generate large numbers of cells, including all of the phenotypes present in the adult CNS. The...

  1. Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod

    OpenAIRE

    Buckley, Clare E.; Ren, Xiaoyun; Ward, Laura C; Girdler, Gemma C; Araya, Claudio; Green, Mary J; Clark, Brian S.; Link, Brian A.; Clarke, Jonathan D. W.

    2012-01-01

    By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necess...

  2. An emerging molecular mechanism for the neural vs mesodermal cell fate decision

    Institute of Scientific and Technical Information of China (English)

    Roman A Li; Kate G Storey

    2011-01-01

    @@ Understanding how primary cell fates are established and maintained in the vertebrate embryo provides important insights that inform directed in vitro differentiation of embryonic stem cells or adult cells that have undergone induced pluripotency.Neural differentiation is of particular interest as new neural cells may contribute to therapeutic approaches to nervous system injury and diseases and provide in vitro disease models for small molecule screening and for determining personalized drug treatments.

  3. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    DEFF Research Database (Denmark)

    Walmod, P S; Foley, A; Berezin, A;

    1998-01-01

    Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image analy...

  4. Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network

    Institute of Scientific and Technical Information of China (English)

    CHAI Yu-hua; PAN Wei; NING Hai-long

    2005-01-01

    In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.

  5. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells

    OpenAIRE

    Fernando, R. N.; Eleuteri, B.; Abdelhady, S.; Nussenzweig, A; Andang, M; Ernfors, P.

    2011-01-01

    Adult neural stem cell proliferation is dynamic and has the potential for massive self-renewal yet undergoes limited cell division in vivo. Here, we report an epigenetic mechanism regulating proliferation and self-renewal. The recruitment of the PI3K-related kinase signaling pathway and histone H2AX phosphorylation following GABAA receptor activation limits subventricular zone proliferation. As a result, NSC self-renewal and niche size is dynamic and can be directly modulated in both directio...

  6. Ultrastructure of human neural stem/progenitor cells and neurospheres

    Institute of Scientific and Technical Information of China (English)

    Yaodong Zhao; Tianyi Zhang; Qiang Huang; Aidong Wang; Jun Dong; Qing Lan; Zhenghong Qin

    2009-01-01

    BACKGROUND: Biological and morphological characteristics of neural stern/progenitor cells (NSPCs) have been widely investigated.OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy.DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008.MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi instruments, Japan; transmission electron microscope was provided by JEOL, Japan.METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination.MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres.RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells.CONCLUSION: A large number

  7. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes.

    Directory of Open Access Journals (Sweden)

    Saravanan Kanakasabai

    Full Text Available Neural stem cells (NSCs are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS. Peroxisome proliferator-activated receptor gamma (PPARγ is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF and basic fibroblast growth factor (bFGF induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14-Prostaglandin J(2 (15d-PGJ2 resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3-7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3-7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases.

  8. File list: InP.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.hESC_derived_neural_cells hg19 Input control Pluripotent stem cell hESC derived neural...RX698183,SRX729701,SRX729711 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  9. File list: Oth.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_cells hg19 TFs and others Pluripotent stem cell hESC derived neural...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  10. File list: Oth.PSC.10.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived neural...13763,SRX213758,SRX352996 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.mESC_derived_neural_cells.bed ...

  11. File list: Unc.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.mESC_derived_neural_cells mm9 Unclassified Pluripotent stem cell mESC derived neural...,SRX213761,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  12. File list: ALL.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.iPS_derived_neural_cells hg19 All antigens Pluripotent stem cell iPS derived neural...hive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  13. File list: His.PSC.20.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.iPS_derived_neural_cells hg19 Histone Pluripotent stem cell iPS derived neural...archive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.iPS_derived_neural_cells.bed ...

  14. File list: Oth.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived neural...52996,SRX213763,SRX213758 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  15. File list: Oth.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_cells hg19 TFs and others Pluripotent stem cell hESC derived neural...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  16. File list: Unc.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.mESC_derived_neural_cells mm9 Unclassified Pluripotent stem cell mESC derived neural...,SRX213761,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  17. File list: His.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.hESC_derived_neural_cells hg19 Histone Pluripotent stem cell hESC derived neural...692,SRX729710,SRX729684,SRX729689,SRX729699,SRX729704,SRX729694 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  18. File list: NoD.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.hESC_derived_neural_cells hg19 No description Pluripotent stem cell hESC derived neural...edbc.jp/kyushu-u/hg19/assembled/NoD.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  19. File list: His.PSC.05.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.mESC_derived_neural_cells mm9 Histone Pluripotent stem cell mESC derived neural...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.mESC_derived_neural_cells.bed ...

  20. File list: NoD.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.hESC_derived_neural_cells hg19 No description Pluripotent stem cell hESC derived neural...edbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  1. File list: His.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.hESC_derived_neural_cells hg19 Histone Pluripotent stem cell hESC derived neural...707,SRX027494,SRX698181,SRX729681,SRX729682,SRX729698,SRX729709 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  2. Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2 positive neural progenitors (NHA to neuronal cells

    Directory of Open Access Journals (Sweden)

    Krynska Barbara

    2008-07-01

    Full Text Available Abstract Background Although extensive research has been performed to control differentiation of neural stem cells – still, the response of those cells to diverse cell culture conditions often appears to be random and difficult to predict. To this end, we strived to obtain stabilized protocol of NHA cells differentiation – allowing for an increase in percentage yield of neuronal cells. Results Uncommitted GFAP and SOX2 positive neural progenitors – so-called, Normal Human Astrocytes (NHA were differentiated in different environmental conditions to: only neural cells consisted of neuronal [MAP2+, GFAP-] and glial [GFAP+, MAP2-] population, non-neural cells [CD44+, VIMENTIN+, FIBRONECTIN+, MAP2-, GFAP-, S100β-, SOX2-], or mixture of neural and non-neural cells. In spite of successfully increasing the percentage yield of glial and neuronal vs. non-neural cells by means of environmental changes, we were not able to increase significantly the percentage of neuronal (GABA-ergic and catecholaminergic over glial cells under several different cell culture testing conditions. Supplementing serum-free medium with several growth factors (SHH, bFGF, GDNF did not radically change the ratio between neuronal and glial cells – i.e., 1,1:1 in medium without growth factors and 1,4:1 in medium with GDNF, respectively. Conclusion We suggest that biotechnologists attempting to enrich in vitro neural cell cultures in one type of cells – such as that required for transplantology purposes, should consider the strong limiting influence of intrinsic factors upon extracellular factors commonly tested in cell culture conditions.

  3. Neurogenesis by Activation of Inherent Neural Stem Cells in the Rat Hippocampus after Cerebral Infarction

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Ren-zhi Wang; Zhi-gang Lian; Yang Song; Yong Yao

    2009-01-01

    Objective To investigate the changes of neural stem cells (NSCs) in the rat hippocampus after cerebral infarction (CI) and to evaluate the neurogenesis caused by the activation of NSCs. Methods CI models of rats were made and rats were assigned to 6 groups: sham-operated, 1 day, 3 days, 7 days, 14 days, and 28 days after CI. The dynamic expression of bromodeoxyuridine (BrdU), polysialylated neural cell adhesion molecule (PSA-NCAM), glial fibrillary acidic protein (GFAP), and neuronal nuclear antigen (NeuN) were determined by immunohistochemistry and immunofluorescence staining. BrdU was used to mark the proliferated NSCs. PSA-NCAM was used to mark the plasticity of activated NSCs. GFAP and NeuN were used to mark the differentiated NSCs. Results Compared with the controls, the number of BrdU+ cells in the hippocampus increased significantly at 1 day after CI (P < 0.05), reached peak at 7 days after CI (P < 0.05), decreased but still elevated compared with the controls at 14 days after CI (P < 0.05), and nearly unchanged at 28 days after CI. The number of BrdU+/PSA-NCAM+ cells increased significantly at 7 days after CI (P < 0.05), reached peak at 14 days after CI (P < 0.05), and decreased but still elevated compared with the controls at 28 days after CI (P < 0.05). The number of BrdU+/PSA-NCAM+ cells was equal to 60% of the number of BrdU+ cells in all the same period. The number of BrdU+/NeuN+ cells in the hippocampus increased significantly at 14 days after CI (P < 0.05) and reached peak at 28 day after CI (P < 0.05). The number of BrdU+/GFAP+cells in the hippocampus nearly unchanged after CI. Conclusion CI can stimulate the proliferation of inherent NSCs, and most proliferated NSCs may differentiate into neurons and represent neural plasticity.

  4. Neural Stem Cell Differentiation Is Dictated by Distinct Actions of Nuclear Receptor Corepressors and Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Gonçalo Castelo-Branco

    2014-09-01

    Full Text Available Signaling factors including retinoic acid (RA and thyroid hormone (T3 promote neuronal, oligodendrocyte, and astrocyte differentiation of cortical neural stem cells (NSCs. However, the functional specificity of transcriptional repressor checkpoints controlling these differentiation programs remains unclear. Here, we show by genome-wide analysis that histone deacetylase (HDAC2 and HDAC3 show overlapping and distinct promoter occupancy at neuronal and oligodendrocyte-related genes in NSCs. The absence of HDAC3, but not HDAC2, initiated a neuronal differentiation pathway in NSCs. The ablation of the corepressor NCOR or HDAC2, in conjunction with T3 treatment, resulted in increased expression of oligodendrocyte genes, revealing a direct HDAC2-mediated repression of Sox8 and Sox10 expression. Interestingly, Sox10 was required also for maintaining the more differentiated state by repression of stem cell programming factors such as Sox2 and Sox9. Distinct and nonredundant actions of NCORs and HDACs are thus critical for control of lineage progression and differentiation programs in neural progenitors.

  5. In vitro behavior of neural stem cells in response to different chemical functional groups.

    Science.gov (United States)

    Ren, Yong-Juan; Zhang, Han; Huang, Hua; Wang, Xiu-Mei; Zhou, Zi-You; Cui, Fu-Zhai; An, Yi-Hua

    2009-02-01

    Neural stem cells (NSCs) cultured on glass surfaces modified by different chemical groups, including hydroxyl (-OH), sulfonic (-SO3H), amino (-NH2), carboxyl (-COOH), mercapto (-SH) and methyl (-CH3) groups, are shown here to commit to phonotypes with extreme sensitivity to surface chemical groups. The adhering NSCs at the level of single cells exhibited morphological changes in response to different chemical groups. NSCs on -SO(3)H surfaces had the largest contact area and the most flattened morphology, while those on -CH(3) surfaces exhibited the smallest contact area and the most rounded morphology. After 5 days of culture, the migration of NSCs from their original aggregates onto these test surfaces followed the trend: -NH2>-COOH=-SH>-SO3H>-CH3>-OH. The expression of specific markers, including nestin, beta-Tubulin-III, glial fibrillary acidic protein and O4, were used to examine NSCs lineage specification. The -SO3H surfaces favored NSCs differentiation into oligodendrocytes, while NSCs in contact with -COOH, -NH2, -SH and -CH3 had the ability to differentiate into neurons, astrocytes and oligodendrocytes. Compared to -COOH surfaces, -NH2 seemed to promote neuronal differentiation. These chemically modified surfaces exhibited regulation of NSCs on adhesion, migration and differentiation potential, providing chemical means for the design of biomaterials to direct NSCs lineage specification for neural tissue engineering. PMID:19026444

  6. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R;

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region...... showed a lower cytotoxic response than the spleen cells from rats transplanted with the transfected variants of BT4Cn cells, indicating that the transfection procedure in itself mediated an activation of the immune system. The present data suggest that NCAM may influence the malignant behavior of rat...

  7. Characterization of an individual neural crest-like cell lineage in the invertebrate chordate Ciona intestinalis

    OpenAIRE

    Cone, Angela C.

    2008-01-01

    During embryogenesis, all chordate embryos undergo neurulation to form a dorsal, hollow nerve cord. Neural crest cells (NCC), considered a vertebrate innovation, arise during neurulation and later differentiate into a multitude of tissues that account for much of the structural complexity that distinguishes craniates from invertebrate chordates [1, 2]. NCCs are induced and specified at the border of the neural and non-neural ectoderm by a complex network of inductive signals and transcription...

  8. 叶酸通过调节p53/p21(waf1/cip1)信号途径促进小鼠神经干细胞增殖和分化%Folic acid promote proliferation and differentiation of neural stem cells via regulation p53/p21 ( waf1/cip1 ) pathway in mice

    Institute of Scientific and Technical Information of China (English)

    王虹; 王芳; 范利军; 包金风

    2012-01-01

    目的:研究叶酸对体外培养小鼠神经干细胞(neuralstemcells,NSCs)增殖和分化的影响及作用机制.方法:采用无血清悬浮培养方法分离培养新生小鼠脑NSCs,通过MTT法检测叶酸对NSCs增殖的影响;撤除生长因子后,用含10%胎牛血清的培养基诱导分化培养6d后,采用Tuj1(神经元标记物)和GFAP(胶质细胞标记物)免疫荧光双标记法检测叶酸对NSCs分化的影响;并应用流式细胞术、RT-PCR法检测给予叶酸对NSCs细胞周期、p53和p21(waf1/cip1)mRNA水平的影响.结果:与对照组相比,MTT法测定结果显示,叶酸组NSCs增殖能力明显增强;分化后免疫荧光双标法测定显示,叶酸组Tuj1阳性细胞的比率明显增加,且差异具有显著性(P<0.01);流式细胞仪测定结果显示,叶酸组NSCs在G0/G1期细胞数量明显减少(P<0.01),而G2/M期细胞数量明显增多(P<0.01);RT-PCR结果显示,叶酸组NSCs中p53和p21mRNA表达量明显降低.结论:叶酸能促进NSCs增殖及向神经元分化;叶酸对NSCs增殖和分化的影响与调节NSCs细胞周期及p53/p21(waf1/cip1)信号转导途径相关.%Objective: To explore the effects and mechanisms of folic acid on proliferation and differentiation of neural stem cells (NSCs) in vitro in mice. Methods: NSCs were isolated from newborn mice brain and suspension cultured in serum-free medium. The effect of folic acid on proliferation of NSCs was determinated by MTT method; the differentiation of NSCs was detected by immunofluorescence double labeled with Tujl (marker of neuron) and GFAP (marker of glia) after 6 day culture in 10% fetal calf serum medium condition without growth factors. The cell cycle of NSCs was detected by flow cytometry and the mRNA levels of p53 and p21 were determinated by RT-PCR. Results: The proliferation rate of NSCs andTujl positive cells were significantly higher in folic acid group than control group(/'< 0.01); the ratio of NSCs in G0/G1 phase was decreased (P

  9. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    Science.gov (United States)

    Ward, M; Hutton, J; Mc Donnell, R; Bachir, N; Scallan, E; O'Leary, M; Hoey, J; Doyle, A; Delany, V; Sayers, G

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: pfolic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: pfolic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: pawareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  10. Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells?

    Directory of Open Access Journals (Sweden)

    Ann eTurnley

    2014-02-01

    Full Text Available After two decades of research the existence of adult neural precursor cells and the phenomenon of adult neurogenesis is well established. However, there has been little or no effective harnessing of these endogenous cells to promote functional neuronal replacement following neural injury or disease. Neural precursor cells can respond to neural damage by proliferating, migrating to the site of injury and differentiating into neuronal or glial lineages. However, after a month or so, very few or no newborn neurons can be detected, suggesting that even though neuroblasts are generated, they generally fail to survive as mature neurons and contribute to the local circuitry. Is this lack of survival and integration one of the major bottlenecks that inhibits effective neuronal replacement and subsequent repair of the nervous system following injury or disease? In this perspective article the possibility that this bottleneck can be targeted to enhance the integration and subsequent survival of newborn neurons will be explored and will suggest some possible mechanisms that may need to be modulated for this to occur.

  11. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  12. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  13. Effects of Near-Infrared Laser on Neural Cell Activity

    International Nuclear Information System (INIS)

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  14. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J;

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...

  15. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Shaden A.M., E-mail: shaden.khalifa@ki.se [Department of Neuroscience, Karolinska Institute, Stockholm (Sweden); Medina, Philippe de [Affichem, Toulouse (France); INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); Erlandsson, Anna [Department of Public Health and Caring Sciences, Uppsala University, Uppsala (Sweden); El-Seedi, Hesham R. [Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala (Sweden); Silvente-Poirot, Sandrine [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France); Poirot, Marc, E-mail: marc.poirot@inserm.fr [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France)

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  16. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    International Nuclear Information System (INIS)

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain

  17. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  18. In vitro culture and differentiation of rat embryonic midbrain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xingli Deng; Ruen Liu; Zhongtang Feng; Jing Guo; Wu Wang; Deqiang Lei; Hongyan Li; Zhihua Chen

    2008-01-01

    BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopamincrgic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: To isolate rat embryonic mNSCs and to observe the differentiation characteristics of mNSCs induced by cell growth-promoting factors. DESIGN, TIME AND SETTING: An in vitro cell culture study based on the molecular biology of nerve cells was carried out at the Institute of Clinical Medicine, China-Japan Friendship Hospital (China) from March to November 2007. MATERIALS: Sprague Dawley rats at embryonic day 14 were used in this study. Nestin antibody, β-Ⅲ tubulin antibody, glial fibrillary acidic protein (GFAP) antibody and cyclic nucleotide 3'-phosphohydrolase (CNPase) antibody were provided by Abeam; DMEM/F12 medium and N2 supplement were provided by Invitrogen; epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) were provided by R&D Systems. METHODS: The ventral mesencephalon was dissected from embryonic day 14 rat embryos. By trypsin digestion and mechanical separation, the brain tissue was triturated into a fine single-cell suspension. The cells were cultured in 5 mL serum-free medium containing DMEM/Fl2, 1% N2 supplement, 20 ng/mL EGF and FGF2. The mNSCs at the third generation were coated with 10 μg/mL polylysine and induced to differentiate in the DMEM/Fl2 supplemented with 1% fetal bovine serum and 1% N2. MAIN OUTCOME MEASURES: The neural spheres of the third passage were identified by nestin immunofluorescence; at the same time, the cells were induced to differentiate, and the types of differentiated cell were identified by immunofluorescence for βⅢ tubulin, GFAP and CNPase. RESULTS: Seven days after primary culture, a great many neurospheres could be obtained by successive pasage. Immunofluorescence assays showed that the neurospheres were nestin positive, and after differentiation, the cells expressed GFAP, CNPase and β -

  19. Signal transduction of the physical environment in the neural differentiation of stem cells

    Science.gov (United States)

    Thompson, Ryan; Chan, Christina

    2016-01-01

    Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.

  20. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells

    OpenAIRE

    Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Foster, Brian; Povlich, Laura K.; Kim, Dong-Hwan; Martin, David C.

    2006-01-01

    In this paper we describe interactions between neural cells and the conducting polymer poly(3,4-ethylenedioxythiophene (PEDOT) toward development of electrically conductive biomaterials intended for direct, functional contact with electrically-active tissues such as the nervous system, heart, and skeletal muscle. We introduce a process for polymerizing PEDOT around living cells and describe a neural cell-templated conducting polymer coating for microelectrodes and a hybrid conducting polymer-...

  1. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells.

    OpenAIRE

    Khalifa, Shaden,; de Medina, Philippe; Erlandsson, Anna; El-Seedi, Hesham; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-01-01

    International audience Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. T...

  2. Adult human neural stem cell therapeutics: Current developmental status and prospect

    OpenAIRE

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-01

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as ce...

  3. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  4. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    International Nuclear Information System (INIS)

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1+ migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug+ pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1+ migrating NCCs but reduced Pax7 expression and fewer Slug+ pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly

  5. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Dürr, Oliver; Sick, Beate

    2016-10-01

    Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening-based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.

  6. Effects of melatonin and its analogues on neural stem cells.

    Science.gov (United States)

    Chu, Jiaqi; Tu, Yalin; Chen, Jingkao; Tan, Dunxian; Liu, Xingguo; Pi, Rongbiao

    2016-01-15

    Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases. PMID:26499395

  7. Systems biology approach to imaging of neural stem cells.

    Science.gov (United States)

    Ma, Li Hua; Li, Yao; Djurić, Petar M; Maletić-Savatić, Mirjana

    2011-01-01

    Over the past decade, the advances in human brain magnetic resonance imaging (MRI) have significantly improved our ability to gain insightful information about the structure and function of the brain. One of the MRI imaging modalities that still awaits more comprehensive data mining is magnetic resonance spectroscopy (MRS). MRS provides information on the functional status of the brain tissue and can detect metabolic abnormalities that precede structural changes. The chemical specificity of proton MRS ((1)H-MRS) allows detection of several biomarkers that are specific for neurons (N-acetyl aspartate, NAA) and astrocytes (myoinositol (mI) and choline (Cho)), the two most abundant cell types present in the brain tissue. However, apart from a dozen metabolites, current methodologies utilized for MRS analysis do not allow further biomarker discoveries. Herein, we introduce a bioinformatics approach to MRS data processing and discuss possible discoveries that such approach may provide. Specifically, we describe the methodology for neural stem/progenitor cell (NPC) detection in vitro and in vivo, utilizing metabolomic profiling and singular value decomposition analyses. PMID:21279615

  8. Use of Microfluidic Technology to Monitor the Differentiation and Migration of Human ESC-Derived Neural Cells.

    Science.gov (United States)

    Bae, Jiwoo; Lee, Nayeon; Choi, Wankyu; Lee, Suji; Ko, Jung Jae; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2016-01-01

    Microfluidics forms the basis of unique experimental approaches that visualize the development of neural structure using micro-scale devices and aids the guidance of neurite growth in an axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stems cells (hESC). We cocultured hESC with PA6 stromal cells and isolated neural rosette-like structures, which subsequently formed neurospheres in a suspension culture. We found that Tuj1-positive neural cells but not nestin-positive neural precursor cells (NPC) were able to enter the microfluidics grooves (microchannels), suggesting a neural cell-migratory capacity that was dependent on neuronal differentiation. We also showed that bundles of axons formed and extended into the microchannels.Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells. PMID:27062598

  9. Neurogenic and non neurogenic functions of endogenous neural stem cells.

    Directory of Open Access Journals (Sweden)

    Erica eButti

    2014-04-01

    Full Text Available Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ of the lateral ventricles and in the subgranular zone (SGZ of the dentate gyrus (DG in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs was therefore, not properly feasible. After the (partial identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradia-tion, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odour behaviour. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.

  10. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  11. Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Forrester Jeff

    2009-09-01

    Full Text Available Abstract Background Neural differentiation of embryonic stem (ES cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming. Results Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of Oct4 and NANOG and increased expression of nestin. ES cells containing a GFP gene under the control of the Sox1 regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents. Conclusion Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.

  12. A Sox2 BAC transgenic approach for targeting adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Wenfei Kang

    Full Text Available The transcription factor gene Sox2 is expressed in embryonic neural stem/progenitor cells and previous evidence suggests that it is also expressed in adult neural stem cells. To target Sox2-expressing neural stem/progenitor cells in a temporal manner, we generated a bacterial artificial chromosome (BAC transgenic mouse line, in which an inducible form of Cre, CreER™, is expressed under Sox2 regulatory elements. Inducible Cre activity in these mice was characterized using floxed reporters. During development, the Sox2-CreER transgenic mice show inducible Cre activity specifically in CNS stem/progenitor cells, making them a useful tool to regulate the expression of floxed genes temporally in embryonic neural stem/progenitor cells. In the adult, we examined the cell-specific expression of Sox2 and performed long-term lineage tracing. Four months after the transient induction of Cre activity, recombined GFAP+ stem-like cells and DCX+ neuroblasts were still abundant in the neurogenic regions including the subventricular zone (SVZ, rostral migratory stream (RMS, and subgranular zone (SGZ of the dentate gyrus. These results provide definitive in vivo evidence that Sox2 is expressed in neural stem cells (NSC in both the SVZ and SGZ that are capable of self-renewal and long-term neurogenesis. Therefore, Sox2-CreER mice should be useful in targeting floxed genes in adult neural stem cells.

  13. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  14. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Shirin FARIVAR*

    2015-01-01

    fluid. J Neurol Neurosurg Psychiatry 1995 Oct;59(4:349-57.Alcazar A, Regidor I, Masjuan J, Salinas M, Alvarez- Cermeno JC. Induction of apoptosis by cerebrospinal fluid from patients with primary-progressive multiple sclerosis in cultured neurons. Neurosci Lett 1998 Oct 16;255(2:75-8.Colombo JA, Napp MI. Cerebrospinal fluid from L-dopa-treated Parkinson’s disease patients is dystrophic for various neural cell types exvivo: effects of astroglia. Exp Neurol 1998 Dec;154(2:452-63.Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Current topics in developmental biology 2005; (71: 1-52.Bachy I, Kozyraki R, Wassef M. The particles of the embryonic cerebrospinal fluid: how could they influence brain development? Brain Res Bull 2008 Mar 18;75(2- 4:289-94. doi: 10.1016/j.brainresbull.2007.10.010.Parada C, Gato A, Bueno D. Mammalian embryonic cerebrospinal fluid proteome has greater apo-lipoprotein and enzyme pattern complexity than the avian proteome. Journal of proteome research 2005; 4(6: 2420- 2428.Martin C, Bueno D, Alonso MI, Moro JA, Callejo S, Parada C, Martin P, Carnicero E, Gato A. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuro epithelial stem cells. Dev Biol 2006 Sep 15;297(2:402-16. Epub 2006 May 19.Huttner HB, Janich P, Kohrmann M, Jaszai J, Siebzehnrubl F, Blumcke I, Suttorp M, Gahr M, Kuhnt D, Nimsky C. The stem cell markerprominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease. Stem Cells 2008 Mar;26(3:698-705.Nordin C, Gupta RC, Sjodin I. Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology 2007;56(2-3:152-8. doi: 10.1159/000115782. Epub 2008 Feb 7.Gato A, Martin P, Alonso MI, Martin C, Pulgar MA, Moro JA. Analysis of cerebro-spinal fluid protein composition in early developmental stages in

  15. Neural network modeling and control of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell(PEMFC)stack. A radial basis function(RBF)neural network model was trained by the input-output data of impedance. A fuzzy neural network controller Was designed to control the impedance response.The RBF neural network model was used to test the fuzzy neural network controller.The results show that the RBF model output Can imitate actual output well, themaximal errorisnotbeyond 20 mΩ, thetrainingtime is about 1 s by using 20 neurons, and the mean squared errors is 141.9 mΩ2.The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is ahnllt 3 rain.

  16. Role of folic acid supplementation in prevention of neural tube defects: physicians yet unaware!

    Science.gov (United States)

    Aggarwal, A; Kumhar, G Das; Harit, D; Faridi, M M A

    2010-09-01

    Folic acid supplementation is important in the prevention of Neural Tube Defects (NTD). The study was conducted to assess the awareness amongst physicians regarding the role of Folic Acid (FA) in the prevention of NTD. Physicians were interviewed regarding the awareness of FA dose, timing of supplementation and knowledge about its role in prevention of neural tube defects using a semistructured questionnaire. Among 202 physicians interviewed (48 pediatricians, 54 obstetricians, 100 recently qualified medical graduates) overall awareness about FA was present in 92.07%, similar in three groups (P > 0.05). Only 47.52% were aware of preconception administration, 61.38% about dose of supplementation and 11.88% about recurrence rate of NTD. Only 15 (7.4%) knew all these. Regarding the etiology of NTDs only 26.7% said both FA and genetic factors are involved. Though majority were aware that folic acid has a role in prevention of NTDs, their knowledge about timing and dose of supplementation was lacking. Hence attempts should be made to increase the awareness regarding prevention of NTD's by FA supplementation at a proper time.

  17. Economic burden of neural tube defects and impact of prevention with folic acid: a literature review.

    Science.gov (United States)

    Yi, Yunni; Lindemann, Marion; Colligs, Antje; Snowball, Claire

    2011-11-01

    Neural tube defects (NTDs) are the second most common group of serious birth defects. Although folic acid has been shown to reduce effectively the risk of NTDs and measures have been taken to increase the awareness, knowledge, and consumption of folic acid, the full potential of folic acid to reduce the risk of NTDs has not been realized in most countries. To understand the economic burden of NTDs and the economic impact of preventing NTDs with folic acid, a systematic review was performed on relevant studies. A total of 14 cost of illness studies and 10 economic evaluations on prevention of NTDs with folic acid were identified. Consistent findings were reported across all of the cost of illness studies. The lifetime direct medical cost for patients with NTDs is significant, with the majority of cost being for inpatient care, for treatment at initial diagnosis in childhood, and for comorbidities in adult life. The lifetime indirect cost for patients with spina bifida is even greater due to increased morbidity and premature mortality. Caregiver time costs are also significant. The results from the economic evaluations demonstrate that folic acid fortification in food and preconception folic acid consumption are cost-effective ways to reduce the incidence and prevalence of NTDs. This review highlights the significant cost burden that NTDs pose to healthcare systems, various healthcare payers, and society and concludes that the benefits of prevention of NTDs with folic acid far outweigh the cost. Further intervention with folic acid is justified in countries where the full potential of folic acid to reduce the risk of NTDs has not been realized.

  18. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    Directory of Open Access Journals (Sweden)

    Daniela Annibali

    Full Text Available The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  19. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  20. Generation and properties of a new human ventral mesencephalic neural stem cell line

    DEFF Research Database (Denmark)

    Villa, Ana; Liste, Isabel; Courtois, Elise T;

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  1. Zebrafish neural tube morphogenesis requires Scribble-dependent oriented cell divisions.

    Science.gov (United States)

    Žigman, Mihaela; Trinh, Le A; Fraser, Scott E; Moens, Cecilia B

    2011-01-11

    How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.

  2. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Directory of Open Access Journals (Sweden)

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  3. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  4. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Energy Technology Data Exchange (ETDEWEB)

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  5. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology

  6. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  7. Maintenance of neural stem cell regional identity in culture.

    Science.gov (United States)

    Delgado, Ryan N; Lu, Changqing; Lim, Daniel A

    2016-01-01

    Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development. PMID:27606338

  8. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease

    NARCIS (Netherlands)

    C.P. Fitzsimons; E. van Bodegraven; M. Schouten; R. Lardenoije; K. Kompotis; G. Kenis; M. van den Hurk; M.P. Boks; C. Biojone; S. Joca; H.W. Steinbusch; K. Lunnon; D.F. Mastroeni; J. Mill; P.J. Lucassen; P.D. Coleman; D.L. Van den Hove; B.P.F. Rutten

    2014-01-01

    Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those enco

  9. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  10. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  11. Neural progenitor cells from an adult patient with fragile X syndrome

    OpenAIRE

    Nethercott Hubert E; Greco Claudia M; Tassone Flora; Schwartz Philip H; Ziaeian Boback; Hagerman Randi J; Hagerman Paul J

    2005-01-01

    Abstract Background Currently, there is no adequate animal model to study the detailed molecular biochemistry of fragile X syndrome, the leading heritable form of mental impairment. In this study, we sought to establish the use of immature neural cells derived from adult tissues as a novel model of fragile X syndrome that could be used to more fully understand the pathology of this neurogenetic disease. Methods By modifying published methods for the harvest of neural progenitor cells from the...

  12. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury*

    OpenAIRE

    Xu, Kan; Chen, Qi-xin; Li, Fang-cai; Chen, Wei-Shan; Lin, Min; Wu, Qiong-hua

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Meth...

  13. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  14. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    DEFF Research Database (Denmark)

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld;

    2007-01-01

    The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....... decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we...

  15. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  16. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    Science.gov (United States)

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.

  17. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    LENUS (Irish Health Repository)

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  18. Elk3 is essential for the progression from progenitor to definitive neural crest cell.

    Science.gov (United States)

    Rogers, Crystal D; Phillips, Jacquelyn L; Bronner, Marianne E

    2013-02-15

    Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330

  19. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    Directory of Open Access Journals (Sweden)

    Alistair E. Cole

    2016-01-01

    Full Text Available Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS. The bone morphogenetic proteins (BMPs, in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.

  20. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  1. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  2. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.;

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  3. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han 

    2015-01-01

    Objective:Parkinson’s disease (PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods:NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers:βⅢ‐tubulin and microtubule‐associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6‐hydroxydopamine (6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results:The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions:Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  4. A robust method to derive functional neural crest cells from human pluripotent stem cells.

    Science.gov (United States)

    Kreitzer, Faith R; Salomonis, Nathan; Sheehan, Alice; Huang, Miller; Park, Jason S; Spindler, Matthew J; Lizarraga, Paweena; Weiss, William A; So, Po-Lin; Conklin, Bruce R

    2013-01-01

    Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis, and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial, cardiac, and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here, we describe a rapid and robust NC differentiation method called "LSB-short" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily, retain NC marker expression over multiple passages, and can spontaneously differentiate into several NC-derived cell lineages, including smooth muscle cells, peripheral neurons, and Schwann cells. NC cells generated by this method represent cranial, cardiac and trunk NC subpopulations based on global gene expression analyses, are similar to in vivo analogues, and express a common set of NC alternative isoforms. Functionally, they are also able to migrate appropriately in response to chemoattractants such as SDF-1, FGF8b, and Wnt3a. By yielding NC cells that likely represent all NC subpopulations in a shorter time frame than other published methods, our LSB-short method provides an ideal model system for further studies of human NC development and disease. PMID:23862100

  5. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering.

    Science.gov (United States)

    Stewart, Elise; Kobayashi, Nao R; Higgins, Michael J; Quigley, Anita F; Jamali, Sina; Moulton, Simon E; Kapsa, Robert M I; Wallace, Gordon G; Crook, Jeremy M

    2015-04-01

    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.

  6. Corrosion free phosphoric acid fuel cell

    Science.gov (United States)

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  7. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  8. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  9. Bi-parental care contributes to sexually dimorphic neural cell genesis in the adult mammalian brain.

    Directory of Open Access Journals (Sweden)

    Gloria K Mak

    Full Text Available Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.

  10. NEURAL STEM CELLS AND SPINAL CORD INJURY%神经干细胞和脊髓损伤

    Institute of Scientific and Technical Information of China (English)

    李劲涛; 王廷华; 冯忠堂

    2007-01-01

    @@ Preface 1. Concept of neural stem cells Stem cells are multipotential cells that have the capacity to proliferate in an undifferentiated state, to self-renew, and to give rise to all the cell types of a particular tissue.

  11. In Vivo Targeting of Adult Neural Stem Cells in the Dentate Gyrus by a Split-Cre Approach

    OpenAIRE

    Ruth Beckervordersandforth; Aditi Deshpande; Iris Schäffner; Hagen B. Huttner; Alexandra Lepier; Dieter Chichung Lie; Magdalena Götz

    2014-01-01

    Summary We describe the labeling of adult neural stem cells (aNSCs) in the mouse and human dentate gyrus (DG) by the combinatorial expression of glial fibrillary acidic protein (GFAP) and Prominin1, as revealed by immunohistochemistry. Split-Cre-based genetic fate mapping of these double-positive cells in the adult murine DG reveals their NSC identity, as they are self-renewing and contribute to neurogenesis over several months. Their progeny reacts to stimuli such as voluntary exercise with ...

  12. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Directory of Open Access Journals (Sweden)

    Liu-lin Xiong

    2016-01-01

    Full Text Available Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 µg/L to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  13. Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells

    NARCIS (Netherlands)

    Balasubramaniyan, V.; Boddeke, E.; Bakels, R.; Kust, B.; Kooistra, S.; Veneman, A.; Copray, S.

    2006-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for self-renewal and for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. The molecular mechanisms regulating gene transcription resulting in NSC differentiation and c

  14. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke

    Directory of Open Access Journals (Sweden)

    Moon SU

    2012-06-01

    Full Text Available Sung Ung Moon,1,* Jihee Kim,1,2,* Kiran Kumar Bokara,1,* Jong Youl Kim,1 Dongwoo Khang,3,4 Thomas J Webster,3,4 Jong Eun Lee1,21Department of Anatomy, 2Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; 3School of Engineering, 4Department of Orthopedics, Brown University, Providence, RI, USA*These authors contributed equally to this workAbstract: The present in vivo study was conducted to evaluate whether hydrophilic (HL or hydrophobic (HP carbon nanotubes (CNTs impregnated with subventricular zone neural progenitor cells (SVZ NPCs could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplanted with HL CNT-SVZ NPCs, HP CNT-SVZ NPCs, or SVZ NPCs alone for 1, 3, 5, and 8 weeks. Results showed that the HP CNT-SVZ NPC transplants improved rat behavior and reduced infarct cyst volume and infarct cyst area compared with the experimental control and the HL CNT-SVZ NPC and SVZ NPCs alone groups. The transplantation groups showed an increase in the expression of nestin (cell stemness marker and proliferation which was evident with the increased number of doublecortin and bromodeoxyuridine double-stained immunopositive cells around the lesion site. But, these effects were more prominent in the HP CNT-SVZ NPC group compared with the other transplantation groups. The HP CNT-SVZ NPC and HL CNT-SVZ NPC transplants increased the number of microtubule-associated protein 2 (marker for neurons and decreased the number of glial fibrillary acidic protein (marker for astroglial cells positive cells within the injury epicenter. The majority of the transplanted HP CNT-SVZ NPCs collectively broadened around the ischemic injured region and the SVZ NPCs differentiated into mature neurons, attained the synapse morphology (TUJ1, synaptophysin, and decreased microglial activation (CD11b/c [OX-42]. For these reasons, this study provided the first evidence that CNTs can improve

  15. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by alltrans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Wei; Jin; Yao-Peng; Xu; An-Huai; Yang; Yi-Qiao; Xing

    2015-01-01

    AIM: To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells(h UC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid(ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis.METHODS: The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured h UC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry.RESULTS: The data showed that low concentrations of ATRA(0.5 μmol, 0.25 μmol) had no effect on the number of cells. However, treatment with 1.0 μmol or 2.0 μmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 μmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24 h. We further showed that 0.5 μmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells.CONCLUSION: Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of h UC-MSCs. These findings have implications on the use of ATRA-differentiated h UC-MSCs for the study of neural degeneration diseases.

  16. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  17. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    Science.gov (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  18. The Impact of Neural Stem Cell Biology on CNS Carcinogenesis and Tumor Types

    Directory of Open Access Journals (Sweden)

    K. M. Kurian

    2011-01-01

    Full Text Available The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.

  19. Nardosinone improves the proliferation, migration and selective differentiation of mouse embryonic neural stem cells.

    Directory of Open Access Journals (Sweden)

    Ze-Hui Li

    Full Text Available In this study, we investigated the impact of Nardosinone, a bioactive component in Nardostachys root, on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay, bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers, respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes, as indicated by the expression of microtubule-associated protein-2 and myelin basic protein, respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion, this study reveals the regulatory effects of Nardosinone on neural stem cells, which may have significant implications for the treatment of brain injury and neurodegenerative diseases.

  20. Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming.

    Science.gov (United States)

    Dametti, Sara; Faravelli, Irene; Ruggieri, Margherita; Ramirez, Agnese; Nizzardo, Monica; Corti, Stefania

    2016-05-01

    Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage. In addition, the mechanisms that regulate these events are still largely unknown. Stem cell-based therapeutic approaches have primarily focused on the use of either induced pluripotent stem cells or induced neural stem cells as sources for cell transplantation. More recently, in vivo direct reprogramming of endogenous CNS cells into multipotent neural stem/progenitor cells has been proposed as an alternative strategy that could overcome the limits connected with both the invasiveness of exogenous cell transplantation and the technical issues of in vitro reprogramming (i.e., the time requested and the limited available amount of directly induced neuronal cells). In this review, we aim to highlight the recent studies on in vivo direct reprogramming, focusing on astrocytes conversion to neurons or to neural stem/precursors cells, in the perspective of future therapeutic purposes for neurological disorders.