WorldWideScience

Sample records for acid model compounds

  1. Model compounds of humic acid and oxovanadium cations. Potentiometric titration and EPR spectroscopy studies

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1999-01-01

    Full Text Available The stability constants and the isotropic EPR parameters Ao (hyperfine splitting constant and g o (g value were obtained by potentiometric titrations and EPR spectroscopy, respectively, of 85%v/v aqueous solutions of model compounds of humic acids - salicylic acid (SALA - and both nitrohumic acids, a laboratory artifact - nitrosalicylic acids, 3-nitrosalicylic acid (3-NSA, 5-nitrosalicylic acid (5-NSA and 3,5-dinitrosalicylic acid (3,5-DNSA and oxovanadium cations. It was possible to record EPR spectra of those model compounds and the ion VO2+ (V(IV, and the stability constants were obtained from a solution of VO3+ (V(V, the values for the logarithms of the stability constants ranging from 12.77 ± 0.04 to 7.06 ± 0.05 for the species ML, and from 9.90 ±0.04 to 4.06 ± 0.05 for the species ML2 according to the decrease in the acidity of the carboxylic and the hydroxyl groups in the aromatic ring of the model compounds studied as the -NO2 substituents were added. Species distribution diagrams were also obtained for the equilibria studied. The EPR parameters showed that as the logarithm of the overall stability constants increase, g o values also increase, while Ao values show a tendency to decrease.

  2. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-01-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×10 9 , (1.07±0.07)×10 10 , (7.48±0.17)×10 9 , (7.31±0.29)×10 9 , (5.47±0.25)×10 9 , (6.94±0.10)×10 9 (M −1 s −1 ), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×10 9 , (8.98±0.27)×10 9 , (5.39±0.21)×10 9 , (4.33±0.17)×10 9 , (4.72±0.15)×10 9 , (1.42±0.02)×10 9 (M −1 s −1 ), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated. - Highlights: • Free radical chemistry of salicylic and 4 methyl salicylic acids is investigated. • The transient absorptions spectra for model compounds are measured. • Absolute bimolecular reaction rate constants for hydroxyl radical are determined. • Solvated electron reaction rate constants are calculated. • The use of salicylic acids as models for pharmaceuticals is explored

  3. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  4. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong

    2018-01-01

    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  5. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  6. Synthesis of labelled compound of ferulic acid and caffeic acid with tritium

    International Nuclear Information System (INIS)

    Yi Mingguang; Wang Caiyun

    1986-01-01

    Effective components of Chinese traditional herbs consist of many compounds, but some of the compounds usually contain unsaturated carbon-carbon double bonds. The unsaturated organic compounds 3 H-Ferulic acid and 3 H-Caffeic acid are prepared with their tritiated intermediates made by electric-dischange exposure method, which ensures the compounds contaning double bonds not hydrogenated. The 3 H-Ferulic acid is composed of 3 H-vanillin and Malonic acid. The 3 H-Caffeic acid is composed of 3 H-protocatechuyl aldehyde and Malonic acid and the specific activity of the products is 0.2 mCi/mg. The radiochemicaly purity is greater than 90%

  7. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    We studied hydrodeoxygenation of model compounds for vegetable oil into diesel-range hydrocarbons on a sulfided NiMo/γ-Al2O3 catalyst under trickle-flow conditions. Methyl oleate (methyl ester of oleic acid, a C18 fatty acid with one unsaturated bond in the chain) represented the C18 alkyl esters in

  8. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  9. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model.

    Science.gov (United States)

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2015-03-13

    Retention of ionizable analytes under gradient elution depends on the pH of the mobile phase, the pKa of the analyte and their evolution along the programmed gradient. In previous work, a model depending on two fitting parameters was recommended because of its very favorable relationship between accuracy and required experimental work. It was developed using acetonitrile as the organic modifier and involves pKa modeling by means of equations that take into account the acidic functional group of the compound (carboxylic acid, protonated amine, etc.). In this work, the two-parameter predicting model is tested and validated using methanol as the organic modifier of the mobile phase and several compounds of higher pharmaceutical relevance and structural complexity as testing analytes. The results have been quite good overall, showing that the predicting model is applicable to a wide variety of acid-base compounds using mobile phases prepared with acetonitrile or methanol. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-03-01

    Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.

  11. Reaction of acid esters of methylenebis(phosphonous acid) with carbonyl compounds

    International Nuclear Information System (INIS)

    Novikova, Z.S.; Odinets, I.L.; Lutsenko, I.F.

    1987-01-01

    The reaction of methylenebis(phosphonites) containing two hydrophosphoryl groupings with aliphatic and aromatic aldehydes and ketones in the presence of alkali metal fluorides leads to methylenebis(α-hydroxyalkylphosphinates). The reaction of methylenebis(phosphonites) containing one hydrophosphoryl groupings with carbonyl compounds in the presence of alkali metal fluorides proceeds with the formation of a new type of heterocyclic phosphorus compound, viz., 1,2λ 3 ,4λ 5 -oxadiphospholanes. The reaction of acid esters of methylenebis(phosphonous) acid with carbonyl compounds in the presence of alkali metal alkoxides or a tertiary amine is accompanied by phosphinate-phosphonate rearrangement of the intermediately formed α-hydroxylalkylphosphinates

  12. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    Science.gov (United States)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  13. College Chemistry Students' Mental Models of Acids and Acid Strength

    Science.gov (United States)

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  14. Ozonisation of model compounds as a pretreatment step for the biological wastewater treatment

    International Nuclear Information System (INIS)

    Degen, U.

    1979-11-01

    Biological degradability and toxicity of organic substances are two basic criteria determining their behaviour in natural environment and during the biological treatment of waste waters. In this work oxidation products of model compounds (p-toluenesulfonic acid, benzenesulfonic acid and aniline) generated by ozonation were tested in a two step laboratory plant with activated sludge. The organic oxidation products and the initial compounds were the sole source of carbon for the microbes of the adapted activated sludge. The progress of elimination of the compounds was studied by measuring DOC, COD, UV-spectra of the initial compounds and sulfate. Initial concentrations of the model compounds were 2-4 mmole/1 with 25-75ion of sulfonic acids. As oxidation products of p-toluenesulfonic acid the following compounds were identified and quantitatively measured: methylglyoxal, pyruvic acid, oxalic acid, acetic acid, formic acid and sulfate. With all the various solutions with different concentrations of initial compounds and oxidation products the biological activity in the two step laboratory plant could maintain. p-Toluenesulfonic acid and the oxidation products are biologically degraded. The degradation of p-toluenesulfonic acid is measured by following the increasing of the sulfate concentration after biological treatment. This shows that the elimination of p-toluenesulfonic acid is not an adsorption but a mineralization step. At high p-toluenesulfonic acid concentration and low concentration of oxidation products p-toluenesulfonic acid is eliminated with a high efficiency (4.3 mole/d m 3 = 0.34 kg p-toluenesulfonic acid/d m 3 ). However at high concentration of oxidation products p-toluenesulfonic acid is less degraded. The oxidation products are always degraded with an elimination efficiency of 70%. A high load of biologically degradable oxidation products diminished the elimination efficiency of p-toluenesulfonic acid. (orig.) [de

  15. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  16. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    Science.gov (United States)

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Narvaez Cuenca, C.E.; Vincken, J.P.; Verloop, J.W.; Berkel, van W.J.H.; Gruppen, H.

    2012-01-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO3) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color

  18. Modelling the ecotoxicity of naphthenic acids

    International Nuclear Information System (INIS)

    Redman, A.; McGrath, J.; Parkerton, T.; Frank, R.; Di Toro, D.

    2010-01-01

    Oil sand-derived process water is comprised of mixtures of many different toxic compounds. Recent modelling studies have been developed to assess oil sand ecotoxicity caused by naphthenic acids (NA). The hydrocarbon block method was used to described the ecotoxicity of NA mixtures using a database of physico-chemical properties for individual hydrocarbons. Chemical speciation and biota partitioning models are used to characterize the toxicity of ionizable compounds. An analysis of model predictions has suggested that high MW and compounds from the higher Z families contribute significantly to the ecotoxicity of oil sand-derived process water. However, the current modelling method overpredicts the toxicity of the highest residual fractions, which suggests that the bioavailability of the highest MW compounds is limited. Further model refinement is needed to evaluate NA compounds across a wide range of MW and Z families.

  19. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  20. Behavior of asphaltene model compounds at w/o interfaces.

    Science.gov (United States)

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces.

  1. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  2. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  3. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  4. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  6. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Preliminary characterization of wild lactic acid bacteria and their abilities to produce flavour compounds in ripened model cheese system.

    Science.gov (United States)

    Randazzo, C L; De Luca, S; Todaro, A; Restuccia, C; Lanza, C M; Spagna, G; Caggia, C

    2007-08-01

    The aim of this work was to preliminary characterize wild lactic acid bacteria (LAB), previously isolated during artisanal Pecorino Siciliano (PS) cheese-making for technological and flavour formation abilities in a model cheese system. Twelve LAB were studied for the ability to grow at 10 and 45 degrees C, to coagulate and acidify both reconstituted skim milk and ewe's milk. Moreover, the capacity of the strains to generate aroma compounds was evaluated in a model cheese system at 30- and 60-day ripening. Flavour compounds were screened by sensory analysis and throughout gas chromatography (GC)-mass spectrometry (MS). Most of the strains were able to grow both at 10 and 45 degrees C and exhibited high ability to acidify and coagulate ewes' milk. Sensory evaluation revealed that the wild strains produced more significant flavour attributes than commercial strains in the 60-day-old model cheese system. GC-MS data confirmed the results of sensory evaluations and showed the ability of wild lactobacilli to generate key volatile compounds. Particularly, three wild lactobacilli strains, belonging to Lactobacillus casei, Lb. rhamnosus and Lb. plantarum species, generated both in 60- and 30-day-old model cheeses system, the 3-methyl butan(al)(ol) compound, which is associated with fruity taste. The present work preliminarily demonstrated that the technological and flavour formation abilities of the wild strains are strain-specific and that wild lactobacilli, which produced key flavour compounds during ripening, could be used as tailor-made starters. This study reports the technological characterization and flavour formation ability of wild LAB strains isolated from artisanal Pecorino cheese and highlights that the catabolic activities were highly strain dependent. Hence, wild lactobacilli could be selected as tailor-made starter cultures for the PS cheese manufacture.

  8. Volatile Compounds and Lactic Acid Bacteria in Spontaneous Fermented Sourdough

    International Nuclear Information System (INIS)

    Kam, W.Y.; Aida, W.M.W.; Sahilah, A.M.; Maskat, M.Y.

    2011-01-01

    The aim of this study is to identify the predominating lactic acid bacteria (LAB) in a spontaneous fermented wheat sourdough. At the same time, an investigation towards volatile compounds that were produced was also carried out. Lactobacillus plantarum has been identified as the dominant species of lactobacilli with characters of a facultative heterofermentative strain. The generated volatile compounds that were produced during spontaneous fermentation were isolated by solvent extraction method, analysed by gas chromatography (GC), and identified by mass spectrophotometer (MS). Butyric acid has been found to be the main volatile compound with relative abundance of 6.75 % and acetic acid at relative abundance of 3.60 %. Esters that were formed at relatively low amount were butyl formate (1.23 %) and cis 3 hexenyl propionate (0.05 %). Butanol was also found at low amount with relative abundance of 0.60 %. The carbohydrate metabolism of Lactobacillus plantarum may contributed to the production of acetic acid in this study via further catabolism activity on lactic acid that was produced. However, butyric acid was not the major product via fermentation by LAB but mostly carried out by the genus Clostridium via carbohydrate metabolism which needs further investigation. (author)

  9. Compounds formed by treatment of corn (Zea mays) with nitrous acid.

    Science.gov (United States)

    Archer, M C; Hansen, T J; Tannenbaum, S R

    1980-01-01

    Nitrohexane has been identified as a major product formed following treatment of corn (Zea mays) with nitrous acid. Preliminary evidence suggests that another compound isolated from the nitrosated corn is an unsaturated nitrolic acid. As an aid to the analysis of N-nitro compounds, we have characterized the response of a chemiluminescence detector (Thermal Energy Analyzer) as a function of pyrolysis chamber temperature for several nitrosamines and for an aliphatic C-nitroso compound, an aromatic C-nitro compound, a nitramine and an alkyl nitrite. The response-temperature profiles are valuable in distinguishing among the various compounds and in optimizing the sensitivity of the detector for use in chromatography. Other tests, including photolysis and stability toward nitrite-scavenging reagents, further aid in distinguishing among the various compounds.

  10. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  11. Bioactive compounds from palm fatty acid distillate and crude palm oil

    Science.gov (United States)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  12. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    Science.gov (United States)

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    Science.gov (United States)

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Gas-phase Conformational Analysis of (R,R)-Tartaric Acid, its Diamide, N,N,N',N'- Tetramethyldiamide and Model Compounds

    Science.gov (United States)

    Hoffmann, Marcin; Szarecka, Agnieszka; Rychlewski, Jacek

    A review over most recent ab initio studies carried out at both RHF and MP2 levels on (R,R)-tartaric acid (TA), its diamide (DA), tetramethyldiamide (TMDA) and on three prototypic model systems (each of them constitutes a half of the respective parental molecule), i.e. 2-hydroxyacetic acid (HA), 2-hydroxyacetamide (HD) and 2-hydroxy-N,N-dimethylacetamide (HMD) is presented. (R,R)-tartaric acid and the derivatives have been completely optimized at RHF/6-31G* level and subsequently single-point energies of all conformers have been calculated with the use of second order perturbation theory according to the scheme: MP2/6-31G*//RHF/6-31G*. In the complete optimization of the model molecules at RHF level we have employed relatively large basis sets, augmented with polarisation and diffuse functions, namely 3-21G, 6-31G*, 6-31++G** and 6-311++G**. Electronic correlation has been included with the largest basis set used in this study, i.e. MP2/6-311++G**//RHF/6-311++G** single-point energy calculations have been performed. General confomational preferences of tartaric acid derivatives have been analysed as well as an attempt has been made to define main factors affecting the conformational behaviour of these molecules in the isolated state, in particular, the role and stability of intramolecular hydrogen bonding. In the case of the model compounds, our study principally concerned the conformational preferences and hydrogen bonding structure within the [alpha]-hydroxy-X moiety, where X=COOH, CONH2, CON(CH3)2.

  16. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.

    Science.gov (United States)

    Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus

    2018-04-17

    Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.

  18. Retention prediction and hydrophobicity estimation of weak acidic compounds by reversed-phase liquid chromatography using acetic and perchloric acids as ion suppressors.

    Science.gov (United States)

    Han, Shu-ying; Ming, Xin; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2010-11-01

    Simple acids are usually applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography. The purpose of this study is to investigate the retention behavior of various weak acidic compounds (monoprotic, diprotic, triprotic, and tetraprotic acids) using acetic or perchloric acid as ion suppressor in a binary hydroorganic mobile phase. The apparent n-octanol-water partition coefficient (K(ow)") was proposed to calibrate the n-octanol-water partition coefficient (K(ow)) of weak acidic compound. LogK(ow)" was found to have a better linear correlation with logk(w), the logarithm of the retention factor obtained by extrapolating to neat aqueous fraction of the mobile phase, for all weakly ionizable acidic compounds. This straightforward relationship offers a potential medium for direct measurement of K(ow) data of weak acidic analytes and can be used to predict retention behavior of these compounds in the ion suppression reversed-phase liquid chromatographic mode.

  19. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  20. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  1. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  2. Ascorbic acid, β-carotene, total phenolic compound and ...

    African Journals Online (AJOL)

    A two year study at Alexandria University compared ascorbic acid, β-carotene, total phenolic compound, nitrite content and microbiological quality of orange and strawberry fruits grown under organic and conventional management techniques to see if producers concerns are valid. Organically grown oranges and ...

  3. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  4. Thermal decomposition of zirconium compounds with some aromatic hydroxycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, A V; Malinko, L A; Karlysheva, K F; Sheka, I A; Shchepak, N I [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii

    1980-02-01

    By the thermogravimetry method investigated are processes of thermal decomposition of different zirconium compounds with mandelic, parabromomandelic, salicylic and sulphosalicylic acids. For identification of decomposition products the specimens have been kept at the temperature of effects up to the constant weight. Taken are IR-spectra, rentgenoarams, carried out is elementary analysis of decomposition products. It is stated that thermal decomposition of the investigated compounds passes in stages; the final product of thermolysis is ZrO/sub 2/. Nonhydrolized compounds are stable at heating in the air up to 200-265 deg. Hydroxy compounds begin to decompose at lower temperature (80-100 deg).

  5. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  6. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  7. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Ho, S.Y.; O'Donnell, J.H.; O'Sullivan, P.W.; Pomery, P.J.

    1982-01-01

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the γ-radiolysis of the N-acetyl derivatives of glycine, L-alanine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2 ) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-Csub(α) bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the deamination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R) values showed a good correlation with G(CO 2 ) indicating that a common reaction may be involved in radical production and carbon dioxide formation. (author)

  8. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  9. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  10. Formation and properties of radicals in γ-irradiated molecular compounds of urea with dicarboxylic acids

    International Nuclear Information System (INIS)

    Kasparov, M.S.; Trofimov, V.I.

    1978-01-01

    Radiation chemical yields of paramagnetic centres and their nature have been studied as well as secondary reactions in channel inclusion compounds of urea with sebacic acid and in mixed crystals of urea with succinic acid. In inclusion compounds of urea with sebacic acid the yield exceeds additive at 77 K. In mixed crystals of urea with succinic acid the yield at 77 K is equal to additive. In mixed crystals at all temperatures quazistationary concentrations of radicals are lower than in pure succinic acid. In inclusion compounds quazistationary concentration of radicals are higher than in pure sebacic acid. It has been shown that in solid two-component systems, when the nature of the components is identical, the matrix structure exerts an essential influence on the radiolysis of the system

  11. Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis

    Directory of Open Access Journals (Sweden)

    G. Amy

    2008-07-01

    Full Text Available Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide by NF (Filmtec, Saehan and RO (Filmtec, Saehan, Toray, Koch membranes were studied. Chloroform presented the lowest rejection due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejections caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better rejections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection. For membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hydrophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection modelling. We were able to provide acceptable statistical significance for important results.

  12. Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts

    NARCIS (Netherlands)

    Guvenatam, Burcu; Kursun, Osman; Heeres, Hero; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2014-01-01

    The influence of reaction conditions (temperature, acidity) on the catalytic performance of supported Pt, Pd and Ru catalysts for the aqueous phase hydrodeoxygenation (HDO) of lignin model compounds was systematically investigated. Phenol conversion proceeds via hydrogenation of the aromatic ring

  13. Multivariate characterisation and quantitative structure-property relationship modelling of nitroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, S. [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)], E-mail: sofie.jonsson@nat.oru.se; Eriksson, L.A. [Department of Natural Sciences and Orebro Life Science Center, Orebro University, 701 82 Orebro (Sweden); Bavel, B. van [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)

    2008-07-28

    A multivariate model to characterise nitroaromatics and related compounds based on molecular descriptors was calculated. Descriptors were collected from literature and through empirical, semi-empirical and density functional theory-based calculations. Principal components were used to describe the distribution of the compounds in a multidimensional space. Four components described 76% of the variation in the dataset. PC1 separated the compounds due to molecular weight, PC2 separated the different isomers, PC3 arranged the compounds according to different functional groups such as nitrobenzoic acids, nitrobenzenes, nitrotoluenes and nitroesters and PC4 differentiated the compounds containing chlorine from other compounds. Quantitative structure-property relationship models were calculated using partial least squares (PLS) projection to latent structures to predict gas chromatographic (GC) retention times and the distribution between the water phase and air using solid-phase microextraction (SPME). GC retention time was found to be dependent on the presence of polar amine groups, electronic descriptors including highest occupied molecular orbital, dipole moments and the melting point. The model of GC retention time was good, but the precision was not precise enough for practical use. An important environmental parameter was measured using SPME, the distribution between headspace (air) and the water phase. This parameter was mainly dependent on Henry's law constant, vapour pressure, log P, content of hydroxyl groups and atmospheric OH rate constant. The predictive capacity of the model substantially improved when recalculating a model using these five descriptors only.

  14. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  15. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction

    International Nuclear Information System (INIS)

    Wang, Xin; Tang, Xiaohan; Yang, Xiaoyi

    2017-01-01

    Highlights: • Pyrolysis experiments were conducted by model compounds of algal components. • Interaction affected little bio-crude yield of model compounds co-pyrolysis. • Some interaction pathways between microalgae components were recommended. • N-heterocyclic compounds were further pyrolysis products of Maillard reaction products. • Surfactant synthesis (lipid-amino acids and lipid-glucose) between algal components. - Abstract: Pyrolysis is one of important pathways to convert microalgae to liquid biofuels and key components of microalgae have different chemical composition and structure, which provides a barrier for large-scale microalgae-based liquid biofuel application. Microalgae component pyrolysis mechanism should be researched to optimal pyrolysis process parameters. In this study, single pyrolysis and co-pyrolysis of microalgal components (model compounds castor oil, soybean protein and glucose) were conducted to reveal interaction between them by thermogrametric analysis and bio-crude evaluation. Castor oil (model compound of lipid) has higher pyrolysis temperature than other model compounds and has the maximum contribution to bio-crude formation. Bio-crude from soybean protein has higher N-heterocyclic compounds as well as phenols, which could be important aromatic hydrocarbon source during biorefineries and alternative aviation biofuel production. Potential interaction pathways based on model compounds are recommended including further decomposition of Maillard reaction products (MRPs) and surfactant synthesis, which indicate that glucose played an important role on pyrolysis of microalgal protein and lipid components. The results should provide necessary information for microalgae pyrolysis process optimization and large-scale pyrolysis reactor design.

  17. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  18. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  19. Decomposition of lignin model compounds by Lewis acid catalysts in water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2015-01-01

    The conversion of benzyl phenyl ether, diphenyl ether, diphenyl methane and biphenyl as representative model compounds for alpha-O-4, 5-O-4, alpha(1) (methylene bridges) and 5-5' lignin linkages was investigated. We compared the use of metal chlorides and acetates. The reactions were studied in sub-

  20. Investigation on chemistry of model compounds of technetium radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.; Hartmann, E.

    1983-01-01

    The report summarized experimental and theoretical results concerning the chemical structures and the biodistribution of hydrophilic technetium chelates with hydroxycarboxylic and aminopolycarboxylic acids, thiol compounds and aliphatic and aromatic nitrogen compounds as ligands. Methods which are suitable for synthesizing and characterizing defined chelates of Tc(V), Tc(IV) and Tc(III) have been developed for crystlline substances and species in solution, respectively. For certain types of technetium chelates three dimensional structure models were calculated from atomic parameters. The electron energies and electron distribution of Tc(V) thiol compounds were calculated by quantum chemical methods in order to interprete physical properties of these substances. Biodistribution studies revealed relationships between the osteotropic behaviour and the structure of phosphorous and non-phosphorous technetium chelates and between the kidney uptake and ligand exchange ability of Tc(V) hydroxycarboxylates. Important parameters for the production of technetium-99m kits have been elaborated and used for the optimization of radiopharmaceuticals (bone-, kidney and hepatobiliaer agents). (author)

  1. Experimental and Kinetic Modeling Studies on the Conversion of Sucrose to Levulinic Acid and 5-Hydroxymethylfurfural Using Sulfuric Acid in Water

    NARCIS (Netherlands)

    Tan-Soetedjo, Jenny N. M.; van de Bovenkamp, Henk H.; Abdilla, Ria M.; Rasrendra, Carolus B.; van Ginkel, Jacob; Heeres, Hero J.

    2017-01-01

    We here report experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) in water using sulfuric acid as the catalyst. Both compounds are versatile building blocks for the synthesis of various biobased (bulk) chemicals. A total of

  2. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  3. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain.

    Science.gov (United States)

    Bravo-Lamas, Leire; Barron, Luis J R; Farmer, Linda; Aldai, Noelia

    2018-05-01

    Muscle fatty acid composition and odour-active compounds released during cooking were characterized in lamb chops (Longissimus thoracis et lumborum, n = 48) collected at retail level in northern Spain. Lamb samples were classified in two groups according to their 10 t/11 t-18:1 ratio: ≤1 (10 t-non-shifted, n = 21) and >1 (10 t-shifted, n = 27). Higher n-3 polyunsaturated fatty acid, vaccenic (11 t-18:1) and rumenic acid (9c,11 t-18:2), and iso-branched chain fatty acid contents were found in non-shifted lamb samples while n-6 polyunsaturated fatty acid, internal methyl-branched chain fatty acid, and 10 t-18:1 contents were greater in shifted samples. Regardless the fatty acid profile differences between lamb sample groups, odour-active compound profile was very similar and mostly affected by the cooking conditions. Overall, the main odour-active compounds of cooked lamb were described as "green", "meaty", "roasted", and "fatty" being methyl pyrazine, methional, dimethyl pyrazine, and dimethyl trisulphide the main odour-active compounds. Aldehydes and alcohols were the most abundant volatiles in all samples, and they were mostly originated from the oxidation of unsaturated fatty acids during cooking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  5. The catalytic ozonization of model lignin compounds in the presence of Fe(III) ions

    Science.gov (United States)

    Ben'ko, E. M.; Mukovnya, A. V.; Lunin, V. V.

    2007-05-01

    The ozonization of several model lignin compounds (guaiacol, 2,6-dimethoxyphenol, phenol, and vanillin) was studied in acid media in the presence of iron(III) ions. It was found that Fe3+ did not influence the initial rate of the reactions between model phenols and ozone but accelerated the oxidation of intermediate ozonolysis products. The metal concentration dependences of the total ozone consumption and effective rate constants of catalytic reaction stages were determined. Data on reactions in the presence of oxalic acid as a competing chelate ligand showed that complex formation with Fe3+ was the principal factor that accelerated the ozonolysis of model phenols at the stage of the oxidation of carboxylic dibasic acids and C2 aldehydes formed as intermediate products.

  6. Coordination compounds of cobalt and cadmium with isobutyric acid amide

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Ivanova, I.S.; Solovkina, O.A.

    1983-01-01

    Coordination compounds of cobalt and cadmium with isobutyric acid amide (IBAA) of Co(NCS) 2 x(IBAA) 2 (H 2 O) 2 , CoCl 2 (IBAA) 4 , CoI 2 (IBAA) 8 (H 2 O) 2 , CdI 2 (IBAA) 2 composition have been synthesized and characterized. Their infrared absorption spectra (200-400 cm -1 ), electron reflection spectra (200-750 nm) were studied. It is shown that in all compounds there are IBAA molecUles coordinated through an oxygen atom. Thiocyanogroups are coordinated throUgh nitrogen atoms

  7. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis of the Demospongic Compounds, (6Z, 11Z-Octadecadienoic Acid and (6Z, 11Z-Eicosadienoic Acid

    Directory of Open Access Journals (Sweden)

    V. R. Mamdapur

    1997-01-01

    Full Text Available A stereoselective synthesis of (6Z, 11Z-octadecadienoic acid (1 and (6Z, 11Z-eicosadienoic acid (2 from easily accessible pentane-1,5-diol (3 is described. Thus, compound 3 on pyranylation and oxidation gave the aldehyde 5 which was converted to the acid 7 by Wittig reaction with a suitable phosphorane. Its depyranylation and oxidation furnished the key aldehyde 9 which upon Wittig reaction with n-heptylidene and n-nonylidene phosphoranes, respectively followed by alkaline hydrolysis afforded the title acids.

  9. Synthesis of esters of morpholino-4-carbothionothiolic acid as compounds of potential radioprotective action

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1979-01-01

    The compounds of the group of dithiocarbaminianes as complexing compounds are of importance in radioprotection. Present paper concerns the synthesis of 19, as yet undescribed dithiocarbaminianes esters of morpholino-4-carbothionothiolic acid. They were obtained in the reaction of the potassium salt of the mentioned acid with adequate alkyl or alkyloaryl halogenatas. Potassium salt of the morpholino-4-carbothionothiolic acid was obtained in the reaction of morpholine with carbon disulphite in the presence of potassium hydroxide. Obtaining of the pure potassium salt of the mentioned acid enabled the accurate calculation of the used substarate in further reactions and conduction of reaction in different solvents. Phenyloalkyl, phenacyl and morpholino-4-carbonyloalkyl esters were obtained. Their chemical structure was confirmed by elementary and spectral infrared analysis.

  10. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with a...

  11. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  13. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  14. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    Science.gov (United States)

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  15. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  16. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds.

    Science.gov (United States)

    Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing

    2017-08-03

    We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.

  17. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  18. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  19. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  20. Are intragastric N-nitroso compounds elevated after short-term acid suppression?

    NARCIS (Netherlands)

    Houben, G.M.P.; Hooi, J.D.; Brummer, R.J.M.; Stobberingh, E.E.; Stockbrügger, R.W.

    1996-01-01

    Are intragastric N-nitroso compounds elevated after short-term acid suppression? Houben GM, Hooi J, Brummer RJ, Stobberingh EE, Stockbrugger RW. Department of Gastroenterolgy, Academic Hospital Maastricht, The Netherlands. Publication Types: Clinical Trial Randomized Controlled Trial

  1. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds.

    Science.gov (United States)

    Sheng, Lili; Wang, Xin; Yang, Xiaoyi

    2018-01-01

    The model of biocrude yield and the nitrogen heterocyclic compounds in biocrude of microalgae hydrothermal liquefaction are two of the most concerned issues in this field at present. This study explored a hydrothermal liquefaction biocrude yield model involved in the interaction among biochemical compounds in microalgae and analysed nitrogen heterocyclic compounds in biocrude. The model compound (castor oil, soya protein and glucose) and Nanochloropsis were liquefied at 280°C for 1h. The products were analyzed by GC-MS, element analysis and FTIR. The results suggested that interactions among different components in microalgae enhanced biocrude yield. The biocrude yield prediction model involved cross-interactions performed more accurate than previous models.When the ratio of protein and carbohydrate around 3, the cross-interaction and nitrogen heterocyclic compounds in biocrude would both reach the highest extent. Copyright © 2017. Published by Elsevier Ltd.

  2. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  3. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    Science.gov (United States)

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  4. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    Science.gov (United States)

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Coordination compounds of cobalt and cadmium with isobutyric acid amide

    Energy Technology Data Exchange (ETDEWEB)

    Tsivadze, A.Yu.; Ivanova, I.S.; Solovkina, O.A. (AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1983-06-01

    Coordination compounds of cobalt and cadmium with isobutyric acid amide (IBAA) of Co(NCS)/sub 2/x(IBAA)/sub 2/(H/sub 2/O)/sub 2/, CoCl/sub 2/(IBAA)/sub 4/, CoI/sub 2/(IBAA)/sub 8/(H/sub 2/O)/sub 2/, CdI/sub 2/(IBAA)/sub 2/ composition have been synthesized and characterized. Their infrared absorption spectra (200-400 cm/sup -1/), electron reflection spectra (200-750 nm) were studied. It is shown that in all compounds there are IBAA molecUles coordinated through an oxygen atom. Thiocyanogroups are coordinated through nitrogen atoms.

  6. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  7. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  8. Comparison of zwitterionic N-alkylaminomethanesulfonic acids to related compounds in the Good buffer series

    Directory of Open Access Journals (Sweden)

    Robert D. Long

    2010-04-01

    Full Text Available Several N-alkyl and N,N-dialkylaminomethanesulfonic acids were synthesized (as zwitterions and/or sodium salts to be tested for utility as biological buffers at lower pH levels than existing Good buffer compounds (aminoalkanesulfonates with a minimum of two carbons between amine and sulfonic acid groups as originally described by Norman Good, and in common use as biological buffers. Our hypothesis was that a shorter carbon chain (one carbon between the amino and sulfonic acid groups should lower the ammonium ion pKa values. The alkylaminomethanesulfonate compounds were synthesized in aqueous solution by reaction of primary or secondary amines with formaldehyde/sodium hydrogensulfite addition compound. The pKa values of the ammonium ions of this series of compounds (compared to existing Good buffers was found to correlate well with the length of the carbon chain between the amino and sulfonate moeties, with a significant decrease in amine basicity in the aminomethanesulfonate compounds (pKa decrease of 2 units or more compared to existing Good buffers. An exception was found for the 2-hydroxypiperazine series which shows only a small pKa decrease, probably due to the site of protonation in this compound (as confirmed by X-ray crystal structure. X-ray crystallographic structures of two members of the series are reported. Several of these compounds have pKa values that would indicate potential utility for buffering at pH levels below the normal physiological range (pKa values in the range of 3 to 6 without aqueous solubility problems – a range that is problematic for currently available Good buffers. Unfortunately, the alkylaminomethanesulfonates were found to degrade (with loss of their buffering ability at pH levels below the pKa value and were unstable at elevated temperature (as when autoclaving – thus limiting their utility.

  9. Coordination compounds of cobalt(II), nickel(II), copper(II), and zinc(II) with pantothenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shabilalov, A.A.; Yunuskhodzhaev, A.N.; Khodzhaev, O.F.; Azizov, M.A.

    1986-11-01

    The compounds Ni(PANA - H)/sub 2/ x 4H/sub 2/O (PANA stands for pantothenic acid, and - H indicates a deprotonated ligand), Cu(PANA - H)/sub 2/ x 2H/sub 2/O, Zn(PANA - H)/sub 2/ x H/sub 2/O, Co(PANA - H)Cl x H/sub 2/O, and Ni(PANA - H)Cl x 3H/sub 2/O have been synthesized on the basis of pantothenic acid and Co(II), Ni(II), Cu(II), and Zn(II) salts in aqueous media. The compounds have been identified by elemental and x-ray diffraction analysis. Some physicochemical properties (solubility, melting point, molar conductivity) of the compounds obtained have been studied. The structure of the compounds isolated has been established on the basis of an analysis of their IR, ESR, and electronic spectra, as well as derivatograms.

  10. Immobilization of kojic acid in ZnAl-hydrotalcite like compounds

    Science.gov (United States)

    Ambrogi, Valeria; Perioli, Luana; Nocchetti, Morena; Latterini, Loredana; Pagano, Cinzia; Massetti, Elena; Rossi, Carlo

    2012-01-01

    Kojic acid (KOJ) is a melanin synthesis inhibitor widely used as skin lightening agent in topical preparations. Unfortunately it is easily susceptible to photo-oxidation, phenomenon responsible for chemical and organoleptic modifications. The aim of this work was the intercalation of KOJ in hydrotalcite-like compounds (HTlc) in order to stabilize KOJ and to reduce its photolability. Hydrotalcite containing Zn and Al (ZnAl-HTlc) was used as host to obtain the final compound ZnAl-HTlc-KOJ. The intercalation was carried out, after many attempts, by ionic exchange mechanism by means of the strong base EtO- in anhydrous ethanol/dimethylsulfoxide (DMSO) mixture as solvent in order to generate KOJ- anions. The final product was characterized by the X-ray powder diffraction (XRPD), FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis. The intercalated compound was formulated in a siliconic water free self-emulsifying ointment and the in vitro release profile was evaluated. All samples (intercalation compound and its formulation) were submitted also to spectrophotometric assays in order to evaluate the matrix protective effect towards ultraviolet rays.

  11. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes

    International Nuclear Information System (INIS)

    Aspenstroem-Fagerlund, Bitte; Ring, Linda; Aspenstroem, Pontus; Tallkvist, Jonas; Ilbaeck, Nils-Gunnar; Glynn, Anders W.

    2007-01-01

    Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90 min to mannitol in emulsions of oleic acid (5, 15 or 30 mM) or DHA (5, 15 or 30 mM) in an experimental medium with or without Ca 2+ and Mg 2+ . Absorption of 14 C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30 mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5 mM DHA for 90 min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for β-catenin. Oleic acid (30 mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180 min to 250 nM cadmium (Cd) in emulsions of oleic acid (5 or 30 mM) or DHA (1 or 5 mM), in an experimental medium with Ca 2+ and Mg 2+ . Retention of Cd in Caco-2 cells was higher after exposure to 5 mM oleic acid but lower after exposure to 30 mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly

  12. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  13. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Science.gov (United States)

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat. PMID:25133239

  14. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Directory of Open Access Journals (Sweden)

    Su Liu

    2014-01-01

    Full Text Available A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE and compound amino acid (AA in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  15. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  16. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta Cultivars Grown in Hainan Province, China

    Directory of Open Access Journals (Sweden)

    Wenjiang Dong

    2015-09-01

    Full Text Available Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA, hierarchical cluster analysis (HCA, and analysis of one-way variance (ANOVA were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW, lysine (0.63 g/100 g DW, and arginine (0.61 g/100 g DW were the predominant essential amino acids (EAAs in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.

  17. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  18. Distribution of 14C-activity among the organic acids in the Satsuma mandarin fruits fed with 14C-compounds

    International Nuclear Information System (INIS)

    Kubota, Shuji; Akao, Shoichiro; Hayashida, Michito.

    1978-01-01

    1. Twenty four hours after 14 CO 2 feeding to the leaves, malic acid had the highest level of total and specific radioactivity among the organic acids extracted from the juice vesicles, and citric acid had the second highest total activity. An unidentified acid compound had a relatively high activity. 2. Pyruvic acid-2- 14 C was fed as a substrate for acid formation to the one young fruit on a shoot, and NaH 14 CO 3 was fed as a source of carbon-dioxide to the other young fruit through the pedicel. After three hours of pyruvic acid feeding, malic acid, citric acid and aspartic acid were the major labelled compounds in the vesicles. Then, a marked increase and redistribution of activity in acids took place with time, and the levels of total and specific activity in citric acid increased steadily. The sorts of labelled compounds into which activity was incorporated from NaH 14 CO 3 were essentially similar to those in pyruvic acid-2- 14 C feeding. 3. These results seem to support the theory that the dark fixation of carbon-dioxide plays an important role in the synthesis of the organic acids in citrus fruit vesicles. (auth.)

  19. Telluro amino acids-synthesis, characterization and properties of a new and potentially useful class of compounds

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.

    1978-01-01

    The Te-123m nuclide emits 159 keV photons suggesting that agents labeled with this nuclide would be attractive candidates for tissue imaging. Amino acids labeled with Te-123m are of particular interest since some of these compounds would be isosteric with the sulfur analogs and might behave similarly in vivo. Such agents could possibly be useful for pancreatic imaging and for other biomedical applications. The goal of this investigation was to develop a general chemical method for the preparation of telluro amino acids. Attempts by other workers to prepare such compounds by microbiological methods have been unsuccessful. Since telluro amino acids were unknown prior to our studies we attempted the synthesis of a representative member of this class of compounds by several routes. Two general approaches were considered which involved either the introduction of an (organo telluro) reagent into a substrate that contained the protected -CH(NH 2 )COOH moiety or introduction of the reagent into a substrate that could subsequently be converted to the α-amino acid after the coupling step

  20. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid.

    Science.gov (United States)

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways.

  1. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    Science.gov (United States)

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Effects of high pressure processing on fatty acid composition and volatile compounds in Korean native black goat meat.

    Science.gov (United States)

    Kang, Geunho; Cho, Soohyun; Seong, Pilnam; Park, Beomyoung; Kim, Sangwoo; Kim, Donghun; Kim, Youngjun; Kang, Sunmun; Park, Kyoungmi

    2013-08-01

    This study investigated the effects of high pressure processing (HPP) on fatty acid composition and volatile compounds in Korean native black goat (KNBG) meat. Fatty acid content in KNBG meat was not significantly (p > 0.05) different among the control goats and those subjected HPP. The 9,12-octadecadienoic acid and octadecanoic acid, well-known causes of off-flavors, were detected from meat of some KNBG. A difference between the control and HPP treatment was observed in the discriminated function analysis using an electronic nose. The results suggest that the volatile compounds in KNBG meat were affected by HPP.

  3. Effects of compound amino acids capsule on the immunological function of naval servicemen

    Directory of Open Access Journals (Sweden)

    Hai-zhong ZHONG

    2012-01-01

    Full Text Available Objective  To investigate the effects of the compound amino acids capsule on the immunological function of the naval servicemen during military activity. Methods  The subjects included 100 officers and soldiers, whose Modified Fatigue Rating Scale (MFIS scores were >21 points. The participants were randomly divided into two groups, namely, the amino acids capsule group and placebo group (n=50. Under the condition of military operations, either amino acids capsule (8 kinds of essential amino acids and 11 kinds of vitamins were contained or placebo capsule was given for 14 days continuously. The humoral immune indices, i.e., IgG, IgA, IgM, and complements C3 and C4, were measured with immunoturbidimetry. The percentage of peripheral blood CD subsets was measured using flow cytometry on the first day and 14th day. Results  The levels of IgG, IgM, and complement C3 in the capsule group were significantly higher on the 14th day than on the first day (P+CD4+ T lymphocytes and CD3-CD19+ B lymphocytes in the capsule group on the 14th day were higher than those on the first day, whereas the CD3-CD56+ NK lymphocytes decreased significantly (PConclusion  Compound amino acids capsule can improve the humoral and cellular immunological function of naval servicemen.

  4. Humic Acids as Therapeutic Compounds in Lead Intoxication.

    Science.gov (United States)

    Krempaská, Klára; Vaško, Ladislav; Vašková, Janka

    2016-01-01

    The toxicity of lead and its compounds is well known, causing anemia by inhibiting the synthesis of porphyrins. The neurotoxic effects, particularly in the young, alter the structure of cell membranes and DNA. Chronic exposure to lead has adverse effects on the body by disrupting the mechanisms of energy production and tissue damage, in particular in its links with thiol groups and competition for binding sites with zinc. This review is therefore a description of the mechanism of lead toxicity as well as of possible interventions for the detoxification of the body. Part of the clinical intervention is the provision of chelates that form insoluble complexes with lead and eliminate the load in tissues. Most of these chelating agents have a number of side effects. It is therefore not surprising that active compounds with distinctive antioxidant and chelating properties are being sought after. The possibility of administering lower amounts, and the corresponding decrease in side effects, would be important for clinical practice. Both prospective studies and our initial studies on humic acids have highlighted positive effects based on their antioxidant and chelating properties.

  5. Hepatoprotective Activity of a Complex Compound of 5-Hydroxy-6-Methyluracil and Succinic Acid in Experimental Peritonitis

    Directory of Open Access Journals (Sweden)

    D. A. Yenikeyev

    2008-01-01

    Full Text Available Objective: to evaluate the hepatoprotective efficacy of a complex compound of 5-hydroxy-6-methyluracil and succinic acid in experimental peritonitis. Materials and methods. Experiments were carried out on 48 male albino rats in which peritonitis was simulated via intraperitoneal administration of 7% fecal suspension in a dose of 0.6 ml per 100 g bodyweight. The rate of free radical oxidation processes, the activity of antioxidative protection, the degree of endogenous intoxication and cytolytic syndrome, and the effect of the test compound on these parameters were estimated in the experiment. Results. With the development of an abdominal inflammatory process, there were increases in rates of endogenous intoxication and free radical oxidation (FRO, a change in the activity of antioxidative protection enzymes, and a reduction in the levels of ceruloplasmin and sulfahydryl groups. The complex compound, that comprised 5-hydroxy-6-methyluracil and succinic acid used as monotherapy, reduced the degree of endogenous intoxication, FRO, and lipid peroxidation-antioxidative defense system imbalance. Conclusion. The experimental data suggest that the use of the complex compound containing succinic acid and 5-hydroxy-6-methy-luracil is pathogenetically warranted. Key words: peritonitis, lipid peroxidation, antioxidants, succinic acid, pyrim-idine derivatives.

  6. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  7. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.

    Science.gov (United States)

    Gobis, Katarzyna; Foks, Henryk; Bojanowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka

    2012-01-01

    A series of novel 3-cyclohexylpropanoic acid derivatives and 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds (1-8) have been synthesized and evaluated for tuberculostatic activity. Compounds 1a, 1c, 1e and 1f bearing benzimidazole or benzimidazole-like systems showed the most potent tuberculostatic activity against Mycobacterium tuberculosis strains with MIC values ranging from 1.5 to 12.5μg/mL. More importantly 1a (6-chloro-2-(2-cyclohexylethyl)-4-nitro-1H-benzo[d]imidazole) and 1f (2-(2-cyclohexylethyl)-1H-imidazo[4,5-b]phenazine) appeared selective for M. tuberculosis as compared with eukaryotic cells (human fibroblasts), and other antimicrobial strains. These compounds may thus represent a novel, selective class of antitubercular agents. Additionally compound 1a stimulated type I collagen output by fibroblasts, in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biosynthesis of gallic and ellagic acids with 14C-labeled compounds in Acer and Rhus leaves

    International Nuclear Information System (INIS)

    Ishikura, Nariyuki; Hayashida, Shunzo; Tazaki, Kiyoshi

    1984-01-01

    The biosynthetic pathway for gallic and ellagic acids in young, mature and autumn leaves of Acer buergerianum and Rhus succedanea was examined by tracer experiments, and also by isotope competition, with D-shikimic acid- 14 C, L-phenylalanine-U- 14 C, L-phenyllactic acid-U- 14 C, gallic acid-G- 14 C and their unlabeled compounds. In young leaves of both plants, the incorporation rate of labeled shikimic acid into gallic acid was significantly higher than that of labeled phenylalanine, whereas in the mature and autumn leaves the latter was a good precursor rather than the former for the gallic acid biosynthesis. Therefore, two pathways for gallic acid formation, through β-oxidation of phenylpropanoid and through dehydrogenation of shikimic acid, could be operating in Acer and Rhus leaves, and the preferential pathway is altered by leaf age. In both plants, the incorporation rate of labeled phenyllactic acid during a 24 hr metabolic period was almost the same as that of labeled phenylalanine. The incorporation of D-shikimic acid-G- 14 C, L-phenylalanine-U- 14 C and L-phenyllactic acid-U- 14 C into ellagic acid was very similar to the case of the radioactive gallic acid formation. Furthermore, regardless of the presence of unlabeled shikimic acid and/or phenylalanine, incorporation of the radioactivity of labeled gallic acid into ellagic acid occurred at a very high rate, suggesting the reciprocal radical reaction of gallic acid for the ellagic acid formation. The incorporation of labeled compounds into ellagitannins was also examined and their biosynthesis discussed further. (author)

  9. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  10. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion.

    Science.gov (United States)

    Liszt, Kathrin Ingrid; Eder, Reinhard; Wendelin, Sylvia; Somoza, Veronika

    2015-09-09

    Organic acids of wine, in addition to ethanol, have been identified as stimulants of gastric acid secretion. This study characterized the influence of other wine compounds, particularly phenolic compounds, on proton secretion. Forty wine parameters were determined in four red wines and six white wines, including the contents of organic acids and phenolic compounds. The secretory activity of the wines was determined in a gastric cell culture model (HGT-1 cells) by means of a pH-sensitive fluorescent dye. Red wines stimulated proton secretion more than white wines. Lactic acid and the phenolic compounds syringic acid, catechin, and procyanidin B2 stimulated proton secretion and correlated with the pro-secretory effect of the wines. Addition of the phenolic compounds to the least active white wine sample enhanced its proton secretory effect by 65 ± 21% (p astringent tasting phenolic compounds in wine contribute to its stimulatory effect on gastric acid secretion.

  11. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  12. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  13. Crystal structures of two 1:2 dihydrate compounds of chloranilic acid with 2-carboxypyridine and 2-carboxyquinoline

    Directory of Open Access Journals (Sweden)

    Kazuma Gotoh

    2017-12-01

    Full Text Available The crystal structure of the 1:2 dihydrate compound of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone with 2-carboxypyridine (another common name: picolinic acid; systematic name: pyridine-2-carboxylic acid, namely, 2C6H5.5NO20.5+·C6HCl2O4−·2H2O, (I, has been determined at 180 K, and the structure of the 1:2 dihydrate compound of chloranilic acid with 2-carboxyquinoline (another common name: quinaldic acid; systematic name: quinoline-2-carboxylic acid, namely, 2C10H7NO2·C6H2Cl2O4·2H2O, (II, has been redetermined at 200 K. This determination presents a higher precision crystal structure than the previously published structure [Marfo-Owusu & Thompson (2014. X-ray Struct. Anal. Online, 30, 55–56]. Compound (I was analysed as a disordered structure over two states, viz. salt and co-crystal. The salt is bis(2-carboxypyridinium chloranilate dihydrate, 2C6H6NO2+·C6Cl2O42−·2H2O, and the co-crystal is bis(pyridinium-2-carboxylate chloranilic acid dihydrate, 2C6H5NO2·C6H2Cl2O4·2H2O, including zwitterionic 2-carboxypyridine. In both salt and co-crystal, the water molecule links the chloranilic acid and 2-carboxypyridine molecules through O—H...O and N—H...O hydrogen bonds. The 2-carboxypyridine molecules are connected into a head-to-head inversion dimer by a short O—H...O hydrogen bond, in which the H atom is disordered over two positions. Compound (II is a 1:2 dihydrate co-crystal of chloranilic acid and zwitterionic 2-carboxyquinoline. The water molecule links the chloranilic acid and 2-carboxyquinoline molecules through O—H...O hydrogen bonds. The 2-carboxyquinoline molecules are connected into a head-to-tail inversion dimer by a pair of N—H...O hydrogen bonds.

  14. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s)

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Ryan M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Sampaio, Renato N. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Li, Guocan [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Johansson, Patrik G. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Ward, Cassandra L. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Meyer, Gerald J. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

    2016-03-10

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [RuII(btfmb)2(LL)]2+, [RuII(dtb)2(LL)]2+, and [RuII(bpy)2(LL)]2+, where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa’s of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [RuIII(btfmb–)L2]2+* localized excited state and a [RuIII(dcb–)L2]2+* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).

  15. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  16. Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present in Plukenetia huayllabambana Seed

    Directory of Open Access Journals (Sweden)

    Rosana Chirinos

    2016-01-01

    Full Text Available The effect of roasting of Plukenetia huayllabambana seeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, and p-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of the studied components. The values of acidity, peroxide, and p-anisidine in the sacha inchi oil from roasted seeds increased during roasting. The treatment of 100°C for 10 min successfully maintained the evaluated bioactive compounds in the seed and quality of the oil, while guaranteeing a higher extraction yield. Our results indicate that P. huayllabambana seed should be roasted at temperatures not higher than 100°C for 10 min to obtain snacks with high levels of bioactive compounds and with high oxidative stability.

  17. Interaction of arsenic compounds with model phospholipid membranes

    International Nuclear Information System (INIS)

    Jemiola-Rzeminska, Malgorzata; Rivera, Cecilia; Suwalsky, Mario; Strzalka, Kazimierz

    2007-01-01

    This study is part of a project aimed at examining the influence of arsenic on biological membranes. By the use of differential scanning calorimetry (DSC) we have followed the thermotropic behavior of multilamellar vesicles prepared from dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) upon incorporation of sodium arsenite (AsI), disodium arsenate (AsII), cacodylic acid (AsIII) and disodium methyl arsenate (AsIV). The effectiveness of perturbations exerted by various arsenic compounds on thermotropic phase transition was further analysed in terms of thermodynamic parameters: transition temperature, enthalpy and molar heat capacity, determined for lipid/As systems on the basis of heating and cooling scans. It is found that while it only has a slight influence on the thermotropic properties of DMPC, arsenic is able to significantly modify DMPE model membranes

  18. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  19. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  20. Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.

    Science.gov (United States)

    Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech

    2012-07-06

    Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synthesis, characterization and crystal structures of new organic compounds containing cyanoacrylic acid

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Mogheiseh, M.; Eigner, Václav; Dušek, Michal; Chow, T.J.; Maddahi, E.

    2015-01-01

    Roč. 1098, Oct (2015), s. 318-323 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : organic compounds * cyanoacrylic acid * single-crystal structure analysis * dye-sensitized solar cells * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2015

  2. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques

    NARCIS (Netherlands)

    Tres, A.; Ruiz - Samblas, C.; Veer, van der G.; Ruth, van S.M.

    2013-01-01

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been

  3. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans -caftaric acid, gallic acid, trans -caffeic acid, (+) catechin, (-) epicatechin and quercetin-3- O -glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  4. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Khalaji, A. D., E-mail: alidkhalaji@yahoo.com [Golestan University, Department of Chemistry, Faculty of Science (Iran, Islamic Republic of); Maddahi, E. [Iran University of Science & Technology, Ms.C Educated, Department of Chemistry (Iran, Islamic Republic of); Dusek, M.; Fejfarova, K. [Institute of Physics of the ASCR, v.v.i. (Czech Republic); Chow, T. J. [Academia Sinica, Institute of Chemistry (China)

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  5. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel J.; Jones, Jenny M. [Energy and Resources Research Institute, School of Process, Environmental and Materials Engineering (SPEME), University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2008-09-15

    Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CH{sub 3}COOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CH{sub 3}COOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend

  6. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    Science.gov (United States)

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  7. The chromatographic behavior of arsenic compounds on anion exchange columns with binary organic acids as mobile phases

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J.; Goessler, W.; Kosmus, W. [Graz Univ. (Austria). Inst. fuer Analytische Chemie

    1998-03-01

    Identification and quantification of arsenic compounds was performed with high-performance liquid chromatography (HPLC) and flame atomic absorption spectrometry (FAAS) as element-specific detector. Arsenous acid, methylarsonic acid, dimethylarsinic acid, arsenic acid, arsenobetaine, and arsenocholine were separated on two anion-exchange columns (Synchropak Q 300 and PRP-X 100) with different binary organic acids as mobile phases. The influence of chromatographic parameters, such as pH and the concentration of the mobile phase were investigated. An unusual chromatographic behavior of arsenous acid was observed when tartaric acid was used as mobile phase. (orig.)

  8. COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.

    Science.gov (United States)

    EVANS, C L

    1964-12-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.

  9. Desalination of fish sauce by electrodialysis: effect on selected aroma compounds and amino acid compositions.

    Science.gov (United States)

    Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S

    2011-09-01

    Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®

  10. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    Science.gov (United States)

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  11. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Science.gov (United States)

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  12. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment.

    Science.gov (United States)

    Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Cornejo-Garrido, Jorge; López-García, Sonia; Castro-Mussot, María Eugenia; Meckes-Fischer, Mariana; Mata-Espinosa, Dulce; Marquina, Brenda; Torres, Javier; Hernández-Pando, Rogelio

    2013-10-07

    New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.

  13. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry’s Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds

    Science.gov (United States)

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry’s Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aq...

  14. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  15. Gaschromatographic and mass spectroscopic investigations of tall oil rosin acids and diterpenioc compounds and modified diterpene acids

    International Nuclear Information System (INIS)

    Mayr, M.

    1984-12-01

    Diterpene resin acids are important constituents of the coniferous wood. The composition of these nonvolatile extractives have been studied by a number of investigations; both naturally occurring resins (oleoresin) and distillation products of the alkaline sulfate pulping process (tall oil) were analyzed. These mixtures find important uses in chemical intermediates, paper sizes, ester gums, coatings and numerous other applications. Owing to the more ameliorate physical properties a major part of tall oil resin acids is chemically modified and is used in intermediate chemicals. Such modifications are the disproportionation in the presence of certain catalysts and the formation of Diels-Alder adducts. The present study was undertaken to obtain detailed information of the overall composition of diterpenoid compounds and to achieve a separation of the complex natural and tall oil mixtures using high resolution glass capillary columns. Furthermore, one objective was to characterize the identified diterpene compounds and Diels-Alder adducts by relative retention values. Additionally the presence of some major adduct components in the modified samples was checked by comparison with pure specimens, independently synthesized or purified by crystallization and the mechanism of the Diels-Alder reaction was investigated. A compilation of the mass spectra of the substances detected in the different samples closes this work. (Author)

  16. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  17. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    Science.gov (United States)

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  18. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM).

    Science.gov (United States)

    Clark, Catherine D; de Bruyn, Warren; Jones, Joshua G

    2014-02-15

    To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  20. Angelica sinensis (Oliv.) Diels: Influence of Value Chain on Quality Criteria and Marker Compounds Ferulic Acid and Z-Ligustilide.

    Science.gov (United States)

    Giacomelli, Nino; Yongping, Yang; Huber, Franz K; Ankli, Anita; Weckerle, Caroline S

    2017-03-14

    Background: Dang gui (Apiaceae; Angelica sinensis radix) is among the most often used Chinese medicinal plants. However, hardly anything is known about its value chain and its influence on the main marker compounds of the drug. The aim of this study is to investigate the value chain of dang gui in Gansu and Yunnan, and the analysis of the marker compounds ferulic acid and Z-ligustilide concentration in relation to quality criteria such as the production area and size of the roots. Methods: During six months of field research in China, semi-structured interviews with various stakeholders of the value chain were undertaken and plant material was collected. High-performance thin layer chromatography (HPTLC) was used for semi-quantitative analysis of ferulic acid and Z-ligustilide. Results: Small-scale household cultivation prevails and in Gansu-in contrast to Yunnan-the cultivation of dang gui is often the main income source of farmers. Farmers and dealers use size and odor of the root as main quality criteria. For Chinese medicine doctors, Gansu as the production area is the main criterion. Higher amounts of ferulic acid in plant material from Yunnan compared to Gansu were found. Additionally, a negative relation of root length with both ferulic acid and Z-ligustilide as well as head diameter with ferulic acid were found. Conclusions: HPTLC is a valid method for semi-quantitative analysis of the marker compounds of dang gui . However, the two main marker compounds cannot explain why size and smell of the root or production area are seen as quality criteria. This hints at the inherent difficulty to correlate quality notions of medicinal plants with specific chemical compounds. With respect to this, more attention should be paid to quality in terms of cultivation and processing techniques.

  1. Phenolic compounds in Ross Sea water

    Science.gov (United States)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  2. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  3. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    Science.gov (United States)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  4. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization : Identification of Renewable Aromatics and a Lignin-Derived Solvent

    NARCIS (Netherlands)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-01-01

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges

  5. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM)

    International Nuclear Information System (INIS)

    Clark, Catherine D.; Bruyn, Warren de; Jones, Joshua G.

    2014-01-01

    Highlights: • CDOM produces hydrogen peroxide in sunlit surface waters. • Quinone moieties have been proposed as the photo-active chromophore in CDOM. • Hydrogen peroxide is produced in irradiated aqueous quinone solutions. • Concentrations and production rates are comparable to humic and fulvic acids. • Optical properties post-irradiation were similar to CDOM. - Abstract: To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H 2 O 2 ) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H 2 O 2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h −1 ); values ranged from 6.99 to 0.137 mM h −1 for quinones. Apparent quantum yields (Θ app ; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM

  6. Aromatic oxygen compounds boiling from 180/sup 0/ to 225/sup 0/ from acid oils in low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, A; Kattwinkel, G

    1950-01-01

    To determine the composition of the Krupp-Lurgi low-temperature coal tar and to develop methods for isolating the various compounds, a quantitative investigation was made of the dry tar acid mixture. The aromatic O compounds boiling up to 225/sup 0/ were secured by fractionation with one of the several columns that are described. Large volumes of tar were fractionated under vacuum in an apparatus with a 10-liter flask, electrically heated, and provided with a fractionating column (packed) with a jacket supplied by recirculated oil, externally heated. Large volumes were fractionated to give sufficient quantities of the O compounds. The method of fractional extraction, not described herein, made the separation of the acid oils by fractional distillation much easier. The aromatic O compounds present in greatest proportion are relatively easily isolated; those present in small quantities and more difficult to separate can be removed as a mixture, which can be hydrogenated directly to solvents. Phenols and cresols are formed in about equal fractions in low-temperature carbonization. Of the various xylenols, the sym-xylenol is present to the greatest extent. O compounds with longer side chains than C/sub 2/ were present only to a very slight extent. At the temperature of formation of these tars, side chains of three or more C atoms formed closed ring compounds (indan derivatives, etc.). Little change appears to occur up to 225/sup 0/ in the fractionation of these acid oils.

  7. Amino Acid Profile and Volatile Flavour Compounds of Raw and Steamed Patin Catfish (Pangasius hypophthalmus) and Narrow-barred Spanish Mackerel (Scomberomorus commerson)

    Science.gov (United States)

    Pratama, Rusky I.; Rostini, I.; Rochima, E.

    2018-02-01

    Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.

  8. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds.

    Science.gov (United States)

    Han, Shu-ying; Liang, Chao; Zou, Kuan; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2012-11-15

    The variation in mobile phase pH and ionizable solute dissociation constant (pK(a)) with the change of organic modifier fraction in hydroorganic mobile phase has seemingly been a troublesome problem in studies and applications of reversed phase high performance liquid chromatography (RP-HPLC). Most of the early studies regarding the RP-HPLC of acid-base compounds have to measure the actual pH of the mixed mobile phase rigorously, sometimes bringing difficulties in the practices of liquid chromatographic separation. In this paper, the effect of this variation on the apparent n-octanol/water partition coefficient (K(ow)″) and the related quantitative structure-retention relationship (QSRR) of logK(ow)″ vs. logk(w), the logarithm of retention factor of analytes in neat aqueous mobile phases, was investigated for weakly acidic compounds. This QSRR is commonly used as a classical method for K(ow) measurement by RP-HPLC. The theoretical and experimental derivation revealed that the variation in mobile phase pH and solute pK(a) will not affect the QSRRs of acidic compounds. This conclusion is proved to be suitable for various types of ion-suppressors, i.e., strong acid (perchloric acid), weak acid (acetic acid) and buffer salt (potassium dihydrogen phosphate/phosphoric acid, PBS). The QSRRs of logK(ow)″ vs. logk(w) were modeled by 11 substituted benzoic acids using different types of ion-suppressors in a binary methanol-water mobile phase to confirm our deduction. Although different types of ion-suppressor all can be used as mobile phase pH modifiers, the QSRR model obtained by using perchloric acid as the ion-suppressor was found to have the best result, and the slightly inferior QSRRs were obtained by using acetic acid or PBS as the ion-suppressor. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl2 Simulated Carbon Storage Brines.

    Science.gov (United States)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2017-06-20

    Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include

  10. Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.

    Science.gov (United States)

    Pinheiro, Marina; Giner-Casares, Juan J; Lúcio, Marlene; Caio, João M; Moiteiro, Cristina; Lima, José L F C; Reis, Salette; Camacho, Luis

    2013-02-01

    This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds

    Directory of Open Access Journals (Sweden)

    Angelina Chalima

    2017-10-01

    Full Text Available Volatile Fatty Acids (VFA are small organic compounds that have attracted much attention lately, due to their use as a carbon source for microorganisms involved in the production of bioactive compounds, biodegradable materials and energy. Low cost production of VFA from different types of waste streams can occur via dark fermentation, offering a promising approach for the production of biofuels and biochemicals with simultaneous reduction of waste volume. VFA can be subsequently utilized in fermentation processes and efficiently transformed into bioactive compounds that can be used in the food and nutraceutical industry for the development of functional foods with scientifically sustained claims. Microalgae are oleaginous microorganisms that are able to grow in heterotrophic cultures supported by VFA as a carbon source and accumulate high amounts of valuable products, such as omega-3 fatty acids and exopolysaccharides. This article reviews the different types of waste streams in concert with their potential to produce VFA, the possible factors that affect the VFA production process and the utilization of the resulting VFA in microalgae fermentation processes. The biology of VFA utilization, the potential products and the downstream processes are discussed in detail.

  12. Investigations of (acid+base) equilibria in systems modelling interactions occurring in biomolecules

    International Nuclear Information System (INIS)

    Kozak, Anna; Czaja, Malgorzata; Chmurzynski, Lech

    2006-01-01

    By using the potentiometric microtitration method, acidity constants, K a , anionic, K AHA - , and cationic, K BHB + , homoconjugation constants, as well as molecular heteroconjugation, K BHA , constants have been determined in (acid+base) systems formed by the following compounds: acetic acid, phenol, n-butylamine, imidazole, and 4(5)-methylimidazole. These compounds constitute fragments of the side chains of amino acids capable of proton exchange in active sites of enzymes. The (acid+base) equilibria were studied in five polar solvents of different properties, namely in aprotic protophobic acetonitrile, acetone and propylene carbonate, in aprotic protophilic dimethyl sulfoxide and in amphiprotic methanol. The lowest values of the acidity constants of the molecular and cationic acids have been found in aprotic protophobic polar solvents - acetonitrile, propylene carbonate and acetone. Their acid strength have been found to depend on solvent basicity expressed as donor numbers, DN. These media, in particular acetonitrile and acetone, are also favourable for establishing molecular homo- and heteroconjugation equilibria. The most stable homocomplexes are formed in the case of acetic acid (K AHA - values range from 2.26 to 3.56 in these media, being more than an order of magnitude higher than those for the remaining compounds). The magnitudes of lgK BHA reveal that the most stable heterocomplexes are formed by n-butylamine and acetic acid that are characterized by the smallest differences in pK a values

  13. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  14. Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds.

    Science.gov (United States)

    Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit

    2011-07-01

    A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Nomenclature on an inorganic compound

    International Nuclear Information System (INIS)

    1998-10-01

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  16. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  17. Influence of combined use of selenious acid and SH compounds in parenteral preparations

    Energy Technology Data Exchange (ETDEWEB)

    Terada, A. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Public Health]|[St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Pharmacy; Yoshida, M. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Chemistry; Nakada, M.; Nakada, K.; Yamate, N. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Surgery; Kobayashi, T. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Pharmacy; Yoshida, K. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Public Health

    1997-12-31

    The influence of the combined use of selenious acid and SH compounds (glutathione (GSH) and cysteine (Cys), or ascorbic acid (Asc)) on cultured venous vascular endothelial cells was investigated experimentally. When cultured human umbilical venous vascular endothelial cells were exposed to 10 {mu}M of selenious acid combined with 0.5 mM-GSH or 0.5 mM-Cys, the release rates of [{sup 3}H]-adenine and lactate dehydrogenase (LDH) from cells into the medium increased significantly as compared with after exposure to selenious acid alone, and damage to the vascular endothelial cells was found to be intensified. Addition of 1 {mu}M of selenious acid simultaneously with 0.5 mM-GSH or 0.5 mM-Cys showed no differences in toxicity for the vascular endothelial cells as compared with the addition of selenious acid alone. On the other hand, simultaneous exposure to 10 {mu}M of selenious acid and 1 mM-Asc induced no significant differences in the release rates of [{sup 3}H]-adenine and LDH, and no damage was observed to the vascular endothelial cells. These results suggest that simultaneous addition of selenious acid together with GSH or Cys, which have the SH-group, may cause damage to the vascular endothelial cells. Therefore careful attention is warranted in total parenteral nutrition. (orig.)

  18. Method for purifying bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds

  19. Effect of dose-rate of gamma irradiation (60Co) on the anti nutritional compounds phytic acid and antitrypsin on soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Tanhindarto, R.P.; Hariyadi, P.; Purnomo, E.H.; Irawati, Z.

    2013-01-01

    An investigation on the effect of gamma irradiation at different dose-rate on the anti-nutritional compounds (phytic acid and antitrypsin) and the color of soybean has been conducted. The purpose of the study was to analyze the influence of the dose-rate on the rate of change of anti-nutritional compounds and color. Samples were irradiated with dose-rates of 1.30; 3.17; 5.71 and 8.82 kGy/hour with irradiation time varied from 0.5 to 55 hours. Phytic acid content and antitrypsin activity, as well as their L α b color values were analyzed. Results showed that a simple first order kinetics model can be used to describe changes in the concentration of the anti-nutritional compounds and color soybeans during the radiation processing. Data indicate that irradiation process at higher dose-rate (shorter time) is more effective in destroying anti-nutritional compounds as compared to that of irradiation process at lower dose-rate (longer time). Furthermore, irradiation process at higher dose-rate (shorter time) also have less detrimental effect on color of the soybean and the resulted soybean flour as compared to that of irradiation process at lower dose-rate (longer time). These findings suggest that irradiation process at a same dose may potentially be optimized by selecting the most appropriate combination of dose-rate and time of irradiation. (author)

  20. Extractive oxidative desulfurization of model oil/crude oil using KSF montmorillonite-supported 12-tungstophosphoric acid

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2016-10-01

    Full Text Available Abstract 12-Tungstophosphoric acid (PW supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization (ODS of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide (H2O2 as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-to-sulfur compounds (S-compounds molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene (DBT and mixed thiophenic model oil under atmospheric pressure at 75 °C in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.

  1. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  2. Testing the compounding structure of the CP-INARCH model

    OpenAIRE

    Weiß, Christian H.; Gonçalves, Esmeralda; Lopes, Nazaré Mendes

    2017-01-01

    A statistical test to distinguish between a Poisson INARCH model and a Compound Poisson INARCH model is proposed, based on the form of the probability generating function of the compounding distribution of the conditional law of the model. For first-order autoregression, the normality of the test statistics’ asymptotic distribution is established, either in the case where the model parameters are specified, or when such parameters are consistently estimated. As the test statistics’ law involv...

  3. Investigations of (acid+base) equilibria in systems modelling interactions occurring in biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Anna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Czaja, Malgorzata [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    By using the potentiometric microtitration method, acidity constants, K{sub a}, anionic, K{sub AHA{sup -}}, and cationic, K{sub BHB{sup +}}, homoconjugation constants, as well as molecular heteroconjugation, K{sub BHA}, constants have been determined in (acid+base) systems formed by the following compounds: acetic acid, phenol, n-butylamine, imidazole, and 4(5)-methylimidazole. These compounds constitute fragments of the side chains of amino acids capable of proton exchange in active sites of enzymes. The (acid+base) equilibria were studied in five polar solvents of different properties, namely in aprotic protophobic acetonitrile, acetone and propylene carbonate, in aprotic protophilic dimethyl sulfoxide and in amphiprotic methanol. The lowest values of the acidity constants of the molecular and cationic acids have been found in aprotic protophobic polar solvents - acetonitrile, propylene carbonate and acetone. Their acid strength have been found to depend on solvent basicity expressed as donor numbers, DN. These media, in particular acetonitrile and acetone, are also favourable for establishing molecular homo- and heteroconjugation equilibria. The most stable homocomplexes are formed in the case of acetic acid (K{sub AHA{sup -}} values range from 2.26 to 3.56 in these media, being more than an order of magnitude higher than those for the remaining compounds). The magnitudes of lgK{sub BHA} reveal that the most stable heterocomplexes are formed by n-butylamine and acetic acid that are characterized by the smallest differences in pK{sub a} values.

  4. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru; Le Roux, Julien; Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  5. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru

    2014-12-16

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  6. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  7. Catalytic activity of laminated compounds of graphite with transitions metals in decomposition of alcohols and formic acid

    International Nuclear Information System (INIS)

    Novikov, Yu.N.; Lapkina, N.D.; Vol'pin, M.E.

    1976-01-01

    The catalytic activity is studied of laminated graphite compounds with Fe, Co, Ni, Cu, Mo, W and Mn both in the reduced and oxidized forms in gas phase decomposition reactions of isopropyl, n-butyl, cyclohexyl, and 4-tret-butylcyclohexyl alcohols, and also formic acid. All the catalysts are shown to be active in the reactions where isopropyl and n-butyl alcohols undergo decomposition. The laminated compounds of graphite with Co and Ni both in the oxidized and reduction form are the most active catalysts of the selective decomposition of alcohols to aldehydes and ketones, and also formic acid to CO 2 and H 2 . The kinetics of a number of reactions is found to obey the second order equation with allowance made for the system volume

  8. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs.

    Science.gov (United States)

    Cantos, Emma; Espín, Juan Carlos; López-Bote, Clemente; de la Hoz, Lorenzo; Ordóñez, Juan A; Tomás-Barberán, Francisco A

    2003-10-08

    The aim of the present work was to identify and quantify the phenolic compounds and fatty acids in acorns from Quercus ilex, Quercus rotundifolia, and Quercus suber. The concentration of oleic acid was >63% of total fatty acids in all cases, followed by palmitic and linoleic acids at similar concentrations (12-20%). The concentrations of alpha-tocopherol in Q. rotundifolia, Q. ilex, and Q. suber were 19, 31, and 38 mg/kg of dry matter (DM), respectively, whereas the concentrations of gamma-tocopherol were 113, 66, and 74 mg/kg of DM, respectively. Thirty-two different phenolic compounds were distinguished. All of them were gallic acid derivatives, in the form of either galloyl esters of glucose, combinations of galloyl and hexahydroxydiphenoyl esters of glucose, tergallic O- or C-glucosides, or ellagic acid derivatives. Several tergallic acid C-glucosides were also present in the extracts obtained from Q. suber. Acorns from Q. ilex and Q. rotundifolia showed similar polyphenol patterns mainly with gallic acid-like spectra. Chromatograms of Q. suber showed mainly polyphenols with ellagic acid-like spectra. Valoneic acid dilactone was especially abundant in Q. suber skin. The contribution of skin to the total phenolics of the acorn was relatively small in Q. rotundifolia and Q. ilex but relatively high in Q. suber. Skin extracts from Q. suber, Q. rotundifolia, and Q. ilex showed 1.3, 1.4, and 1.0 antioxidant efficiencies, respectively (compared to that of butylhydroxyanisole). Endosperm extracts showed lower capacity to prevent lipid peroxidation than skin extracts.

  9. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    Science.gov (United States)

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  10. Phase equilibrium modelling for mixtures with acetic acid using an association equation of state

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Kontogeorgis, Georgios; von Solms, Nicolas

    2008-01-01

    Acetic acid is a very important compound in the chemical industry with applications both as solvent and intermediate in the production of, e.g., polyesters. The design of these processes requires knowledge of the phase equilibria of mixtures containing acetic acid and a wide variety of compounds ...

  11. Electrochemical and spectroscopic studies of the complexed species of models of nitrohumic acids derived from phthalic acid

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1998-01-01

    Full Text Available The study of model compounds is necessary in order to obtain information about complex organic substances as in the case of humic substances (HS. These substances are potential organic fertilizers and have other important functions in soils, natural waters and organic sediments. The main chemical properties of the complexes formed from 3-nitrophthalic and 4-nitrophthalic acids and the metal ions Fe(III and Zn(II were studied using potentiometric titrations, ultraviolet-visible spectroscopy (UV-Vis and cyclic voltammetry (CV. A trial potentiometric titration was done with a mixture of the models for nitrohumic acids and Cu(II. Equilibrium constants for the systems were calculated and UV-Vis and CV were employed to monitor the formation of the species. Comparative studies involving chelating centres of nitrosalicylic acids and nitrocatechols with Fe(III, Zn(II and Cu(II are presented. The initial studies involving the nitrohumic substances (NHS, a laboratory artifact of HS have been made and good evidence was found for the further use of NHS as a potential organic fertilizer as well as HS. In this present work one of the observed advantages of NHS over HS was that some aromatic nitro- centres can bind some metal ions at p[H] values of normal soils, near 7.0 to 7.5.

  12. Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms

    Science.gov (United States)

    Ingalls, Anitra E.; Whitehead, Kenia; Bridoux, Maxime C.

    2010-01-01

    Diatom frustule-bound organic compounds presumably play an important role in biomineralization and constitute an important pool of organic matter preserved in diatom frustule-rich sediments. In this study, detailed analysis of diatom frustule-bound organic matter in opal-rich Southern Ocean plankton and sediments revealed for the first time the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs). Chemically cleaned diatom frustule-derived biosilica was dissolved in HF, releasing bound or entrapped organic compounds that were subsequently characterized using liquid chromatography with UV-Vis and electrospray ionization mass spectrometry (LC/PDA/ESI-MS). Palythine ([M+H] + = 245), porphyra-334 ([M+H] + = 347) and shinorine ([M+H] + = 333) were the most abundant MAAs detected in HF digests of plankton and sediment. Traces of asterina ([M+H] + = 289), palythinol ([M+H] + = 303) and palythinic acid ([M+H] + = 329) were also detected. MAAs in cleaned HF digested frustules were up to two orders of magnitude more abundant than methanol extractable MAAs. MAAs are substituted with acid hydrolysable amino acid residues. Our results suggest that MAAs, and not proteins, could be responsible for the high proportion of the amino acids glycine and threonine found in hydrolysates of HF digested diatom-rich environmental samples. Total MAAs accounted for 3-27% of the carbon and 2-18% of total nitrogen in the frustules undergoing various chemical cleaning treatments. This is the first report of MAAs in close association with a mineral phase and we hypothesize that the mineral matrix could stabilize these compounds, thereby enhancing photoprotection against the harmful effects of UV light. The presence of frustule-bound MAAs in sediment cores further suggests the possibility that they could be used in compound-specific isotope analysis of diatom-bound organic matter and as indicators of past solar irradiance.

  13. Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model.

    Science.gov (United States)

    Cuffia, Facundo; Bergamini, Carina V; Wolf, Irma V; Hynes, Erica R; Perotti, María C

    2018-01-01

    Starter cultures of Lactobacillus helveticus used in hard cooked cheeses play an important role in flavor development. In this work, we studied the capacity of three strains of L. helveticus, two autochthonous (Lh138 and Lh209) and one commercial (LhB02), to grow and to produce volatile compounds in a hard cheese extract. Bacterial counts, pH, profiles of organic acids, carbohydrates, and volatile compounds were analyzed during incubation of extracts for 14 days at 37 ℃. Lactobacilli populations were maintained at 10 6 CFU ml -1 for Lh138, while decreases of approx. 2 log orders were found for LhB02 and Lh209. Both Lh209 and LhB02 slightly increased the acetic acid content whereas mild increase in lactic acid was produced by Lh138. The patterns of volatiles were dependent on the strain which reflect their distinct enzymatic machineries: LhB02 and Lh209 produced a greater diversity of compounds, while Lh138 was the least producer strain. Extracts inoculated with LhB02 and Lh 209 were characterized by ketones, esters, alcohols, aldehydes, and acids, whereas in the extracts with Lh138 the main compounds belonged to aromatic, aldehydes, and ketones groups. Therefore, Lh209 and LhB02 could represent the best cheese starters to improve and intensify the flavor, and even a starter composed by combinations of LhB02 or Lh209 with Lh138 could also be a strategy to diversify cheese flavor.

  14. Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies

    International Nuclear Information System (INIS)

    Bentiss, F.; Lebrini, M.; Vezin, H.; Chai, F.; Traisnel, M.; Lagrene, M.

    2009-01-01

    We report here the use of macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety (n-MCTH) in the corrosion inhibition of C38 carbon steel in 0.5 M H 2 SO 4 acid medium. The aim of this work is devoted to study the inhibition characteristics of these compounds for acid corrosion of C38 steel using electrochemical impedance spectroscopy (EIS). Data obtained from EIS show a frequency distribution and therefore a modeling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution and the protection efficiency increased with increasing inhibitors concentration. The difference in their inhibitive action can be explained on the basis of the number of oxygen atoms present in the polyether ring which contribute to the chemisorption strength through the donor acceptor bond between the non bonding electron pair and the vacant orbital of metal surface. Adsorption of n-MCTH was found to follow the Langmuir's adsorption isotherm. The thermodynamic functions of adsorption process were calculated and the interpretation of the results is given. These results are complemented with quantum chemical study in order to provide an explanation of the differences between the probed inhibitors. Correlation between the inhibition efficiency and the structure of these compounds are presented.

  15. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J. A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Departamento de Quimica Fisica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama); Gonzalez, L.; Vargas, A.; Olave, G. [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2003-06-15

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Moessbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  16. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    International Nuclear Information System (INIS)

    Jaen, J. A.; Gonzalez, L.; Vargas, A.; Olave, G.

    2003-01-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Moessbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  17. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  18. Urethral orifice hyaluronic acid injections: a novel animal model of bladder outlet obstruction.

    Science.gov (United States)

    Wang, Yongquan; Xiong, Zhiyong; Gong, Wei; Zhou, Zhansong; Lu, Gensheng

    2015-02-21

    We produced a novel model of bladder outlet obstruction (BOO) by periurethral injection of hyaluronic acid and compared the cystometric features, postoperative complications, and histopathological changes of that model with that of traditional open surgery. Forty female Sprague-Dawley rats were divided into three groups. Fifteen rats were subcutaneously injected with 0.2 ml hyaluronic acid at 5, 7, and 12 o'clock around the urethral orifice. Another fifteen rats underwent traditional open partial proximal urethral obstruction surgery, and 10 normal rats used as controls. After 4 weeks, filling cystometry, postoperative complications, and histopathological features were evaluated in each group. Three rats were also observed for 12 weeks after hyaluronic acid injection to evaluate the long-term effect. Hyaluronic acid periurethral injection caused increased maximum cystometric capacity, maximum bladder pressure, micturition interval, and post-void residual urine volume compared with control (p injection group had significantly shorter operative time, less incidence of incision infection and bladder stone formation compared with the surgery group (p injection and surgery bladders; these were not observed in the control group. Bladder weight and thickness of smooth muscle in the injection and surgery groups were significantly greater than those in the control group (p injection or control groups. Rats periurethrally injected hyaluronic acid were stable the compound was not fully absorbed in any rat after 12 weeks. Hyaluronic acid periurethral injection generates a simple, effective, and persistent animal model of BOO with lower complications, compared with traditional surgery.

  19. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid.

    Science.gov (United States)

    Wang, X D; Bohlscheid, J C; Edwards, C G

    2003-01-01

    To understand the impact of assimilable nitrogen and pantothenic acid on fermentation rate and synthesis of volatile compounds by Saccharomyces under fermentative conditions. A 2 x 3 factorial experimental design was employed with the concentrations of yeast assimilable nitrogen (YAN) (60 and 250 mg l(-1)) and pantothenic acid (10, 50 and 250 microg l(-1)) as variables. In media containing 250 microg l(-1) pantothenic acid, H2S production by two different species of Saccharomyces decreased when YAN was increased from 60 to 250 mg l(-1). Conversely, H2S production was significantly higher when the concentration of assimilable nitrogen was increased if pantothenic acid was deficient (10 or 50 microg l(-1)). Yeast synthesis of other volatile compounds were impacted by both assimilable nitrogen and pantothenic acid. While growth and fermentative rate of Saccharomyces was more influenced by nitrogen than by pantothenic acid, complicated interactions exist between these nutrients that affect the synthesis of volatile compounds including H2S. This study has important implications for the winemaking industry where a better understanding of the nutritional requirements of Saccharomyces is necessary to reduce fermentation problems and to improve final product quality.

  20. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  1. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    Science.gov (United States)

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  2. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L. Grape Berries

    Directory of Open Access Journals (Sweden)

    Yan-Lun Ju

    2016-10-01

    Full Text Available The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA and methyl jasmonate (MeJA on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC and individual anthocyanins. Lipoxygenase (LOX activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  3. Double generalized linear compound poisson models to insurance claims data

    DEFF Research Database (Denmark)

    Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

    2017-01-01

    This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

  4. Statistical molecular design of balanced compound libraries for QSAR modeling.

    Science.gov (United States)

    Linusson, A; Elofsson, M; Andersson, I E; Dahlgren, M K

    2010-01-01

    A fundamental step in preclinical drug development is the computation of quantitative structure-activity relationship (QSAR) models, i.e. models that link chemical features of compounds with activities towards a target macromolecule associated with the initiation or progression of a disease. QSAR models are computed by combining information on the physicochemical and structural features of a library of congeneric compounds, typically assembled from two or more building blocks, and biological data from one or more in vitro assays. Since the models provide information on features affecting the compounds' biological activity they can be used as guides for further optimization. However, in order for a QSAR model to be relevant to the targeted disease, and drug development in general, the compound library used must contain molecules with balanced variation of the features spanning the chemical space believed to be important for interaction with the biological target. In addition, the assays used must be robust and deliver high quality data that are directly related to the function of the biological target and the associated disease state. In this review, we discuss and exemplify the concept of statistical molecular design (SMD) in the selection of building blocks and final synthetic targets (i.e. compounds to synthesize) to generate information-rich, balanced libraries for biological testing and computation of QSAR models.

  5. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  6. Sprayed microspheres of poly(lactic acid) obtained with calcium compounds

    International Nuclear Information System (INIS)

    Goncalves, Raquel P.; Picciani, Paulo H. de Souza; Dias, Marcos L.

    2011-01-01

    In this work PLLA and PDLA were synthesized using calcium methoxide (Ca(OMe) 2 ) as initiator. This compound shows good activity in the bulk polymerization of L-lactide (LLA) and D-lactide (DLA) producing polymers with average molecular weight up to 22,300 g/mol, but with microstructure containing a significant amount of estereoerros, as revealed by 13 C NMR. Block copolymers containing blocks of L-and D-lactic acid were also prepared, using the method of sequential addition of LLA and DLA in an attempt to obtain stereo complexes. Analyses of scanning electron microscopy (SEM) revealed that the polymers obtained with catalysts of calcium produced PLA microspheres with diameters of around 5 μm via electro spray technique. (author)

  7. Aroma compounds in sweet whey powder.

    Science.gov (United States)

    Mahajan, S S; Goddik, L; Qian, M C

    2004-12-01

    Aroma compounds in sweet whey powder were investigated in this study. Volatiles were isolated by solvent extraction followed by solvent-assisted flavor evaporation. Fractionation was used to separate acidic from nonacidic volatiles. Gas chromatography/mass spectrometry and gas chromatography/olfactometry were used for the identification of aroma compounds. Osme methodology was applied to assess the relative importance of each aroma compound. The most aroma-intense free fatty acids detected were acetic, propanoic, butanoic, hexanoic, heptanoic, octanoic, decanoic, dodecanoic, and 9-decenoic acids. The most aroma-intense nonacidic compounds detected were hexanal, heptanal, nonanal, phenylacetaldehyde, 1-octen-3-one, methional, 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2,3-dimethylpyrazine, 2,3,5-trimethylpyrazine, furfuryl alcohol, p-cresol, 2-acetylpyrrole, maltol, furaneol, and several lactones. This study suggested that the aroma of whey powder could comprise compounds originating from milk, compounds generated by the starter culture during cheese making, and compounds formed during the manufacturing process of whey powder.

  8. Antisera to gamma-aminobutyric acid. I. Production and characterization using a new model system.

    Science.gov (United States)

    Hodgson, A J; Penke, B; Erdei, A; Chubb, I W; Somogyi, P

    1985-03-01

    Antisera to the amino acid gamma-aminobutyric acid (GABA) have been developed with the aim of immunohistochemical visualization of neurons that use it as a neurotransmitter. GABA bound to bovine serum albumin was the immunogen. The reactivities of the sera to GABA and a variety of structurally related compounds were tested by coupling these compounds to nitrocellulose paper activated with polylysine and glutaraldehyde and incubating the paper with the unlabeled antibody enzyme method, thus simulating immunohistochemistry of tissue sections. The antisera did not react with L-glutamate, L-aspartate, D-aspartate, glycine, taurine, L-glutamine, L-lysine, L-threonine, L-alanine, alpha-aminobutyrate, beta-aminobutyrate, putrescine, or delta-aminolevulinate. There was cross-reaction with gamma-amino-beta-hydroxybutyrate, 1-10%, and the homologues of GABA: beta-alanine, 1-10%, delta-aminovalerate, approximately 10%, and epsilon-amino-caproate, approximately 10%. The antisera reacted slightly with the dipeptide gamma-aminobutyrylleucine, but not carnosine or homocarnosine. Immunostaining of GABA was completely abolished by adsorption of the sera to GABA coupled to polyacrylamide beads by glutaraldehyde. The immunohistochemical model is simple, amino acids and peptides are bound in the same way as in aldehyde-fixed tissue and, in contrast to radioimmunoassay, it uses an immunohistochemical detection system. This method has enabled us to define the high specificity of anti-GABA sera and to use them in some novel ways. The model should prove useful in assessing the specificity of other antisera.

  9. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    Science.gov (United States)

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  11. [Phenolic compounds in branches of Tamarix rasissima].

    Science.gov (United States)

    Li, Juan; Li, Wei-Qi; Zheng, Ping; Wang, Rui; Yu, Jian-Qiang; Yang, Jian-Hong; Yao, Yao

    2014-06-01

    To study the chemical constituents of the branches of Tamarix rasissima, repeated silica gel column chromatography, Sephadex LH-20 chromatography and recrystallization were applied for chemical constituents isolation and purification. Ten phenolic compounds were isolated from the n-BuOH fraction and their structures were elucidated by physical properties and spectra analysis such as UV, ESI-MS and NMR as monodecarboxyellagic acid (1), ellagic acid (2), 3, 3'-di-O-methylellagic acid (3), 3, 3'-di-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), 3, 3'-di-O-methylellagic acid-4'-O-alpha-D-arabinfuranoside (5), ferulic acid (6), isoferulic acid (7), caffeic acid (8), 4-O-acetyl-caffeic acid (9), and 4-methyl-1, 2-benzenediol (10). All compounds except for isoferulic acid were isolated firstly from this plant except for isoferulic acid, and compounds 5, 9 and 10 were obtained from Tamarix genus for the first time.

  12. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    Science.gov (United States)

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    Science.gov (United States)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  14. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    Science.gov (United States)

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  15. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    Science.gov (United States)

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  16. Transformations of Phenolic Compounds in an in vitro Model Simulating the Human Alimentary Tract

    Directory of Open Access Journals (Sweden)

    Aleksandra Duda-Chodak

    2009-01-01

    Full Text Available The aim of this work is to establish the antioxidant properties of polyphenolic compounds of selected fruits before and after their transformations during digestion. The experiment was conducted in in vitro conditions on a set of dialysis membranes which simulated the human digestive tract. Apples of the Šampion, Malinowka and Golden Delicious cultivars, black chokeberry, banana, Wegierka zwykla blue plum, melon and Lukasowka pear were chosen for examination. It was found that compounds obtained after simulated digestion of chokeberries, pears and bananas showed lower antioxidant potential than fresh fruits, while the opposite results were obtained for apples and plums. All dialysates obtained after digestion were characterized by lower content of total polyphenols in comparison with raw material (fresh fruits. It was found that the polyphenols were hydrolyzed, especially glycosides of quercetin and cyanidin. Phenolic acids and cyanidin were characterized by low availability for absorption, whereas catechin and quercetin had a very high level of accessibility in the model small intestine.

  17. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species.

    Science.gov (United States)

    González, Beatriz; Vázquez, Jennifer; Cullen, Paul J; Mas, Albert; Beltran, Gemma; Torija, María-Jesús

    2018-01-01

    Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non- Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non- Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes.

  18. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    Science.gov (United States)

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  19. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  20. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    Science.gov (United States)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  1. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.

    2003-01-01

    -state, and an example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based......) of > 1. No empirical data are available to support this prediction. For very lipophilic compounds (log K-OW > 5), T&A overestimates the uptake. The conclusion from the Fruit Tree Model is that the transfer of lipophilic compounds into fruits is not relevant. This was also found by an empirical study...... with PCDD/F. According to the Fruit Tree Model, polar chemicals are transferred efficiently into fruits, but empirical data to verify these predictions are lacking....

  2. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling.

    Science.gov (United States)

    Trifunović, Jovana; Borčić, Vladan; Vukmirović, Saša; Kon, Svetlana Goločorbin; Mikov, Momir

    2016-09-20

    Information on ADME properties of examined bile acids and their oxo derivatives are scarce, although the interest for bile acids and their use in nanochemistry and macromolecular chemistry is increasing. The purpose of this research was to evaluate the lipophilicity, a crucial physicochemical parameter for describing ADME properties of selected bile acids and their oxo derivatives, and to compare two approaches: experimentally determined hydrophobicity parameters and calculated logP values. Commercially available bile acids - deoxycholic, chenodeoxycholic, hyodeoxycholic and ursodeoxycholic acid were used to synthesize oxo derivatives. Lipophilicity was evaluated in two solvent systems: toluene/ethanol and toluene/butanol. Retention parameters were acquired by normal-phase TLC. The correlations between calculated logP values obtained using five different software and experimentally determined hydrophobicity parameters (RM(0)(tol/eth), RM(0)(tol/but), b(tol/eth) and b(tol/but)) were examined. Correlation analysis confirmed significant dependence between experimental RM(0) values and software calculated parameters. Results suggest satisfactory intestinal absorption after oral administration for all of the examined compounds as well as low volumes of distribution, and high affinity for binding with plasma proteins. Penetration through blood-brain barrier and skin is not satisfactory. All of the examined compounds show high affinity for binding with G-protein coupled receptors and consequently inhibition of ionic channels. Results also suggest possible binding with nuclear receptors. Established lipophilicity testing model of studied compounds showed excellent predictive ability and might represent significant tool in development of relations between chromatographic behavior and ADME properties. Compounds 3α-hydroxy-7,12-dioxo-5β-cholanoic and 12α-hydroxy-3,7-dioxo-5β-cholanoic acid might be the most suitable candidates for further development studies (satisfactory

  3. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    Science.gov (United States)

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  4. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids.

    Science.gov (United States)

    Eignerova, Barbara; Tichy, Michal; Krasulova, Jana; Kvasnica, Miroslav; Rarova, Lucie; Christova, Romana; Urban, Milan; Bednarczyk-Cwynar, Barbara; Hajduch, Marian; Sarek, Jan

    2017-11-10

    To improve the properties of cytotoxic triterpenoid acids 1-5, a large set of hydrophilic esters was synthesized. We choose betulinic acid (1), dihydrobetulinic acid (2), 21-oxoacid 3 along with highly active des-E lupane acids 4 and 5 as a model set of compounds for esterification of which the properties needed to be improved. As ester moieties were used - methoxyethanol and 2-(2-methoxyethoxy)ethanol and glycolic unit (type a-d), pyrrolidinoethanol, piperidinoethanol and morpholinoethanol (type f-h), and monosaccharide groups (type i-l). As a result, 56 triterpenic esters (49 new compounds) were obtained and their cytotoxicity on four cancer cell lines and normal human fibroblasts was tested. All new compounds were fully soluble at all tested concentrations, which used to be a problem of the parent compounds 1 and 2. 16 compounds had IC 50  acids 1-5. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Science.gov (United States)

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  7. Whole body acid-base modeling revisited.

    Science.gov (United States)

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.

  8. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  9. AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach

    Science.gov (United States)

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Scope Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Methods Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Results Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Conclusions Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients. PMID:28278224

  10. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids, Part 2

    International Nuclear Information System (INIS)

    Merce, Ana Lucia R.; Lopes, Priscilla P.; Mangricha, Antonio S.

    2006-01-01

    In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO 2 2+ (M). (author)

  11. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  12. Photolytic inhibition and labeling of proteins with aryl diazonium compounds

    International Nuclear Information System (INIS)

    Tometsko, A.M.; Turula, J.; Comstock, J.

    1978-01-01

    In the course of preparing aryl azide derivatives for use as photoprobes, we have observed significant light sensitivity in the precursor aryl diazonium compounds. The photosensitive properties of this class of compounds are of interest since they will seek out cationic binding sites in biological targets, and can be employed to inhibit complementary targets at acid pH. The relationship between photolytic change in the structure of diazonium compounds and the corresponding change in function of a biological target are presented. Experiments are described in which the dark and light sensitive properties of a model diazonium compound, diazobenzene sulfonate (DBS), were determined. The ultraviolet spectra were used to evaluate the dark stability and light sensitivity og DBS. Chymotrypsin and trypsin served as functioning targets for further evaluation of the photochemical properties. Both enzymes are stable to the probe in the dark at acid pH. A rapid loss of enzyme activity was observed following flash photolysis of DBS-enzyme solutions. Photolytic incorporation of radioactive DBS into chymotrypsin was observed. Aryl diazonium salts can be employed to probe the availability of complementary sites in biological targets at different acid pH values. (Author)

  13. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  14. Stochastic interest rates model in compounding | Galadima ...

    African Journals Online (AJOL)

    Stochastic interest rates model in compounding. ... in finance, real estate, insurance, accounting and other areas of business administration. The assumption that future rates are fixed and known with certainty at the beginning of an investment, ...

  15. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  16. Effect of different compound feeds on the fatty acid composition and other quality indicators in the meat of Lithuanian black-and-white bulls

    OpenAIRE

    Baltrukonienė, Gintarė

    2015-01-01

    Aim and objectives – To evaluate the effect of compound feed on the milk and dairy Black-and white bulls grawing and beef quality, fatty acids composition in the meat and liver, to evaluate meat sensory and textere characteristics. Objectives of the study: 1. to analyze the chemical composition of rapeseed, linseed and sunflower cakes and accordingly that of compound feeds and to determine the content and ratio of fatty acids; 2. to evaluate the growth rate of bulls and carry out contro...

  17. A clinical and histopathological comparison of the effectiveness of salicylic acid to a compound of inorganic acids for the treatment of digital dermatitis in cattle

    DEFF Research Database (Denmark)

    Capion, N.; Larsson, E. K.; Nielsen, O. L.

    2018-01-01

    ; however, the demand for effective nonantibiotic alternatives is increasing. The objective was to evaluate the performance of 3 nonantibiotic topical treatments (salicylic acid and a compound of inorganic acids in a 20% solution and in a dry form) on DD in a commercial dairy herd. Within the 30-d test...... of spirochetes present in the epidermis), 2 (moderate number of spirochetes present and reaching an intermediary level in the epidermis), and 3 (large number of spirochetes present and reaching the deepest part of the epidermis or the superficial dermis). The improvement rate was 10/14 (71%) for salicylic acid......, 11/15 (73%) for the inorganic acid solution, and 8/13 (62%) for the inorganic acid powder. The analysis showed no difference among treatments. The association between clinical score and histopathological score was determined by an odds ratio. The odds ratio of a healed lesion having spirochetes...

  18. Preparation and studying acid - base properties of the compound a -mono thiosemicarbazide isatin-5-Sodium sulfonate (α-MTI-5-SO3Na)

    International Nuclear Information System (INIS)

    Al-Azrak, A.

    2015-01-01

    This research aims to prepare organic compounds containing functional groups and have analytical properties to use as analytical reagents for determination of metal ions by spectrophotometric methods as acid-base indicators and as indicators for metal ions in EDTA titrations in this paper was prepared the compound ((α-mono thiosemicarbazide isatien -5-sodium sulfonate) it showed analytical properties and significant practical applications this compound has in acidic medium yellow color while in the basic medium sharply changes its color to red color the value of pKa of this compound has been calculated by spectrophotometric method and was equal to (8.860±0.054) the pH transition range was between (8.20 to 9.8) the indicator was used for determination the end point of the titration standard samples of solution (0.1M, NaOH) with standard solution of 0.1M, HCI, and in titration standard samples of solution (0.1M, CH 3 COOH) with standard solution of 0.1M NaOH the results were compared with the results obtained by reference titrimetric methods the statistical treatment for allresults shows that the end point determination using acid - base ((α-MTI-5-SO 3 Na) is the most accurate. (author)

  19. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  20. Determination of Acid Dissociation Constants (pKa) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    Science.gov (United States)

    Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905

  1. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    International Nuclear Information System (INIS)

    Calza, P.; Vione, D.; Minero, C.

    2014-01-01

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  2. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it; Vione, D.; Minero, C.

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  3. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    Science.gov (United States)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  4. Evaluation of Antioxidant Activity, Polyphenolic Compounds, Amino Acids and Mineral Elements of Representative Genotypes of Lonicera edulis

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2014-05-01

    Full Text Available The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis. A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC–UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity during one growing season.

  5. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  6. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  7. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  8. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    The purpose of the study was to find out the effect of stereochemistry models on students' ... consistent with the names given to organic compounds. Some of ... Considering class level, what is the performance of the students in naming organic.

  9. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  10. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  11. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    Science.gov (United States)

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  12. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  13. Antiinflammatory and lipoxygenase inhibitory compounds from Vitex agnus-castus.

    Science.gov (United States)

    Choudhary, M Iqbal; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Tareen, Rasool Bakhsh

    2009-09-01

    Several secondary metabolites, artemetin (1), casticin (2), 3,3'-dihydroxy-5,6,7,4'-tetramethoxy flavon (3), penduletin (4), methyl 4-hydroxybenzoate (5), p-hydroxybenzoic acid (6), methyl 3,4-dihydroxybenzoate (7), 5-hydroxy-2-methoxybenzoic acid (8), vanillic acid (9) and 3,4-dihydroxybenzoic acid (10) were isolated from a folkloric medicinal plant, Vitex agnus-castus. The structures of compounds 1-10 were identified with the help of spectroscopic techniques. Compounds 3-10 were isolated for the first time from this plant. These compounds were screened for their antiinflammatory and lipoxygenase inhibitory activities. Compounds 6, 7 and 10 were found to have significant antiinflammatory activity in a cell-based contemporary assay, whereas compounds 1 and 2 exhibited a potent lipoxygenase inhibition.

  14. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    Science.gov (United States)

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Kinetic and Isotherm Modelling of the Adsorption of Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    Alessandro A. Casazza

    2015-01-01

    Full Text Available The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL, the maximum sorption capacity of activated carbon expressed as mg of caff eic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to bett er describe the sorption system. The results confi rmed the effi ciency of activated carbon to remove almost all phenolic compound fractions from olive mill effl uent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries.

  16. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    Science.gov (United States)

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  17. Molybdenum (VI binded to humic and nitrohumic acid models in aqueous solutions. Salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids: part 2

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia R.

    2006-01-01

    Full Text Available In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO2(2+ (M.

  18. Non-invasive method for quantitative evaluation of exogenous compound deposition on skin.

    Science.gov (United States)

    Stamatas, Georgios N; Wu, Jeff; Kollias, Nikiforos

    2002-02-01

    Topical application of active compounds on skin is common to both pharmaceutical and cosmetic industries. Quantification of the concentration of a compound deposited on the skin is important in determining the optimum formulation to deliver the pharmaceutical or cosmetic benefit. The most commonly used techniques to date are either invasive or not easily reproducible. In this study, we have developed a noninvasive alternative to these techniques based on spectrofluorimetry. A mathematical model based on diffusion approximation theory is utilized to correct fluorescence measurements for the attenuation caused by endogenous skin chromophore absorption. The limitation is that the compound of interest has to be either fluorescent itself or fluorescently labeled. We used the method to detect topically applied salicylic acid. Based on the mathematical model a calibration curve was constructed that is independent of endogenous chromophore concentration. We utilized the method to localize salicylic acid in epidermis and to follow its dynamics over a period of 3 d.

  19. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  20. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  1. The determination of vitamin C, organic acids, phenolic compounds concentration of Red and Golden delicious apple grown in Lorestan province

    Directory of Open Access Journals (Sweden)

    ebrahim Falahi

    2013-08-01

    Results: Ascorbic acid concentrations in Red and Golden delicious apples were 9.49 and 9.09 mg and 9.29 mg in total per 100 grams. Malic acid concentrations in Red and Golden delicious apples were 0.26 and 0.27 and citric acid concentrations in Red and Golden delicious apples were 0.28 mg per 100 grams in both cultivars. Acidity of Red delicious was 4 and Golden delicious was about 3.7. The acidity of Red delicious was higher than the Golden one. α-farensene was the most phenolic compound in both cultivars. Conclusion: Finally, apple cultivars grown in Lorestan have 3 times more ascorbic acid than the amount which mentioned in Iranian Food Consumption Table. There were no significant relation about malic and citric acid in both cultivars.

  2. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  3. Removal of 4-Ethylphenol and 4-Ethylguaiacol with Polyaniline-Based Compounds in Wine-Like Model Solutions and Red Wine

    Directory of Open Access Journals (Sweden)

    Verónica Carrasco-Sánchez

    2015-08-01

    Full Text Available Volatile phenols, such as 4-ethyphenol (4-EP and 4-ethylguaiacol (4-EG, are responsible for the “Brett character” found in wines contaminated with Brettanomyces yeast (i.e., barnyard, animal, spicy and smoky aromas. In these trials, we explore the effectiveness of polyaniline-based compounds (polyaniline emeraldin salt (PANI-ES and polyanaline emeraldin base (PANI-EB, for the removal of 4-EP and 4-EG from acidic model solutions and red wine. First, a screening study, performed in an acidified 12% ethanol solution, was used to optimize parameters such as contact time and the amount of polymers required to remove 4-EP and 4-EG. Then, the trapping ability of PANI agents towards 4-EP and 4-EG was evaluated in a model solution containing other wine phenolics that could potentially be trapped by PANI (i.e., gallic acid and 4-methylcatechol. The results of this trial showed that both PANI compounds were capable of removing 4-EP, 4-EG, regardless of the presence of other phenolic compounds present at a much higher concentration. Finally, the capturing ability of PANI was evaluated in a red wine sample containing 5 mg·L−1 of 4-EP, 5 mg·L−1 of 4-EG and 2.03 ± 0.02 g·L−1 of total phenolics. The results showed that PANI-EB removed significantly more 4-EP and 4-EG than PANI-ES. For instance, a treatment with 10 mg·mL−1 of PANI-EB produced a 67.8% reduction of 4-EP, 50% reduction of 4-EG and 41.38% decrease in total phenols.

  4. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  5. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    Science.gov (United States)

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔG binding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  6. The reaction of astatine with aromatic diazonium compounds

    International Nuclear Information System (INIS)

    Visser, G.W.M.; Diemer, E.L.

    1982-01-01

    Astatine reacts prefrentially with that type of aromatic diazonium salt that decomposes via a radical reaction channel (homolytic breakage of the C-N bond). The dediazonation with p-aminobenzoic acid and p-toluidine as model compounds was investigated through estatin produced in the 209 Bi(α,2n) 211 At reaction. (author)

  7. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.

    Science.gov (United States)

    Hernández-Orte, P; Peña, A; Pardo, I; Cacho, J; Ferreira, V

    2012-04-01

    The aim of the present paper is to compare the behaviour of industrial lactic bacteria and indigenous bacteria of the cellar when malolactic fermentation was carried out in barrels. The effects of these bacteria on the concentration of metabolised amino acids during malolactic fermentation and on the composition of volatile compounds both before and after malolactic fermentation are studied. The experiment was performed with wines of the Tempranillo and Cabernet Sauvignon varieties. An analysis has been made of the easily extractable volatile compounds of the wood and the compounds from the grapes, and the action of the yeasts during the alcoholic fermentation. Acetoin and diacetyl decreased during the malolactic fermentation in barrels and the concentrations of furfural and its derivatives were up to 100 times higher in wines not subjected to malolactic fermentation. Most of the volatile phenols increased during the malolactic fermentation in wines of the Tempranillo variety, while only guaiacol (p < 0.05) and t-isoeugenol increased in the Cabernet Sauvignon wines. The decrease in amino acids during the malolactic fermentation depends much more on the variety than on the bacterial strain which carries out the malolactic fermentation.

  8. One step hydrogenation–esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts

    International Nuclear Information System (INIS)

    Xu, Ying; Zhang, Limin; Chang, Jiamin; Zhang, Xinghua; Ma, Longlong; Wang, Tiejun; Zhang, Qi

    2016-01-01

    Highlights: • Fe–RN and Mo–RN showed excellent inhibition of alkylation and hydrogenation activity of phenol respectively. • The esterification activity of alcohols with acetic acid was followed as methanol > THFA > ethanediol. • After OHE of bio-oil, the total content of alcohols and esters reached to 87.27% in the product. - Abstract: Acids, aldehydes, ketones and phenols, which are the main components of bio-oil, have negative effects on the properties. In this paper, the mixture of acetic acid, furfural, hydroxyacetone, ethanediol, phenol and water were chosen as hybrid model compounds of bio-oil (MCB). To convert these compounds into stable and combustible oxygenated organics (alcohols and esters), one step hydrogenation–esterification (OHE) was carried out over Raney Ni catalyst (RN) and Mo, Sn, Fe, Cu modified Raney Ni catalysts (RNs) in the presence of methanol. 100% conversions of furfural and hydroxyacetone were achieved over RNs with high selectivity to desired products. The acetic acid conversion was only 35.1% with no methanol addition, while within 6 g/8 g methanol/MCB addition, the conversion of acetic acid increased to 81.1%. The esterification activity of alcohols was followed by methanol > tetrahydrofurfuryl alcohol (THFA), the hydrogenation product of furfural > ethanediol. Among the RNs, the addition of Fe catalyst restrained the aqueous-phase reforming of methanol and promoted the esterification of methanol and acetic acid. The Mo–RN showed the most favorable performance in the hydrogenation of phenol among the RNs. But the RN modified by both Fe and Mo did not give a good performance. After the OHE of light fraction of raw bio-oil over Mo–RN, there was no ketone & aldehyde detected and the contents of acids and phenols decreased from 49.04% and 7.35% to 8.21% and 3.84%. The conversion of acids could reach to 85.01% which was nearly to the conversion of acetic acid in MCB. The contents of alcohols and esters increased from 5

  9. Reactions of OH-radicals with hydroxylated and methoxylated benzoic acids and cinnamic acids. Radiation-induced chemical changes in mushrooms

    International Nuclear Information System (INIS)

    Gaisberger, B.

    2001-05-01

    In the first part of this work the radiation induced chemical changes of methoxylated and hydroxylated benzoic acids and cinnamic acids were investigated. Methoxylated compounds were also used as model components for acid derivatives with no free-OH groups. The latter are essentials parts of vegetable foodstuff. A comparison of the radiolytic behaviour of single substituted methoxy- and hydroxybenzoic acids was given at first, data of literature was included. The priority of the investigation was the hydroxylation process induced by OH-radicals. The OH-adduct distribution is generally the same for the hydroxy- as well as for the methoxybenzoic acid isomers. This could be proved by oxidation of these OH-adducts with K 3 Fe(CN) 6 . In the presence of air 68-77 % of the hydroxybenzoic acids are converted into hydroxylation products, whereas with the methoxylated acids this reaction leads only to about 10%. An explanation gives the different decay pathways of the intermediate peroxylradical. The multiple methoxy- and hydroxybenzoic acids show three different reaction possibilities: hydroxylation, replacement of -OCH 3 by -OH and -in case of the cinnamic acids-oxidative decomposition of the rest of the propenic acid under formation of the corresponding benzaldehydes. All these reactions can be expected when irradiating foodstuff, containing these acid compounds. The characteristic formation of these components and their linear dose/concentration relationship make these substrates very promising for the use as markers for irradiation treatment of foodstuff. The second part of this work deals with the gamma-radiation induced chemical changes in mushrooms. The irradiated and non-irradiated samples were freeze-dried and purified from matrix components chromatographically on polyamid columns. In case of the phenolic compounds for 4-hydroxybenzoic acid and three unknown components linear dose/concentration relationships could be obtained. Two of these unknown compounds seem

  10. Determination of dissociation constants or propionic acid and lactic acid (2-hydroxypropionic acid) by potentiometry and conductometry

    International Nuclear Information System (INIS)

    Saeeduddin; Khanzada, A.W.K.

    2004-01-01

    Dissociation constants of propionic acid and 2-hydroxypropionic acid (lactic acid) have been studied at different temperatures between 25 to 50 deg. C interval. Propionic acid is analyzed by conductometry while 2-hydroxypropionic acid is analyzed by potentiometry. Both investigated compounds are symmetrical carboxylic acids having same length of carbon chain but are markedly different in ionic behavior. We were interested to see how the hydroxyl group (-OH) induction in propionic acid affects on pKa values of 2-hydroxypropionic acid. We observed that as temperature increases pKa values increase. The increase is observed for both the investigated compounds. PKa values of 2-hydroxypropionic acid are lower as compared to propionic acid because of electron withdrawing (-OH). (author)

  11. An elemental model of retrospective revaluation without within-compound associations.

    Science.gov (United States)

    Connor, Patrick C; Lolordo, Vincent M; Trappenberg, Thomas P

    2014-03-01

    When retrospective revaluation phenomena (e.g., unovershadowing: AB+, then A-, then test B) were discovered, simple elemental models were at a disadvantage because they could not explain such phenomena. Extensions of these models and novel models appealed to within-compound associations to accommodate these new data. Here, we present an elemental, neural network model of conditioning that explains retrospective revaluation apart from within-compound associations. In the model, previously paired stimuli (say, A and B, after AB+) come to activate similar ensembles of neurons, so that revaluation of one stimulus (A-) has the opposite effect on the other stimulus (B) through changes (decreases) in the strength of the inhibitory connections between neurons activated by B. The ventral striatum is discussed as a possible home for the structure and function of the present model.

  12. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2010-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  13. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2011-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  14. Compound list: valproic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available valproic acid VPA 00005 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/valpr...oic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/valpr...oic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/valpr...edbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/valproic_acid.Rat.in_vivo.Liver.Repeat.zip ftp:...//ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/valproic_acid.Rat.in_vivo.Kidne

  15. Compound list: tannic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available tannic acid TAN 00093 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/...in_vitro/tannic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_...vitro/tannic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/...Liver/Single/tannic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/

  16. Compound list: mefenamic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available mefenamic acid MEF 00084 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Hum...an/in_vitro/mefenamic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/R...at/in_vitro/mefenamic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat.../in_vivo/Liver/Single/mefenamic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc

  17. Compound list: nicotinic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Hum...an/in_vitro/nicotinic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/R...at/in_vitro/nicotinic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat.../in_vivo/Liver/Single/nicotinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc

  18. Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds

    Science.gov (United States)

    Balagué, Claudia; Véscovi, Eleonora García

    2001-01-01

    Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents. PMID:11353631

  19. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor

    International Nuclear Information System (INIS)

    Rameil, Steffen; Schubert, Peter; Grundmann, Peter; Dietrich, Richard; Maertlbauer, Erwin

    2010-01-01

    We developed a potentiometric aflatoxin M 1 -immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M 1 antibody (pAb-AFM 1 ), a Ag/AgCl reference electrode and a HRP-aflatoxin B 1 conjugate (HRP-AFB 1 conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL -1 and allowed detection of 500 pg mL -1 (FDA action limit) aflatoxin M 1 (AFM 1 ) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL -1 AFM 1 .

  20. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A.L.C.S. do; Caires, F.J., E-mail: caires.flavio@yahoo.com.br; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-10

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L){sub 2}·nH{sub 2}O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds.

  1. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    International Nuclear Information System (INIS)

    Nascimento, A.L.C.S. do; Caires, F.J.; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-01

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L) 2 ·nH 2 O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn 3 O 4 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds

  2. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    International Nuclear Information System (INIS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H_2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H_2O)]_n (1), [Cd(bzgluO)(2,4′-bipy)_2(H_2O)·3H_2O]_n (2), [Cd(bzgluO)(phen)·H_2O]_n (3), [Cd(bzgluO)(4,4′-bipy)(H_2O)]_n (4), [Cd(bzgluO)(bpp)(H_2O)·2H_2O]_n (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H_2bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H_2bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H_2bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular

  3. Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity.

    Science.gov (United States)

    Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C

    2006-05-01

    Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and

  4. Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1998-01-01

    the site(s) of HOCl/ClO- attack, the intermediates formed, or the mechanism(s) of polymer degradation. In this study reaction of HOCl/ClO- with amides, sugars, polysaccharides, and hyaluronic acid has been monitored by UV-visible (220-340 nm) and EPR spectroscopy. UV-visible experiments have shown...

  5. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    Science.gov (United States)

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  6. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    Science.gov (United States)

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  7. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  8. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures.

    Science.gov (United States)

    Gharibi Loron, Ali; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.

  9. Labelling of some organic compounds with radioiodine and technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Bayoumy, A A M

    1994-07-01

    Amino acids have received significant attention in the evaluation of serotonergic and dopaminergic functions in the central nervous system. the wide distribution of {gamma}-cameras and SPECT create an increasing need for appropriated labelled radiopharmaceuticals . {sup 99m}Tc and {sup 123}I are the most important radionuclides for this purpose. In order to avoid pharmacological and toxicological effects, the radiolabelled compounds must be often produced with high specific activity. In the first part of this thesis, the work is therefore focused on labelling methods with no carrier added radioiodine. The radioiodinated analogues of two amino acids were chosen as model compounds of research. L-m-tyrosine is potentially useful for the evaluation of dopamine metabolism in Parkinson's disease, while L -{alpha} -methyl tyrosine is a well known indicator of amino acid transport useful for tumor studies.

  10. Lichen-derived compounds show potential for central nervous system therapeutics.

    Science.gov (United States)

    Reddy, R Gajendra; Veeraval, Lenin; Maitra, Swati; Chollet-Krugler, Marylène; Tomasi, Sophie; Dévéhat, Françoise Lohézic-Le; Boustie, Joël; Chakravarty, Sumana

    2016-11-15

    Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders. Copyright © 2016 Elsevier Gmb

  11. Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+ -ATPase.

    Science.gov (United States)

    Chen, Ronald J Y; Chung, Tse-yu; Li, Feng-yin; Yang, Wei-hung; Jinn, Tzyy-rong; Tzen, Jason T C

    2010-06-01

    To examine if steroid-like compounds found in many Chinese medicinal products conventionally used for the promotion of blood circulation may act as active components via the same molecular mechanism triggered by cardiac glycosides, such as ouabain. The inhibitory potency of ouabain and the identified steroid-like compounds on Na(+)/K(+)-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of these compounds to Na(+)/K(+)-ATPase. All the examined steroid-like compounds displayed more or less inhibition on Na(+)/K(+)-ATPase, with bufalin (structurally almost equivalent to ouabain) exhibiting significantly higher inhibitory potency than the others. In the pentacyclic triterpenoids examined, ursolic acid and oleanolic acid were moderate inhibitors of Na(+)/K(+)-ATPase, and their inhibitory potency was comparable to that of ginsenoside Rh2. The relatively high inhibitory potency of ursolic acid or oleanolic acid was due to the formation of a hydrogen bond between its carboxyl group and the Ile322 residue in the deep cavity close to two K(+) binding sites of Na(+)/K(+)-ATPase. Moreover, the drastic difference observed in the inhibitory potency of ouabain, bufalin, ginsenoside Rh2, and pentacyclic triterpenoids is ascribed mainly to the number of hydrogen bonds and partially to the strength of hydrophobic interaction between the compounds and residues around the deep cavity of Na(+)/K(+)-ATPase. Steroid-like compounds seem to contribute to therapeutic effects of many cardioactive Chinese medicinal products. Chinese herbs, such as Prunella vulgaris L, rich in ursolic acid, oleanolic acid and their glycoside derivatives may be adequate sources for cardiac therapy via effective inhibition on Na(+)/K(+)-ATPase.

  12. Molecular distribution, seasonal variation, chemical transformation and sources of dicarboxylic acids and related compounds in atmospheric aerosols at remote marine Gosan site, Jeju Island

    Science.gov (United States)

    Kundu, S.; Kawamura, K.; Lee, M.

    2009-12-01

    between Chinese cities and Chichi-jima Island in Japan was observed higher than those in Chinese cities and lower than that of the Chichi-jima Island, pointing to the formation of diacid during long range transport. The lowest values of adipic/azelaic (C6/C9) and phthalic/azelaic (Ph/C9) were observed as a result of the overwhelming biogenic emission of the precursors (e.g., unsaturated fatty acids) of azelaic acid in summer.In this study, we will also discuss the sources and transport pathways of diacids and related compounds resolved using a hybrid receptor model, potential source contribution function (PSCF) and model results will be compared with available in-situ observations in East Asia.

  13. Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin.

    Science.gov (United States)

    Rossi, Fanny; Jullian, Valérie; Pawlowiez, Ralph; Kumar-Roiné, Shilpa; Haddad, Mohamed; Darius, H Taiana; Gaertner-Mazouni, Nabila; Chinain, Mireille; Laurent, Dominique

    2012-08-30

    Senescent leaves of Heliotropium foertherianum Diane & Hilger (Boraginaceae) are traditionally used in the Pacific region to treat Ciguatera Fish Poisoning. This plant contains rosmarinic acid that is known for its multiple biological activities. In the present study, H. foertherianum aqueous extract, rosmarinic acid and its derivatives were evaluated for their capacity to reduce the effect of ciguatoxins. Aqueous extract of H. foertherianum leaves was prepared and studied for its effects against a Pacific ciguatoxin (P-CTX-1B) in the neuroblastoma cell assay and the receptor binding assay. Rosmarinic acid and six derivatives were also evaluated by means of these bioassays. For this purpose, we have developed an improved synthetic route for caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE). Both the aqueous extract of H. foertherianum leaves and rosmarinic acid showed inhibitory activities against a Pacific ciguatoxin in the above bioassays. Among all the molecules that were evaluated, rosmarinic acid was the most active compound. These results confirm further the potential of H. foertherianum in the treatment of Ciguatera Fish Poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  15. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  16. Sorbic acid interaction with sulfur dioxide in model food systems

    Energy Technology Data Exchange (ETDEWEB)

    Namor, O G

    1987-01-01

    The first chapter deals with the chemistry of sorbic acid and sulfur dioxide. The second chapter describes a study of the degradation products of sorbic acid, in aqueous systems, in the presence of sulfur dioxide and a possible mechanism for the occurrence of these products is proposed. Chapter three deals with the preparation and degradation of 6-(/sup 13/C)sorbic acid in order to find evidence for, or against, the mechanism proposed in chapter two. It also gives details of syntheses attempted in order to obtain 6- (/sup 13/C)sorbic acid. The interaction of sorbic acid and sulfur dioxide in real food systems is the subject of the fourth chapter. The food systems studied were mayonnaise, tomato puree, orange juice and cottage cheese. The effect of packaging on the rate of degradation of sorbic acid was also investigated. The final chapter deals with a microbiological study of two homologues of sorbic acid, 2,4-heptadienoic acid, 2,4-octadienoic acid. The fungicidal activity of these two compounds, towards selected fungi, was analyzed. 4-Oxobut-2-enoic acid, a degradation product of sorbic acid in aqueous systems, was also analyzed as a possible fungistat.

  17. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  18. Trace organic compounds in wet atmospheric deposition: an overview

    Science.gov (United States)

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  19. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2016-01-01

    Full Text Available 2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA, conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K and aspartate (D residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models.

  20. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  1. Surface characterisation of synthetic coal chars made from model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Pevida, C.; Rubiera, F.; Palacios, J.M.; Navarrete, R.; Denoyel, R.; Rouquerol, J.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2004-07-01

    Knowledge of surface properties is essential for understanding the reaction mechanisms involved in several coal conversion processes. However, due to the complexity and heterogeneity of coal this is rather difficult and the use of known model compounds could be a valuable tool. Single model compounds have been widely used, but they give a quite simplified picture. In this work a mixture of model compounds in a phenol-formaldehyde matrix was cured in order to create cross-linked structures. The obtained synthetic coal was pyrolysed in a fixed bed reactor, under helium atmosphere. The surface composition of the chars was evaluated by XPS, adsorption gravimetry of water vapour, temperature-programmed desorption and potentiometric titration. Texture was characterised by N{sub 2} and CO{sub 2} adsorption isotherms at 77 and 273 K, respectively, and immersion calorimetry in benzene. The results obtained from the different techniques were contrasted in order to give an overview of the surface properties (chemical and physical) of the samples studied. Chars obtained under the same operating conditions from a high volatile bituminous coal were used as a reference.

  2. Evidence for dynamic behavior of O2 in oxy-heme model compounds

    International Nuclear Information System (INIS)

    Montiel-Montoya, R.; Bill, E.; Trautwein, A.X.; Winkler, H.

    1986-01-01

    The authors have performed Moessbauer studies on several oxy-heme model compounds, and for two of them they have also derived the three dimensional structure from X-ray studies. The X-ray structure analysis of these model compounds provides the information that O 2 occupies three different sites in one and only two sites in the other. (Auth.)

  3. Phosphate incorporation in organic compounds in roots of maize

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, I; Ivanko, S [Vysoka Skola Polnohospodarska, Nitra (Czechoslovakia)

    1976-01-01

    /sup 32/P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of /sup 32/P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of /sup 32/P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The /sup 32/P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time.

  4. Phosphate incorporation in organic compounds in roots of maize

    International Nuclear Information System (INIS)

    Michalik, I.; Ivanko, S.

    1976-01-01

    32 P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of 32 P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of 32 P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The 32 P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time. (author)

  5. Publicly available models to predict normal boiling point of organic compounds

    International Nuclear Information System (INIS)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos; Brunel, Damien Bernard; Rivollet, Fabien; Varnek, Alexandre

    2013-01-01

    Quantitative structure–property models to predict the normal boiling point (T b ) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T b varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (http://infochim.u-strasbg.fr/webserv/VSEngine.html)

  6. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    Science.gov (United States)

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (Pcompound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  7. Solvates of silico-12-molybdic acid with alcohols

    International Nuclear Information System (INIS)

    Punchuk, I.N.; Chuvaev, V.F.

    1984-01-01

    With the aim of investigating interaction processes of solid heteropolyacids and organic compounds, solvates are prepared. Solvates are products of adding gaseous methanol, ethanol and isopropanol to silico-12-molybdic acid. The compounds are studied by IR and PMR spectroscopy methods. Possible models for solvate structure are considered, as well as their connection with solvate properties and thermal decomposition

  8. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Betulinic acid spectroscopic studies by NMR

    International Nuclear Information System (INIS)

    Junges, Mario Jose; Fernandes, Joao Batista; Rodrigues Filho, Edson; Vieira, Paulo Cezar; Silva, Maria Fatima das G. Fernandes da

    1995-01-01

    HMQC, HMBC, COSY 1 H- 1 H, DEPT, COSYHLR were used to assign the hydrogen and carbon chemical shifts of betulinic acid. On base in this study it is proposed to change the δ of the carbons 6, 11, 18, 19 and 26 and of the methyls hydrogen in the literature for betulinic acid, as well as of the compounds where betulinic acid was used as model. It was verified that H-5, δ 0,82, is in position strongly shielded. (author)

  10. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    Science.gov (United States)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  11. Synthesis of nanoscale layers of heteropoly compounds based on molybdophosphoric acid by ion lamination on the silica surface

    International Nuclear Information System (INIS)

    Gulina, L.B.; Tolstoj, V.P.

    2004-01-01

    Nanolayers of iso- and heteropolycompound of the composition Zr 2.6 (OH) x PMo 8.0 Sn 1.9 O y · nH 2 O were synthesized by the method of ion lamination during successive treatment of quartz substrate by water solutions of reduced molybdophosphoric acid and zirconium acetate. The compounds prepared were characterized by the methods of electronic, IR and X-ray photoelectron spectroscopy. It was shown that heating of the compounds in the air at 200-400 deg C involves removal of water molecules from the layer, Mo 5+ oxidation to Mo 6+ and formation of chemical bonds Mo-O-Zr and Mo-O-Sn [ru

  12. Model of the synthesis of trisporic acid in Mucorales showing bistability.

    Science.gov (United States)

    Werner, S; Schroeter, A; Schimek, C; Vlaic, S; Wöstemeyer, J; Schuster, S

    2012-12-01

    An important substance in the signalling between individuals of Mucor-like fungi is trisporic acid (TA). This compound, together with some of its precursors, serves as a pheromone in mating between (+)- and (-)-mating types. Moreover, intermediates of the TA pathway are exchanged between the two mating partners. Based on differential equations, mathematical models of the synthesis pathways of TA in the two mating types of an idealised Mucor-fungus are here presented. These models include the positive feedback of TA on its own synthesis. The authors compare three sub-models in view of bistability, robustness and the reversibility of transitions. The proposed modelling study showed that, in a system where intermediates are exchanged, a reversible transition between the two stable steady states occurs, whereas an exchange of the end product leads to an irreversible transition. The reversible transition is physiologically favoured, because the high-production state of TA must come to an end eventually. Moreover, the exchange of intermediates and TA is compared with the 3-way handshake widely used by computers linked in a network.

  13. The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration.

    Science.gov (United States)

    Yoshimura, Etsuro; Kohdr, Hicham; Mori, Satoshi; Hider, Robert C

    2011-08-01

    The phytosiderophores, mugineic acid (MA) and epi-hydroxymugineic acid (HMA), together with a related compound, nicotianamine (NA), were investigated for their ability to bind Al(III). Potentiometric titration analysis demonstrated that MA and HMA bind Al(III), in contrast to NA which does not under normal physiological conditions. With MA and HMA, in addition to the Al complex (AlL), the protonated (AlLH) and deprotonated (AlLH(-1)) complexes were identified from an analysis of titration curves, where L denotes the phytosiderophore form in which all the carboxylate functions are ionized. The equilibrium formation constants of the Al(III) phytosiderophore complexes are much smaller than those of the corresponding Fe(III) complexes. The higher selectivity of phytosiderophores for Fe(III) over Al(III) facilitates Fe(III) acquisition in alkaline conditions where free Al(III) levels are higher than free Fe(III) levels.

  14. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    Science.gov (United States)

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

  15. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta)

    International Nuclear Information System (INIS)

    Figueroa, Félix L.; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G.; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A.; Gómez-Pinchetti, Juan L.

    2012-01-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed.

  16. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta).

    Science.gov (United States)

    Figueroa, Félix L; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A; Gómez-Pinchetti, Juan L

    2012-02-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Adjuvant effects and antiserum action potentiation by a (herbal) compound 2-hydroxy-4-methoxy benzoic acid isolated from the root extract of the Indian medicinal plant 'sarsaparilla' (Hemidesmus indicus R. Br.).

    Science.gov (United States)

    Alam, M I; Gomes, A

    1998-10-01

    The adjuvant effect and antiserum potentiation of a compound 2-hydroxy-4-methoxy benzoic acid were explored in the present investigation. This compound, isolated and purified from the Indian medicinal plant Hemidesmus indicus R. Br, possessed antisnake venom activity. Rabbits immunized with Vipera russellii venom in the presence and absence of the compound along with Freund's complete adjuvant, produced a precipitating band in immunogel diffusion and immunogel electrophoresis. The venom neutralizing capacity of this antiserum showed positive adjuvant effects as evident by the higher neutralization capacity (lethal and hemorrhage) when compared with the antiserum raised with venom alone. The pure compound potentiated the lethal action neutralization of venom by commercial equine polyvalent snake venom antiserum in experimental models. These observations raised the possibility of the use of chemical antagonists (from herbs) against snake bite, which may provide a better protection in presence of antiserum, especially in the rural parts of India.

  18. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  19. The nested-doorway model of multistep compound processes

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1982-05-01

    The multistep compound contribution to preequilibrium reaction are discussed within the nested-doorway model. Emphasis is placed on the generalized cross-section auto-correlation function. Several of the more widely used concepts in the conventional, one-class, statistical analysis are discussed and generalized to the multiclass case. A summary of the formal results of the nested-doorway model, obtained within Feshbach's projection operator theory is given. (Author) [pt

  20. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  1. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  2. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn; Yu, Hai-Tao, E-mail: haitaoyu@mail.hebtu.edu.cn

    2016-01-15

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid

  3. Laccase-mediator catalyzed conversion of model lignin compounds

    Science.gov (United States)

    Laccases play an important role in the biological breakdown of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined a variety of laccases, both commercially prepared and crude extracts, for their ability to oxidize three model lignol compounds (p-coumaryl...

  4. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    Science.gov (United States)

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  5. Amino acid analogs for tumor imaging

    International Nuclear Information System (INIS)

    Goodman, M.M.; Shoup, T.

    1998-01-01

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [ 18 F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an α-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of α-aminoisobutyric acid

  6. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  7. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  8. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  9. Widespread occurrence of mycosporine-like amino acid compounds in scleractinians from French Polynesia

    Science.gov (United States)

    Teai, T.; Drollet, J. H.; Bianchini, J.-P.; Cambon, A.; Martin, P. M. V.

    1997-07-01

    A survey of 23 species of scleractinians, belonging to seven families and 8 genera, collected from two different areas in French Polynesia, showed that all specimens possessed between four and seven UV-absorbing compounds, identified as mycosporine-like amino acids (MAAs). In all, 11 different MAAs molecules were found, of which two were previously unknown. Palythine and mycosporine-glycine were the most abundant MAAs in the corals. With few exceptions, most specimens of each species possessed the same pattern of MAAs. Similarly, species from the same genus also had very similar qualitative composition of MAAs, although quantities of individuals MAAs varied from specimen to specimen. This suggests that MAAs are ancient and evolutionarily well conserved.

  10. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    Science.gov (United States)

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Acid hydrolysis of corn stover using hydrochloric acid: Kinetic modeling and statistical optimization

    Directory of Open Access Journals (Sweden)

    Sun Yong

    2014-01-01

    Full Text Available The hydrolysis of corn stover using hydrochloric acid was studied. The kinetic parameters of the mathematical models for predicting the yields of xylose, glucose, furfural and acetic acid were obtained, and the corresponding xylose generation activation energy of 100 kJ/mol was determined. The characterization of corn stover using with different techniques during hydrolysis indicated an effective removal of xylan and the slightly alteration on the structures of cellulose and lignin. A 23five levels Central Composite Design (CCD was used to develop a statistical model for the optimization of process variables including acid concentration, pretreatment temperature and time. The optimum conditions determined by this model were found to be 108ºC for 80 minutes with acid concentration of 5.8%. Under these conditions, the maximised results are the following: xylose 19.93 g/L, glucose 1.2 g/L, furfural 1.5 g/L, acetic acid 1.3 g/L. The validation of the model indicates a good agreement between the experimental results and the predicted values.

  12. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  13. Solid-phase reduction of silico-12-molybdic acid H4SiMo12O40 by some organic oxygen containing compounds

    International Nuclear Information System (INIS)

    Chuvaev, V.F.; Pinchuk, I.N.; Spitsyn, V.I.

    1982-01-01

    A study is made on reduction reactions of anhydrous silico-12-molybdic acid by vapors of organic oxygen-containing compounds at 170 deg C: alcohols, simple carbonyl compounds. Methods of thermal analysis, electron paramagnetic resonance, paramagnetic resonance were used to established that depending on the nature of organic reagent and temperature, H 6 SiMo 2 5 Mo 10 6 O 40 two-electron or H 8 SiMo 4 5 Mo 8 6 O 40 four-electron flues form. It is shown that the increase of heterogeneous reduction temperature can lead to formation of anhydrous phases of SiMo 12 O 38 -(n/2), able to attach water reversibly with formation of corresponding blue. Characteristics of blues, prepared during solid-phase reduction of silico-12-molybdic acid and mixed valent forms with corresponding reduction degree, separated from water solutions, were compared

  14. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  15. Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds

    Directory of Open Access Journals (Sweden)

    Carolina Rodrigues Linhares

    2012-05-01

    Full Text Available The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.

  16. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    Science.gov (United States)

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

  17. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  18. Separation of rare earths by means of acid organophosphorous compounds. Structure-activity study by molecular simulation

    International Nuclear Information System (INIS)

    Fourcot, Fabrice

    1991-01-01

    The increasing number of industrial applications of rare earths has resulted in an increased demand in purified rare earths whereas their separation is difficult due to their high chemical similarity. The search for a better separation leads to the search for more selective extraction agents. Organophosphorous compounds appear to be the most selective. As the search for new extraction agents resulting in high lanthanide extraction efficiency or in a better selectivity between rare earths has been mainly empiric, this research thesis aims at developing a molecular simulation method which allows the number of molecules to be synthesized and tested to be reduced. After having briefly recalled general knowledge on liquid-liquid extraction and on rare earths, and described calculation methods (quantum methods, methods based on molecular mechanics, conformational analysis, methods of charge calculation), the author proposes a critical review of literature related to rare earth liquid-liquid extraction by organophosphorous acids with respect to the used extraction agent. The molecular modelling issue is then addressed by describing ways to apply it to extraction problems, faced problems, brought solutions and obtained results

  19. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process.

    Science.gov (United States)

    Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles

    2018-04-01

    This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton

    Directory of Open Access Journals (Sweden)

    Jeongyeo Lee

    2018-01-01

    Full Text Available Sophorae Radix (Sophora flavescens Aiton has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.

  1. Riboflavin Phototransformation on the Changes of Antioxidant Capacities in Phenolic Compounds.

    Science.gov (United States)

    Song, Juhee; Seol, Nam Gyu; Kim, Mi-Ja; Lee, JaeHwan

    2016-08-01

    Eight phenolic compounds including: p-coumaric acid, vanillic acid, caffeic acid, chlorogenic acid, trolox, quercetin, curcumin, and resveratrol were treated with riboflavin (RF) photosensitization and in vitro antioxidant capacities of the mixtures were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2' azino bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. Mixtures containing p-coumaric acid and vanillic acid under RF photosensitization showed increases in ferric ion reducing ability and radical scavenging activity of DPPH, whereas mixtures of other compounds had decreases in both radical scavenging ability and ferric reducing antioxidant power. Hydroxycoumaric acid and conjugated hydroxycoumaric and coumaric acids were tentatively identified from RF photosensitized p-coumaric acid, whereas dimmers of vanillic acid were tentatively identified from RF photosensitized vanillic acid. RF photosensitization may be a useful method to enhance antioxidant properties like ferric ion reducing abilities of some selected phenolic compounds. © 2016 Institute of Food Technologists®

  2. Consideration of the Verleur model of far-infrared spectroscopy of ternary compounds

    International Nuclear Information System (INIS)

    Robouch, B. V.; Kisiel, A.; Sheregii, E. M.

    2001-01-01

    The clustering model proposed by Verleur and Barker [Phys. Rev. 149, 715 (1966)] to interpret far infrared data for face-centered-cubic ternary compounds is critically analyzed. It is shown that their approach, satisfactory for fitting some ternary compound spectral curves, is too restricted by its one-parameter β model to be able to describe preferences (with respect to a random distribution case) for the five tetrahedron configurations

  3. Synthesis and evaluation of ?-hydroxy fatty acid-derived heterocyclic compounds with potential industrial interest

    Directory of Open Access Journals (Sweden)

    El-Sayed, R.

    2006-12-01

    Full Text Available T2-Hydroxyheptadecanoic acid chloride (2 reacted with anthranilic acid to produce 2-substituted-3,1-benzoxazin-4-one (3 which was used as starting material to synthesize some condensed and non-condensed heterocyclic compounds by reaction with nitrogen nucleophiles e.g., hydrazine hydrate, and formamide. The products were subjected to reaction with different moles of propylene oxide (n = 5, 10, 15 to produce a novel group of nonionic compounds having a double function as antibacterial and surface active agents which can be used in the manufacturing of drugs, cosmetics, pesticides or can be used as antibacterial and/or antifungal additives. The surface active properties as surface and interfacial tension, cloud point, foaming height, wetting time, and emulsification power were determined, the antimicrobial and biodegradability were also screened.El cloruro del ácido 2-hidroxiheptadecanoico (2 reaccionó con el ácido antranílico para producir 3,1-benzoxazin-4-onas 2-sustituidas que fueron usadas como material de partida en la síntesis de compuestos heterocíclicos condensados y no condensados por reacción con nucleófilos nitrogenados, como la hidracina o la formamida. Los productos fueron hechos reaccionar con diferentes moles de óxido de propileno (n = 5, 10, 15 para producir un grupo nuevo de compuestos no-iónicos teniendo una doble función como antibacterianos y tensoactivos que pueden ser usados en la manufactura de medicamentos, cosméticos, pesticidas, o pueden ser usados como aditivos antibacterianos y/o antifúngicos. Se determinaron diversas propiedades físicas de los compuestos preparados así como sus efectos antimicrobianos y sus biodegrabilidad.

  4. The Use of 4-(3,4-Dichlorophenyl-4-Oxo-2-(4-Antipyrinyl-Butanoic Acid in the Preparation of Some New Heterocyclic Compounds With Expected Biological Activity

    Directory of Open Access Journals (Sweden)

    M. Shafik

    2003-03-01

    Full Text Available Reaction of 4-oxo-4-(3,4-dichlorophenyl-2-butenoic acid (1 with antipyrin (2 gave the corresponding butanoic acid 3. Reaction of 3 with hydrazines gave the pyridazinone derivatives 5a,b. Compounds 5a,b were used to prepare the corresponding dithio derivatives. Reaction of 5a with POCl3 unexpectedly gave the chloropyridazine derivative 7, which is used to prepare the corresponding thio derivative. The hitherto unknown reactions of this chloro derivative with 2-amino-3-carbethoxy-4,5-dimethylthiophene and 2-amino-3-carbethoxy tetrahydrobenzothiophene have now been described. The behaviour of the chloro derivative toward hydrazine hydrate, sodium azide and anthranilic acid was also studied. Some of the new compounds showed antimicrobial and antifungal activities .

  5. Non-Acidic Free Fatty Acid Receptor 4 Agonists with Antidiabetic Activity

    DEFF Research Database (Denmark)

    Goncalves de Azavedo, Carlos M. B. P.; Watterson, Kenneth R; Wargent, Ed T

    2016-01-01

    The free fatty acid receptor 4 (FFA4 or GPR120) has appeared as an interesting potential target for the treatment of metabolic disorders. At present, most FFA4 ligands are carboxylic acids that are assumed to mimic the endogenous long-chain fatty acid agonists. Here, we report preliminary structure......-activity relationship studies of a previously disclosed non-acidic sulfonamide FFA4 agonist. Mutagenesis studies indicate that the compounds are orthosteric agonists despite the absence of a carboxylate function. The preferred compounds showed full agonist activity on FFA4 and complete selectivity over FFA1, although...... a significant fraction of these non-carboxylic acids also showed partial antagonistic activity on FFA1. Studies in normal and diet-induced obese (DIO) mice with the preferred compound 34 showed improved glucose tolerance after oral dosing in an oral glucose tolerance test. Chronic dosing of 34 in DIO mice...

  6. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M{sub 1}-immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rameil, Steffen, E-mail: s.rameil@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Schubert, Peter, E-mail: p.schubert@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Grundmann, Peter, E-mail: peter.grundmann@jennewein-biotech.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Dietrich, Richard, E-mail: R.Dietrich@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany); Maertlbauer, Erwin, E-mail: E.Maertlbauer@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany)

    2010-02-19

    We developed a potentiometric aflatoxin M{sub 1}-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M{sub 1} antibody (pAb-AFM{sub 1}), a Ag/AgCl reference electrode and a HRP-aflatoxin B{sub 1} conjugate (HRP-AFB{sub 1} conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL{sup -1} and allowed detection of 500 pg mL{sup -1} (FDA action limit) aflatoxin M{sub 1} (AFM{sub 1}) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL{sup -1} AFM{sub 1}.

  7. Fate of aliphatic compounds in nitric acid processing solutions

    International Nuclear Information System (INIS)

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  8. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  9. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, Margreet R.; Hollman, Peter C H; Katan, Martijn B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  10. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine.

    Science.gov (United States)

    Nabavi, Seyed Fazel; Tejada, Silvia; Setzer, William N; Gortzi, Olga; Sureda, Antoni; Braidy, Nady; Daglia, Maria; Manayi, Azadeh; Nabavi, Seyed Mohammad

    2017-01-01

    At present, much attention has been focused on the beneficial effects of natural products on the human health due to their high efficacy and low adverse effects. Among them, polyphenolic compounds are known as one of the most important and common classes of natural products, which possess multiple range of health-promotion effects including anti-inflammatory and antioxidant activities. A plethora of scientific evidence has shown that polyphenolic compounds possess beneficial effects on the central nervous system. Data were collected from Web of Science (ISI Web of Knowledge), Medline, Pubmed, Scopus, Embase, and BIOSIS Previews (from 1950 to 2015), through searching of these keywords: "chlorogenic acid and mental diseases" and "chlorogenic acid and neuroprotection". Chlorogenic acid is known as one of the most common polyphenolic compounds, and is found in different types of fruits and vegetables, spices, wine, olive oil, as well as coffee. The potential neuroprotective effects of chlorogenic acid have been highlighted in several in vitro and in vivo studies. This review critically analyses the available scientific evidence regarding the neuroprotective effects of chlorogenic acid, and its neuropharmacological mechanisms of action. In addition, we also discuss its biosynthesis, sources, bioavailability and metabolism, to provide a broad perspective of the therapeutic implications of this compound in brain health and disease. The present review showed that chlorogenic acid possesses neuroprotective effects under the both in vitro and in vivo models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  12. Investigation of the synergistic effect of alcoholic compounds on the extraction of H3PO4 from Syrian wet phosphoric acid by TBP

    International Nuclear Information System (INIS)

    Abdulbaki, M. K.; Shino, O.; Wahoud, A.

    2006-01-01

    This paper studies the synergistic effects of alcoholic compounds such as isoamyl alcohol. Pentanol, hexanol and heptanol on the extraction of H 3 PO 4 from Syrian phosphoric acid by (TBP). The possibility to use these alcoholic compounds as a diluent instead of kerosene was also studied. The results show that the alcoholic compounds has bigger extraction yield than (TBP) diluted in kerosene. The alcoholic compounds has an important synergistic effect, when it was used as a diluent instead of kerosene, on the extraction of H 3 PO 4 by (TBP) and they have a bigger extraction yield and the quicker phase separation comparing with kerosene. Extraction of uranium, fluoride, sulfate and heavy metals is relatively small. (Authors)

  13. Potent in vitro antifungal activities of naturally occurring acetylenic acids.

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R; Khan, Shabana I; Ashfaq, M Khalid; Babu, K Suresh; Agarwal, Ameeta K; Elsohly, Hala N; Manly, Susan P; Clark, Alice M

    2008-07-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C(16) to C(20): 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 muM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 mumol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies.

  14. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  16. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens.

    Science.gov (United States)

    Pascacio-Villafán, Carlos; Lapointe, Stephen; Williams, Trevor; Sivinski, John; Niedz, Randall; Aluja, Martín

    2014-03-01

    Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments.

  17. Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves

    Directory of Open Access Journals (Sweden)

    Marivane Lemos

    Full Text Available AbstractGastric ulcer is a prevalent gastrointestinal disease, and the drugs currently used in the treatment produce several adverse effects. In this context, the search for new therapeutic antiulcer agents is essential, and medicinal plants have great potential. Here, we investigated the gastroprotective properties of Copaifera langsdorffii Desf., Fabaceae, hydroalcoholic extract obtained from leaves and its isolated compounds. The phytochemistry studies and the compounds isolations were performed using chromatographic and spectroscopic methodologies. The hydroalcoholic extract was evaluated using ethanol/HCl, non-steroidal anti-inflammatory drug, stress-induced-ulcer and chronic ulcer-model. The effects on gastric content volume, pH, total acidity and mucus stomach production were evaluated in the pylorus ligated-model. The C. langsdorffii extract obtained from leaves (50, 250 or 500 mg/kg reduced the injured area compared to control group in all experiments. The extract showed a significant decrease in the total gastric juice acidity and an increase in mucus production (500 mg/kg when compared to vehicle. Among isolated compounds (30 mg/kg α-humulene, β-caryophyllene and caryophyllene oxide showed greater gastroprotective activity in the ethanol/HCl induced ulcer model. The data herein obtained shown that C. langsdorffii leaves extract and isolated compounds from it, presented gastroprotective properties in different animal models of gastric ulcer. These effects may be associated with the ability of the extract to decrease gastric secretion and increase the mucus production.

  18. Sensory Description of Cultivars (Coffea Arabica L. Resistant to Rust and Its Correlation with Caffeine, Trigonelline, and Chlorogenic Acid Compounds

    Directory of Open Access Journals (Sweden)

    Larissa de Oliveira Fassio

    2016-01-01

    Full Text Available Considering the importance of the chemical compounds in Arabica coffee beans in the definition of the drink sensory quality and authentication of coffee regions, the aim of this study was to evaluate, from principal component analysis—PCA—if there is a relation between the caffeine, trigonelline, and chlorogenic acid (5-CQA content and the sensory attributes of the drink, and in this context, enabling the differentiation of cultivars in two coffee-producing regions of Brazil. We evaluated seven rust-resistant Coffea arabica cultivars, and two rust-susceptible cultivars in two cultivation environments: Lavras, in the southern region of Minas Gerais state, and Patrocinio in the Cerrado region of Minas Gerais. The flavor and acidity were determinant for differentiation of the cultivars and their interaction with the evaluated environments. Cultivars Araponga MG1, Catigua MG2, and Catigua MG1 are the most suitable for the production of specialty coffee in the state of Minas Gerais. A poor correlation was found between caffeine, trigonelline, 5-CQA contents, and fragrance, flavor, acidity, body, and final score attributes. However, these compounds enabled the differentiation of the environments. The PCA indicated superiority in the sensory quality of cultivars resistant to rust, compared to the control, Bourbon Amarelo, and Topázio MG1190.

  19. [Separation of gamma linolenic acid from evening primrose oil with urea inclusion--orthogonal experiment of optimizing technological parameters and observation of urea inclusion compound I].

    Science.gov (United States)

    Wang, Hua; Ling, Man; Xue, Gang; Liu, Fengxia; Guo, Shuxian

    2010-05-01

    The influence on the urea inclusion compound under different conditions (allocated proportion, time of inclusion, temperature of inclusion) were studied through the orthogonal test, and theoretical reference of urea inclusion process for further optimization wound be offered. The orthogonal experiment was adopted, and microscope was used to observe the shape, aperture size of the urea inclusion compound under different technological parameters, the GC was employed to inspect the purity of GLA. The results indicated that the ratio of fatty acids and urea, inclusion of temperature, time of inclusion had great effect on urea inclusion compound. The three factors and its interactions significantly affected the purity of GLA. The results also showed that the best process was that the ratio of fatty acids and urea was 1 : 3, temperature of inclusion was--15 degrees C, time of inclusion was 24 h. Under the best condition, the purity of GLA reach up to 95.575 9%; and it is feasible to observe the shape and the amount of the urea inclusion compound to reflect and guide the urea inclusion technology.

  20. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2012-07-01

    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  1. Mathematical modeling of the mixing zone for getting bimetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stanislav L. [Institute of Applied Mechanics, Ural Branch, Izhevsk (Russian Federation)

    2011-07-01

    A mathematical model of the formation of atomic bonds in metals and alloys, based on the electrostatic interaction between the outer electron shells of atoms of chemical elements. Key words: mathematical model, the interatomic bonds, the electron shell of atoms, the potential, the electron density, bimetallic compound.

  2. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskaya, A., E-mail: alisa.rudnitskaya@gmail.com [CESAM/Chemistry Department, University of Aveiro, Aveiro 3810-193 (Portugal); Chemistry Department, St. Petersburg University, St. Petersburg 199034 (Russian Federation); Rocha, S.M. [Chemistry Department, University of Aveiro, Aveiro 3810-193 (Portugal); Legin, A. [Chemistry Department, St. Petersburg University, St. Petersburg 199034 (Russian Federation); Pereira, V.; Marques, J.C. [Madeira Chemistry Center, University of Madeira, Funchal 9000-390 (Portugal)

    2010-03-03

    A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA-Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.

  3. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine

    International Nuclear Information System (INIS)

    Rudnitskaya, A.; Rocha, S.M.; Legin, A.; Pereira, V.; Marques, J.C.

    2010-01-01

    A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA-Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.

  4. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  5. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  6. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    International Nuclear Information System (INIS)

    Abian, J.; Gelpi, E.; Pages, M.

    1991-01-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-[ 14 C]LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. α- and γ-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed

  7. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  8. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  9. Proton-transfer compounds of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) with 4-chloroaniline and 4-bromoaniline.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D; Healy, Peter C

    2007-07-01

    The crystal structures of the proton-transfer compounds of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) with 4-chloroaniline and 4-bromoaniline, namely 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)ClN(+) x C(9)H(5)INO(4)S(-) x H(2)O, and 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)BrN(+) x C(9)H(5)INO(4)S(-) x H(2)O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water molecules which are extended into a three-dimensional framework structure through centrosymmetric R(2)(2)(10) O-H...N hydrogen-bonded ferron dimer interactions.

  10. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  11. preparation of some radiopharmaceutical compounds for medical use

    International Nuclear Information System (INIS)

    El-shaboury, G.H.

    1983-01-01

    In this thesis investigations were carried out aiming to elaboration of a new improved and short time techniques to prepare some radioiodinated labelled organic compounds having high chemical and radiochemical purity and with high specific activity for clinical use in nuclear medicine as diagnostic aids. The labelled compounds were the following: 1. radioiodinated rose bengal ( tetra-chloro-tetraiodo-fluorescein) for liver function studies. 2. radioiodinated long chain fatty acids. 2.1 16-1-hexadecanoic acid. 2.2 17-1-heptadecanoic acid. for myocardial infarction studies

  12. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.

    Science.gov (United States)

    Yan, Mingquan; Dryer, Deborah; Korshin, Gregory V; Benedetti, Marc F

    2013-02-01

    This study examined the binding of copper(II) by Suwannee River fulvic acid (SRFA) using the method of differential absorbance that was used at environmentally-relevant concentrations of copper and SRFA. The pH- and metal-differential spectra were processed via numeric deconvolution to establish commonalities seen in the changes of absorbance caused by deprotonation of SRFA and its interactions with copper(II) ions. Six Gaussian bands were determined to be present in both the pH- and Cu-differential spectra. Their maxima were located, in the order of increasing wavelengths at 208 nm, 242 nm, 276 nm, 314 nm, 378 nm and 551 nm. The bands with these maxima were denoted as A0, A1, A2, A3, A4 and A5, respectively. Properties of these bands were compared with those existing in the spectra of model compounds such as sulfosalicylic acid (SSA), tannic acid (TA), and polystyrenesulfonic acid-co-maleic acid (PSMA). While none of the features observed in differential spectra of the model compound were identical to those present in the case of SRFA, Gaussian bands A1, A3 and possibly A2 were concluded to be largely attributable to a combination of responses of salicylic- and polyhydroxyphenolic groups. In contrast, bands A4 and A5 were detected in the differential spectra of SRFA only. Their nature remains to be elucidated. To examine correlations between the amount of copper(II) bound by SRFA and changes of its absorbance, differential absorbances measured at indicative wavelengths 250 nm and 400 nm were compared with the total amount of SRFA-bound copper estimated based on Visual MINTEQ calculations. This examination showed that the differential absorbances of SRFA in a wide range of pH values and copper concentrations were strongly correlated with the concentration of SRFA-bound copper. The approach presented in this study can be used to generate in situ information concerning the nature of functional groups in humic substances engaged in interactions with metals ions. This

  13. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  14. Use of Shark Dental Protein to Estimate Trophic Position via Amino Acid Compound-Specific Isotope Analysis

    Science.gov (United States)

    Hayes, M.; Herbert, G.; Ellis, G.

    2017-12-01

    The diets of apex predators such as sharks are expected to change in response to overfishing of their mesopredator prey, but pre-anthropogenic baselines necessary to test for such changes are lacking. Stable isotope analysis (SIA) of soft tissues is commonly used to study diets in animals based on the bioaccumulation of heavier isotopes of carbon and nitrogen with increasing trophic level. In specimens representing pre-anthropogenic baselines, however, a modified SIA approach is needed to deal with taphonomic challenges, such as loss of soft tissues or selective loss of less stable amino acids (AAs) in other sources of organic compounds (e.g., teeth or bone) which can alter bulk isotope values. These challenges can be overcome with a compound-specific isotope analysis of individual AAs (AA-CSIA), but this first requires a thorough understanding of trophic enrichment factors for individual AAs within biomineralized tissues. In this study, we compare dental and muscle proteins of individual sharks via AA-CSIA to determine how trophic position is recorded within teeth and whether that information differs from that obtained from soft tissues. If skeletal organics reliably record information about shark ecology, then archaeological and perhaps paleontological specimens can be used to investigate pre-anthropogenic ecosystems. Preliminary experiments show that the commonly used glutamic acid/phenylalanine AA pairing may not be useful for establishing trophic position from dental proteins, but that estimated trophic position determined from alternate AA pairs are comparable to those from muscle tissue within the same species.

  15. P-matrix in the quark compound bag model

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.; Veselov, A.I.

    1983-01-01

    Meaning of the P-matrix analysis is discussed within the quark compound bag (QCB) model. The most general version of this model is considered including the arbitrary coupling between quark and hadronic channels and the arbitrary smearipg of the surface interection region. The behaviour of P-matrix poles as functions of matching radius r,L0 is discussed for r 0 > + . In conclusion are presented the parameters of an illustrative set of NN potentials that has been obtained from the P-matrix fit to experimental data

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Aroma volatile compounds from two fresh pineapple varieties in China.

    Science.gov (United States)

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg(-1) and 380.66 μg·kg(-1) in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  18. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Directory of Open Access Journals (Sweden)

    Chang-Bin Wei

    2012-06-01

    Full Text Available Volatile compounds from two pineapples varieties (Tainong No.4 and No.6 were isolated by headspace solid phase microextraction (HS-SPME and identified and quantified by gas chromatography-mass spectrometry (GC/MS. In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 µg·kg−1 and 380.66 µg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthiopropanoic acid methyl ester, 3-(methylthiopropanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthiopropanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  19. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Science.gov (United States)

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  20. THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2010-10-01

    Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.

  1. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  2. A novel isoindoline, porritoxin sulfonic acid, from Alternaria porri and the structure-phytotoxicity correlation of its related compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Ohnishi, Keiichiro; Iwase, Noriyasu; Nakajima, Yoshikazu; Tounai, Kenji; Yamashita, Masakazu; Yamada, Yasumasa

    2003-07-01

    Novel zinniol-related compound 3, named porritoxin sulfonic acid, with an isoindoline skeleton was isolated from the culture liquid of Alternaria porri. The structure was determined to be 2-(2"-sulfoethyl)-4-methoxy-5-methyl-6-(3'-methyl-2'-butenyloxy)-2,3-dihydro-1H-isoindol-1-one. The phytotoxic activities of three isoindolines (1-3) were evaluated in a seedling-growth assay against stone leek and lettuce.

  3. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes

    Science.gov (United States)

    Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.

    2018-02-01

    Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.

  4. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  5. Crispoic acid, a new compound from Laelia marginata (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus.

    Science.gov (United States)

    Belloto, Andrezza C; Souza, Gredson K; Perin, Paula C; Schuquel, Ivania T A; Santin, Silvana M O; Chiavelli, Lucas U R; Garcia, Francielle P; Kaplum, Vanessa; Rodrigues, Jean H S; Scariot, Débora B; Delvecchio, Rodrigo; Machado-Ferreira, Erik; Santana Aguiar, Renato; Soares, Carlos A G; Nakamura, Celso V; Pomini, Armando M

    2017-11-08

    The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC 50 5.86 ± 0.19 and 20.78 ± 2.72 μg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.

  6. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  7. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  8. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tom C. Karagiannis

    2012-02-01

    Full Text Available Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  9. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  10. Quantitative Analysis of Mixtures of Monoprotic Acids Applying Modified Model-Based Rank Annihilation Factor Analysis on Variation Matrices of Spectrophotometric Acid-Base Titrations

    Directory of Open Access Journals (Sweden)

    Ebrahim Ghorbani-Kalhor

    2015-04-01

    Full Text Available In the current work, a new version of rank annihilation factor analysis was developedto circumvent the rank deficiency problem in multivariate data measurements.Simultaneous determination of dissociation constant and concentration of monoprotic acids was performed by applying model-based rank annihilation factor analysis on variation matrices of spectrophotometric acid-base titrations data. Variation matrices can be obtained by subtracting first row of data matrix from all rows of the main data matrix. This method uses variation matrices instead of multivariate spectrophotometric acid-base titrations matrices to circumvent the rank deficiency problem in the rank quantitation step. The applicability of this approach was evaluated by simulated data at first stage, then the binary mixtures of ascorbic and sorbic acids as model compounds were investigated by the proposed method. At the end, the proposed method was successfully applied for resolving the ascorbic and sorbic acid in an orange juice real sample. Therefore, unique results were achieved by applying rank annihilation factor analysis on variation matrix and using hard soft model combination advantage without any problem and difficulty in rank determination. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;}    

  11. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  12. Homogentisic acid: a phenolic acid as a marker of strawberry-tree (Arbutus unedo) honey.

    Science.gov (United States)

    Cabras, P; Angioni, A; Tuberoso, C; Floris, I; Reniero, F; Guillou, C; Ghelli, S

    1999-10-01

    Analysis of organic acids in strawberry-tree (Arbutus unedo) honey showed the presence of an unknown acid as the main constituent. This compound was isolated and identified as homogentisic acid (2, 5-dihydroxyphenylacetic acid) by MS and NMR techniques. Its average content in honey was 378 +/- 92 mg/kg. Analysis of nectar confirmed the floral origin of the compound found in honey. Since this acid was not detected in any of the different monofloral honeys, it could be used as a marker of strawberry-tree (A. unedo) honey.

  13. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography.

    Science.gov (United States)

    Lukić, Igor; Banović, Mara; Persurić, Dordano; Radeka, Sanja; Sladonja, Barbara

    2006-01-06

    Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.

  14. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  15. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Science.gov (United States)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  16. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  17. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    Science.gov (United States)

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  18. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter

    2005-01-01

    rheometry indicates that the blocks of poly(acrylic acid) are placed on the surface of the microgels. The combination of these three results reveal that the microgels have a core mainly consisting of poly(N-isopropylacrylamide) and a diffuse/cloudy surface consisting mainly of poly(acrylic acid).   The core/shell......  Theoretical development within solid/liquid separation in colloidal systems is largely based on inorganic, low charged and incompressible particles. These do not reflect the properties in biosolid/organic systems. There is therefore a need for a development of colloidal and particles which mimic...

  19. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  20. Structural Modeling of Djenkolic Acid with Sulfur Replaced by Selenium and Tellurium

    Directory of Open Access Journals (Sweden)

    Petr Melnikov

    2014-04-01

    Full Text Available The comparative structural modeling of djenkolic acid and its derivatives containing selenium and tellurium in chalcogen sites (Ch = Se, Te has provided detailed information about the bond lengths and bond angles, filling the gap in what we know about the structural characteristics of these aminoacids. The investigation using the molecular mechanics technique with good approximation confirmed the available information on X-ray refinements for the related compounds methionine and selenomethionine, as well as for an estimate made earlier for telluromethionine. It was shown that the Ch-C(3 and Ch-C(4 bond lengths grow in parallel with the increasing anionic radii. Although the distances C-C, C-O, and C-N are very similar, the geometry of conformers is quite different owing to the possibility of rotation about four carbon atoms, hence the remarkable variability observed in dihedral angles. It was shown that the compounds contain a rigid block with two Ch atoms connected through a methylene group. The standard program Gaussian 03 with graphical interface Gaussview 4.1.2 has proved to be satisfactory tool for the structural description of less-common bioactive compositions when direct X-ray results are absent.

  1. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    Science.gov (United States)

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  2. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2002-01-01

    Complete text of publication follows. The investigations were directed to the determination of the effect of γ-irradiation on various phenolic compounds in strawberries in dependence of dose. A significant decrease of these compounds during irradiation could reduce their beneficial effect on health, which are based on their antioxidative and anticarcinogenic properties. On the other hand hydroxilation of phenolic acids has been proposed as a promising method to distinguish between irradiated and not irradiated fruits and vegetables. Irradiated and not irradiated strawberry samples were homogenized, centrifuged and chromatographically purified from matrix components on polyamide columns. For determination of hydroxybenzoic and hydroxycinnamic acids, which are present as esters or as glycosides, the samples had to be acid/base hydrolized prior to purification. The individual compounds were separated by reversed phase chromatography and detected by means of a diode-array-detector. Peak identification was based on both UV-Vis-spectra and retention times compared with those of standards. In hydrolized samples four phenolic acids [gallic acid, 4-hydroxybenzoic acid, p-coumaric acid and caffeic acid] were identified. Only 4-hydroxybenzoic acid was affected by irradiation (build up with dose). Five flavonoids were detected in non hydrolized samples [(+)-catechin, (-)-epicatechin, kaempferol-3-glucoside, quercetin-3-glucoside and, in trace quantities, quercetin-3-galactoside], the concentration of the catechines and of kaempferol-3-glucoside decreased as irradiation dose increased, whereas those of quercetin-3-glucoside remained unchanged. In addition two as yet unclassified compounds showed a significant change of concentration upon irradiation. One of them (m/e = 450) is decreasing, one (m/e = 318) is increasing to the fivefold at a dose of 6 kGy

  3. High-throughput phytochemical characterization of non-cannabinoid compounds of cannabis plant and seed, from Pakistan

    International Nuclear Information System (INIS)

    Ahmad, F.; Abbasi, T.; Farman, K.; Akrem, A.; Asif, M.; Mahmood, S.; Iqbal, M.U.

    2018-01-01

    The herbs are the natural resources for the infinite phenolic compounds that are used in pharmaceutical industry. These herbs are of significant importance due to their beneficial usage for the human health. Here, we studied a common herbs Cannabis sativa, an important member of the family Cannabaceae for phytochemical characterization. The methanol extract of whole Cannabis plant and seed was analyzed for the identification of non-cannabinoid compounds through High Performance Liquid Chromatography (HPLC) technique, because the non-cannabinoid compounds have not been much studied in C. sativa. These compounds are very useful in different diseases, used in cosmetics and as antioxidant agent. HPLC analysis revealed the presence of a variety of non-cannabinoid compounds including Quercetin, Gallic acid, p-Coumaric acid, m-Coumaric acid, Caffeic acid, Cinnamic acid, Ferulic acid, Benzoic acid and Kampferol. Furthermore, Quercetin was observed with high concentration in whole plant sample, whereas high Gallic acid and absence of m-coumaric acid was noted in the Cannabis seed. It was also observed that plant samples were with higher concentration of cinnamic acid as compared to seed. The Caffeic acid, Benzoic acid and Ferulic acid were in low concentration in both Cannabis plant and seed samples. Kampferol is another important non-cannabinoid compound that was also quantified in both samples. This research will be providing a foundation for further molecular characterization of Cannabis plant and seed for their beneficial usage. (author)

  4. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  5. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  6. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids.

    Directory of Open Access Journals (Sweden)

    Fernando Barreto-Curiel

    Full Text Available Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS and of amino acids (compound specific isotope analysis, CSIA. There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N and per amino acid (δ13C and δ15N, in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized.

  7. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    Science.gov (United States)

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.

    Science.gov (United States)

    Chen, Li-Song; Nose, Akihiro

    2004-09-01

    Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. These results corroborate our hypothesis that day-night changes in the contents of energy-rich compounds differ between CAM species and are related to the

  9. Pericocins A-D, New Bioactive Compounds from Periconia sp.

    Science.gov (United States)

    Wu, Yue-Hua; Xiao, Gao-Keng; Chen, Guo-Dong; Wang, Chuan-Xi; Hu, Dan; Lian, Yun-Yang; Lin, Feng; Guo, Liang-Dong; Yao, Xin-Sheng; Gao, Hao

    2015-12-01

    One new dihydroisocoumarin, pericocin A (1), one new chromone, pericocin B (2), and two new α-pyrone derivatives, pericocins C-D (3-4), together with two known compounds, 3-(2-oxo-2H-pyran-6-yl)propanoic acid (5) and (E)-3-(2-oxo-2H-pyran-6-yl)acrylic acid (6), were isolated from the culture of the endolichenic fungus Periconia sp.. Their structures were elucidated by spectroscopic methods. All these compounds are derived from the polyketone biosynthetic pathway. Compound 1 was obtained as a mixture of enantiomers. The antimicrobial activity of compounds 1-5 was tested against Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans. Compounds 1-5 showed moderate antimicrobial activity against A. niger and weak activity against C. albicans.

  10. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  11. Synthesis of morpholine derivatives and Bunte's salt as compounds of potential radioprotective activity

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1980-01-01

    The purpose of the present study was to obtain several compounds possessing radioprotective activity. The syntheses yielded seven undescribed compounds i.e.: benzyl ester of the N-morpholinecarbathionothioglicol acid, ester bis S-(morpholine-4-thiocarbonyl)-2-thioethyl, morpholine salt of the N-morpholinecarbothionothiolic acid, sodium and potassium salt of S-morpholine-4-carbonyl, methylthiosulfate, sodium and potassium salt of beta-hydroxyethyl thiosulfate. Moreover, with the aid of other methods following compounds were synthetized: beta-S-(morpholine-4-thiocarbonyl) ethyl thiopropioniane, amide of the S-(morpholine-4-thiocarbonyl)-thioglicol acid, acid S-(morpholine-4-thiocarbonyl)-thioglicol acid, sodium salt of the S-(morpholine-4-thiocarbonyl)-thioglicol acid. The structure of these compounds was confirmed using elementary and spectral analysis.

  12. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  13. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2000-01-01

    A study on uptake of neutral and dissociating organic compounds from soil solution into roots, and their subsequent translocation, was undertaken using model simulations. The model approach combines the processes of lipophilic sorption, electrochemical interactions, ion trap, advection in xylem...... and dilution by growth. It needs as input data, apart fromplant properties, log KOW, pKa and the valency number of the compound, and pH and chemical concentration in the soil solution. Equilibrium and dynamic (steady-state) models were tested against measured data from several authors, including non...

  14. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  15. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    Science.gov (United States)

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cold-pressed pumpkin seed (Cucurbita pepo L. oils from the central Anatolia region of Turkey: Characterization of phytosterols, squalene, tocols, phenolic acids, carotenoids and fatty acid bioactive compounds

    Directory of Open Access Journals (Sweden)

    G. Akin

    2018-03-01

    Full Text Available There is a growing interest in cold-pressed oils because they present high contents of bioactive compounds. These oils have the characteristic properties of seeds and are specific products of their regions. The aim of this study was to determine the compositions and contents of fatty acids, phytosterols, squalene, tocols, phenolic acids, carotenoids and phenolic bioactives, and the free radical scavenging as well as antioxidant activities of cold-pressed pumpkin (Cucurbita pepo L. seed oils. Oil samples from raw pumpkin seeds cultivated in four different central Anatolia regions of Turkey were prepared using a laboratory screw-pressing machine. The results indicate that cold-pressed pumpkin seed oils (PSO have excellent quality with high contents of polyunsaturated fatty acids (%ΣPUFAs (53.60 ±0.06-53.73 ±0.05, total phytosterols (782.1±9.7–805.2 ±11.3 mg/100 g oil, squalene (591.3±10.6–632.5±11.4 mg/100 g oil, tocols (97.79 ±0.76?94.29 ±0.34 mg/100 g oil, phenolic acids (22.73 ±0.41–23.98 ±0.46 mg/100 g oil, carotenoids (6.95 ±0.03–7.60 ±0.03 mg/100 g oil, total phenolics (3.96 ±0.13 –5.82±0.15 mg GAE/100 g, free radical-scavenging activity (5.70 ±0.13?7.35 ±0.15 mg GAE/100 g and total antioxidant activity (26.67±0.97-38.89±1.41 mg GAE/100 g values. Thus, this study demonstrates that the cold- pressed PSOs from the central Anatolia regions of Turkey are an excellent source of natural bioactive compounds, free of chemical contaminants and nutritious.

  17. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  18. A Study on Labelling of Linolenic Acid as A Model of Isolated Benalu Teh for Cancer Diagnosis with Iodine-131

    International Nuclear Information System (INIS)

    Isti Daruwati; Eva Maria Widyasari; Nanny Kartini Oekar

    2009-01-01

    A study on active fraction of benalu teh has been carried out at Center for Application of Isotope and Radiation Technology - BATAN. This benalu teh active fraction has inhibition capability about 99% to the cancer cell. The isolated fraction is octadeca-8,10,12-triyonic acid compound which have long chain unsaturated fatty acid compound with three triple bonds. The Benalu teh active fraction has similar structure with linolenic acid which is a long chain unsaturated fatty acid with three triple bonds. Based on this similarity, the study of labelling of linolenic acid with iodine-131 has been conducted. The research was focused on optimum conditions for labelling of linolenic acid using Iodine-131 radionuclide. Labelling with iodine-131 was conducted using KIO 3 as an oxidizing agent, which can additionated linolenic acid and sodium metabisulfite for ending the reaction. Labelling efficiency determination was conducted using paper chromatography technique. The result showed that the optimum condition achieved by using KIO 3 as an oxidizing agent that gave radiochemical purity of 99,44% in virgin coconut oil, and labelling efficiency of about 69,9%. The labelled compound has high radiochemical purity i.e 96,85% in chloroform and 98,33% virgin coconut oil that was stable until 10 days in refrigerator. (author)

  19. DEVELOPMENT AND VALIDATION OF AN AIR-TO-BEEF FOOD CHAIN MODEL FOR DIOXIN-LIKE COMPOUNDS

    Science.gov (United States)

    A model for predicting concentrations of dioxin-like compounds in beef is developed and tested. The key premise of the model is that concentrations of these compounds in air are the source term, or starting point, for estimating beef concentrations. Vapor-phase concentrations t...

  20. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  1. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer’s and Vascular Dementia Drugs

    Directory of Open Access Journals (Sweden)

    Solomon Habtemariam

    2018-02-01

    Full Text Available Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA. A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B, that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer’s disease (AD and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ pathologies among others and neuronal regeneration from stem cells.

  2. Hydroxamic acid content and toxicity of rye at selected growth stages.

    Science.gov (United States)

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at

  3. Antioxidant Phenolic Compounds from Pu-erh Tea

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-11-01

    Full Text Available Eight compounds were isolated from the water extract of Pu-erh tea and their structures were elucidated by NMR and MS as gallic acid (1, (+-catechin (2, (−-epicatechin (3, (−-epicatechin-3-O-gallate (4, (−-epigallocatechin-3-O-gallate (5, (−-epiafzelechin- 3-O-gallate (6, kaempferol (7, and quercetin (8. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The relative order of DPPH scavenging capacity for these compounds was compound 8 > compound 7 > compound 1 > compound 6 > compound 4 ≈ compound 5 > compound 2 > VC (reference > compound 3, and that of ABTS scavenging capacity was compound 1 > compound 2 > compound 7 ≈ compound 8 > compound 6 > compound 5 > compound 4 > VC (reference > compound 3. The results showed that these phenolic compounds contributed to the antioxidant activity of Pu-erh tea.

  4. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    Science.gov (United States)

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  6. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  7. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    Science.gov (United States)

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  9. Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo

    Directory of Open Access Journals (Sweden)

    Nadia Tabassum

    2016-01-01

    Full Text Available There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes. Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.

  10. Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo.

    Science.gov (United States)

    Tabassum, Nadia; Lee, Ji-Hyung; Yim, Soon-Ho; Batkhuu, Galzad Javzan; Jung, Da-Woon; Williams, Darren R

    2016-01-01

    There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood) was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes). Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.

  11. Predicting acid dew point with a semi-empirical model

    International Nuclear Information System (INIS)

    Xiang, Baixiang; Tang, Bin; Wu, Yuxin; Yang, Hairui; Zhang, Man; Lu, Junfu

    2016-01-01

    Highlights: • The previous semi-empirical models are systematically studied. • An improved thermodynamic correlation is derived. • A semi-empirical prediction model is proposed. • The proposed semi-empirical model is validated. - Abstract: Decreasing the temperature of exhaust flue gas in boilers is one of the most effective ways to further improve the thermal efficiency, electrostatic precipitator efficiency and to decrease the water consumption of desulfurization tower, while, when this temperature is below the acid dew point, the fouling and corrosion will occur on the heating surfaces in the second pass of boilers. So, the knowledge on accurately predicting the acid dew point is essential. By investigating the previous models on acid dew point prediction, an improved thermodynamic correlation formula between the acid dew point and its influencing factors is derived first. And then, a semi-empirical prediction model is proposed, which is validated with the data both in field test and experiment, and comparing with the previous models.

  12. On the (R,s,Q) Inventory Model when Demand is Modelled as a Compound Process

    NARCIS (Netherlands)

    Janssen, F.B.S.L.P.; Heuts, R.M.J.; de Kok, T.

    1996-01-01

    In this paper we present an approximation method to compute the reorder point s in a (R; s; Q) inventory model with a service level restriction, where demand is modelled as a compound Bernoulli process, that is, with a xed probability there is positive demand during a time unit, otherwise demand is

  13. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    Science.gov (United States)

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  14. Prediction of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    OA fund TU Delft Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Car-bontetrachloride, Carbontetrabromide) by NF

  15. Fig volatile compounds--a first comparative study.

    Science.gov (United States)

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  16. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems.

    Science.gov (United States)

    Ozdemir, N; Ozalp, Y; Ozkan, Y

    2000-01-01

    In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.

  18. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  19. Synthesis, biological activity and computational studies of novel azo-compounds

    International Nuclear Information System (INIS)

    Ashraf, J.; Murtaza, S.; Mughal, E.U.; Sadiq, A.

    2017-01-01

    In the present protocol, we report the synthesis and characterization of some novel azo-compounds starting from 4-methoxyaniline and 4-aminophenazone, which were diazotized at low temperature. 4-nitrophenol, 2-aminobenzoic acid, benzamide, 4-aminobenzoic acid, resorcinol, o-bromonitrobenzene and 2-nitroaniline were used as active aromatic coupling compounds for the second step. The synthesized compounds were investigated for their potential antibacterial activities by using disc diffusion method against Escherichia coli, Shigellasonnei, Streptococcus pyrogenes, Staphylococcus aureus and Neisseria gonorrhoeae strains. They were also subjected to antioxidant activities by using DPPH method. Results revealed that the compounds of 4-methoxyaniline and 4-aminophenazone showed good antibacterial activity against all strains, where as some azo-compounds have moderate to good antioxidant activities. Furthermore, these compounds were studied by computational analysis. (author)

  20. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes...

  1. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  2. Microbial degradation of water-insoluble organic compounds

    International Nuclear Information System (INIS)

    Thomas, J.M.

    1985-01-01

    The effect of solubilization on biodegradation of water-insoluble organic compounds was investigated. The effect of particle size on solubilization and degradation of 4-chlorobiphenyl (4-CB) and naphthalene by a microbial mixture was determined. The concentration of soluble compound was determined using gas-liquid chromatography. The rates of solubilization were inversely related to particle size for both compounds. The rates of mineralization of 14 C-labeled palmitic acid, octadecane, di(2-ethylhexyl)phthalate (DEHP), and Sevin (1-naphthyl N-methylcarbamate) by microbial mixtures were determined by trapping the 14 CO 2 formed, and those rates were compared to solubilization rates determined by periodically filtering sterile MS amended with one of the compounds. Mineralization and colonization of the surface of 10 μg palmitic acid per 10 ml MS by Pseudomonas pseudoflava was determined by trapping 14 CO 2 and epifluorescence microscopy. Mineralization began before colonization and was initially exponential, but the rate then declined. The rate of mineralization at the end of the exponential phase approximated the rate of solubilization. The surface was completely covered about the time mineralization stopped. Unbound cells grew exponentially before colonization was detected; however, colonization of the surface was complete after the number of free cells stopped increasing. The data suggest that soluble palmitic acid is utilized before the insoluble phase but colonization is important in the mineralization of palmitic acid when solubilization becomes rate limiting

  3. Estimation of Physical Properties of Amino Acids by Group-Contribution Method

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Gani, Rafiqul

    2018-01-01

    In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (Tm), aqueous solubility (Ws), and octanol....../water partition coefficient (Kow) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective...... of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using...

  4. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    Science.gov (United States)

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. On complex compounds of molybdenum(5) with nicotinic amide, isonicotinic acid hydrazide and some of its derivatives

    International Nuclear Information System (INIS)

    Azizov, M.M.; Kushakbaev, A.; Parpiev, N.A.

    1977-01-01

    Oxychloride complexes of molybdenum (5) with polyfunctional ligands (L), namely with nicotinamide (NA), isonicotinic acid hydrazide (INH) and its derivatives (ftivazide, saluzide and larusan) have been synthesized and investigated. In ethanol all the ligands independently of their molar ratio form with MoCl 5 a non-electrolite compound MoOCl 3 xL 2 . Infrared spectra of the complexes suggest that in Mo(5) complexeS with NA and INH the central atom is bound through the pyridine nitrogen, whereas in the complexes with INH derivatives it is bound throught the carbonyl group oxygen

  7. Novel acid mono azo dye compound: Synthesis, characterization, vibrational, optical and theoretical investigations of 2-[(E)-(8-hydroxyquinolin-5-yl)-diazenyl]-4,5-dimethoxybenzoic acid

    Science.gov (United States)

    Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat

    2012-11-01

    Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.

  8. Metabolism of [14C]bicarbonate by Streptococcus lactis: identification and distribution of labelled compounds

    International Nuclear Information System (INIS)

    Hillier, A.J.; Jago, G.R.

    1978-01-01

    Streptococcus lactis C10, grown in tryptone-yeast extract-lactose broth containing [ 14 C] bicarbonate, incorporated radioactivity into the protein and nucleic acid fractions of the cell as well as into compounds which were excreted by the organism into the growth medium. Aspartic acid was the first compound to be labelled and was the only amino acid labelled in the cell protein. All 4 bases were labelled in the cell RNA. Aspartic, succunuc and lactic acids were the radioactive compounds excreted into the growth medium. (U.K.)

  9. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  10. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  11. Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce.

    Science.gov (United States)

    Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu

    2013-04-10

    An investigation using the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from a raw Japanese soy sauce and the heated soy sauce revealed 40 key aroma compounds including 7 newly identified compounds. Among them, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone and 3-hydroxy-4,5-dimethyl-2(5H)-furanone exhibited the highest flavor dilution (FD) factor of 2048, followed by 3-(methylthio)propanal, 4-ethyl-2-methoxyphenol, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone having FD factors from 128 to 512 in the raw soy sauce. Furthermore, comparative AEDAs, a quantitative analysis, and a sensory analysis demonstrated that whereas most of the key aroma compounds in the raw soy sauce were common in the heated soy sauce, some of the Strecker aldehydes and 4-vinylphenols contributed less to the raw soy sauce aroma. The model decarboxylation reactions of the phenolic acids during heating of the raw soy sauce revealed that although all reactions resulted in low yields, the hydroxycinnamic acid derivatives were much more reactive than the hydroxybenzoic acid derivatives due to the stable reaction intermediates. Besides the quantitative analyses of the soy sauces, the estimation of the reaction yields of the phenolic compounds in the heated soy sauce revealed that although only the 4-vinylphenols increased during heating of the raw soy sauce, they might not mainly be formed as decarboxylation products from the corresponding hydroxycinnamic acids but from the other proposed precursors, such as lignin, shakuchirin, and esters with arabinoxylan.

  12. Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin

    Science.gov (United States)

    Scheer, Adam Michael

    Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition

  13. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus.

    Science.gov (United States)

    Zhang, Shuo; Winestrand, Sandra; Guo, Xiang; Chen, Lin; Hong, Feng; Jönsson, Leif J

    2014-04-30

    Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified. Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to ~40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%. This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a better understanding of how

  14. A Compound Model for the Origin of Earth's Water

    Science.gov (United States)

    Izidoro, A.; de Souza Torres, K.; Winter, O. C.; Haghighipour, N.

    2013-04-01

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  15. A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER

    International Nuclear Information System (INIS)

    Izidoro, A.; Winter, O. C.; De Souza Torres, K.; Haghighipour, N.

    2013-01-01

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  16. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    Science.gov (United States)

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  17. Use of octaketide synthases to produce kermesic acid and flavokermesic acid

    DEFF Research Database (Denmark)

    2017-01-01

    A method for producing an octaketide derived aromatic compound of interest (e.g. carminic acid), wherein the method comprises (I): heterologous expression of a recombinantly introduced Type III polyketide synthase (PKS) gene encoding an octaketide synthase (OKS) to obtain non-reduced octaketide...... in vivo within the recombinant host cell and (II): converting in vivo the non-reduced octaketide of step (I) into a C14-C34 aromatic compound of interest (e.g. carminic acid)....

  18. Use of octaketide synthases to produce kermesic acid and flavokermesic acid

    DEFF Research Database (Denmark)

    2016-01-01

    A method for producing an octaketide derived aromatic compound of interest (e.g. carminic acid), wherein the method comprises (I): heterologous expression of a recombinantly introduced Type III polyketide synthase (PKS) gene encoding an octaketide synthase (OKS) to obtain non-reduced octaketide...... in vivo within the recombinant host cell and (II): converting in vivo the non-reduced octaketide of step (I) into a C14-C34 aromatic compound of interest (e.g. carminic acid)....

  19. Crystal structure of caesium hydrogen (L)-aspartate and an overview of crystalline compounds of aspartic acid with inorganic constituents

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, M. [Universitaet Wien (Austria). Institut fuer Mineralogie und Kristallographie; Emmerich, R.; Bohaty, L. [Universitaet zu Koeln (Austria). Institut fuer Kristallographie

    2010-08-15

    The crystal structure of the new polar compound caesium hydrogen (L)-aspartate, Cs(C{sub 4}H{sub 6}NO{sub 4}), (abbreviated: Cs(L -AspH)) was determined from single crystal X-ray diffraction data; it comprises two crystallographically different L -AspH anions that are connected via caesium cations to form a three dimensional framework. The Cs ions are irregularly sevenfold[Cs1O{sub 7}] respectively eightfold[Cs2O{sub 8}] coordinated to all {alpha}- and {beta}- carboxylate oxygen atoms. Cs(L -AspH) represents a novel structure type of its own, as do most compounds of (L)-aspartic acid with inorganic constituents. A brief summary of such structurally known aspartates is given. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Investigating the chemical changes of chlorogenic acids during coffee brewing: conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides.

    Science.gov (United States)

    Matei, Marius Febi; Jaiswal, Rakesh; Kuhnert, Nikolai

    2012-12-12

    Coffee is one of the most popular and consumed beverages in the world and is associated with a series of benefits for human health. In this study we focus on the reactivity of chlorogenic acids, the most abundant secondary metabolites in coffee, during the coffee brewing process. We report on the hydroxylation of the chlorogenic acid cinnamoyl substituent by conjugate addition of water to form 3-hydroxydihydrocaffeic acid derivatives using a series of model compounds including monocaffeoyl and dicaffeoylquinic acids and quinic acid lactones. The regiochemistry of conjugate addition was established based on targeted tandem MS experiments. Following conjugate addition of water a reversible water elimination yielding cis-cinnamoyl derivatives accompanied by acyl migration products was observed in model systems. We also report the formation of all of these derivatives during the coffee brewing process.

  1. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals.

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan

    2016-10-01

    Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO 3 ) 2 (200 μM), ZnSO 4 ·7H 2 O (100 μM), CuSO 4 ·5H 2 O (25 μM), and CdCl 2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.

  2. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  3. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis.

    Science.gov (United States)

    Donazzolo, Elena; Gucciardi, Antonina; Mazzier, Daniela; Peggion, Cristina; Pirillo, Paola; Naturale, Mauro; Moretto, Alessandro; Giordano, Giuseppe

    2017-04-01

    Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO 3 -TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ravynic acid, an antibiotic polyeneyne tetramic acid from Penicillium sp. elucidated through synthesis.

    Science.gov (United States)

    Myrtle, J D; Beekman, A M; Barrow, R A

    2016-09-21

    A new antibiotic natural product, ravynic acid, has been isolated from a Penicillium sp. of fungus, collected from Ravensbourne National Park. The 3-acylpolyenyne tetramic acid structure was definitively elucidated via synthesis. Highlights of the synthetic method include the heat induced formation of the 3-acylphosphorane tetramic acid and a selective Wittig cross-coupling to efficiently prepare the natural compounds carbon skeleton. The natural compound was shown to inhibit the growth of Staphylococcus aureus down to concentrations of 2.5 µg mL(-1).

  5. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  6. A review on usnic acid, an interesting natural compound

    Science.gov (United States)

    Cocchietto, Moreno; Skert, Nicola; Nimis, Pier Luigi; Sava, Gianni

    2002-03-01

    Lichens are a world-widespread consortium of fungal and photosynthetic partners. Usnic acid is one of the most common and abundant lichen metabolites, well known as an antibiotic, but also endowed with several other interesting properties. This review summarises the most relevant studies on usnic acid, focusing on a number of biological activities in different fields. On the basis of the existing literature, usnic acid seems to be an exclusive lichen product. No synthetic derivatives more effective than the natural form are known. Both the (+) and (-) enantiomers of usnic acid are effective against a large variety of Gram-positive (G+) bacterial strains, including strains from clinical isolates, irrespective of their resistant phenotype. Of particular relevance is the inhibition of growth of multi-resistant strains of Streptococcus aureus, enterococci and mycobacteria. The (+)-usnic acid enantiomer appears to be selective against Streptococcus mutans without inducing perturbing side effects on the oral saprophyte flora. On the other hand, the (-)-usnic acid enantiomer is a selective natural herbicide because of its blocking action against a specific key plant enzyme. Other recognised characteristics of usnic acid are ultraviolet absorption and preserving properties. The toxicology, the in vitro anti-inflammatory effects and the mechanism of action of usnic acid need to be investigated in greater detail in order to reach clinical trials and to allow further applications. Furthermore, more research is needed to make possible intensive lichen culture, in order to produce large quantities of lichen substances for pharmaceutical, cosmetic and agricultural purposes. Some biological aspects, i.e. the possible biological roles of usnic acid, are discussed.

  7. An introduction to the chemistry of complex compounds

    CERN Document Server

    Grinberg, Aleksander Abramovich; Trimble, R F

    1962-01-01

    An Introduction to the Chemistry of Complex Compounds discusses the fundamental concepts that are essential in understanding the underlying principles of complex compounds. The coverage of the book includes the compounds of the hexa, penta, and tetrammine type; compounds of the tri, dl, monoamine and hexacido types for the coordination number of 6; and complex compounds with a coordination number of 4. The text also covers the effects and chemical properties of complex compounds, such as the nature of the force of complex formation; the mutual effects of coordinated groups; and acid-base prope

  8. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  9. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.

    Science.gov (United States)

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures.

  10. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  11. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  12. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    Science.gov (United States)

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  13. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  14. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Teixeira, J.A.; Nunes, W.D.G.; Colman, T.A.D.; Nascimento, A.L.C.S do; Caires, F.J.; Campos, F.X.; Gálico, D.A.; Ionashiro, M.

    2016-01-01

    Highlights: • The p-aminobenzoic acid melts followed partial evaporation. • The stoichiometry of compounds was established by TG, EA and complexometry. • The TG–DTA curves provided previously unreported information about thermal behavior. - Abstract: The characterization, thermal stability and thermal decomposition of some lighter trivalent lanthanide p-aminobenzoates, Ln(C 7 H 6 NO 2 ) 3 ·H 2 O (Ln = La, Ce, Pr, Nd, Sm), as well as the thermal behavior and spectroscopic study of p-aminobenzoic acid C 7 H 7 NO 2 and its sodium salt were investigated. The following methods were utilized: simultaneous thermogravimetry and differential thermal analysis (TG–DTA) in dynamic dry air and nitrogen atmospheres; differential scanning calorimetry (DSC); middle (MIR) and near (NIR) infrared region spectroscopy; evolved gas analysis (EGA); elemental analysis; complexometry; X-ray diffraction (XRD); and diffuse reflectance spectroscopy (DR) in the ultraviolet and visible regions. All the compounds were obtained monohydrated and the thermal decomposition occurred in two, three or four steps in an air atmosphere, and three or four steps in N 2 atmosphere. In both atmospheres (air and N 2 ) the final residues were CeO 2 , Pr 6 O 11 , Ln 2 O 3 (Ln = La, Nd, Sm). The results also provided information concerning the coordination mode and thermal behavior, as well as the identification of the gaseous products which evolved during the thermal decomposition of these compounds. The DR and NIR spectra provided information about the ligand absorption bands and the f–f transitions of the Nd 3+ , Pr 3+ and Sm 3+ ions.

  15. Chemical speciation and equilibria of some nucleic acid compounds and their iron(III) complexes

    Science.gov (United States)

    Masoud, Mamdouh S.; Abd El-Kaway, Marwa Y.; Hindawy, Ahmed M.; Soayed, Amina A.

    The pH effect on electronic absorption spectra of some biologically active nucleic acid constituents have been studied at room temperature and the mechanism of ionization was explained. These compounds are of two categories (pyrimidines: [barbital; 5,5'-diethyl-barbituric acid], [SBA; 4,6-dihydroxy-2-mercapto-pyrimidin], [NBA; 5-nitro-2,4,6(1H,3H,5H)-pyrimidine trione] and [TU; 2,3-dihydro-2-thioxo-pyrimidin-4(1H)-one]) and (purines: [adenine; 6-amino purine], its [Schiff bases derived from adenine-acetylacetone; (Z)-4-(7H-purin-6-ylimino)pentan-2-one) and adenine-salicylaldehyde; 2-((7H-purin-6-ylimino) methyl) phenol] and its [Azo derived from adenine-resorcinol; 4-((7H-purin-6-yl)-diazenyl) benzene-1,3-diol]. The phenomena of tautomerization assigned different tautomers. Different spectrophotometric methods are applied to evaluate the pK's values that explained with their molecular structures. The interaction of Fe3+ with some selected pyrimidines (barbital, NBA and SBA) was explained using familiar six spectrophotometric methods. The data typified the existence of different absorbing species with the different stoichiometries 1:1, 1:2, 1:3 and 2:3. The stability constant of the complexes was computed. More approach was deduced to assign the existence of different species applying the distribution diagrams.

  16. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    Science.gov (United States)

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  17. Coordination compounds of titanium, zirconium, tin, thorium and uranium

    International Nuclear Information System (INIS)

    Deshpande, S.G.; Jain, S.C.

    1990-01-01

    Reactions of isatin, furoic acid and picolinic acid have been carried out with titanium tetrachloride, tin tetrachloride, thorium tetrachloride, zirconyl chloride and uranyl nitrate. While 2:3(metal:ligand) type compounds of isatin have been obtained with Ti(IV) and Sn(IV), zirconium(IV), thorium(IV), and uranium(VI) do not react with the ligand under similar experimental conditions. Furoic acid (FAH) and picolinic acid(PicH) form various chloro furoates and picolinates when reacted with TiCl 4 , ZrOCl 2 and ThCl 4 , but do not react with SnCl 4 . The various compounds synthesised have been characterised on the basis of elemental analysis, infrared studies, conductivity and thermogravimetric measurements. (author). 1 tab., 10 refs

  18. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA.

    Science.gov (United States)

    Lorber, Matthew; Egeghy, Peter P

    2011-10-01

    Models for assessing intakes of perfluorooctanoic acid, PFOA, are described and applied. One model is based on exposure media concentrations and contact rates. This model is applied to general population exposures for adults and 2-year old children. The other model is a simple one-compartment, first-order pharmacokinetic (PK) model. Parameters for this model include a rate of elimination of PFOA and a blood volume of distribution. The model was applied to data from the National Health and Nutritional Examination Survey, NHANES, to backcalculate intakes. The central tendency intake estimate for adults and children based on exposure media concentrations and contact rates were 70 and 26 ng/day, respectively. The central tendency adult intake derived from NHANES data was 56 and 37 ng/day for males and females, respectively. Variability and uncertainty discussions regarding the intake modeling focus on lack of data on direct exposure to PFOA used in consumer products, precursor compounds, and food. Discussions regarding PK modeling focus on the range of blood measurements in NHANES, the appropriateness of the simple PK model, and the uncertainties associated with model parameters. Using the PK model, the 10th and 95th percentile long-term average adult intakes of PFOA are 15 and 130 ng/day.

  19. The Dangling model in the construction of compound sentences with regard to verb tenses

    Directory of Open Access Journals (Sweden)

    Mahmoud Mehravaran

    2016-02-01

    the mistakes of some of the grammars. This research project has for the first time introduced constructive models of compound sentences in a comprehensive research taking in to account the tense of the verbs. The primary question in this research project is which kind of sentences can be considered as compound and what is the constructive of such a sentence? When defining a compound sentences, grammarians either shave the same beliefs or differ in their ideas. But all grammarians agree to the fact that a compound sentences has more than one verb. Different definitions are due to different criteria adapted in constructing a compound sentences. To construct a noun, and adjective, a verb and a sentence we should take similar and precise criteria to our consideration. In the grammatical units of noun, adjectives, and verbs construction means connecting two or more parts that can convey one similar meaning and its parts are dependent upon one another.  In the construction of compound sentences there must be the same criteria so that its applications can be truly recognized and identified just like the previously mentioned grammatical units. The first step to arrive at a criterion in defining and identifying compound sentences, is to separate this discussion from connective sentences that are relate to each other with connectives are called connective sentences. But sentences which are constructed with dependent making connectives and their parts are dependent upon one another are called compound sentences. Therefore the signs of compound sentences with regard to constructions and the meaning of criterion are as follows: 1 They have more than one verb. 2 The consistence of two or more dependent phrases. 3 Phrases construct a complete sentences all together and convey one similar message. 4 One of the phrases is the main clause and the other one is the subordinate one. 5 The phrases or subordinate clauses can be related to one of the major parts and they can take a

  20. Pyridine group assisted addition of diazo-compounds to imines in the 3-CC reaction of 2-aminopyridines, aldehydes, and diazo-compounds.

    Science.gov (United States)

    Gulevich, Anton V; Helan, Victoria; Wink, Donald J; Gevorgyan, Vladimir

    2013-02-15

    A novel three-component coupling (3-CC) reaction of 2-aminoazines, aromatic aldehydes, and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles as well as β-amino acid derivatives.

  1. Bioactive compounds in different acerola fruit cultivares

    Directory of Open Access Journals (Sweden)

    Flávia Aparecida de Carvalho Mariano-Nasser

    2017-08-01

    Full Text Available The increased consumption of acerola in Brazil was triggered because it is considered as a functional food mainly for its high ascorbic acid content, but the fruit also has high nutritional value, high levels of phenolic compounds, total antioxidant activity, anthocyanins and carotenoids in its composition. The objective was to evaluate the chemical, physical-chemical and antioxidant activity of eight varieties of acerola tree. The acerolas used in the research were the harvest 2015, 8 varieties: BRS 235 - Apodi, Mirandópolis, Waldy - CATI 30, BRS 238 - Frutacor, Okinawa, BRS 236 - Cereja, Olivier and BRS 237 - Roxinha, from the Active Bank Germplasm APTA Regional Alta Paulista in Adamantina - SP. Avaluated the following attributes: pH, titratable acidity, soluble solids, reducing sugar, instrumental color, ascorbic acid, total phenolics, flavonoids and antioxidant activity. The design was completely randomized, 8 varieties and 3 replications of 20 fruits each. Acerola fruit of the analyzed varieties prove to be good sources of phenolic compounds and antioxidant activity, ensuring its excellent nutritional quality relative to combat free radicals. The variety BRS 236 - Cereja presents higher ascorbic acid content, antioxidant activity and phenolic compounds, and the lowest value for flavonoid, which was higher than the other cultivars, especially Olivier and Waldy CATI-30.

  2. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  3. Action Mechanism of Iridoid Compounds on Guinea-pig Right Atrium Specimens

    OpenAIRE

    齊藤, 久美子; 酒井 淳一; 堀田 芳弘

    2016-01-01

     We examined the actions of iridoid compounds (aucubin (Auc), geniposidic acid (GA)) and a noniridoid compound (chlorogenic acid (CA)) contained in Eucommia leaves [1] [2], which show blood pressure-lowering effects, on the heart using right atrial specimens isolated from guinea pigs. These 3 compounds showed negative inotropic effects (NIE) and negative chronotropic effects (NCE) at a final concentration of 10 -5 or 10 -4 M in an experiment using right atrial specimens. Furthermore, pretreat...

  4. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    Science.gov (United States)

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  5. Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, Valentina [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Socol, Gabriel [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Holban, Alina Maria [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest (Romania); Ficai, Anton [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Truşcǎ, Roxana [S.C. Metav-CD S.A., 31Rosetti Str., 020015 Bucharest (Romania); Bleotu, Coralia [Stefan S Nicolau Institute of Virology, Bucharest (Romania); Balaure, Paul Cǎtǎlin [Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica Universitiy of Bucharest, Polizu Street no 1-7, 011061 Bucharest (Romania); Cristescu, Rodica [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); Chifiriuc, Mariana Carmen [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest (Romania)

    2014-05-01

    We report the fabrication of thin coatings of PLA–PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  6. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    Science.gov (United States)

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  7. CodonTest: modeling amino acid substitution preferences in coding sequences.

    Directory of Open Access Journals (Sweden)

    Wayne Delport

    2010-08-01

    Full Text Available Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.

  8. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi

    2013-01-01

    include critical temperature or temperature/critical volume/acentric factor/critical pressure/reduced temperature/reduced normal boiling point temperature/molecular weight of the compounds. Around 1,300 surface tension data of 118 random compounds are used for developing the first model (a four...

  9. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    Science.gov (United States)

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Host cells and methods for producing diacid compounds

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.; Keasling, Jay D.

    2018-04-24

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  11. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches

    International Nuclear Information System (INIS)

    Boussicault, F.

    2006-09-01

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  12. Treatment of phthalic acid esters by electrocoagulation with stainless steel electrodes using dimethyl phthalate as a model compound.

    Science.gov (United States)

    Kabdaşli, Işik; Keleş, Asuman; Olmez-Hanci, Tuğba; Tünay, Olcay; Arslan-Alaton, Idil

    2009-11-15

    In this study, treatment of phthalates by electrocoagulation employing stainless steel electrodes was investigated using dimethyl phthalate (DMP) as a model compound. DMP was completely destructed within 30 min up to the high initial concentration of 100mg/L while total mineralization was also obtained within a couple of hours. The applied current density of 22.5 mA/cm(2) and electrolyte (NaCl) concentrations varying between 1000 and 1500 mg/L as chloride resulted in the highest treatment performance. The initial solution pH (2-6) had practically no effect on the process efficiency. Desorption experiments and the reaction rates obtained for DMP, COD and TOC abatements appeared to be a strong evidence of an oxidative removal mechanism. DMP removal fitted first order kinetics. COD and TOC removals began after the total DMP removal and also fitted first order kinetics. Activated sludge inhibition experiments revealed that toxicity could be significantly reduced by electrocoagulation application.

  13. Analysis of volatile compounds of Malaysian Tualang ( Koompassia ...

    African Journals Online (AJOL)

    Analysis of volatile compounds of Malaysian Tualang ( Koompassia excelsa ) honey using gas chromatography mass spectrometry. ... Other classes of chemical compounds detected included acids, aldehydes, alcohols, ketones, terpenes, furans and a miscellaneous group. Methanol yielded the highest number of extracted ...

  14. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  15. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Du, Jianjun; McGraw, Amy; Hestekin, Jamie

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...

  16. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    Science.gov (United States)

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radiation induced chemical changes of phenolic compounds in strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Breitfellner, F.; Solar, S. E-mail: sonja.solar@univie.ac.at; Sontag, G

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  18. Radiation induced chemical changes of phenolic compounds in strawberries

    International Nuclear Information System (INIS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-01-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment

  19. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  20. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  1. Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval

    Science.gov (United States)

    Schneider, Darryl W.; Logan, Gordon D.

    2009-01-01

    How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…

  2. Flavor and taste compounds analysis in Chinese solid fermented ...

    African Journals Online (AJOL)

    A total of 82 kinds of volatile compounds were identified, including alcohols, acids, esters, aldehydes, ketones, phenols, heterocyclic compounds, alkynes and benzenes. The subtle aroma of the soy sauce seemed to depend not only on particular key compounds but also on a “critical balance” or a “weighted concentration

  3. Folic acid derivatives for use in radioimmunoassay

    International Nuclear Information System (INIS)

    Ali, A.

    1981-01-01

    The chemical preparation of two folic acid derivatives, labelled with 125 I or 131 I, is described for use in radioimmunoassay of folic acid and its metabolites in biological fluids such as blood serum. Labelled compounds of the present invention more closely resemble folic acid in that they have glutamic acid in the terminal position. Examples of the use of these compounds in three different assays are given. (U.K.)

  4. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    Science.gov (United States)

    CHEN, LI-SONG; NOSE, AKIHIRO

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. • Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. • Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. • Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy

  5. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Directory of Open Access Journals (Sweden)

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  6. The Impact and Oxidation Survival of Selected Meteoritic Compounds: Signatures of Asteroid Organic Material on Planetary Surfaces

    Science.gov (United States)

    Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood

    2013-01-01

    Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.

  7. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid.

    Science.gov (United States)

    Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S

    2008-03-03

    A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.

  8. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides.

    Science.gov (United States)

    van der Voet, Hilko; de Boer, Waldo J; Kruisselbrink, Johannes W; Goedhart, Paul W; van der Heijden, Gerie W A M; Kennedy, Marc C; Boon, Polly E; van Klaveren, Jacob D

    2015-05-01

    Pesticide risk assessment is hampered by worst-case assumptions leading to overly pessimistic assessments. On the other hand, cumulative health effects of similar pesticides are often not taken into account. This paper describes models and a web-based software system developed in the European research project ACROPOLIS. The models are appropriate for both acute and chronic exposure assessments of single compounds and of multiple compounds in cumulative assessment groups. The software system MCRA (Monte Carlo Risk Assessment) is available for stakeholders in pesticide risk assessment at mcra.rivm.nl. We describe the MCRA implementation of the methods as advised in the 2012 EFSA Guidance on probabilistic modelling, as well as more refined methods developed in the ACROPOLIS project. The emphasis is on cumulative assessments. Two approaches, sample-based and compound-based, are contrasted. It is shown that additional data on agricultural use of pesticides may give more realistic risk assessments. Examples are given of model and software validation of acute and chronic assessments, using both simulated data and comparisons against the previous release of MCRA and against the standard software DEEM-FCID used by the Environmental Protection Agency in the USA. It is shown that the EFSA Guidance pessimistic model may not always give an appropriate modelling of exposure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Studies on coordination and addition compounds and anti microbial activity of some mixed ligand complexes of Au(III), Mo(II), Co(II) and Cd(II) with dibasic acid and heterocyclic amines and addition compounds of As(III) and Sb(III) halides with benzamide and acetophenon

    International Nuclear Information System (INIS)

    Hossain, M.; Sultana, C.; Saidul Islam, M.; Zakaria, C.M.

    2008-06-01

    Three new mixed ligand complexes of Au(III) and Mo(II) with dibasic acid e.g., homophthalic acid, oxalic acid and heterocylic amines e.g., quinonine, iso-quinonine, bipyridine, Phenylanaline and the two new addition compounds of As(III) and Sb(III) halides with N-donor ligands viz. benzamide and acetophenone and one complex [Cd(DPH)(IQ) 2 ], where IQ = Iso-quinoline and DPH = Deprotonated phthalic acid have been prepared according to the procedure in the literature. Their conventional physical and chemical analyses have been done. Their antibacterial studies against nine gram positive and five gram negative pathogenic bacteria and antifungal activities against eight plant and three human fungi have been evaluated. Kanamycin and Nystatin have been used as a standard for carrying out experiments of antibacterial and antifungal activities, respectively. The minimum inhibitory concentration (MIC) values of these compounds, as antibiotic against two gram positive and two gram negative pathogenic bacteria, have also been carried out and in this case, Amoxacilin antibiotic has been used as a standard antibiotic. (author)

  10. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds.

    Science.gov (United States)

    Jafari, Mahtab

    2010-01-01

    Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds. The model systems used should represent the complexities of aging in humans, so that the findings may be extrapolated to human studies, but they should also present an opportunity to minimize the variables so that the experimental results can be accurately interpreted. In addition to positively affecting lifespan, the impact of the compound on the physiologic confounders of aging, including fecundity and the health span--the period of life where an organism is generally healthy and free from serious or chronic illness--of the model organism needs to be evaluated. Fecundity is considered a major confounder of aging in fruit flies. It is well established that female flies that are exposed to toxic substances typically reduce their dietary intake and their reproductive output and display an artifactual lifespan extension. As a result, drugs that achieve longevity benefits by reducing fecundity as a result of diminished food intake are probably not useful candidates for eventual treatment of aging in humans and should be eliminated during the screening process. Drosophila melanogaster provides a suitable model system for the screening of anti-aging compounds as D. melanogaster and humans have many conserved physiological and biological pathways. In this paper, I propose an algorithm to screen anti-aging compounds using Drosophila melanogaster as a model system.

  11. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  12. Model radioisotope experiments on the influence of acid rain on 65Zn binding with humic acid

    International Nuclear Information System (INIS)

    Koczorowska, E.; Mieloch, M.; Slawinski, J.

    2002-01-01

    Acid rain formed first of all from sulfur oxide emitted by natural and anthropogenic sources, may change the biological equilibrium and the metal stoppage in the soil. The model experiments were performed to determine the influence of acid rain on zinc bond with humic acid (HA). The samples were prepared in glass columns with quartz sand and overlaid HA or HA + 65 Zn radioisotope that simulates natural conditions. Then, solutions of H 2 SO 4 were introduced into the sand - HA layer. Zinc was washed with diluted (10 -4 - 10 -3 M) sulphuric acid as a simulation of acid rain. The results help to evaluate the migration behaviour of zinc in the presence of HA and H 2 SO 4 . The model studies illustrate the considerable influence of sulfuric acid on chemical degradation of HA. (author)

  13. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    Science.gov (United States)

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  14. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds

    Science.gov (United States)

    Voorhees, Jaymie R.; Rohlman, Diane S.; Lein, Pamela J.; Pieper, Andrew A.

    2017-01-01

    Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally. PMID:28149268

  15. Pyridine Group-Assisted Addition of Diazo-Compounds to Imines in the 3-CC Reaction of 2-Aminopyridines, Aldehydes, and Diazo-Compounds

    Science.gov (United States)

    Gulevich, Anton V.; Helan, Victoria; Wink, Donald J.

    2013-01-01

    A novel three-component (3-CC) coupling reaction of 2-aminoazines, aromatic aldehydes and diazo-compounds producing polyfunctional β-amino-α-diazo-compounds has been developed. The reaction features an unprecedented heterocycle-assisted addition of a diazo-compound to an imine. The obtained diazoesters were efficiently converted into valuable heterocycles, as well as to β-amino acid derivatives. PMID:23373731

  16. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang

    2015-01-01

    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  17. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    Science.gov (United States)

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  18. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    Science.gov (United States)

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. ¹H-NMR simultaneous identification of health-relevant compounds in propolis extracts.

    Science.gov (United States)

    Bertelli, Davide; Papotti, Giulia; Bortolotti, Laura; Marcazzan, Gian Luigi; Plessi, Maria

    2012-01-01

    Propolis is a resinous substance collected by bees from exudates of different plants that is rich in well-known health-relevant phenolic compounds such as flavonoids and phenolic acids. Propolis extracts are very complex matrices difficult to study. Different analytical methods are usable to analyse propolis extracts and to obtain chemical fingerprint but to our knowledge NMR has not previously been used for this purpose. This study aims to demonstrate that it is possible to use ¹H-NMR for the simultaneous recognition of phenolic compounds in complex matrices, such as propolis extracts, using appropriate tools for spectra pre-treatment and analysis. In this work 12 typical phenolic propolis compounds (apigenin, chrysin, galangin, kaempferol, quercetin, naringenin, pinocembrin, pinostrobin, caffeic acid, cinnamic acid, p-coumaric acid and ferulic acid) were considered as reference compounds and their presence in samples was verified by HPLC-MS. A simple ¹H-NMR sequence was used to obtain spectra of samples. Spectra were pre-treated by using an appropriate tool for spectra alignment and analysed by using software for the study of spectra originated from complex matrices. Sixty-five propolis samples were used to test the proposed identification procedure. Ten out of 12 considered compounds were identified as statistically significant in most of the samples. This work suggests that it is possible to efficiently use ¹H-NMR, coupled with appropriate spectral analytical tools, for the simultaneous detection of phenolic compounds in complex matrices. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: influence of nitrogen compounds and grape variety.

    Science.gov (United States)

    Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must. © 2011 Institute of Food Technologists®