WorldWideScience

Sample records for acid metabolism plants

  1. 2-Hydroxy Acids in Plant Metabolism

    OpenAIRE

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in pla...

  2. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  3. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  4. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  5. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  6. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  7. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  8. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  9. Carbon isotope ratios in crassulacean Acid metabolism plants: seasonal patterns from plants in natural stands.

    Science.gov (United States)

    Szarek, S R

    1976-09-01

    A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of (14)CO(2) photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the sigma(13)C values were similar in all plants of the same species along the elevational gradient, i.e. -12.5 +/- 0.86 per thousand for O. phaeacantha and -15.7 +/- 0.95 per thousand for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction. PMID:16659680

  10. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  11. Analysis and Simulation of Circadian Multi-Oscillator Systems in a Crassulacean Acid Metabolism Plant

    OpenAIRE

    Bohn, Andreas

    2003-01-01

    Crassulacean acid metabolism (CAM) is an adaptation of photosynthetic organisms to drought stress: improved water-use efficiency is achieved by an optimized temporal arrangement of photosynthetic subprocesses, which are driven by an endogenous pacemaker, i.e. a circadian clock. The present work deals with the hypothesis that the circadian rhythm of gas-exchange of entire leaves of the CAM plant Kalanchoë daigremontiana has to be understood as the collective signal of the population of cells i...

  12. Diurnal variations in leaf fluorescence induction kinetics: variable fluorescence in crassulacean Acid metabolism plants.

    Science.gov (United States)

    Everson, G; Chen, S S; Black, C C

    1983-06-01

    The variable fluorescence of leaves from Kalanchoë daigremontiana and pineapple, Ananas comosus, both CAM plants, was found to change over a 24-hour cycle and to exhibit high temperature-dependent maxima during the night period. The time course of the induced fluorescence was correlated with malic acid accumulation but not with other aspects of CAM such as with the nature of the decarboxylation pathway or with stomatal movements. The variable fluorescences of sunflower (Helianthus annuus L.) and corn (Zea mays L.) leaves were compared with the CAM plants diurnally; both plants also exhibit high fluorescence maxima during the night period. We conclude that the assembly of the photosystems in the light is a primary process in photosynthesis induction and may be influenced by other cellular metabolic processes, specifically in the case of CAM leaves by malic acid accumulation. PMID:16663024

  13. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina;

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...... malate at dawn, compared with at dusk, and also by changes in the titratable acidity (lmol H+ equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO2 concentrations but also lower apparent photorespiration. Suppression by CAM of apparent...

  14. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)?

    Science.gov (United States)

    Holtum, Joseph Am; Hancock, Lillian P; Edwards, Erika J; Crisp, Michael D; Crayn, Darren M; Sage, Rowan; Winter, Klaus

    2016-06-01

    In the flora of Australia, the driest vegetated continent, crassulacean acid metabolism (CAM), the most water-use efficient form of photosynthesis, is documented in only 0.6% of native species. Most are epiphytes and only seven terrestrial. However, much of Australia is unsurveyed, and carbon isotope signature, commonly used to assess photosynthetic pathway diversity, does not distinguish between plants with low-levels of CAM and C3 plants. We provide the first census of CAM for the Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of terrestrial CAM species probably 10-fold greater. Still unresolved is the question why the large stem-succulent life - form is absent from the native Australian flora even though exotic large cacti have successfully invaded and established in Australia. PMID:27088716

  15. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  16. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  17. Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant.

    Science.gov (United States)

    Hafke, J B; Neff, R; Hütt, M T; Lüttge, U; Thiel, G

    2001-01-01

    In crassulacean acid metabolism (CAM) large amounts of malic acid are redistributed between vacuole and cytoplasm in the course of night-to-day transitions. The corresponding changes of the cytoplasmic pH (pHcyt) were monitored in mesophyll protoplasts from the CAM plant Kalanchoe daigremontiana Hamet et Perrier by ratiometric fluorimetry with the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein as a pHcyt indicator. At the beginning of the light phase, pHcyt was slightly alkaline (about 7.5). It dropped during midday by about 0.3 pH units before recovering again in the late-day-to-early-dark phase. In the physiological context the variation in pHcyt may be a component of CAM regulation. Due to its pH sensitivity, phosphoenolpyruvate carboxylase appears as a likely target enzyme. From monitoring delta pHcyt in response to loading the cytoplasm with the weak acid salt K-acetate a cytoplasmic H(+)-buffer capacity in the order of 65 mM H+ per pH unit was estimated at a pHcyt of about 7.5. With this value, an acid load of the cytoplasm by about 10 mM malic acid can be estimated as the cause of the observed drop in pHcyt. A diurnal oscillation in pHcyt and a quantitatively similar cytoplasmic malic acid is predicted from an established mathematical model which allows simulation of the CAM dynamics. The similarity of model predictions and experimental data supports the view put forward in this model that a phase transition of the tonoplast is an essential functional element in CAM dynamics. PMID:11732184

  18. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

    Science.gov (United States)

    Winter, Klaus; Holtum, Joseph A M

    2014-07-01

    Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM. PMID:24642847

  19. Amino Acid Metabolism Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  20. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    Science.gov (United States)

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  1. Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier.

    Science.gov (United States)

    Duarte, Heitor M; Jakovljevic, Ivona; Kaiser, Friedemann; Lüttge, Ulrich

    2005-04-01

    Dynamic patchiness of photosystem II (PSII) activity in leaves of the crassulacean acid metabolism (CAM) plant Kalanchoe daigremontiana Hamet et Perrier, which was independent of stomatal control and was observed during both the day/night cycle and circadian endogenous oscillations of CAM, was previously explained by lateral CO2 diffusion and CO2 signalling in the leaves [Rascher et al. (2001) Proc Natl Acad Sci USA 98:11801-11805; Rascher and Luttge (2002) Plant Biol 4:671-681]. The aim here was to actually demonstrate the importance of lateral CO2 diffusion and its effects on localized PSII activity. Covering small sections of entire leaves with silicone grease was used for local exclusion of a contribution of atmospheric CO2 to internal CO2 via transport through stomata. A setup for combined measurement of gas exchange and chlorophyll fluorescence imaging was used for recording photosynthetic activity with a spatiotemporal resolution. When remobilization of malic acid from vacuolar storage and its decarboxylation in the CAM cycle caused increasing internal CO2 concentrations sustaining high PSII activity behind closed stomata, PSII activity was also increased in adjacent leaf sections where vacuolar malic acid accumulation was minimal as a result of preventing external CO2 supply due to leaf-surface greasing, and where therefore CO2 could only be supplied by diffusion from the neighbouring malic acid-remobilizing leaf tissue. This demonstrates lateral CO2 diffusion and its effect on local photosynthetic activity. PMID:15843962

  2. Leaf anatomy and ultrastructure of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Balsamo, R A; Uribe, E G

    1988-02-01

    Light-microscopic analysis of leaf clearings of the obligate Crassulacean-acid-metabolism (CAM) species Kalanchoe daigremontiana Hamet et Perr. has shown the existence of unusual and highly irregular venation patterns. Fifth-order veins exhibit a three-dimensional random orientation with respect to the mesophyll. Minor veins were often observed crossing over or under each other and over and under major veins in the mesophyll. Paraffin sections of mature leaves show tannin cells scattered throughout the mesophyll rather evenly spaced, and a distinct layer of tannin cells below the abaxial epidermis. Scanning electron microscopy showed that bundle-sheath cells are distinct from the surrounding mesophyll in veins of all orders. Transmission electron microscopy demonstrated developing sieve-tube elements in expanded leaves. Cytosolic vesicles produced by dictyosomes undergo a diurnal variation in number and were often observed in association with the chloroplasts. These vesicles are an interesting feature of cell ultrastructure of CAM cells and may serve a regulatory role in the diurnal malic-acid fluctuations in this species. PMID:24226398

  3. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen;

    2015-01-01

    The use of aquafeeds formulated with plant protein sources supplemented with crystalline amino acids (CAAs) is believed to influence amino acid (AA) uptake patterns and AA metabolic fate. Oxygen consumption and ammonia excretion rates were measured in rainbow trout (468.5 +/- A 86.5 g) force fed 0.......75 % of their body mass with a diet based on either (1) fish meal (FM), (2) pea protein concentrate (PPC), or (3) pea protein concentrate supplemented with histidine, lysine, methionine and threonine (PPC+) to mimic FM AA profile. The specific dynamic action and nitrogen quotient (NQ) were calculated for 48 h...... to be caused by an unbalanced dietary AA profile and CAA supplementation, rather than inclusion of plant protein concentrate....

  4. The relationship between turgor pressure and titratable acidity in mesophyll cells of intact leaves of a Crassulacean-acid-metabolism plant, Kalanchoe daigremontiana Hamet et Perr.

    Science.gov (United States)

    Rygol, J; Winter, K; Zimmermann, U

    1987-12-01

    Day/night changes in turgor pressure (P) and titratable acidity content were investigated in the (Crassulacean-acid-metabolism (CAM) plant Kalanchoe daigremontiana. Measurements of P were made on individual mesophyll cells of intact attached leaves using the pressure-probe technique. Under conditions of high relative humidity, when transpiration rates were minimal, changes in P correlated well with changes in the level of titratable acidity. During the standard 12 h light/12 h dark cycle, maximum turgor pressure (0.15 MPa) occurred at the end of the dark period when the level of titratable acidity was highest (about 300 μeq H(+)·g(-1) fresh weight). A close relationship between P and titratable acidity was also seen in leaves exposed to perturbations of the standard light/dark cycle. (The dark period was either prolonged, or else only CO2-free air was supplied in this period). In plants deprived of irrigation for five weeks, diurnal changes in titratable acidity of the leaves were reduced (ΔH=160 μeq H(+)·g(-1) fresh weight) and P increased from essentially zero at the end of the light period to 0.02 MPa at the end of the dark period. Following more severe water stress (experiments were made on leaves which had been detached for five weeks), P was zero throughout day and night, yet small diurnal changes in titratable acidity were still measured. These findings are discussed in relation to a hypothesis by Lüttge et al. 1975 (Plant Physiol. 56,613-616) for the role of P in the regulation of acidification/de-acidification cycles of plants exhibiting CAM. PMID:24226067

  5. Carbonate extraction process for the metabolic, isozymic and proteomic profiling of rose-scented geranium (Pelargonium sp.), a hyper-acidic plant.

    Science.gov (United States)

    Sangwan, Rajender Singh; Sangwan, Neelam Singh; Sharma, Pankaj Kumar; Chaurasiya, Narayan Das; Mishra, Siddhartha Kumar; Tyagi, Bali Ram; Srivastava, Avdhesh Kumar

    2008-01-01

    Rose-scented geranium (Pelargonium sp.) is a valuable monoterpene-yielding plant. It has been well characterised phytochemically through the isolation of >270 secondary metabolites, however, there is hardly any biochemical or metabolic information concerning this plant. Initial attempts to investigate its metabolism failed to produce any enzyme activity in the tissue extracts prepared in routine extraction buffers owing to the intrinsic properties of the tissue matrix. It was recognised that cellular hyper-acidity (cell sap pH approximately 3.0) gave rise to very low protein levels in the extracts, thus prohibiting detection of activities of even primary metabolic enzymes that are usually abundantly present in plants. Tissue extraction in Tris solution without pH adjustment (as used for studies involving citrus and banana) led to little or no improvement. Therefore, a novel approach using sodium carbonate solution as an efficient extraction system for enzymes and proteins from the plant was studied. Functionality of the carbonate extraction has been demonstrated through its effectiveness, a several-fold superior performance, in yielding protein, monitoring primary metabolism and secondary metabolic enzymes, and isozymic and polypeptide profiling. The process may also be helpful in the reliable analysis of other acidic plant tissues.

  6. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-03-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO(2) fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were determined in leaves and phloem exudates of Kalanchoë daigremontiana Hamet et Perr., and related to CO(2) fixation by PEPC and Rubisco. Three types of leaf carbon pools could be distinguished. (i) Starch and malate pools were dominant and showed a pattern of reciprocal mobilization and accumulation (85/54 and 13/48 mg C g(-1) DW, respective, at the beginning/end of phase I). The carbon isotope composition of these pools was compatible with predominant PEPC fixation (delta(13)C values of -13 and -11 per thousand for starch and malate compared to -11 per thousand of PEPC fixed carbon). (ii) Isotopic composition (-17 per thousand and -14 per thousand) and concentration of glucose and fructose (2 and 3 mg C g(-1) DW, respectively) were not affected by diurnal metabolism, suggesting a low turnover. (iii) Sucrose (1-3 mg C g(-1) DW), in contrast, exhibited large diurnal changes in delta(13)C values (from -17 per thousand in the evening to -12 per thousand in the morning), which were not matched by net changes in sucrose concentration. This suggests a high sucrose turnover, fed by nocturnal starch degradation and direct Rubisco fixation during the day. A detailed dissection of the carbon fixation and mobilization pattern in K. daigremontiana revealed that direct fixation of Rubisco during the light accounted for 30% of phloem sucrose, but only 15% of fixed carbon, indicating that carbon from direct Rubisco fixation was preferentially used for leaf export. PMID:20159885

  7. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana

    OpenAIRE

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-01-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO2 fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were ...

  8. Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible Crassulacean acid metabolism.

    Science.gov (United States)

    Bremberger, C; Haschke, H P; Lüttge, U

    1988-10-01

    Tonoplast vesicles were isolated from Kalanchoe daigremontiana Hamet et Pierrer de la Bâthie and Mesembryanthemum crystallinum L., exhibiting constitutive and inducible crassulacean acid metabolism (CAM), respectively. Membrane-bound proteins were detergent-solubilized with 2% of Triton X-100. During CAM induction in M. crystallinum, ATPase activity increases four-fold, whereas pyrophosphatase activity decreases somewhat. With all plants, ATPase and pyrophosphatase could be separated by size-exclusion chromatography (SEC, Sephacryl S 400), and the ATPase was further purified by diethylaminoethyl-ion-exchange chromatography. Sodium-dodecyl-sulfate electrophoresis of the SEC fractions from K. daigremontiana containing maximum ATPase activity separates several protein bands, indicating subunits of 72, 56, 48, 42, 28, and 16 kDa. Purified ATPase from M. crystallinum in the C3 and CAM states shows a somewhat different protein pattern. With M. crystallinum, an increase in ATP-hydrolysis and changes in the subunit composition of the native enzyme indicate that the change from the C3 to the CAM state is accompanied by de-novo synthesis and by structural changes of the tonoplast ATPase. PMID:24221927

  9. Auxin metabolism and homeostasis during plant development.

    Science.gov (United States)

    Ljung, Karin

    2013-03-01

    Auxin plays important roles during the entire life span of a plant. This small organic acid influences cell division, cell elongation and cell differentiation, and has great impact on the final shape and function of cells and tissues in all higher plants. Auxin metabolism is not well understood but recent discoveries, reviewed here, have started to shed light on the processes that regulate the synthesis and degradation of this important plant hormone. PMID:23404103

  10. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants: a new approach to estimating in vivo carbonic anhydrase activity

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, J.A.M.; Summons, R.; Roeske, C.A.; Comins, H.N.; O' Leary, M.H.

    1984-01-01

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with TC YO2, then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the ( TC) malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance or by mass spectrometry. Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum, 40 for Kalanchoee daigremontiana, and 100 or greater for Bryophyllum tubiflorum, Kalanchoee serrata, and Kalanchoae tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. 37 references, 2 figures, 8 tables.

  11. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants. A new approach to estimating in vivo carbonic anhydrase activity.

    Science.gov (United States)

    Holtum, J A; Summons, R; Roeske, C A; Comins, H N; O'Leary, M H

    1984-06-10

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with 13C18O2 , then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the [13C] malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance (using the oxygen-18 effect on the carbon-13 chemical shift of the carboxyl carbon) or by mass spectrometry (comparing the ions at three and five units above the molecular weight with that one unit above). Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO-3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum , 40 for Kalancho ë daigremontiana , and 100 or greater for Bryophyllum tubiflorum , Kalancho ë serrata, and Kalancho ë tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. PMID:6427227

  12. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  13. Plasmalemma- and tonoplast-ATPase activity in mesophyll protoplasts, vacuoles and microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Balsamo, R A; Uribe, E G

    1988-02-01

    Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H(+)-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces. PMID:24226399

  14. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  15. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    Patrick eFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  16. How closely do the delta(13)C values of Crassulacean Acid metabolism plants reflect the proportion of CO(2) fixed during day and night?

    Science.gov (United States)

    Winter, Klaus; Holtum, Joseph A M

    2002-08-01

    The extent to which Crassulacean acid metabolism (CAM) plant delta(13)C values provide an index of the proportions of CO(2) fixed during daytime and nighttime was assessed. Shoots of seven CAM species (Aloe vera, Hylocereus monocanthus, Kalanchoe beharensis, Kalanchoe daigremontiana, Kalanchoe pinnata, Vanilla pauciflora, and Xerosicyos danguyi) and two C(3) species (teak [Tectona grandis] and Clusia sp.) were grown in a cuvette, and net CO(2) exchange was monitored for up to 51 d. In species exhibiting net dark CO(2) fixation, between 14% and 73.3% of the carbon gain occurred in the dark. delta(13)C values of tissues formed inside the cuvette ranged between -28.7 per thousand and -11.6 per thousand, and correlated linearly with the percentages of carbon gained in the light and in the dark. The delta(13)C values for new biomass obtained solely during the dark and light were estimated as -8.7 per thousand and -26.9 per thousand, respectively. For each 10% contribution of dark CO(2) fixation integrated over the entire experiment, the delta(13)C content of the tissue was, thus, approximately 1.8 per thousand less negative. Extrapolation of the observations to plants previously surveyed under natural conditions suggests that the most commonly expressed version of CAM in the field, "the typical CAM plant," involves plants that gain about 71% to 77% of their carbon by dark fixation, and that the isotopic signals of plants that obtain one-third or less of their carbon in the dark may be confused with C(3) plants when identified on the basis of carbon isotope content alone. PMID:12177497

  17. Flux-balance modelling of plant metabolism

    OpenAIRE

    Lee James Sweetlove; R. George eRatcliffe

    2011-01-01

    Flux-balance modelling of plant metabolic networks provides an important complement to 13C-based metabolic flux analysis. Flux-balance modelling is a constraints-based approach in which steady-state fluxes in a metabolic network are predicted by using optimisation algorithms within an experimentally bounded solution space. In the last two years several flux-balance models of plant metabolism have been published including genome-scale models of Arabidopsis metabolism. In this review we conside...

  18. Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1991-01-01

    Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.

  19. Biosynthesis, Metabolism and Physiological Roles of Phytic Acid in Higher Plants%高等植物体中植酸合成、代谢及其生理作用

    Institute of Scientific and Technical Information of China (English)

    靳晓琳; 王新坤; 杨润强; 仲磊; 顾振新

    2014-01-01

    This article described the existing form, metabolism, regulation and the possible physiological roles of phytic acid in higher plant.%本文对植酸及其存在形式、代谢、调控及在高等植物内的生理作用作了介绍。

  20. EFFECTS OF ACID STRESS ON ENDOGENOUS POLYAMINE AND ACTIVE OXYGEN METABOLISM OF WOODY PLANTS%酸胁迫对林木内源多胺及活性氧代谢的影响

    Institute of Scientific and Technical Information of China (English)

    谢寅峰; 沈惠娟; 李梅枝

    1999-01-01

    The content of an endogenous putrescine increased dramatically in four tree species of Robinia pseudocacia Linn., Liriodendron tulipifera Linn., Platanus acerifolia Willd and Gardenia jasminoides Ellis under acid stress, but the content of spermidine and spermine showed no change. The additional D-Arginine(an inhibitor of the putrescine biosynthetic enzymes) to acid medium could inhibited the level of putrescine. However a simultaneous additional D-Arginine and putrescine could reverse the inhibitory effects of D-Arginine. Under the acid stress, the balance of active oxygen metabolism was lost, the content of MDA was accumulated rapidly, the activies of SOD and CAT decreased. Applying exogenous putrescine to acid medium could regulate the balance of active oxygen metabolism, decrease the accumulation of MDA, while increase the activities of SOD and CAT. The results showed putrescine could protect plants from the acid stress.

  1. Physiological implications of arginine metabolism in plants

    Directory of Open Access Journals (Sweden)

    Gudrun eWinter

    2015-07-01

    Full Text Available Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO, although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.

  2. Physiological implications of arginine metabolism in plants.

    Science.gov (United States)

    Winter, Gudrun; Todd, Christopher D; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  3. 植物ω-7脂肪酸的系统代谢工程%Systematic Metabolic Engineering of Fatty Acids in Plants

    Institute of Scientific and Technical Information of China (English)

    吴永美; 毛雪; 王书建; 薛金爱; 贾小云; 王计平; 杨致荣; 李润植

    2011-01-01

    ω-7脂肪酸(C16∶1△9,C18∶1△11,C20∶1△13),特别是棕榈油酸(C16∶1△9)具有重要的工业、营养和医药价值.这些珍稀脂肪酸大多在一些野生植物的种子中合成,不能商业化生产.对普通油料作物的油脂代谢途径进行遗传修饰,使其种子大量合成并积累ω-7脂肪酸,已成为生物技术和可再生资源研究的一个热点领域.基因操作的主要靶标包括:不同来源的△9脱氢酶的应用、提高底物(C16∶0)的浓度、共表达质体型和内质网型△9脱氢酶以及代谢物流的优化等.该文在解析ω-7脂肪酸生物合成途径及其调控网络的基础上,重点论述了ω-7脂肪酸代谢工程的技术策略、研究进展和存在的问题,并进一步讨论了油脂物组学和转基因组学等组学技术在鉴定参与ω-7脂肪酸生物合成途径及其调控的特异基因和优化油脂代谢工程设计上的应用前景.%Omega-7(ω-7) fatty acids (Fas) such as C16:1A9, C18:1A11 and C2O:1A13, particularly palmitoleate (C16:1A9), are an important contributor to human health and are highly valued in pharmaceutical and industrial applications. A number of natural wild plants can synthesize high levels of these unusual Fas in seeds, but low yields and poor agronomic properties of those plants preclude their commercial use for ω-7 FA production. The lipid metabolic pathway has been genetically modified to develop engineered common oil crops that can highly produce and accumulate u>-7 Fas in seeds and represents a key hot-spot in biotechnology and renewable bio-based resources. The major targets for modification in the oil biosynthesis pathway include expression of various A9 desaturases, increasing substrate (C16:0) levels, co-expression of plastidial and endoplasmic reticulum A9 desaturases and optimizing the metabolic flux into triacylglycerols (TAGs). Here, we summarize our current understanding of ω-7 FA biosynthesis and its regulation and describe the

  4. CO[sub 2] exchange and growth of the Crassulacean acid metabolism plant opuntia ficus-indica under elevated CO[sub 2] in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-10-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO[sub 2] concentrations of 370, 520, and 720 [mu]L L[sup [minus]1] in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 76 and 98% higher, respectively, than at 370 [mu]L L[sup [minus]1]. Eight weeks after daughter cladodes emerged, their daily net CO[sub 2] uptake was 35 and 49% higher at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, than at 370 L L[sup [minus]1]. Daily water-use efficiency was 88% higher under elevated CO[sub 2] for basal cladodes and 57% higher for daughter cladodes. The daily net CO[sub 2] uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO[sub 2] uptake caused by elevated CO[sub 2] was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, compared with 370 [mu]L L[sup [minus]1]. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 21 and 55% higher, respectively, than at 370 [mu]L L[sup [minus]1]. The root dry weight nearly tripled as the CO[sub 2] concentration was doubled, causing the root/shoot ratio to increase with CO[sub 2] concentration. During the 23-week period, elevated CO[sub 2] significantly increased CO[sub 2] uptake and biomass production of O. 35 refs., 4 figs., 1 tab.

  5. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  6. Plant Specialized Metabolism: the Easy and the Hard

    Institute of Scientific and Technical Information of China (English)

    Shan Lu

    2010-01-01

    @@ Although normally termed" plant secondary metabolism", the phrase" plant specialized metabolism" has become instruments, such as gas chromatography, high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance.

  7. Synthetic redesign of plant lipid metabolism.

    Science.gov (United States)

    Haslam, Richard P; Sayanova, Olga; Kim, Hae Jin; Cahoon, Edgar B; Napier, Johnathan A

    2016-07-01

    Plant seed lipid metabolism is an area of intensive research, including many examples of transgenic events in which oil composition has been modified. In the selected examples described in this review, progress towards the predictive manipulation of metabolism and the reconstitution of desired traits in a non-native host is considered. The advantages of a particular oilseed crop, Camelina sativa, as a flexible and utilitarian chassis for advanced metabolic engineering and applied synthetic biology are considered, as are the issues that still represent gaps in our ability to predictably alter plant lipid biosynthesis. Opportunities to deliver useful bio-based products via transgenic plants are described, some of which represent the most complex genetic engineering in plants to date. Future prospects are considered, with a focus on the desire to transition to more (computationally) directed manipulations of metabolism. PMID:27483205

  8. Regional myocardial free fatty acid metabolism

    International Nuclear Information System (INIS)

    Experimental evidence to date has confirmed the potential value of radioactive labelled free fatty acid (FFA) and their analogs for the assessment of regional myocardial FFA metabolism despite a number of current limitations. It is emphasized that with these agents only one specific aspect of myocardial metabolism, that of FFA, can be tested and that with these compounds information on the overall metabolic state cannot always be obtained. (WU)

  9. Key Applications of Plant Metabolic Engineering

    OpenAIRE

    Warren Lau; Fischbach, Michael A.; Anne Osbourn; Sattely, Elizabeth S

    2014-01-01

    Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-d...

  10. Managing sulfur metabolism in plants

    NARCIS (Netherlands)

    Hawkesford, M.J.; De Kok, LJ

    2006-01-01

    Resolution and analysis of genes encoding components of the pathways of primary sulphur assimilation have provided the potential to elucidate how sulphur is managed by plants. Individual roles for members of gene families and regulatory mechanisms operating at gene, cellular and whole plant levels h

  11. Metabolism of sinapic acid and related compounds in the rat.

    Science.gov (United States)

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  12. Key applications of plant metabolic engineering.

    Science.gov (United States)

    Lau, Warren; Fischbach, Michael A; Osbourn, Anne; Sattely, Elizabeth S

    2014-06-01

    Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

  13. Key applications of plant metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Warren Lau

    2014-06-01

    Full Text Available Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

  14. Connecting proline metabolism and signaling pathways in plant senescence

    Directory of Open Access Journals (Sweden)

    Lu eZhang

    2015-07-01

    Full Text Available The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products.

  15. Metabolism of L-arabinose in plants.

    Science.gov (United States)

    Kotake, Toshihisa; Yamanashi, Yukiko; Imaizumi, Chiemi; Tsumuraya, Yoichi

    2016-09-01

    L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants. PMID:27220955

  16. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    Science.gov (United States)

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.

  17. Stomatal responses to carbon dioxide of isolated epidermis from a C/sub 3/ plant, the Argenteum mutant of Pisum sativum L. , and a crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr

    Energy Technology Data Exchange (ETDEWEB)

    Jewer, P.C.; Neales, T.F.; Incoll, L.D.

    1985-01-01

    The response of stomata in isolated epidermis to the concentration of CO/sub 2/ in the gaseous phase was examined in a C/sub 3/ species, the Argenteum mutant of Pisum sativum, and a crassulacean-acid-metabolism (CAM) species, Kalanchoe daigremontiana. Epidermis from leaves of both species was incubated on buffer solutions in the presence of air containing various volume fractions of CO/sub 2/ (0 to 10,000 x 10/sup -6/). In both species and in the light and in darkness, the effect of CO/sub 2/ was to inhibit stomatal opening, the maximum inhibition of opening occurring in the range 0 to 360 x 10/sup -6/. The inhibition of opening per unit change in concentration was greatest between volume fractions of 0 and 240 x 10/sup -6/. There was little further closure above the volume fraction of 360 x 10/sup -6/, i.e. approximately ambient concentration of CO/sub 2/. Thus, although leaves of CAM species may experience much higher internal concentrations of CO/sub 2/ in the light than those of C/sub 3/ plants, this does not affect the sensitivity of their stomata to CO/sub 2/ concentration or the range over which they respond. Stomatal responses to CO/sub 2/ were similar in both the light and the dark, indicating that effects of CO/sub 2/ on stomata occur via mechanisms which are independent of light. The responses of stomata to CO/sub 2/ in the gaseous phase took place without the treatments changing the pH of the buffered solutions. Thus, it is unlikely that CO/sub 2/ elicited stomatal movement by changing either the pH or the HCO/sub 3//sup -//CO/sub 3//sup 2 -/ equilibria. It is suggested that the concentration of dissolved unhydrated CO/sub 2/ may be the effector of stomatal movement and that its activity is related to its reactivity with amines.

  18. Purification and Structural and Kinetic Characterization of the Pyrophosphate:Fructose-6-Phosphate 1-Phosphotransferase from the Crassulacean Acid Metabolism Plant, Pineapple.

    Science.gov (United States)

    Tripodi, KEJ.; Podesta, F. E.

    1997-03-01

    Pyrphosphate-dependent phosphofructokinase (PFP) was purified to electrophoretic homogeneity from illuminated pineapple (Ananas comosus) leaves. The purified enzyme consists of a single subunit of 61.5 kD that is immunologically related to the potato tuber PFP [beta] subunit. The native form of PFP likely consists of a homodimer of 97.2 kD, as determined by gel filtration. PFP's glycolytic activity was strongly dependent on pH, displaying a maximum at pH 7.7 to 7.9. Gluconeogenic activity was relatively constant between pH 6.7 and 8.7. Activation by Fru-2,6-bisphosphate (Fru-2,6-P2) was dependent on assay pH. In the glycolytic direction, it activated about 10-fold at pH 6.7, but only 2-fold at pH 7.7. The gluconeogenic reaction was only weakly affected by Fru-2,6-P2. The true substrates for the PFP forward and reverse reactions were Fru-6-phosphate and Mg-pyrophosphate, and Fru-1,6-P2, orthophosphate, and Mg2+, respectively. The results suggest that pineapple PFP displays regulatory properties consistent with a pH-based regulation of its glycolytic activity, in which a decrease in cytosolic pH caused by nocturnal acidification during Crassulacean acid metabolism, which could curtail its activity, is compensated by a parallel increase in its sensitivity to Fru-2,6-P2. It is also evident that the [beta] subunit alone is sufficient to confer PFP with a high catalytic rate and the regulatory properties associated with activation by Fru-2,6-P2.

  19. Linking uric acid metabolism to diabetic complications

    Institute of Scientific and Technical Information of China (English)

    Akifumi; Kushiyama; Kentaro; Tanaka; Shigeko; Hara; Shoji; Kawazu

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.

  20. Metabolism of acetochlor herbicide in tolerant and sensitive plant species

    International Nuclear Information System (INIS)

    Metabolism of acetochlor (2-chloro-N-)2-ethyl-6-methyl-phenyl(-N-)ethoxymethyl(acetamide) herbicide was traced in tolerant corn (Zea mays L.) and sensitive wheat (Triticum aestivum L.). Both resistant and susceptible plant species were found to be able to metabolize acetochlor absorbed. However, a faster metabolism of the herbicide was observed in the tolerant plants. (author)

  1. Transcriptional Regulation of Plant Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Chang-Qing Yang; Xin Fang; Xiu-Ming Wu; Ying-Bo Mao; Ling-Jian Wang; Xiao-Ya Chen

    2012-01-01

    Plant secondary metabolites play critical roles in plant-environment interactions.They are synthesized in different organs or tissues at particular developmental stages,and in response to various environmental stimuli,both biotic and abiotic.Accordingly,corresponding genes are regulated at the transcriptional level by multiple transcription factors.Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites.These regulators integrate internal (often developmental) and external signals,bind to corresponding cis-elements — which are often in the promoter regions — to activate or repress the expression of enzyme-coding genes,and some of them interact with other transcription factors to form a complex.In this review,we summarize recent research in these areas,with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.

  2. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  3. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    Science.gov (United States)

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  4. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues

    OpenAIRE

    Dobrev, P.; Vaňková, R. (Radomíra)

    2012-01-01

    Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it...

  5. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However....... However, this does not seem applicable for inflammatory diseases or human models of sepsis, in which the enhanced imbalance between these two processes is observed within an enhanced, normal or reduced muscle protein turnover.......PURPOSE OF REVIEW: This review highlights the role of cytokines, in particular tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), in relation to the nature of human in-vivo muscle wasting in disease. RECENT FINDINGS: Infusion of human TNF-α and IL-6 in healthy individuals, acutely...

  6. Influences of soil volume and an elevated CO[sub 2] level on growth and CO[sub 2] exchange for the crassulacean acid metabolism plant Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.; Cui, M.; Miller, P.M.; Luo, Y. (UCLA-DOE Lab., Univ. of California, Los Angeles, CA (United States))

    1994-01-01

    Effects of the current (38 Pa) and an elevated (74 Pa) CO[sub 2] partial pressure on root and shoot areas, biomass accumulation and daily net CO[sub 2] exchange were determined for opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2600, 6500 and 26000 cm[sup 3]), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO[sub 2] level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO[sub 2] level but total areas were similar by 10 weeks. At 10 weeks, daily net CO[sub 2] uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO-2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO[sub 2] during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO[sub 2] uptake and biomass production than did doubling the CO[sub 2] level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO[sub 2]. The amount of cladode nitrogen per unit dry weight decreased as the CO[sub 2] level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations. (au) (30 refs.)

  7. Arsenic uptake and metabolism in plants.

    Science.gov (United States)

    Zhao, F J; Ma, J F; Meharg, A A; McGrath, S P

    2009-03-01

    Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

  8. Photoreceptor effects on plant biomass, resource allocation, and metabolic state.

    Science.gov (United States)

    Yang, Deyue; Seaton, Daniel D; Krahmer, Johanna; Halliday, Karen J

    2016-07-01

    Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions. PMID:27330114

  9. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    OpenAIRE

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecu...

  10. Closing the Loop on the GABA Shunt in Plants: Are GABA metabolism and signaling entwined?

    OpenAIRE

    Simon eMichaeli; Hillel eFromm

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecu...

  11. In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism

    Science.gov (United States)

    Marchiol, Luca; Mattiello, Alessandro; Pošćić, Filip; Giordano, Cristiana; Musetti, Rita

    2014-03-01

    Metallic nanoparticles (MeNPs) can be formed in living plants by reduction of the metal ions absorbed as soluble salts. It is very likely that plant metabolism has an important role in MeNP biosynthesis. The in vivo formation of silver nanoparticles (AgNPs) was observed in Brassica juncea, Festuca rubra and Medicago sativa. Plants were grown in Hoagland's solution for 30 days and then exposed for 24 h to a solution of 1,000 ppm AgNO3. In the leaf extracts of control plants, the concentrations of glucose, fructose, ascorbic acid, citric acid and total polyphenols were determined. Total Ag content in plant fractions was determined by inductively coupled plasma atomic emission spectroscopy. Despite the short exposure time, the Ag uptake and translocation to plant leaves was very high, reaching 6,156 and 2,459 mg kg-1 in B. juncea and F. rubra, respectively. Ultrastructural analysis was performed by transmission electron microscopy (TEM), and AgNPs were detected by TEM X-ray microanalysis. TEM images of plant fractions showed the in vivo formation of AgNPs in the roots, stems and leaves of the plants. In the roots, AgNPs were present in the cortical parenchymal cells, on the cell wall of the xylem vessels and in regions corresponding to the pits. In leaf tissues, AgNPs of different sizes and shapes were located close to the cell wall, as well as in the cytoplasm and within chloroplasts. AgNPs were not observed in the phloem of the three plant species. This is the first report of AgNP synthesis in living plants of F. rubra. The contents of reducing sugars and antioxidant compounds, proposed as being involved in the biosynthesis of AgNPs, were quite different between the species, thus suggesting that it is unlikely that a single substance is responsible for this process.

  12. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  13. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti;

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  14. Impacts of diversification of cytochrome P450 on plant metabolism.

    Science.gov (United States)

    Mizutani, Masaharu

    2012-01-01

    Cytochrome P450 monooxygenases (P450s) catalyze a wide variety of monooxygenation reactions in primary and secondary metabolism in plants. The share of P450 genes in each plant genome is estimated to be up to 1%. This implies that the diversification of P450 has made a significant contribution to the ability to acquire the emergence of new metabolic pathways during land plant evolution. The P450 families conserved universally in land plants contribute to their chemical defense mechanisms. Several P450s are involved in the biosynthesis and catabolism of plant hormones. Species-specific P450 families are essential for the biosynthetic pathways of phytochemicals such as terpenoids and alkaloids. Genome wide analysis of the gene clusters including P450 genes will provide a clue to defining the metabolic roles of orphan P450s. Metabolic engineering with plant P450s is an important technology for large-scale production of valuable phytochemicals such as medicines.

  15. Effects of an energy-restricted diet rich in plant-derived α-linolenic acid on systemic inflammation and endothelial function in overweight-to-obese patients with metabolic syndrome traits.

    Science.gov (United States)

    Egert, Sarah; Baxheinrich, Andrea; Lee-Barkey, Young Hee; Tschoepe, Diethelm; Wahrburg, Ursel; Stratmann, Bernd

    2014-10-28

    Plant-derived α-linolenic acid (ALA) may reduce the risk of CVD, possibly by decreasing systemic inflammation and improving endothelial function. In the present study, the effects of a hypoenergetic diet rich in ALA (3·4 g/d) on the biomarkers of systemic inflammation and vascular function were investigated in eighty-one overweight-to-obese patients with metabolic syndrome traits in comparison with a hypoenergetic diet low in ALA (0·9 g/d, control). After a 6-month dietary intervention, there were significant decreases in the serum concentrations of C-reactive protein (CRP), TNF-α, IL-6, soluble intercellular adhesion molecule-1 (sICAM-1), soluble endothelial selectin (sE-selectin) and asymmetric dimethylarginine in both dietary groups. However, no inter-group differences were observed for all these changes. The serum concentration of YKL-40 (human cartilage glycoprotein 39 or chitinase-3-like protein 1) decreased after the ALA diet when compared with the control diet (Pmetabolic syndrome traits, both vascular function and inflammation are improved during body-weight loss. The high ALA intake led to a more pronounced reduction in the serum concentration of YKL-40 compared with the intake of the low-ALA control diet, indicating the existence of independent favourable physiological effects of ALA during weight loss.

  16. Engineering Plant One-Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    David Rhodes

    2005-02-09

    reconverted to Met by donating a methyl group to homocysteine, and concurrent operation of this reaction and that mediated by MMT sets up the SMM cycle. The genes encoding the enzymes of the SMM cycle were cloned and characterized during this project. SMM has been hypothesized to be essential as a methyl donor or as a transport form of sulfur, and the SMM cycle has been hypothesized to guard against depletion of the free Met pool by excess AdoMet synthesis, or to regulate AdoMet level and hence the AdoMet/S-adenosylhomocysteine ratio (the methylation ratio). To test these hypotheses, we isolated insertional mmt mutants of Arabidopsis and maize. Both mutants lacked the capacity to produce SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally and the seeds of the Arabidopsis mutant had normal sulfur contents. These findings rule out an indispensable role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher AdoMet a nd lower S-adenosylhomocysteine (AdoHCy) levels than the wild type, and consequently a higher methylation ratio (20 vs. 14). Free Met and thiol pools were unaltered in this mutant, although there was a 50% decrease in free threonine (Thr) and changes in other amino acids. These data indicate that the SMM cycle contributes to regulation of AdoMet levels rather than preventing depletion of free Met. Since AdoMet activates Thr synthase, that Thr level was not higher but lower in the mmt mutant implies that AdoMet is sequestered away from Thr synthase, which is chloroplastic. Results obtained with the Arabidopsis mmt mutant and wildtype have been integrated into a metabolic model of the intersecting methylation, SMM, and methionine salvage cycles. This model adequately accounts for the steady-state pool sizes of Met, SMM, AdoMet and AdoHCy in wildtype, and the small changes in AdoMet and AdoHCy levels associated with knockout of MMT. This model is now being used to predict the time-course of changes in

  17. Metabolic engineering for the production of plant isoquinoline alkaloids.

    Science.gov (United States)

    Diamond, Andrew; Desgagné-Penix, Isabel

    2016-06-01

    Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high-value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next-generation sequencing technologies, high-throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro-organisms. PMID:26503307

  18. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints.

    Science.gov (United States)

    Lee, Chun Pong; Millar, A Harvey

    2016-08-01

    In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments. PMID:27162080

  19. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  20. Expression of complete metabolic pathways in transgenic plants.

    Science.gov (United States)

    Krichevsky, Alexander; Zaltsman, Adi; King, Lisa; Citovsky, Vitaly

    2012-01-01

    Plant genetic engineering emerged as a methodology to introduce only few transgenes into the plant genome. Following fast-paced developments of the past few decades, engineering of much larger numbers of transgenes became a reality, allowing to introduce full metabolic pathways from other organisms into plants and generate transgenics with startling new traits. From the advent of the classical plant genetic engineering, the transgenes were introduced into the nuclear genome of the plant cell, and this strategy still is quite successful when applied to few transgenes. However, for introducing large number of transgenes, we advocate that the chloroplast genome is a superior choice, especially for engineering of new complete metabolic pathways into plants. The ability to genetically engineer plants with complex and fully functional metabolic pathways from other organisms bears a substantial promise in generation of pharmaceuticals, i.e., biopharming, and new agricultural crops with that traits never existed before, leading to enhancement in quality of human life. PMID:22616478

  1. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27003249

  2. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  3. Plant Hormones: Metabolism, Signaling and Crosstalk

    Institute of Scientific and Technical Information of China (English)

    Li-Jia Qu; Yunde Zhao

    2011-01-01

    @@ Plants synthesize various hormones in response to environmental cues and developmental signals to ensure their proper growth and development.Elucidation of the molecular mechanisms by which plant hormones control growth and development contributes to our understanding of fundamental plant biology and provides tools to improve crops.Because of their critical roles in plant growth and development, plant hormones have been studied extensively since the early days of plant biology.

  4. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  5. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  6. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  7. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS, complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a “nutrient acquisition response” that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.

  8. Aspects of CO_2 Uptake in the Crassulacean Acid Metabolism Orchid Phalaenopsis

    OpenAIRE

    Ichihashi, S.; Higuchi, T.; Shibayama, H; Tesima, Y.; Nishiwaki, K; Ota, K.

    2008-01-01

    Phalaenopsis and its hybrids are the most important orchid pot plant commercially in the world now. Research on photosynthesis gives us practical and useful information for improving cultivation. Although conventional gas-exchange technique has some limitations in the research of a crassulacean acid metabolism plant (CAM), we investigated CO_2 uptake in Phalaenopsis. CO_2 uptake at night (Phase 1) changed with temperature. Maximum CO_2 uptake was observed around 20℃. CO_2 absorption at night ...

  9. Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism.

    Science.gov (United States)

    Poirier, Yves

    2002-03-01

    Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.

  10. Metabolism and transport of gamma-carboxyglutamic acid.

    Science.gov (United States)

    Shah, D V; Tews, J K; Harper, A E; Suttie, J W

    1978-03-01

    gamma-Carboxyglutamic acid residues have beeh shown to be present in prothrombin, the other vitamin K-dependent clotting factors, and more recently in bone and kidney proteins. This amino acid is formed by a posttranslational vitamin K-dependent carboxylation of glutamyl residues in polypeptide precursors of these protens. It has now been demonstrated that this amino acid, either in the free or peptide-bound form, is not metabolically degraded by the rat, but is quantitatively excreted in the urine. In nephrectomized rats, the tissue concentration of intravenously administered gamma-carboxyglutamic acid is increased, but there is still no evidence of any oxidative metabolism of this amino acid. These amino acid is transported by kidney slices against a concentration gradient, but does not accumulate in liver, intestinal or brain tissues. Preliminary data suggest that gamma-carboxyglutamic acid may be concentrated by a carrier system different from that utilized by other amino acids. PMID:629998

  11. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms. PMID:27071245

  12. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  13. Citric acid cycle and role of its intermediates in metabolism.

    Science.gov (United States)

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  14. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  15. Auxin metabolism rates and implications for plant development

    Directory of Open Access Journals (Sweden)

    Eric M Kramer

    2015-03-01

    Full Text Available Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h to 1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The highest rates of auxin conjugation suggests that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed.

  16. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independen

  17. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    Science.gov (United States)

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  18. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Directory of Open Access Journals (Sweden)

    Marko Kreft

    2012-04-01

    Full Text Available Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  19. Plant metabolism, the diverse chemistry set of the future.

    Science.gov (United States)

    Wurtzel, Eleanore T; Kutchan, Toni M

    2016-09-16

    New technologies are redefining how plant biology will meet societal challenges in health, nutrition, agriculture, and energy. Rapid and inexpensive genome and transcriptome sequencing is being exploited to discover biochemical pathways that provide tools needed for synthetic biology in both plant and microbial systems. Metabolite detection at the cellular and subcellular levels is complementing gene sequencing for pathway discovery and metabolic engineering. The crafting of plant and microbial metabolism for the synthetic biology platforms of tomorrow will require precise gene editing and delivery of entire complex pathways. Plants sustain life and are key to discovery and development of new medicines and agricultural resources; increased research and training in plant science will accelerate efforts to harness the chemical wealth of the plant kingdom. PMID:27634523

  20. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  1. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  2. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    Science.gov (United States)

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  3. Metabolic reprogramming of periwinkle plant culture

    OpenAIRE

    Runguphan, Weerawat; O’Connor, Sarah E.

    2009-01-01

    We transformed an alkaloid biosynthetic gene with reengineered substrate specificity into Catharanthus roseus. The resulting transgenic plant cell culture produced a variety of unnatural alkaloid compounds when cocultured with simple, achiral, commercially available precursors that the reengineered enzyme was designed to accept. This work demonstrates the power of genetic engineering to retailor the structures of complex alkaloid natural products in plant culture.

  4. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation

    NARCIS (Netherlands)

    Lefebvre, Philippe; Cariou, Bertrand; Lien, Fleur; Kuipers, Folkert; Staels, Bart

    2009-01-01

    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 89: 147-191,2009; doi: 10.1152/physrev.00010.2008. - The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an incre

  5. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive ba

  6. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  7. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.

    Science.gov (United States)

    Kondo, Natsuki; Ohno, Yusuke; Yamagata, Maki; Obara, Takashi; Seki, Naoya; Kitamura, Takuya; Naganuma, Tatsuro; Kihara, Akio

    2014-01-01

    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized. PMID:25345524

  8. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    Science.gov (United States)

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  9. Phytanic acid metabolism in health and disease.

    Science.gov (United States)

    Wanders, Ronald J A; Komen, Jasper; Ferdinandusse, Sacha

    2011-09-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.

  10. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    Science.gov (United States)

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus.

  11. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    Science.gov (United States)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  12. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    OpenAIRE

    Chen, Li-Song; NOSE, Akihiro

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-d...

  13. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    Science.gov (United States)

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  14. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  15. Fatty acids from diet and microbiota regulate energy metabolism

    OpenAIRE

    Joe Alcock; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly ...

  16. Role of brain glutamic acid metabolism changes in neurodegenerative pathologies

    OpenAIRE

    Nina Pavlovna Kanunnikova

    2012-01-01

    Glutamic acid is an essential participant of brain metabolism. It is known that the glutamate is a neurotransmitter in a numerous part of the brain synapses and acts through various ionotropic or metabotropic receptors. Multiple alterations of the brain glutamate system are observed in both acute and chronic brain injures. Glutamate metabolism changes take place in many neurodegenerative pathologies, such as brain ischemia, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, amyot...

  17. Metabolic engineering of monoterpene biosynthesis in plants

    NARCIS (Netherlands)

    Lücker, J.

    2002-01-01

    Monoterpenes are a large group of compounds that belong to the terpenoid family of natural compounds in plants. They are small, volatile, lipophilic substances of which around one thousand different structures have been identified. Monoterpenes are

  18. Arsenomics: Omics of Arsenic Metabolism in Plants

    Directory of Open Access Journals (Sweden)

    Rudra Deo eTripathi

    2012-07-01

    Full Text Available AbstractArsenic (As contamination of drinking water and groundwater used for irrigation can lead to contamination of the food chain and poses serious health risk to people worldwide. To reduce As intake through the consumption of contaminated food, identification of the mechanisms for As accumulation and detoxification in plant is a prerequisite to develop efficient phytoremediation methods and safer crops with reduced As levels. Transcriptome, proteome and metabolome analysis of any organism reflects the total biological activities at any given time which are responsible for the adaptation of the organism to the surrounding environmental conditions. As these approaches are very important in analyzing plant As transport and accumulation, we termed Arsenomics as approach which deals transcriptome, proteome and metabolome alterations during As exposure. Although, various studies have been performed to understand modulation in transcriptome in response to As, many important questions need to be addressed regarding the translated proteins of plants at proteomic and metabolomic level, resulting in various ecophysiological responses. In this review, the comprehensive knowledge generated in this area has been compiled and analyzed. There is a need to strengthen Arsenomics which will lead to develop of tools to develop As-free plants for safe consumption.

  19. Alteration of Plant Primary Metabolism in Response to Insect Herbivory.

    Science.gov (United States)

    Zhou, Shaoqun; Lou, Yann-Ru; Tzin, Vered; Jander, Georg

    2015-11-01

    Plants in nature, which are continuously challenged by diverse insect herbivores, produce constitutive and inducible defenses to reduce insect damage and preserve their own fitness. In addition to inducing pathways that are directly responsible for the production of toxic and deterrent compounds, insect herbivory causes numerous changes in plant primary metabolism. Whereas the functions of defensive metabolites such as alkaloids, terpenes, and glucosinolates have been studied extensively, the fitness benefits of changes in photosynthesis, carbon transport, and nitrogen allocation remain less well understood. Adding to the complexity of the observed responses, the feeding habits of different insect herbivores can significantly influence the induced changes in plant primary metabolism. In this review, we summarize experimental data addressing the significance of insect feeding habits, as related to herbivore-induced changes in plant primary metabolism. Where possible, we link these physiological changes with current understanding of their underlying molecular mechanisms. Finally, we discuss the potential fitness benefits that host plants receive from altering their primary metabolism in response to insect herbivory.

  20. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal;

    2005-01-01

    the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria.......Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...

  1. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  2. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  3. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  4. Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity.

    Science.gov (United States)

    Weng, Jing-Ke; Ye, Mingli; Li, Bin; Noel, Joseph P

    2016-08-11

    Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience. PMID:27518563

  5. A central role of abscisic acid in stress-regulated carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Stefan Kempa

    Full Text Available BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.

  6. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  7. Uptake and Metabolism of Phthalate Esters by Edible Plants.

    Science.gov (United States)

    Sun, Jianqiang; Wu, Xiaoqin; Gan, Jay

    2015-07-21

    Phthalate esters (PAEs) are large-volume chemicals and are found ubiquitously in soil as a result of widespread plasticulture and waste disposal. Food plants such as vegetables may take up and accumulate PAEs from soil, potentially imposing human health risks through dietary intake. In this study, we carried out a cultivation study using lettuce, strawberry, and carrot plants to determine the potential of plant uptake, translocation, and metabolism of di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) and their primary metabolites mono-n-butyl phthalate (MnBP) and mono(2-ethylhexyl) phthalate (MEHP). All four compounds were detected in the plant tissues, with the bioconcentration factors (BCFs) ranging from 0.16 ± 0.01 to 4.78 ± 0.59. However, the test compounds were poorly translocated from roots to leaves, with a translocation factor below 1. Further, PAEs were readily transformed to their monoesters following uptake. Incubation of PAEs and monoalkyl phthalate esters (MPEs) in carrot cell culture showed that DnBP was hydrolyzed more rapidly than DEHP, while the monoesters were transformed more quickly than their parent precursors. Given the extensive metabolism of PAEs to monoesters in both whole plants and plant cells, metabolism intermediates such as MPEs should be considered when assessing human exposure via dietary intake of food produced from PAE-contaminated soils. PMID:26090545

  8. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Institute of Scientific and Technical Information of China (English)

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  9. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L. plants

    Directory of Open Access Journals (Sweden)

    Borlotti Andrea

    2012-10-01

    Full Text Available Abstract Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L. plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1 activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2 and glutamate synthase (EC 1.4.1.14 an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids to the leaves.

  10. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  11. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has d

  12. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  13. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.......Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy...

  14. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  15. The Role of Diet1 in Bile Acid Metabolism

    OpenAIRE

    Lee, Jessica Mei-Ping

    2013-01-01

    Elevated cholesterol levels are associated with increased risk for atherosclerosis, heart disease and stroke. Variations in plasma cholesterol levels among individuals are determined by the interaction of environmental and genetic factors, many of which remain to be identified. This dissertation presents the initial characterization of a novel gene Diet1, the product of which influences plasma cholesterol levels through its effects on bile acid metabolism. Bile acids are synthesized from c...

  16. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    OpenAIRE

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Dong WANG; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism....

  17. Effects of Salinity: Calcium Interaction on Growth and Nucleic Acid Metabolism in Five Species of Chenopodiaceae

    OpenAIRE

    ABO-KASSEM, Essam El-Deen Mohaned

    2007-01-01

    Seed germination, seedling growth, and some enzyme activity of nucleic acid metabolism were studied in 5 members of Chenopodiaceae [Beta vulgaris L., Chenopodium quinoa Willd., Spinacea oleracea L., Allenrolfia occidentalis (S.Watson) Kuntze, Atriplex hortensis L.] under NaCl salinity alone or combined with 0.5 mM CaSO4. High salinity delayed radical emergence and decreased germination percentage in all plants. Combined CaSO4 reduced inhibition of seed germination in B. vulgaris, S. oleracea,...

  18. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    Science.gov (United States)

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems.

  19. Metabolic Engineering of Tropane Alkaloid Biosynthesis in Plants

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Guo-Yin KAI; Bei-Bei LU; Han-Ming ZHANG; Ke-Xuan TANG; Ji-Hong JIANG; Wan-Sheng CHEN

    2005-01-01

    Over the past decade, the evolving commercial importance of so-called plant secondary metabolites has resulted in a great interest in secondary metabolism and, particularly, in the possibilities to enhance the yield of fine metabolites by means of genetic engineering. Plant alkaloids, which constitute one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the tropane alkaloids biosynthesis pathways have been cloned, making the metabolic engineering of these alkaloids possible. The content of the target chemical scopolamine could be significantly increased by various approaches, such as introducing genes encoding the key biosynthetic enzymes or genes encoding regulatory proteins to overcome the specific rate-limiting steps. In addition, antisense genes have been used to block competitive pathways. These investigations have opened up new, promising perspectives for increased production in plants or plant cell culture. Recent achievements have been made in the metabolic engineering of plant tropane alkaloids and some new powerful strategies are reviewed in the present paper.

  20. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  1. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  2. Production of hydroxylated fatty acids in genetically modified plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  4. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  5. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    Science.gov (United States)

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  6. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Institute of Scientific and Technical Information of China (English)

    Malay Kumar ADAK; Nirmalya GHOSH; Dilip Kumar DASGUPTA; Sudha GUPTA

    2011-01-01

    The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation.It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield.The detrimental effects of the complete submergence were recorded in generation of sucrose,starch,sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e.non-submerged) condition.The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity.Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity.However,under normal or control condition,there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity.Still,photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield.Finally,plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues.It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles,in this case) as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  7. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  8. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    Science.gov (United States)

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production.

  9. Taurocholic acid metabolism by gut microbes and colon cancer.

    Science.gov (United States)

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  10. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  11. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  12. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  13. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12 m...

  14. Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes.

    Science.gov (United States)

    Dersch, Lisa Maria; Beckers, Veronique; Rasch, Detlev; Melzer, Guido; Bolten, Christoph; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine; Ehrhardt, Thomas; Wittmann, Christoph

    2016-05-01

    Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of (13)CO2 and (15)NH4NO3 The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, (13)CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous (13)CO2 and (15)NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong (13)C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping.

  15. Structurally modified fatty acids - clinical potential as tracers of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than ..beta..-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45/sup 0//14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl/sub 3//MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs.

  16. Volatile science? Metabolic engineering of terpenoids in plants.

    Science.gov (United States)

    Aharoni, Asaph; Jongsma, Maarten A; Bouwmeester, Harro J

    2005-12-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.

  17. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Konstantinos A Aliferis

    Full Text Available Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS and gas chromatography-mass spectrometry (GC/MS for the monitoring of soybean's (Glycine max L. global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.

  18. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  19. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    Science.gov (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  20. Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ω-3 Fatty Acids*

    OpenAIRE

    Arnold, Cosima; Markovic, Marija; Blossey, Katrin; Wallukat, Gerd; Fischer, Robert; Dechend, Ralf; Konkel, Anne; von Schacky, Clemens; Luft, Friedrich C.; Muller, Dominik N.; Rothe, Michael; Schunck, Wolf-Hagen

    2010-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J...

  1. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  2. Fatty Acids in Energy Metabolism of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Alexander Panov

    2014-01-01

    Full Text Available In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain’s energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  3. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.

    Science.gov (United States)

    Nargund, Shilpa; Sriram, Ganesh

    2013-01-27

    Metabolic fluxes are powerful indicators of cell physiology and can be estimated by isotope-assisted metabolic flux analysis (MFA). The complexity of the compartmented metabolic networks of plants has constrained the application of isotope-assisted MFA to them, principally because of poor identifiability of fluxes from the measured isotope labeling patterns. However, flux identifiability can be significantly improved by a priori design of isotope labeling experiments (ILEs). This computational design involves evaluating the effect of different isotope label and isotopomer measurement combinations on flux identifiability, and thereby identifying optimal labels and measurements toward evaluating the fluxes of interest with the highest confidence. This article reports ILE designs for two major, compartmented plant metabolic pathways - the pentose phosphate pathway (PPP) and γ-aminobutyric acid (GABA) shunt. Together, these pathways represent common motifs in plant metabolism including duplication of pathways in different subcellular compartments, reversible reactions and cyclic carbon flow. To compare various ILE designs, we employed statistical A- and D-optimality criteria. Our computations showed that 1,2-(13)C Glc is a powerful and robust label for the plant PPPs, given currently popular isotopomer measurement techniques (single quadrupole mass spectrometry [MS] and 2-D nuclear magnetic resonance [NMR]). Further analysis revealed that this label can estimate several PPP fluxes better than the popular label 1-(13)C Glc. Furthermore, the concurrent measurement of the isotopomers of hexose and pentose moieties synthesized exclusively in the cytosol or the plastid compartments (measurable through intracellular glucose or sucrose, starch, RNA ribose and histidine) considerably improves the identifiability of PPP fluxes in the individual compartments. Additionally, MS-derived isotopomer measurements outperform NMR-derived measurements in identifying PPP fluxes. The

  4. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  5. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    Science.gov (United States)

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate.

  6. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO2. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 40C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of [14C] glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability

  7. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  8. Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity.

    Science.gov (United States)

    Thalineau, Elise; Truong, Hoai-Nam; Berger, Antoine; Fournier, Carine; Boscari, Alexandre; Wendehenne, David; Jeandroz, Sylvain

    2016-01-01

    Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen interactions, plants' capacity to acquire, assimilate, allocate N, and maintain amino acid homeostasis appears to partly mediate the effects of N on plant defense. Nitric oxide (NO), one of the products of N metabolism, plays an important role in plant immunity signaling. NO is generated in part through Nitrate Reductase (NR), a key enzyme involved in nitrate assimilation, and its production depends on levels of nitrate/nitrite, NR substrate/product, as well as on L-arginine and polyamine levels. Cross-regulation between NO signaling and N supply/metabolism has been evidenced. NO production can be affected by N supply, and conversely NO appears to regulate nitrate transport and assimilation. Based on this knowledge, we hypothesized that N availability partly controls plant resistance to pathogens by controlling NO homeostasis. Using the Medicago truncatula/Aphanomyces euteiches pathosystem, we showed that NO homeostasis is important for resistance to this oomycete and that N availability impacts NO homeostasis by affecting S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase activity in roots. These results could therefore explain the increased resistance we noted in N-deprived as compared to N-replete M. truncatula seedlings. They open onto new perspectives for the studies of N/plant defense interactions. PMID:27092169

  9. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  10. The Relation between Photosynthesis, Respiration, and Crassulacean Acid Metabolism in Leaf Slices of Aloe arborescens Mill.

    Science.gov (United States)

    Denius, H R; Homann, P H

    1972-06-01

    Leaves and leaf slices from Aloe arborescens Mill. were used to study the interrelations between Crassulacean acid metabolism, photosynthesis, and respiration. Oxygen exchange of leaf slices was measured polarographically. It was found that the photosynthetic utilization of stored malic acid resulted in a net evolution of oxygen. This oxygen production, and the decrease in acid content of the leaf tissue, were completely inhibited by amytal, although the rate of respiratory oxygen uptake was hardly affected by the presence of this inhibitor of mitochondrial electron transport. Other poisons of respiration (cyanide) and of the tricarboxylic acid cycle (trifluoroacetate, 2-diethyl malonate) also were effective in preventing acid-dependent oxygen evolution. It is concluded that the mobilization of stored acids during light-dependent deacidification of the leaves depends on the operation of the tricarboxylic acid cycle and of the electron transport of the mitochondria.A comparison of enzyme activities in extracts from Aloe leaves and from other plants and studies of leaf anatomy and chloroplast morphology revealed typical characteristics of C(3)-, as well as C(4)-, plants in Aloe. PMID:16658075

  11. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker;

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... produced variable results, and the validity of MST is intensely debated. MST focuses on organisms’ internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model...... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  12. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

    Science.gov (United States)

    Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R

    2005-01-01

    The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitrate regimes: saturated (8 mM NO3-), replete (4 mM NO3-) and deficient (0.4 mM NO3-). All treatments were performed under varied light intensity, with leaf samples being collected after 7, 14, and 21 d. In addition, the short-term response (after 1, 24, 48, and 94 h) to varying nutrient status was evaluated at the higher light intensity. GC-MS analysis of the levels of amino acids, tricarboxylic acid cycle intermediates, sugars, sugar alcohols, and representative compounds of secondary metabolism revealed substantial changes under the various growth regimes applied. The data presented here suggest that nitrate nutrition has wide-ranging effects on plant leaf metabolism with nitrate deficiency resulting in decreases in many amino and organic acids and increases in the level of several carbohydrates and phosphoesters, as well as a handful of secondary metabolites. These results are compared with previously reported transcript profiles of altered nitrogen regimes and discussed within the context of current models of carbon nitrogen interaction. PMID:15596475

  13. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    Energy Technology Data Exchange (ETDEWEB)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  14. Fusion and metabolism of plant cells as affected by microgravity.

    Science.gov (United States)

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  15. Fusion and metabolism of plant cells as affected by microgravity.

    Science.gov (United States)

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  16. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. PMID:23190163

  17. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.

  18. Altered cholesterol and fatty acid metabolism in Huntington disease.

    Science.gov (United States)

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  19. Exploring De Novo metabolic pathways from pyruvate to propionic acid.

    Science.gov (United States)

    Stine, Andrew; Zhang, Miaomin; Ro, Soo; Clendennen, Stephanie; Shelton, Michael C; Tyo, Keith E J; Broadbelt, Linda J

    2016-03-01

    Industrial biotechnology provides an efficient, sustainable solution for chemical production. However, designing biochemical pathways based solely on known reactions does not exploit its full potential. Enzymes are known to accept non-native substrates, which may allow novel, advantageous reactions. We have previously developed a computational program named Biological Network Integrated Computational Explorer (BNICE) to predict promiscuous enzyme activities and design synthetic pathways, using generalized reaction rules curated from biochemical reaction databases. Here, we use BNICE to design pathways synthesizing propionic acid from pyruvate. The currently known natural pathways produce undesirable by-products lactic acid and succinic acid, reducing their economic viability. BNICE predicted seven pathways containing four reaction steps or less, five of which avoid these by-products. Among the 16 biochemical reactions comprising these pathways, 44% were validated by literature references. More than 28% of these known reactions were not in the BNICE training dataset, showing that BNICE was able to predict novel enzyme substrates. Most of the pathways included the intermediate acrylic acid. As acrylic acid bioproduction has been well advanced, we focused on the critical step of reducing acrylic acid to propionic acid. We experimentally validated that Oye2p from Saccharomyces cerevisiae can catalyze this reaction at a slow turnover rate (10(-3) s(-1) ), which was unknown to occur with this enzyme, and is an important finding for further propionic acid metabolic engineering. These results validate BNICE as a pathway-searching tool that can predict previously unknown promiscuous enzyme activities and show that computational methods can elucidate novel biochemical pathways for industrial applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:303-311, 2016. PMID:26821575

  20. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans

    OpenAIRE

    Horikawa, Makoto; Sakamoto, Kazuichi

    2009-01-01

    Fatty acids are the major components of the phospholipid bilayer and are involved in several functions of cell membrane. We previously reported that fatty-acid metabolism is involved in the regulation of DAF-2/insulin signal in Caenorhabditis elegans. In this study, we investigate the role of fatty-acid metabolism in stress resistance with respect to daf-16 in nematode. We found that fatty-acid metabolism regulates heat, osmotic, and oxidative-stress resistance in C. elegans. RNA interference...

  1. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal s

  2. Gradient in the degree of Crassulacean acid metabolism within leaves of Kalanchoe daigremontiana.

    Science.gov (United States)

    Winter, K

    1987-09-01

    Leaves of the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr., about 3.3 mm thick, showed higher rates of net CO2 exchange through the lower than through the upper surface during day and night, although the lower surface received only a small fraction of the light which was incident on the upper surface. Nocturnal acidification was more pronounced in cells from the lower than from the upper portion of leaves. The lower activity of the exposed side of these long-lived succulent leaves may be related to the potentially adverse effects of excessive light. PMID:24225791

  3. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    Science.gov (United States)

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  4. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2010-10-01

    Full Text Available Abstract Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.

  5. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. PMID:26991644

  6. Biochemical hydrogen isotope fractionation during biosynthesis in higher plants reflects carbon metabolism of the plant

    Science.gov (United States)

    Cormier, Marc-André; Kahmen, Ansgar

    2015-04-01

    Compound-specific isotope analyses of plant material are frequently applied to understand the response of plants to the environmental changes. As it is generally assume that the main factors controlling δ2H values in plants are the plant's source water and evaporative deuterium enrichment of leaf water, hydrogen isotope analyses of plant material are mainly applied regarding hydrological conditions at different time scales. However, only few studies have directly addressed the variability of the biochemical hydrogen isotope fractionation occurring during biosynthesis of organic compounds (ɛbio), accounting also for a large part in the δ2H values of plants but generally assumed to be constant. Here we present the results from a climate-controlled growth chambers experiment where tested the sensitivity of ɛbio to different light treatments. The different light treatments were applied to induce different metabolic status (autotrophic vs. heterotrophic) in 9 different plant species that we grew from large storage organs (e.g. tubers or roots). The results show a systematic ɛbio shift (up to 80 ) between the different light treatments for different compounds (i.e. long chain n-alkanes and cellulose). We suggest that this shift is due to the different NADPH pools used by the plants to build up the compounds from stored carbohydrates in heterotrophic or autotrophic conditions. Our results have important implications for the calibration and interpretation of sedimentary and tree rings records in geological studies. In addition, as the δ2H values reflect also strongly the carbon metabolism of the plant, our findings support the idea of δ2H values as an interesting proxy for plant physiological studies.

  7. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism.

    Science.gov (United States)

    Ertani, Andrea; Pizzeghello, Diego; Francioso, Ornella; Tinti, Anna; Nardi, Serenella

    2016-01-01

    The influence of vegetal extracts derived from red grape, blueberry fruits and hawthorn leaves on Zea mays L. plant growth and the activity of phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid pathway, was investigated in laboratory experiments. The extracts were characterized using FT-IR and Raman spectroscopies in order to obtain a pattern of the main functional groups. In addition, phenols content was determined by HPLC, whereas the content of indoleacetic acid and isopentenyladenosine hormones was determined by ELISA test and the auxin and gibberellin-like activities by plant-bioassays. The treated maize revealed increased root and leaf biomass, chlorophyll and sugars content with respect to untreated plants. Hawthorn, red grape skin and blueberry at 1.0 mL/L induced high p-coumaric content values, whilst hawthorn also showed high amounts of gallic and p-hydroxybenzoic acids. PAL activity induced by hawthorn at 1.0 mL/L had the highest values (11.1-fold UNT) and was strongly and linearly related with the sum of leaf phenols. Our results suggest that these vegetal extracts contain more than one group of plant-promoting substances.

  8. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2016-02-01

    Full Text Available The influence of vegetal extracts derived from red grape, blueberry fruits and hawthorn leaves on Zea mays L. plant growth and the activity of phenylalanine ammonia-lyase (PAL, a key enzyme of the phenylpropanoid pathway, was investigated in laboratory experiments. The extracts were characterized using FT-IR and Raman spectroscopies in order to obtain a pattern of the main functional groups. In addition, phenols content was determined by HPLC, whereas the content of indoleacetic acid and isopentenyladenosine hormones was determined by ELISA test and the auxin and gibberellin-like activities by plant-bioassays. The treated maize revealed increased root and leaf biomass, chlorophyll and sugars content with respect to untreated plants. Hawthorn, red grape skin and blueberry at 1.0 mL/L induced high p-coumaric content values, whilst hawthorn also showed high amounts of gallic and p-hydroxybenzoic acids. PAL activity induced by hawthorn at 1.0 mL/L had the highest values (11.1-fold UNT and was strongly and linearly related with the sum of leaf phenols. Our results suggest that these vegetal extracts contain more than one group of plant-promoting substances.

  9. Amino acid supplementation alters bone metabolism during simulated weightlessness

    Science.gov (United States)

    Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.

    2005-01-01

    High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.

  10. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism......During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... at 3 h 23 min ± 11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P

  11. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation.

    Science.gov (United States)

    Villalobos, Jose A; Yi, Bo R; Wallace, Ian S

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis.

  12. Metabolism of Flavone-8-acetic Acid in Mice.

    Science.gov (United States)

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  13. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    2012-01-01

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We aim

  14. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves improvem......The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...... enzymes involved in biosynthesis of the precursor for PUFAs, or codon optimization of the heterologous genes, or expression of heterologous enzymes involved in the biosynthesis of the precursor for PUFAs....

  15. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  16. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  17. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Science.gov (United States)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  18. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2001-05-01

    Full Text Available We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2 and represses expression of asparagine synthetase (ASN1 genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.

  19. Perturbations in the Primary Metabolism of Tomato and Arabidopsis thaliana Plants Infected with the Soil-Borne Fungus Verticillium dahliae.

    Directory of Open Access Journals (Sweden)

    Anja Buhtz

    Full Text Available The hemibiotrophic soil-borne fungus Verticillium dahliae is a major pathogen of a number of economically important crop species. Here, the metabolic response of both tomato and Arabidopsis thaliana to V. dahliae infection was analysed by first using non-targeted GC-MS profiling. The leaf content of both major cell wall components glucuronic acid and xylose was reduced in the presence of the pathogen in tomato but enhanced in A. thaliana. The leaf content of the two tricarboxylic acid cycle intermediates fumaric acid and succinic acid was increased in the leaf of both species, reflecting a likely higher demand for reducing equivalents required for defence responses. A prominent group of affected compounds was amino acids and based on the targeted analysis in the root, it was shown that the level of 12 and four free amino acids was enhanced by the infection in, respectively, tomato and A. thaliana, with leucine and histidine being represented in both host species. The leaf content of six free amino acids was reduced in the leaf tissue of diseased A. thaliana plants, while that of two free amino acids was raised in the tomato plants. This study emphasizes the role of primary plant metabolites in adaptive responses when the fungus has colonized the plant.

  20. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  1. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.

    Science.gov (United States)

    Brilhaus, Dominik; Bräutigam, Andrea; Mettler-Altmann, Tabea; Winter, Klaus; Weber, Andreas P M

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  2. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN

    Science.gov (United States)

    Winter, Klaus

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3–CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  3. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    Science.gov (United States)

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  4. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  5. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    Science.gov (United States)

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  6. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [13] - leucine and α- [15N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  7. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T

    OpenAIRE

    Rodríguez, Héctor; Landete, José María; Rivas, Blanca de las; Muñoz, Rosario

    2008-01-01

    Phenolic acids account for almost one third of the dietary phenols and are associated with organoleptic, nutritional and antioxidant properties of foods. This study was undertaken to assess the ability of Lactobacillus plantarum CECT 748T to metabolize 19 food phenolic acids. Among the hydroxycinnamic acids studied, only p-coumaric, caffeic, ferulic and m-coumaric acids were metabolized by L. plantarum. Cultures of L. plantarum produced ethyl and vinyl derivatives from p-coumaric and...

  8. Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza

    Science.gov (United States)

    León Morcillo, Rafael Jorge; Ocampo, Juan A.; García Garrido, José M.

    2012-01-01

    The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants. PMID:23073021

  9. Phenolic Acids in Plant-Soil-Microbe System: A Review

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phenolic acids are very common compounds in pedosphere. The objective of this review was to summarize the current knowledge of the behaviors of phenolic acids in plant-soil-microbe system. When phenolic acids originated from leaching, decomposition and exudation of living and dead plant tissues enter soils, they can react physicochemically with soil particle surfaces and/or incorporate into humic matter. Phenolic acids desorbed from soil particle surfaces and remained in solution phase can be utilized by microbe as carbon sources and absorbed by plants. The degradation products of phenolic acids by microbe include some organic and/or inorganic compounds such as new phenolic acids. In addition, phenolic acids in soils can stimulate population and activity of microbe. Phenolic acids can inhibit plants growth by affecting ion leakage, phytohormone activity, membrane permeability, hydraulic conductivity, net nutrient uptake, and enzyme activity. Behaviors of phenolic acids in soils are influenced by other organic compounds (phenolic acids, methionine, glucose, etc.) and/or inorganic ions. The role of phenolic acids as allelopathic agents should not be neglected only based on their low specific concentrations in natural soils, because numbers and interactions of phenolic acids will increase their allelopathic activities.

  10. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism.

    Science.gov (United States)

    Moghe, Gaurav D; Last, Robert L

    2015-11-01

    Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.

  11. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    e.g. fatty acid composition of the diet, are important factors with regard to development of metabolic syndrome. There is a controversy between the fact that several studies has shown that intake of saturated fatty acids are strongly correlated to the development of metabolic related diseases......The still growing obesity epidemic is a major risk for our society, as it is associated with the development of the so called metabolic syndrome, which is a clinical diagnosis correlated to development of metabolic disorders. Lack of physical activity, excess energy intake, and nutritional factors...... dairy fat in general and phytanic acid on metabolic parameters, we performed several studies. First, we investigated effects on hepatic lipid metabolism, glucose homeostasis, and circulating metabolic markers, of high fat diets based on butter from high- or low-yield production, a diet based on high...

  12. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  13. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  14. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  15. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Science.gov (United States)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  16. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    Science.gov (United States)

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  17. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    Science.gov (United States)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  18. ROSMARINIC ACID AND ITS PLANT SOURCES IN THE CRIMEA

    OpenAIRE

    A. E. Paliy; F. M. Melikov; O. A. Grebennikova; V. D. Rabotyagov

    2015-01-01

    The article presents data on the content of phenolics and rosmarinic acid in 32 species of aromatic and medicinal plants from Lamiaceae, Asteraceae and Apiaceae families, native to the South Coast of the Crimea. The concentration of phenolic compounds in the studied species was 490.3 – 18511.0 mg/100g of plant raw materials. Rosmarinic acid was found in 15 species from Lamiaceae and Asteraceae families. Rosmarinic acid was not noticed in the studied plants from Apiaceae family. The concentrat...

  19. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate

    Directory of Open Access Journals (Sweden)

    Qiong eZhang

    2015-05-01

    Full Text Available Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA and phosphatidylinositol 4-phosphate (PI4P, and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS generation and SA accumulation during defense activation.

  20. The role of amino acids in improvement in salt tolerance of crop plants

    Directory of Open Access Journals (Sweden)

    Abd El-Samad H. M.

    2010-09-01

    Full Text Available The present work has been performed to study the growth and metabolic activities of maize and broad bean plants which are shown to have a degree of sensitivity to salinity and to determine the role of amino acids proline or phenylalanine in increasing the salt tolerance of theses plants. Dry mass, water content, leaf area and photosynthetic pigment of maize and broad bean plants decreased with increasing salinity. These changes were accompanied with a drop in the contents of soluble sugars, soluble proteins and amino acids. This was accompanied by a marked increase in the proline content. When maize and broad bean plants sprayed with proline or phenylalanine the opposite effect was occurred, saccharides as well as proteins progressively increased at all sanitization levels and proline concentration significantly declined. Salinity significantly increased the sodium content in both shoots and roots of maize and broad bean plants, while a decline in the accumulation of K+, Ca++, Mg++ and P was observed. Amino acids treatments markedlyaltered the selectivity of Na+, K+, Ca++ and P in both maize and broad bean plants. Spraying with any of either proline orphenylalanine restricted Na+ uptake and enhanced the uptake of K+, K+/Na+ ratio, Ca++ and P selectivity in maize and broad bean plants.

  1. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    Science.gov (United States)

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  2. Key elements of plant-based diets associated with reduced risk of metabolic syndrome.

    Science.gov (United States)

    Turner-McGrievy, Gabrielle; Harris, Metria

    2014-01-01

    Approximately 20 %-25 % of adults worldwide have metabolic syndrome. Vegetarian and vegan diets have demonstrated effectiveness in improving body weight, glycemic control, and cardiovascular risk factors, as compared with conventional therapeutic approaches, and are potentially useful in the prevention of metabolic syndrome. This article consists of two steps: (1) a review of the literature on studies examining vegetarian and vegan diets and metabolic syndrome and (2) a review of foods and nutrients that are protective against or associated with metabolic syndromes that may help to explain the beneficial effects of plant-based dietary approaches for metabolic syndrome. The present review found eight observational research studies, and no intervention studies, examining the association of plant-based dietary approaches with metabolic syndrome. These studies, conducted mostly in Asian populations, yielded varying results. The majority, however, found better metabolic risk factors and lowered risk of metabolic syndrome among individuals following plant-based diets, as compared with omnivores. Some dietary components that are lower in the diets of vegetarians, such as energy intake, saturated fat, heme iron, and red and processed meat, may influence metabolic syndrome risk. In addition, plant-based diets are higher in fruits, vegetables, and fiber, which are protective against the development of metabolic syndrome. PMID:25084991

  3. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Directory of Open Access Journals (Sweden)

    Blanka Stibůrková

    Full Text Available OBJECTIVE: Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. METHODS: The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables. RESULTS: The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations. CONCLUSION: Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  4. Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-03-29

    Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.

  5. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus.

    Science.gov (United States)

    Kulkarni, Sameer S; Salehzadeh, Firoozeh; Fritz, Tomas; Zierath, Juleen R; Krook, Anna; Osler, Megan E

    2012-02-01

    The delicate homeostatic balance between glucose and fatty acid metabolism in relation to whole-body energy regulation is influenced by mitochondrial function. We determined expression and regulation of mitochondrial enzymes including pyruvate dehydrogenase kinase (PDK) 4, PDK2, carnitine palmitoyltransferase 1b, and malonyl-coenzyme A decarboxylase in skeletal muscle from people with normal glucose tolerance (NGT) or type 2 diabetes mellitus (T2DM). Vastus lateralis biopsies were obtained from NGT (n = 79) or T2DM (n = 33) men and women matched for age and body mass index. A subset of participants participated in a 4-month lifestyle intervention program consisting of an unsupervised walking exercise. Muscle biopsies were analyzed for expression and DNA methylation status. Primary myotubes were derived from biopsies obtained from NGT individuals for metabolic studies. Cultured skeletal muscle was exposed to agents mimicking exercise activation for messenger RNA (mRNA) expression analysis. The mRNA expression of PDK4, PDK2, and malonyl-coenzyme A decarboxylase was increased in skeletal muscle from T2DM patients. Methylation of the PDK4 promoter was reduced in T2DM and inversely correlated with PDK4 expression. Moreover, PDK4 expression was positively correlated with body mass index, blood glucose, insulin, C peptide, and hemoglobin A(1c). A lifestyle intervention program resulted in increased PDK4 mRNA expression in NGT individuals, but not in those with T2DM. Exposure to caffeine or palmitate increased PDK4 mRNA in a cultured skeletal muscle system. Our findings reveal that skeletal muscle expression of PDK4 and related genes regulating mitochondrial function reflects alterations in substrate utilization and clinical features associated with T2DM. Furthermore, hypomethylation of the PDK4 promoter in T2DM coincided with an impaired response of PDK4 mRNA after exercise. PMID:21816445

  6. Hormone Signaling Pathways in Plants: The Role of Jasmonic Acid in Plant Cell Signaling

    OpenAIRE

    TİRYAKİ, İskender

    2004-01-01

    Plant growth and metabolism are affected by various biotic and abiotic stimuli including microorganisms and insects attack as well as light and environmental stresses. Such a diverse plant response requires a communication system that uses a group of chemical messengers called hormones. Hormones promote, inhibit, or qualitatively modify plant growth and development. This complex process requires a signal transduction that defines a specific information pathway within a cell that translat...

  7. A Preliminary Study of Crassulacean Acid Metabolism (CAM) in the Endangered Aquatic Quillwort Isoetes sinensis Palmer in China

    Institute of Scientific and Technical Information of China (English)

    PangXin-an; WangQing-feng; GituruW.Robert; LiuHong; YangXiao-lin; LiuXing

    2003-01-01

    Isoetes sinensis Palmer (Isoetaceae) is an aquatic or amphibious plant that is critically endangered in China. Previous studies have revealed the crassulacean acid metabolism (CAM)-like photosynthetic pathway occurs commonly in submerged leaves in genus Isoetes. Water chemistry parameters and the titratable acidity content of the plant extract were measured from samples obtained in the early morning (7:00) and late afternoon (15=00) from two I.sinensis populations in China. One population occurs in the eulittoral zone of a freshwater tidal river at low elevation (134 m) and another occurs in a densely vegetated, high elevation (1 100 m) alpine shallow pool. Significant difference sin pH and titratable acidity of the plant extract were detected between the morning and afternoon samples. These changes are associated with diurnal changes in water chemistry. Our results provide the first evidence for the existence of the CAM pathway in the East Asian endemic Isoetes sinensis Palmer.The magnitude of fluctuations in the titratable acidity of the plant extract may be correlated with the severe carbon limitation imposed on the plants by its aquatic habitat.

  8. A Preliminary Study of Crassulacean Acid Metabolism (CAM) in the Endangered Aquatic Quillwort Isoetes sinensis Palmer in China

    Institute of Scientific and Technical Information of China (English)

    Pang Xin-an; Wang Qing-feng; Gituru W.Robert; Liu Hong; Yang Xiao-lin; Liu Xing

    2003-01-01

    Isoetes sinensis Palmer (Isoetaceae) is an aquatic or amphibious plant that is critically endangered in China. Previous studies have revealed the crassulacean acid metabolism (CAM)-like photosynthetic pathway occurs com-monly in submerged leaves in genus Isoetes. Water chemistry parameters and the titratable acidity content of the plant extract were measured from samples obtained in the early morning (7:00) and late afternoon (15:00) from two I.sinensis populations in China. One population occurs in the eulittoral zone of a freshwater tidal river at low elevation (134 m) and another occurs in a densely vegetated, high elevation (1 100 m) alpine shallow pool. Significant differences in pH and titratable acidity of the plant extract were detected between the morning and afternoon samples. These changes are associated with diurnalchanges in water chemistry. Our results provide the first evidence for the exist-ence of the CAM pathwa in the East Asian endemic Isoetes sinensis Palmer.The magnitude of fluctuations in the titratable acidity of the plant extract mayb e correlated with the severe carbon limitation imposed on the plants by its aquatic habitat.

  9. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review.

    Science.gov (United States)

    Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-07-01

    It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.

  10. Tracer methods for investigating biosynthetic pathways and the metabolism of bioactive substances in plants. [Herbicides; Plant growth regulators

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, H.R. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)

    1984-03-01

    Proceeding from the general terms of investigating the courses of reactions in plants by means of tracer methods, problems and possibilities of the methods are discussed on the basis of examples referring in particular to double labelling techniques and to the determination of the distribution of radioactivity in the resulting products. Examples of herbicides and plant growth regulators are used for describing metabolism studies.

  11. Modulation of plant growth and metabolism in cadmium-enriched environments.

    Science.gov (United States)

    Qadir, Shaista; Jamshieed, Sumiya; Rasool, Saiema; Ashraf, Muhammad; Akram, Nudrat Aisha; Ahmad, Parvaiz

    2014-01-01

    Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.

  12. Phosphatidic acid: a multifunctional stress-signalling lipid in plants.

    NARCIS (Netherlands)

    C. Testerink; T. Munnik

    2005-01-01

    Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and a

  13. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  14. Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes.

    Science.gov (United States)

    Wang, Lu; Cao, Hongli; Chen, Changsong; Yue, Chuan; Hao, Xinyuan; Yang, Yajun; Wang, Xinchao

    2016-01-01

    To uncover the mechanisms that underlie the chlorina phenotype of the tea plant, this study employs morphological, biochemical, transcriptomic, and iTRAQ-based proteomic analyses to compare the green tea cultivar LJ43 and the yellow-leaf tea cultivar ZH1. ZH1 exhibited the chlorina phenotype, with significantly decreased chlorophyll content and abnormal chloroplast development compared with LJ43. ZH1 also displayed higher theanine and free amino acid content and lower carotenoid and catechin content. Microarray and iTRAQ analyses indicated that the differentially expressed genes and proteins could be mapped to the following pathways: 'phenylpropanoid biosynthesis,' 'glutathione metabolism,' 'phenylalanine metabolism,' 'photosynthesis,' and 'flavonoid biosynthesis.' Altered gene and protein levels in these pathways may account for the increased amino acid content and reduced chlorophyll and flavonoid content of ZH1. Altogether, this study combines transcriptomic and proteomic approaches to better understand the mechanisms responsible for the chlorina phenotype.

  15. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  16. Isolation and identification of phosphatidic acid targets from plants.

    NARCIS (Netherlands)

    C. Testerink; H.L. Dekker; Z.-Y. Lim; M.K. Johns; A.B. Holmes; C.G. de Koster; N.T. Ktisakis; T. Munnik

    2004-01-01

    Phosphatidic acid (PA) is emerging as an important lipid signalling molecule. In plants, it is implicated in various stress-signalling pathways and is formed in response to wounding, osmotic stress, cold stress, pathogen elicitors, Nod factors, ethylene and abscisic acid. How PA exerts its effects i

  17. Role of ascorbic acid against pathogenesis in plants

    OpenAIRE

    Taqi Ahmed Khan; Mohd Mazid; Firoz Mohammad

    2011-01-01

    Plants vary considerably in their physiological response to various kinds of environmental stress. To prevent damage caused by pathogenic attack and to acclimate to change in their environment, plants have evolved direct and indirect mechanism for sensing and responding to pathogenic stimuli. Ascorbic acid (AA) is found in all eukaryotes including animals and plants and lack completely in prokaryotes except cyanobactaria, have been reported to have a small amount. AA has now gained significan...

  18. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-01

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops. PMID:27450089

  19. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    Science.gov (United States)

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  20. Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs

    NARCIS (Netherlands)

    Smink, W.

    2012-01-01


    The impact of variation in the composition of dietary fat on digestion, metabolism and synthesis of fatty acids was studied in broiler chickens and in pigs. In young broiler chickens, digestion of unsaturated fatty acids was substantially higher compared with that of saturated fatty acids. Po

  1. Good and bad protons: genetic aspects of acidity stress responses in plants.

    Science.gov (United States)

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.

  2. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Science.gov (United States)

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  3. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    OpenAIRE

    Abir U Igamberdiev; Eprintsev, Alexander T.

    2016-01-01

    Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA) cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (c...

  4. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  5. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  6. The molecular components of phospho- and glycolipid metabolism in plant cell membranes under the phosphorus deficiency

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available One of the aspects of molecular regulation of phosphorus metabolism in plants, the lipid components of membrane structures, has been reviewed. The refocusing of phosphoand glycolipid metabolism is an indicator of phosphorus accessibility in plants. The compensatory mechanisms of substitution of phospholipids with non-phosphorus containing glycolipids in membranes, allow plants to adapt to the phosphate (Pi starvation. Phospholipids are the reserve pool of cellular phosphorus at reutilization of ions in the donor-acceptor system of plants. The mechanisms of transcriptional regulation of genes involved in the synthesis of phospholipids and glycolipids under Pi deficit have been analyzed.

  7. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery

    DEFF Research Database (Denmark)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin;

    2015-01-01

    (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. CONCLUSIONS/INTERPRETATION: Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate......AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite...... showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation...

  8. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update

    Directory of Open Access Journals (Sweden)

    Esther M.M. Ooi

    2015-06-01

    Full Text Available Dyslipidemia is a major risk factor for cardiovascular disease (CVD. Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA consumption diminished hepatic triglyceride-rich lipoprotein (TRL secretion and enhanced TRL to low-density lipoprotein (LDL conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids.

  9. The ins and outs of maternal-fetal fatty acid metabolism.

    Science.gov (United States)

    Bobiński, Rafał; Mikulska, Monika

    2015-01-01

    Fatty acids (FAs) are one the most essential substances in intrauterine human growth. They are involved in a number of energetic and metabolic processes, including the growth of cell membranes, the retina and the nervous system. Fatty acid deficiency and disruptions in the maternal-placental fetal metabolism of FAs lead to malnutrition of the fetus, hypotrophy and preterm birth. What is more, metabolic diseases and cardiovascular conditions may appear later in life. Meeting a fetus' need for FAs is dependent on maternal diet and on the efficiency of the placenta in transporting FAs to fetal circulation. "Essential fatty acids" are among the most important FAs during the intrauterine growth period. These are α-linolenic acid, which is a precursor of the n-3 series, linoleic acid, which is a precursor of the n-6 series and their derivatives, represented by docosahexaenoic acid and arachidonic acid. The latest studies have shown that medium-chain fatty acids also play a significant role in maternal-fetal metabolism. These FAs have significant effect on the transformation of the precursors into DHA, which may contribute to a relatively stable supply of DHA - even in pregnant women whose diet is low in FAs. The review discusses the problem of fatty acid metabolism at the intersection between a pregnant woman and her child with reference to physiological pregnancy, giving birth to a healthy child, intrauterine growth restriction, preterm birth and giving birth to a small for gestational age child. PMID:26345097

  10. Chemodiversity in Selaginella: a reference system for parallel and convergent metabolic evolution in terrestrial plants

    OpenAIRE

    Weng, Jing-Ke; Noel, Joseph P.

    2013-01-01

    Early plants began colonizing the terrestrial earth approximately 450 million years ago. Their success on land has been partially attributed to the evolution of specialized metabolic systems from core metabolic pathways, the former yielding structurally and functionally diverse chemicals to cope with a myriad of biotic and abiotic ecological pressures. Over the past two decades, functional genomics, primarily focused on flowering plants, has begun cataloging the biosynthetic players underpinn...

  11. Chemodiversity in Selaginella: a reference system for parallel and convergent metabolic evolution in terrestrial plants

    OpenAIRE

    Jing-Ke eWeng; Noel, Joseph P.

    2013-01-01

    Early plants began colonizing the terrestrial earth approximately 450 million years ago. Their success on land has been partially attributed to the evolution of specialized metabolic systems from core metabolic pathways, the former yielding structurally and functionally diverse chemicals to cope with a myriad of biotic and abiotic pressures. Over the past two decades, functional genomics, primarily focused on flowering plants, has begun cataloging the biosynthetic players underpinning assorte...

  12. Flow Cytometric Methods to Investigate Culture Heterogeneities for Plant Metabolic Engineering

    OpenAIRE

    Gaurav, Vishal; Kolewe, Martin E.; Roberts, Susan C.

    2010-01-01

    Plant cell cultures provide an important method for production and supply of a variety of natural products, where conditions can be easily controlled, manipulated and optimized. Development and optimization of plant cell culture processes require both bioprocess engineering and metabolic engineering approaches. Cultures are generally highly heterogeneous, with significant variability amongst cells in terms of growth, metabolism and productivity of key metabolites. Taxus cultures produce the i...

  13. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  14. ACID/HEAVY METAL TOLERANT PLANTS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30. The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on...

  15. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  16. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  17. Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease.

    OpenAIRE

    Smith, D. M.; Walsh, C E; DeChatelet, L R; Waite, M.

    1983-01-01

    The effect of the calcium ionophore A23187 on the release and metabolism of [3H]arachidonic acid was examined in normal polymorphonuclear leukocytes and those obtained from patients with chronic granulomatous disease. The ionophore A23187 which stimulates oxidative metabolism in normal polymorphonuclear leukocytes was ineffective in increasing oxidative metabolism (chemiluminescence) in polymorphonuclear leukocytes from patients with chronic granulomatous disease. However, the ionophore A2318...

  18. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    OpenAIRE

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2011-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebr...

  19. Metabolism of D-lactate and structurally related organic acids in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    During the initial minutes of anaerobiosis, 14C-labeled D-lactate, derived from the photosynthetic sugar phosphate pool, accumulated in the unicellular green alga, Chlamydomonas reinhardtii. The production of the D-isomer of lactate by algae is in contrast to plant and mammalian cells in which L-lactate is formed. After initial lactate formation, Chlamydomonas exhibits a mixed-acid type fermentation, thereby avoiding lactate accumulation and enabling the cells to tolerate extended periods of anaerobiosis. A pyruvate reductase which catalyzes the formation of D-lactate in Chlamydomonas was partially purified and characterized. Lactate produced anaerobically was metabolized only when Chlamydomonas cells were returned to aerobic conditions, and reoxidation of the D-lactate was apparently catalyzed by a mitochondrial membrane-bound dehydrogenase, rather than by the soluble pyruvate reductase. Mutants of Chlamydomonas, deficient in mitochondrial respiration, were used to demonstrate that lactate metabolism was linked to the mitochondrial electron transport chain. In addition, the oxidation of glycolate, a structural analog of lactate, was also linked to mitochondrial electron transport in vivo

  20. Gut microbiota and nuclear receptors in bile acid and lipid metabolism : bile acids, more than soaps

    NARCIS (Netherlands)

    Out, Carolien

    2014-01-01

    Metabolic syndrome refers to the combination of obesity, hypertension, dyslipidemia and insulin resistance. Metabolic syndrome increases the chance on cardiovascular disease and type 2 diabetes. Strategies to prevent and treat these metabolic derangements are therefore urgently needed. For this purp

  1. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    Science.gov (United States)

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  2. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  3. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  4. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired compou

  5. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    Science.gov (United States)

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  6. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis Plants

    NARCIS (Netherlands)

    Aharoni, A.; Giri, A.P.; Deuerlein, S.; Griepink, F.C.; Kogel, de W.J.; Verstappen, F.W.A.; Verhoeven, H.A.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are

  7. Engineering Escherichia Coli Fatty Acid Metabolism for the Production of Biofuel Precursors

    OpenAIRE

    Ford, Tyler John

    2015-01-01

    Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capa...

  8. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    OpenAIRE

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used...

  9. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    OpenAIRE

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas; Mattijssen, Frits; Evers-van Gogh, Inkie; Schaart, Gert; Jeppesen, Jacob; Kneppers, Anita; Mensink, Marco; Voshol, Peter J.; Olivecrona, Gunilla; Tan, Nguan Soon; Hesselink, Matthijs K. C.; Berbée, Jimmy F.; Rensen, Patrick C N

    2014-01-01

    Physical exercise causes profound changes in energy metabolism in humans. In this study we show that resting skeletal muscle has a crucial role in the metabolic response to acute exercise. During endurance exercise, selective induction of the protein angiopoietin-like 4 (ANGPTL4) in nonexercising muscle reduces local fatty acid uptake, presumably to prevent fat overload, while directing fatty acids to the active skeletal muscle as fuel. Our data thus suggest that nonexercising muscle has a ke...

  10. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    Science.gov (United States)

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    on enzyme localization, a scheme of C(4) photosynthesis in P. grandiflora is proposed.Well-watered plants of P. grandiflora exhibit a diurnal fluctuation of total titratable acidity, with an amplitude of 61 and 54 microequivalent per gram fresh weight for the leaves and stems, respectively. These changes were in parallel with changes in malic acid concentration in these tissues. Under severe drought conditions, diurnal changes in both titratable acidity and malic acid concentration in both leaves and stems were much reduced. However, another C(4) dicot Amaranthus graecizans (nonsucculent) did not show any diurnal acid fluctuation under the same conditions. These results confirm the suggestion made by Koch and Kennedy (Plant Physiol. 65: 193-197, 1980) that succulent C(4) dicots can exhibit an acid metabolism similar to Crassulacean acid metabolism plants in certain environments. PMID:16662054

  11. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias;

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from......, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism...... conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon...

  12. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    Science.gov (United States)

    Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. PMID:26231294

  13. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.

    Science.gov (United States)

    He, Lian; Xiao, Yi; Gebreselassie, Nikodimos; Zhang, Fuzhong; Antoniewiez, Maciek R; Tang, Yinjie J; Peng, Lifeng

    2014-03-01

    We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.

  14. Influences of wetland plants on weathered acidic mine tailings

    International Nuclear Information System (INIS)

    Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH ∼3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment. - Wetland plant establishment on acidic mine tailings may contribute to a reduced metal release and a stabilisation of pH

  15. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  16. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. PMID:24556196

  17. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops.

  18. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    OpenAIRE

    Nielsen, Ole H.; Bouchelouche, Pierre N.; Dag Berild

    1992-01-01

    Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l) was as potent as the calcium ionophore A23187 (10 μmol/l) for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the de...

  19. Zonation of glucose and fatty acid metabolism in the liver : Mechanism and metabolic consequences

    NARCIS (Netherlands)

    Hijmans, Brenda S.; Greffiorst, Aldo; Oosterveer, Maaike H.; Groen, Albert K.

    2014-01-01

    The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic featu

  20. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    OpenAIRE

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. ...

  1. Biodegradation of naphtalenesulphonic acid-containing sewages in a two-stage treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R. (Paderborn Univ. (Gesamthochschule) (Germany). Technische Chemie und Chemische Verfahrenstechnik); Hempel, D.C. (Paderborn Univ. (Gesamthochschule) (Germany). Technische Chemie und Chemische Verfahrenstechnik)

    1994-05-01

    The production of naphthol the coupling compound in the syntheses of azo-dyes occurs a naphthalenesulphonic acid-containing wastewater. The aerobic biodegradation of a complex mixture of naphthalenemono- and -disulphonic acids with high amounts of inorganic salts was examined in a two-stage plant with specially adapted and immobilized microorganisms fixed on broken sand particles. The plant consists of two airlift-loop reactors. An interposed settling tank separates the two different bacterial communities in the stages. In the first stage the sequential metabolization of naphthalene-2- and -1-sulphonic acid was achieved by strain Pseudomonas testosteroni A[sub 3] at residence times down to 1.5 h. The total degradation of remaining naphthalene-1-sulphonic acid and the degradation of recalcitrant naphthalenedisulphonic acids was obtained by a defined mixed culture in the second unit. Because of the more recalcitrant character of the remaining components in the second stage examinations with Na[sub 2]SO[sub 4]-loaded and salt-free wastewater were carried out at mean residence times between 50 and 6.3 h. With salt-loaded sewage an overall degradation of approximately 71% was achieved. The main component in the effluent was non-biodegradable naphthalene-1.5-disulphonic acid. Investigations with salt-free wastewater have shown an increasing overall degradation up to 84%. Thus, in the presence of inorganic salts a considerable inhibition of the biological degradation of the recalcitrant substances in the second unit was found. (orig.)

  2. Leaf Responses of Micropropagated Apple Plants to Water Stress: Changes in Endogenous Hormones and Their Influence on Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    LI Tian-hong; LI Shao-hua

    2007-01-01

    The changes in the concentrations of endogenous hormones and their influence on carbohydrate metabolism in leaves of micropropagated Fuji apple plants were studied under water deficiency stress. The results showed that water stress induced a rapid increase in the concentration of abscisic acid (ABA) and led to a decrease in concentrations of both zeatin and gibberellins (GAs). The concentration of indole-3-acetic acid (IAA) changed in an independent manner, which was not correlated with the different levels of water stress. With regard to the carbohydrates, the contents of sorbitol and sucrose increased, whereas the content of starch decreased. The increase in the concentration of ABA was significantly correlated with both the increase in the activity of aldose-6-phosphate reductase (A6PR) and the decrease in the activity of sorbitol dehydrogenase (SDH), indicating that ABA played a regulatory role in sorbitol metabolism. The concentration of ABA was positively correlated to the activity of sucrose-phosphate synthase (SPS) but negatively correlated to the activities of acid invertase (AI) and ADP-glucose-pyrophosphorylase (ADPGppase) in water-stressed plants, which indicated that ABA promoted sucrose synthesis and inhibited sucrose degradation and starch synthesis at the same time. Under conditions of water stress, the decrease in the level of zeatin was accompanied by a decrease in the activities of SDH and ADPGPPase. GAs concentration showed positive correlation with ADPGPPase activity. IAA showed no significant correlation with any of the enzymes tested in this study. The results of this study suggested that ABA might be one of the key factors regulating the distribution of carbohydrates under water stress. The metabolism of sorbitol and starch under conditions of water stress might be regulated by the combined action of many plant hormones.

  3. A Single Residue Switch for Mg2+-dependent Inhibition Characterizes Plant Class II Diterpene Cyclases from Primary and Secondary Metabolism*

    Science.gov (United States)

    Mann, Francis M.; Prisic, Sladjana; Davenport, Emily K.; Determan, Mara K.; Coates, Robert M.; Peters, Reuben J.

    2010-01-01

    Class II diterpene cyclases mediate the acid-initiated cycloisomerization reaction that serves as the committed step in biosynthesis of the large class of labdane-related diterpenoid natural products, which includes the important gibberellin plant hormones. Intriguingly, these enzymes are differentially susceptible to inhibition by their Mg2+ cofactor, with those involved in gibberellin biosynthesis being more sensitive to such inhibition than those devoted to secondary metabolism, which presumably limits flux toward the potent gibberellin phytohormones. Such inhibition has been suggested to arise from intrasteric Mg2+ binding to the DXDD motif that cooperatively acts as the catalytic acid, whose affinity must then be modulated in some fashion. While further investigating class II diterpene cyclase catalysis, we discovered a conserved basic residue that seems to act as a counter ion to the DXDD motif, enhancing the ability of aspartic acid to carry out the requisite energetically difficult protonation of a carbon-carbon double bond and also affecting inhibitory Mg2+ binding. Notably, this residue is conserved as a histidine in enzymes involved in gibberellin biosynthesis and as an arginine in those dedicated to secondary metabolism. Interchanging the identity of these residues is sufficient to switch the sensitivity of the parent enzyme to inhibition by Mg2+. These striking findings indicate that this is a single residue switch for Mg2+ inhibition, which not only supports the importance of this biochemical regulatory mechanism in limiting gibberellin biosynthesis, but the importance of its release, presumably to enable higher flux, into secondary metabolism. PMID:20430888

  4. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation.

    Directory of Open Access Journals (Sweden)

    Liman Wang

    Full Text Available Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA. Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development.

  5. Hyaluronic acid metabolism is increased in unstable plaques

    NARCIS (Netherlands)

    P.T. Bot; G. Pasterkamp; M.J. Goumans; C. Strijder; F.L. Moll; J.P. de Vries; S.T. Pals; D.P. de Kleijn; J.J. Piek; I.E. Hoefer

    2010-01-01

    P>Background Hyaluronic acid is expressed in atherosclerotic lesions, but its exact role in atherosclerotic disease remains unknown. As degradation of hyaluronic acid by hyaluronidase into low molecular weight hyaluronic acid (LMW-HA) is associated with inflammation and Matrix Metalloproteinase (MMP

  6. The effects of xanthoangelol E on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit.

    Science.gov (United States)

    Fujita, T; Sakuma, S; Sumiya, T; Nishida, H; Fujimoto, Y; Baba, K; Kozawa, M

    1992-08-01

    The effects of a new chalcone derivative, xanthoangelol E, isolated from Angelica keiskei Koidzumi, on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit were examined. When gastric antral mucosal slices were incubated with xanthoangelol E (0.05-1.0 mM), there was no significant effect on the production of prostaglandin (PG) E2, PGF2 alpha and their metabolites. On the other hand, this compound inhibited effectively the production of thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid from exogenous arachidonic acid in platelets, and the concentration required for 50% inhibition (IC50) was approximately 5 microM. The formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid was also reduced by this drug (IC50, 50 microM). These results suggest that xanthoangelol E has the potential to modulate arachidonic acid metabolism in platelets and that this action may participate in some pharmacological effect of the plant.

  7. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.

  8. Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Olsson, Lisbeth; Nielsen, Jens

    2007-01-01

    deletions and over-expression, mutants that overproduce succinic acid have been engineered and thoroughly characterised. Metabolic engineering approaches developed promise to have broad applicability to industrial biotechnology platforms, as well as enhancing fundamental understanding of central carbon...... products is 18, 14, 54, and 9 C-mol/C-mol-glucose, respectively, with biotechnology production is C4 organic acids, encompassing fumaric, malic, and succinic acid. Succinic acid is a key building block molecule...... of systems biology tools to drive C6 carbon flux to succinic acid by enhancement of the two native pathways for succinic acid production: the TCA and glyoxylate cycles. S. cerevisiae does not naturally accumulate succinic acid; however, through the use of in silico metabolic predictions guiding targeted gene...

  9. New Development of Acid Regeneration in Steel Pickling Plants

    Institute of Scientific and Technical Information of China (English)

    W F Kladnig

    2008-01-01

    For acid pickling heat treated mild steel and steel products,up to the middle of the last century,sulfuric acid was primarily in use,which has been replaced stepwise by hydrochloric acid since the sixties.During this time,the pickling of high alloyed steel with hydrofluoric acid or mixtures for hydrofluoric acid together with nitric acid has also been applied on industrial scale.The technologies used by several plant contractors hereby show considerable differences in their engineering.The study provides a survey of the progress in the state of art of regeneration technology as well as the use of different pickling media in the form of a review on existing technologies as well as improvements done within the recent years in the area.

  10. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  11. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    Science.gov (United States)

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  12. Salicylic Acid and its Function in Plant Immunity

    Institute of Scientific and Technical Information of China (English)

    Chuanfu An; Zhonglin Mou

    2011-01-01

    The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network.Characterization of a number of genes functioning in SA biosynthesis,conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid,cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.

  13. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  14. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  15. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  16. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M;

    2016-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohep......The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...... enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes...... such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus...

  17. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra;

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  18. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism.

    Science.gov (United States)

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26747650

  19. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-06-01

    Full Text Available Retinoic acid (RA, an active metabolite of vitamin A (VA, is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs and retinoid X receptors (RXRs. RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.

  20. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    reasons: first, BCAA share the same enzymes in their catabolic pathways, and there is an interaction among them in a way that excess Leu for example increases the catabolism of them all and changes the requirements. Second, BCAA are not only building blocks of protein biosynthesis, but are also involved......, and Leu requirements in ratio to Lys for pigs after weaning and second, to study the metabolic profile in blood and urine of pigs fed with different BCAA in the diet, and finally, to identify the biomarkers of BCAA, when pigs were fed with the optimum dietary BCAA level to support the best growth...... of the last “-omics”, is a global analysis and interpretation of metabolome in specific health or nutritional status. Non-targeted metabolomics is used for screening the metabolic profile, and the metabolic signature could be used for hypothesis generation. The results of a non-targeted LC-MS metabolomics...

  1. Oral retinoic acid metabolism blocking agent Rambazole for plaque psoriasis: an immunohistochemical study.

    NARCIS (Netherlands)

    Bovenschen, H.J.; Kooijmans-Otero, M.E.; Langewouters, A.M.G.; Vlijmen-Willems, I.M.J.J. van; Rens, D.W.A. van; Seyger, M.M.B.; Kerkhof, P.C.M. van de

    2007-01-01

    BACKGROUND: The novel systemic all-trans retinoic acid metabolism blocking agent (RAMBA) R115866 (Rambazole(TM); Barrier Therapeutics, Geel, Belgium; further referred to as rambazole) increases intracellular levels of endogenous all-trans retinoic acid (RA). Well-known effects of RA are normalizatio

  2. Metabolic Effects of Bile Acids in the Gut in Health and Disease

    NARCIS (Netherlands)

    Boesjes, Marije; Brufau Dones, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bil

  3. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett;

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase....

  4. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis

    NARCIS (Netherlands)

    Werner, A; Bongers, MEJ; Bijvelds, MJ; de Jonge, HR; Verkade, HJ

    2004-01-01

    A deficiency of essential fatty acids (EFA) is frequently described in cystic fibrosis (CF), but whether this is a primary consequence of altered EFA metabolism or a secondary phenomenon is unclear. It was suggested that defective long-chain polyunsaturated fatty acid (LCPUFA) synthesis contributes

  5. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Bonarius, H.P.J.; Tramper, J.; Bol, J.

    1998-01-01

    Metabolic flows, especially those of amino acids, were determined and analyzed at different stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense. The method is mainly based on mass balances and measurements of amino acids and other metabolites. T

  6. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  7. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-10-31

    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  8. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  9. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  10. Cannabinoid-free Cannabis sativa L. grown in the Po valley: evaluation of fatty acid profile, antioxidant capacity and metabolic content.

    Science.gov (United States)

    Lesma, G; Consonni, R; Gambaro, V; Remuzzi, C; Roda, G; Silvani, A; Vece, V; Visconti, G L

    2014-01-01

    Within a project aimed to reintroduce non-drug hemp cultivars in the Italian Po valley, for fibre but also high added-value nutraceutical production, investigation on locally grown plants has been performed, in order to assess their oil and metabolic content. This study provides useful information regarding three different hemp cultivars, from two sites, in view of their potential industrial application. The oil was characterised by a high unsaturated/saturated fatty acid ratio and by an almost perfect balance of ω-3 and ω-6 fatty acids, as requested for healthy foods. The alcoholic extracts, for which a high content of amino acids and phenolic compounds has been highlighted, could provide dietary supplements to help in preventing oxidative stress. By investigating the Carmagnola cultivar, six known and four new lignanamides have been identified, confirming and assessing the general metabolic pattern in the seeds of these locally grown plants. PMID:24934168

  11. AMINO ACID METABOLISM IN COWS DURING THE TRANSITION PERIOD IN BALANCING DIET ON THE EXCHANGE PROTEIN AND DIGESTIBLE AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Ryadchikov V. G.

    2014-02-01

    Full Text Available Application of a factorial method for determining the needs in metabolic protein and essential amino acids, helps to deepen knowledge on physiology of protein and amino acid supply and allow to improve the standards for dairy cows during the transition period; in insufficient of metabolic protein and essential amino acids increased coefficients of their transformation into net protein and absorptive amino acids as a result of mobilization of body of cows; with an optimal protein nutrition their transformation in net milk protein, lysine and methionine accordingly amounted to 0.67, 0,83 and 0,82. The most significant changes in the concentration of methionine, proline, glutamate, glutamine, glycine were observed in cows before calving and immediately after birth, stabilization of their level starts with a 24 lactation day, that is connected with the peculiarities of the feeding behavior of the cows and the gradual intensification of the processes of metabolism and milk production. To control the status of protein metabolism we have offered benchmarks compositions of free amino acids in cows’ blood plasma phases: 21-0 days before calving, 0-21 and 22-120 days after calving

  12. 2005 Plant Metabolic Engineering Gordon Conference - July 10-15, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eleanore T. Wurtzel

    2006-06-30

    The post-genomic era presents new opportunities for manipulating plant chemistry for improvement of plant traits such as disease and stress resistance and nutritional qualities. This conference will provide a setting for developing multidisciplinary collaborations needed to unravel the dynamic complexity of plant metabolic networks and advance basic and applied research in plant metabolic engineering. The conference will integrate recent advances in genomics, with metabolite and gene expression analyses. Research discussions will explore how biosynthetic pathways interact with regard to substrate competition and channeling, plasticity of biosynthetic enzymes, and investigate the localization, structure, and assembly of biosynthetic metabolons in native and nonnative environments. The meeting will develop new perspectives for plant transgenic research with regard to how transgene expression may influence cellular metabolism. Incorporation of spectroscopic approaches for metabolic profiling and flux analysis combined with mathematical modeling will contribute to the development of rational metabolic engineering strategies and lead to the development of new tools to assess temporal and subcellular changes in metabolite pools. The conference will also highlight new technologies for pathway engineering, including use of heterologous systems, directed enzyme evolution, engineering of transcription factors and application of molecular/genetic techniques for controlling biosynthetic pathways.

  13. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    acid production was also 10-fold higher during exercise compared with that at rest (difference not significant). The net production rates of threonine, glycine and tyrosine and of the sum of the non-metabolized amino acids were about 1.5-2.5-fold higher during exercise with the leg with a low glycogen...... in the concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60......-65% of maximal one-leg power output, starting either with the normal-glycogen or the low-glycogen leg, at random. The net production of threonine, lysine and tyrosine and the sum of the non-metabolized amino acids were 9-20-fold higher (Prest. Total amino...

  14. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (pomega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.

  15. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    OpenAIRE

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-chara...

  16. Uranium production as byproduct from Yarimca (Turkey) phosphoric acid plant

    International Nuclear Information System (INIS)

    Full text: This paper deals with uranium production from the phosphoric acid products of Yarimca Fertilizer Plant. After examination of the phosphate rocks consumed in this plant and the acid products, solvent extraction tests were conducted to determine the effects of acid concentration, solvent concentration in kerosene, contact time and acid solvent ratio on the recoveries of uranium. 98 percent of total uranium in acid was recovered in the organic phase by applying 5 stage extraction. Following the extraction tests, acidic and basic stripping were applied to organic phase and uranium was precipitated as yellow cake from the stripping solutions. In the stripping tests mainly aqueous and organic phase ratio and the stripping time were investigated using HCl and Na2CO3 as stripping agents. Na2CO3 has provided higher uranium recoveries both at the short time and low ratio of the stripping solution. Yellow cakes were produced containing 13-18.4 percent U3o8 from acidic and 30-46.4 percent U3O8 from basic stripping solutions

  17. Role of ascorbic acid against pathogenesis in plants

    Directory of Open Access Journals (Sweden)

    Taqi Ahmed Khan

    2011-09-01

    Full Text Available Plants vary considerably in their physiological response to various kinds of environmental stress. To prevent damage caused by pathogenic attack and to acclimate to change in their environment, plants have evolved direct and indirect mechanism for sensing and responding to pathogenic stimuli. Ascorbic acid (AA is found in all eukaryotes including animals and plants and lack completely in prokaryotes except cyanobactaria, have been reported to have a small amount. AA has now gained significant place in plant science, mainly due to its properties (antioxidant and cellular reductant etc., and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms against environmental stresses. As it is evident from the present review, recent progress on AA potentiality in tolerance of plants to pathogenic attack has been impressive to a greater extent. AA produced in plants as indirect response against pathogenic attack at different sites in plants and its intertwined network cause changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with pathogenic resistance. Indeed, AA plays an important role in resistance to pathogenesis.

  18. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    Science.gov (United States)

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  19. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  20. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids

    Science.gov (United States)

    Stovall, Iris; Cole, Michael

    1978-01-01

    Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized 14C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular components (cell wall + membrane, nucleic acids, and protein). PMID:16660386

  1. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  2. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  3. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield.

    Directory of Open Access Journals (Sweden)

    Samuel C V Martins

    Full Text Available Coffee (Coffea arabica L. has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance.

  4. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield.

    Science.gov (United States)

    Martins, Samuel C V; Araújo, Wagner L; Tohge, Takayuki; Fernie, Alisdair R; DaMatta, Fábio M

    2014-01-01

    Coffee (Coffea arabica L.) has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance.

  5. Phytic acid and raffinose series oligosaccharides metabolism in developing chickpea seeds

    OpenAIRE

    Zhawar, Vikramjit Kaur; Kaur, Narinder; Gupta, Anil Kumar

    2011-01-01

    Phytic acid and raffinose series oligosaccharides (RFOs) have anti-nutritional properties where phytic acid chelates minerals and reduces their bioavailability to humans and other animals, and RFOs cause flatulence. Both phytic acid and RFOs cannot be digested by monogastric animals and are released as pollutant-wastes. Efforts are being made to reduce the contents of these factors without affecting the viability of seeds. This will require a thorough understanding of their metabolism in diff...

  6. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai;

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... and subsequently subjected to two temperature treatments (158C, low temperature; 258C, ambient control) for 2 weeks. Low-temperature stress significantly decreasedAMcolonisation, plant height and biomass. TotalNcontent and activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase of AM...... plants were higher than those of non-AM plants. AM plants had a higher net photosynthetic rate (Pn) than non-AM plants, although low temperature inhibited the Pn. Compared with non-AM plants, AM plants exhibited higher leaf soluble sugars, reducing sugars, root sucrose and fructose contents, and sucrose...

  7. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  8. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...... cells with increased content of ARA and EPA. The invention especially involves improvement of the PUFA content in the host organism through various over-expression of e.g. cytochrome b5 and cytochrome b5 reductase involved in fatty acid desaturation, and heterologous expression of cytochrome b5...

  9. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    OpenAIRE

    Nagaoka, Noriko; ASHIHARA, Hiroshi

    1988-01-01

    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  10. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  11. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    Science.gov (United States)

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  12. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.

    Science.gov (United States)

    Paul, Melanie Verena; Iyer, Srignanakshi; Amerhauser, Carmen; Lehmann, Martin; van Dongen, Joost T; Geigenberger, Peter

    2016-09-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. PMID:27372243

  13. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia1[OPEN

    Science.gov (United States)

    Paul, Melanie Verena; Iyer, Srignanakshi; Lehmann, Martin

    2016-01-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. PMID:27372243

  14. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Science.gov (United States)

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  15. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Directory of Open Access Journals (Sweden)

    Ole H. Nielsen

    1992-01-01

    Full Text Available Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l was as potent as the calcium ionophore A23187 (10 μmol/l for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the decreases in radioactivity by 15.4% and 30.5%, respectively. The mechanism responsible for the release of arachidonate from cellular membranes is closely coupled to cellular calcium metabolism, and melittin was found to promote calcium entry through receptor gated calcium channels, probably due to an activation of phospholipase A2. Furthermore, a down-regulation of leukotriene B4 receptors was seen. The maximal number of binding sites per cell was reduced from a median of 1520 to 950 with melittin (1 μmol/l. The study has revealed some factors important for the inflammatory mechanisms mediated by melittin.

  16. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis.

    OpenAIRE

    Guichardant, Michel; Calzada, Catherine; Bernoud-Hubac, Nathalie; Lagarde, Michel; Véricel, Evelyne

    2014-01-01

    International audience; Numerous epidemiological studies and clinical trials have reported the health benefits of omega-3 polyunsaturated fatty acids (PUFA), including a lower risk of coronary heart diseases. This review mainly focuses on the effects of alpha-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on some risk factors associated with atherothrombosis, including platelet activation, plasma lipid concentrations and oxidative modification of low-density lipoprote...

  17. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    Directory of Open Access Journals (Sweden)

    Michael L Sullivan

    2015-01-01

    Full Text Available Most cloned and/or characterized plant polyphenol oxidases (PPOs have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more biosynthetic PPOs.

  18. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  19. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    Science.gov (United States)

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  20. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Institute of Scientific and Technical Information of China (English)

    Purnima Guda; Chittibabu Guda; Shankar Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  1. Shikimic acid production in Escherichia coli: From classical metabolic engineering strategies to omics applied to improve its production

    Directory of Open Access Journals (Sweden)

    Juan Andrés Martínez

    2015-09-01

    Full Text Available Shikimic acid (SA is an intermediate of the SA pathway that is present in bacteria and plants. SA has gained great interest because it is a precursor in the synthesis of the drug oseltamivir phosphate (OSF, an efficient inhibitor of the neuraminidase enzyme of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human influenza virus H1N1. For the purposes of OSF production, SA is extracted from the pods of Chinese star anise plants (Illicium spp., yielding up to 17% of SA (dry basis content. The high demand for OSF necessary to manage a major influenza outbreak is not adequately met by industrial production using SA from plants sources. As the SA pathway is present in the model bacteria Escherichia coli, several intuitive metabolically engineered strains have been applied for its successful overproduction by biotechnological processes, resulting in strains producing up to 71 g/L of SA, with high conversion yields of up to 0.42 (mol SA/mol Glc, in both batch and fed-batch cultures using complex fermentation broths, including glucose as a carbon source and yeast extract. Global transcriptomic analyses have been performed in SA producing strains, resulting in the identification of possible key target genes for the design of a rational strain improvement strategy. Because possible target genes are involved in the transport, catabolism and interconversion of different carbon sources and metabolic intermediates outside the central carbon metabolism and SA pathways, as genes involved in diverse cellular stress responses, the development of rational cellular strain improvement strategies based on omics data constitutes a challenging task to improve SA production in currently overproducing engineered strains. In this review, we discuss the main metabolic engineering strategies that have been applied for the development of efficient SA producing strains, as the perspective of omics analysis has focused on further strain improvement

  2. Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato.

    Science.gov (United States)

    Ruggieri, Valentino; Bostan, Hamed; Barone, Amalia; Frusciante, Luigi; Chiusano, Maria Luisa

    2016-07-01

    Ascorbic acid is involved in a plethora of reactions in both plant and animal metabolism. It plays an essential role neutralizing free radicals and acting as enzyme co-factor in several reaction. Since humans are ascorbate auxotrophs, enhancing the nutritional quality of a widely consumed vegetable like tomato is a desirable goal. Although the main reactions of the ascorbate biosynthesis, recycling and translocation pathways have been characterized, the assignment of tomato genes to each enzymatic step of the entire network has never been reported to date. By integrating bioinformatics approaches, omics resources and transcriptome collections today available for tomato, this study provides an overview on the architecture of the ascorbate pathway. In particular, 237 tomato loci were associated with the different enzymatic steps of the network, establishing the first comprehensive reference collection of candidate genes based on the recently released tomato gene annotation. The co-expression analyses performed by using RNA-Seq data supported the functional investigation of main expression patterns for the candidate genes and highlighted a coordinated spatial-temporal regulation of genes of the different pathways across tissues and developmental stages. Taken together these results provide evidence of a complex interplaying mechanism and highlight the pivotal role of functional related genes. The definition of genes contributing to alternative pathways and their expression profiles corroborates previous hypothesis on mechanisms of accumulation of ascorbate in the later stages of fruit ripening. Results and evidences here provided may facilitate the development of novel strategies for biofortification of tomato fruit with Vitamin C and offer an example framework for similar studies concerning other metabolic pathways and species. PMID:27007138

  3. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    Science.gov (United States)

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism.

  4. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis

    NARCIS (Netherlands)

    Hoefnagel, M.H.N.; Starrenburg, M.J.C.; Martens, D.E.; Hugenholtz, J.; Kleerenbezem, M.; Swam, van I.; Bongers, R.

    2002-01-01

    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches ’bottle-necks’ are pinpointed using qualitative, intuit

  5. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh;

    2011-01-01

    with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  6. Synthesis and Metabolism of Carbonyl-C14 Pyruvic andHydroxypyruvic Acids in Algae

    Energy Technology Data Exchange (ETDEWEB)

    Milhaud, Gerhard; Benson, Andrew A.; Calvin, M.

    1955-03-30

    1. Pyruvic and hydroxypyruvic acids a r e metabolized by Scenedesmus. 2. The products of metabolism of pyruvic -2 -C{sup 14} and hydroxypyruvic-2 -C{sup 14} acids a r e essentially identical to those of C{sup 14}-O fixations. 3. Lipids a r e rapidly formed i n the light from both substrates. In the dark the major products a r e intermediates of the tricarboxylic acid cycle. 4. Zt does not appear likely that f r e e hydroxypyruvic acid is a photosynthetic intermediate, 5 . Tricarboxylic acid cycle intermediates a r e formed from exogenous pyruvate a s fast in the light a s in the dark.

  7. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    OpenAIRE

    Yasunori Konno; Shigeharu Ueki; Masahide Takeda; Yoshiki Kobayashi; Mami Tamaki; Yuki Moritoki; Hajime Oyamada; Masamichi Itoga; Hiroyuki Kayaba; Ayumi Omokawa; Makoto Hirokawa

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR1...

  8. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis

    OpenAIRE

    Shriver, Leah P.; Manchester, Marianne

    2011-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and a leading cause of neurological disability. The complex immunopathology and variable disease course of multiple sclerosis have limited effective treatment of all patients. Altering the metabolism of immune cells may be an attractive strategy to modify their function during autoimmunity. We examined the effect of inhibiting fatty acid metabolism in experimental autoimmune encephalomyelitis (EAE), a mo...

  9. Ethanol Metabolism in Calluses of Several Selected Plant Species on Two Typical Plant-Growth-Regulator Balanced Media

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For investigation on the characteristics of ethanol metabolism in tissues of different plant species,calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to ca-tabolize ethanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabo-lize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cul-tured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physi-ological characteristic of the respective plant species.

  10. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    Science.gov (United States)

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catecholase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and oth...

  11. Systematic analysis of stability patterns in plant primary metabolism.

    Directory of Open Access Journals (Sweden)

    Dorothee Girbig

    Full Text Available Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models.

  12. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  13. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  14. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Science.gov (United States)

    Igamberdiev, Abir U.; Eprintsev, Alexander T.

    2016-01-01

    Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA) cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve), while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve). This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium. PMID:27471516

  15. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO3) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  16. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  17. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; McKain, Michael R; Lalani, Falak; Leebens-Mack, James

    2016-12-01

    Crassulacean acid metabolism (CAM) is a modified form of photosynthesis that has arisen independently at least 35 times in flowering plants. The occurrence of CAM is often correlated with shifts to arid, semiarid, or epiphytic habits, as well as transitions in leaf morphology (e.g. increased leaf thickness) and anatomy (e.g. increased cell size and packing). We assess shifts between C3 and CAM photosynthesis in the subfamily Agavoideae (Asparagaceae) through phylogenetic analysis of targeted loci captured from the nuclear and chloroplast genomes of over 60 species. Carbon isotope data was used as a proxy for mode of photosynthesis in extant species and ancestral states were estimated on the phylogeny. Ancestral character state mapping suggests three independent origins of CAM in the Agavoideae. CAM species differ from C3 species in climate space and are found to have thicker leaves with densely packed cells. C3 ancestors of CAM species show a predisposition toward CAM-like morphology. Leaf characteristics in the ancestral C3 species may have enabled the repeated evolution of CAM in the Agavoideae subfamily. Anatomical changes, including a tendency toward 3D venation, may have initially arisen in C3 ancestors in response to aridity as a way to increase leaf succulence for water storage. PMID:27591171

  18. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  19. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  20. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance.

    Science.gov (United States)

    Kok, Bernard P C; Brindley, David N

    2012-10-01

    Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed. PMID:22999246

  1. Starch: its metabolism, evolution, and biotechnological modification in plants.

    Science.gov (United States)

    Zeeman, Samuel C; Kossmann, Jens; Smith, Alison M

    2010-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. We depend upon starch for our nutrition, exploit its unique properties in industry, and use it as a feedstock for bioethanol production. Here, we review recent advances in research in three key areas. First, we assess progress in identifying the enzymatic machinery required for the synthesis of amylopectin, the glucose polymer responsible for the insoluble nature of starch. Second, we discuss the pathways of starch degradation, focusing on the emerging role of transient glucan phosphorylation in plastids as a mechanism for solubilizing the surface of the starch granule. We contrast this pathway in leaves with the degradation of starch in the endosperm of germinated cereal seeds. Third, we consider the evolution of starch biosynthesis in plants from the ancestral ability to make glycogen. Finally, we discuss how this basic knowledge has been utilized to improve and diversify starch crops.

  2. Metabolic and biochemical changes caused by gamma irradiation in plants

    International Nuclear Information System (INIS)

    Applications involving radioisotopes and radiations reveal a great promise particularly for the welfare of the society. However, in the event of a nuclear accident, the direct and indirect effect of radionuclide and radiation transfers in soil-plant-air environment are envisaged on almost all the components of the food chain. It also assumes significance as we often overlook the fact that radiations, emitted by any radioisotope although cannot be seen or felt, interacts with matter and could alter its biochemical, biophysical and biological characteristics. The interaction of ionizing radiation with human body and consequent biological effects are well characterized and quantified using data derived from the radiation workers and/or the nuclear accidents around the world. However, radiation impact on agriculture viz a viz economic productivity are not well understood and available data is scanty, scattered and inconclusive. At the plant level the effects could be visualized at morphological, biochemical, physiological and/or biophysical levels, where the magnitude of the effected change depends heavily on the exposure dose, soil, farm management and other environmental variables. This review attempts to collate and critically analyze the available researches on how the ionizing radiation might interact with crops at the whole plant or tissue or cell level to affect economic yield under various edaphic variables where not only the productivity but also the quality of the agri-produce may become vulnerable. (author)

  3. Studies of citric acid metabolism in heart muscle

    NARCIS (Netherlands)

    Meduski, J.W.

    1950-01-01

    1. The pentabromoacetone method for the determination of citric acid was studied; a modification of the procedure of Natelson, Lugovoy and Pincus was used. 2. Two tissue preparations were obtained. The first by washing with water, the second by washing with water and then with 0.5% sodium bicarbo

  4. Neridronic acid for the treatment of bone metabolic diseases.

    Science.gov (United States)

    Gatti, Davide; Viapiana, Ombretta; Idolazzi, Luca; Fracassi, Elena; Adami, Silvano

    2009-10-01

    Neridronic acid (6-amino-1-idroxyesilidene-1,1-bisphosphonate) is a nitrogen-containing bisphosphonate licensed in Italy for the treatment of osteogenesis imperfecta and Paget's disease of bone. The pharmacodynamic profile is similar to that of other nitrogen-containing bisphosphonates and is characterized by its high affinity for bone tissue particularly at sites undergoing a process of remodeling. In growing children affected by osteogenesis imperfect, neridronic acid rapidly increases bone mineral density as measured by dual X-ray absortiometry and this is associated with a significant decrease in fracture cumulative number. Similar results have been obtained also in newborns ( 75% of bone turnover markers) in 95% of the patients. Neridronic acid treatment has been reported to be effective also in other skeletal diseases such as osteoporosis, algodystrophy, hypercalcemia of malignancy and bone metastasis. Neridronic acid has been developed only for parenteral use, and it is the only one used as intramuscular injection. This avoids all the limitations of oral bisphosphonates and may be offered for a home treatment with simple nursing assistance. PMID:19761412

  5. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established.

  6. Investigations into selective metabolic aspects of bifidobacteria: carbohydrate metabolism, fatty acid biosynthesis and plasmid biology

    OpenAIRE

    O'Connell, Kerry Joan

    2014-01-01

    The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isome...

  7. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    DEFF Research Database (Denmark)

    Chen, Xiao

    -based processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which...... of one type of NRPs – ACV. Production of ACV was achieved by introducing the Penicillium chrysogenum gene pcbAB, which encodes ACV synthetase (ACVS), and the Aspergillus nidulans gene npgA, which encodes phosphopantetheinyl transferase (PPTase) required for activation of ACVS, into S. cerevisiae...... on a high-copy plasmid. Several possible factors that could improve ACV production were investigated. Lowering the cultivation temperature from 30 to 20 oC led to a 30-fold enhancement. The ACVS and PPTase encoding genes were also integrated into the yeast genome. The second chemical is isobutanol, which...

  8. Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Bethany K. Zolman; Bonnie Bartel; Byeong-ha Lee; Becky Stevenson; Manu Agarwal; Jian-Kang Zhu

    2009-01-01

    To study cold signaling, we screened for Arabidopsis mutants with altered cold-induced transcription of a firefly luciferase reporter gene driven by the CBF3 promoter (CBF3-LUC). One mutant, chyl-10, displayed reduced cold-induction of CBF3-LUC luminescence. RNA gel blot analysis revealed that expression of endogenous CBFs also was reduced in the chy1 mutant, chyl-10 mutant plants are more sensitive to freezing treatment than wild-type after cold acclimation. Both the wild-type and chy1 mutant plants are sensitive to darkness-induced starvation at warm temperatures, although chy1 plants are slightly more sensitive. This dark-sensitivity is suppressed by cold temperature in the wildtype but not in chy1. Constitutive CBF3 expression partially rescues the sensitivity of chy1-10 plants to dark treatment in the cold. The chy1 mutant accumulates higher levels of reactive oxygen species, and application of hydrogen peroxide can reduce cold-induction of CBF3-LUC in wild-type. Map-based cloning of the gene defective in the mutant revealed a nonsense mutation in CHY1, which encodes a peroxisomal β-hydroxyisobutyryl (HIBYL)-CoA hydrolase needed for valine catabolism and fatty acid β-oxidation. Our results suggest a role for peroxisomal metabolism in cold stress signaling, and plant tolerance to cold stress and darkness-induced starvation.

  9. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice.

    Science.gov (United States)

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential.

  10. Crassulacean Acid Metabolism Permutation and Survival of Caralluma Species (Apocynaceae in Arid Habitats

    Directory of Open Access Journals (Sweden)

    Yahya S. Masrahi

    2012-07-01

    Full Text Available Several species of the stem succulent Caralluma (Apocynaceae are abundant perennials in arid regions of the Arabian Peninsula. These arid regions have a short wet season with erratic rainfall and are characterized by harsh climatic conditions of high temperature, high evaporation and sand storms. Work presented in this paper aimed at investigating importance of Crassulacean Acid Metabolism (CAM for survival of three Caralluma species in their natural habitat. Investigations involved studying stomatal characteristics, stomatal diffusive conductance, chlorophyll fluorescence, and CAM in three species of Caralluma, namely C. acutangula (Decne. N.E.Br., C. edulis (Edgew. Benth. ex Hook.f., and C. subulata (Forssk. Decne. Microscopic examination revealed a pattern of stomatal characteristics typical of CAM plants in these three Caralluma species. Results showed that these three Caralluma species were obligate CAM plants exhibiting this mode of photosynthesis during both the wet and the dry seasons. Under protracted water stress during the long dry season very low values of stomatal diffusive conductance and dampening of CAM acidification-deacidification cycles denoted the tendency of these three Caralluma species to shift from the obligate CAM physiotype to CAM-idling mode. Chlorophyll fluorescence measurements indicated that protracted water stress induced a reduction in Photosystem II (PSII antenna efficiency and quantum yield in the three studied Caralluma species. This reduction of PSII activity occurred in concomitance with a marked rise in non-photochemical quenching of chlorophyll fluorescence denoting operation of non-photochemical energy dissipating mechanisms known to be important for photoprotection of the photosynthetic apparatus.

  11. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  12. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer.

    Science.gov (United States)

    Vangaveti, Venkat N; Jansen, Holger; Kennedy, Richard Lee; Malabu, Usman H

    2016-08-15

    Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo

  13. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  14. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism.

    Science.gov (United States)

    Li, Kefeng; Wang, Xu; Pidatala, Venkataramana R; Chang, Chi-Peng; Cao, Xiaohong

    2014-12-01

    Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress.

  15. Orchestration of carbohydrate processing for crassulacean acid metabolism.

    Science.gov (United States)

    Borland, Anne M; Guo, Hao-Bo; Yang, Xiaohan; Cushman, John C

    2016-06-01

    The production of phosphoenolpyruvate as a substrate for nocturnal CO2 uptake represents a significant sink for carbohydrate in CAM plants which has to be balanced with the provisioning of carbohydrate for growth and maintenance. In starch-storing CAM species, diversification in chloroplast metabolite transporters, and the deployment of both phosphorolytic and hydrolytic routes of starch degradation accommodate a division of labour in directing C-skeletons towards nocturnal carboxylation or production of sucrose for growth. In soluble-sugar storing CAM plants, the vacuole plays a central role in managing carbon homeostasis. The molecular identities of various types of vacuolar sugar transporters have only been identified for C3 species within the last 10 years. The recent availability of CAM genomes enables the identification of putative orthologues of vacuolar sugar transporters which represent strategic targets for orchestrating the diel provisioning of substrate for nocturnal carboxylation and growth. PMID:27101569

  16. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population.

    Science.gov (United States)

    Wen, Weiwei; Li, Kun; Alseekh, Saleh; Omranian, Nooshin; Zhao, Lijun; Zhou, Yang; Xiao, Yingjie; Jin, Min; Yang, Ning; Liu, Haijun; Florian, Alexandra; Li, Wenqiang; Pan, Qingchun; Nikoloski, Zoran; Yan, Jianbing; Fernie, Alisdair R

    2015-07-01

    Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R(2) = 2.4 to 15%) to major effects (13.8% of the mapped QTL, R(2) >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement. PMID:26187921

  17. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  18. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana;

    2014-01-01

    in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.......i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...... fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma...

  19. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review. PMID:26796895

  20. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  1. Metabolism of nonparticulate phosphorus in an acid bog lake

    International Nuclear Information System (INIS)

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied

  2. Metabolic regulation of amino acid uptake in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  3. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals.

    Science.gov (United States)

    Klessig, Daniel F; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  4. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  5. Multiple targets of salicylic acid and its derivatives in plants and animals

    Directory of Open Access Journals (Sweden)

    Daniel F. Klessig

    2016-05-01

    Full Text Available Salicylic acid (SA is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs, as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, High Mobility Group Box protein (HMGB and Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH, are critical proteins that not only serve key structural or metabolic functions, but also play prominent roles in disease responses in both kingdoms.

  6. Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways

    OpenAIRE

    Gomes, Ana; Fernandes, Eduarda; Silva, Artur; Santos, Clementina M.M.; Pinto, Diana; Cavaleiro, José; Lima, José Costa

    2009-01-01

    Abstract Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators. Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, a...

  7. Abnormal Unsaturated Fatty Acid Metabolism in Cystic Fibrosis: Biochemical Mechanisms and Clinical Implications

    OpenAIRE

    Seegmiller, Adam C.

    2014-01-01

    Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be ...

  8. TRANSLATIONAL STUDIES ON REGULATION OF BRAIN DOCOSAHEXAENOIC ACID (DHA) METABOLISM IN VIVO

    OpenAIRE

    Rapoport, Stanley I.

    2012-01-01

    One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics. This review briefly discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metab...

  9. Liarozole, an Inhibitor of Retinoic Acid Metabolism, Retarded Atherogenesis in LDLR-/- Mice

    OpenAIRE

    Zolberg Relevy, Noa; Harari, Ayelet; Kamari, Yehuda; Harats, Dror; Shaish, Aviv

    2015-01-01

    Liarozole is a Retinoic Acid Metabolism Blocking Agent (RAMBA). As retinoic acid (RA) and its precursor, beta-carotene (BC), have been shown to inhibit atherosclerosis development in mouse models, in the present study we investigated whether liarozole can mimic the anti-atherogenic effect of RA. We demonstrate, by using the LDL receptor-knockout mouse model fed a high-fat diet, that liarozole significantly reduces by 50% the aortic sinus atherosclerotic lesion area.    

  10. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts

    Directory of Open Access Journals (Sweden)

    Emmanouil Antonios Trantas

    2015-01-01

    Full Text Available Flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc., since flavonoids were found to be directly or indirectly connected to health. Subsequently, in the last few years flavonoids became top stories in pharmaceutical industry, which is continually seeking for novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the benefit of optimizing the conditions and increasing the productivity of a selective flavonoid. Furthermore, metabolic engineering methodology came to reinforce what nature does best by tuning inadequacies and dead-ends of a metabolic pathway. Combinatorial biosynthesis techniques led to discovery of novel ways to produce plant natural and even unnatural flavonoids, while on top of that metabolic engineering gave the opportunity to industry to invest in synthetic biology to overcome restricted diversification and productivity issues existing so far in synthetic chemistry protocols. In this review, we present an update on rationalized approaches for the production of natural or unnatural flavonoids through biotechnology, analyzing the significance of combinatorial biosynthesis of agricultural/ pharmaceutical compounds produced in heterologous organisms. We also quote strategies and achievements thrived so far in the area of synthetic biology, with emphasis on metabolic engineering targeting the cellular optimization of microorganisms and plants producing flavonoids, stressing the advances in flux dynamic control and optimization. The involvement of the rapidly increasing numbers of assembled genomes that contribute to the gene- or pathway- mining to identify gene(s responsible for producing species-specific secondary metabolites is finally considered.

  11. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts.

    Science.gov (United States)

    Trantas, Emmanouil A; Koffas, Mattheos A G; Xu, Peng; Ververidis, Filippos

    2015-01-01

    As a result of the discovery that flavonoids are directly or indirectly connected to health, flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of both the industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc. Subsequently, in the past few years, flavonoids became a top story in the pharmaceutical industry, which is continually seeking novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a selective flavonoid. Furthermore, metabolic engineering methodology is used to reinforce what nature does best by correcting the inadequacies and dead-ends of a metabolic pathway. Combinatorial biosynthesis techniques led to the discovery of novel ways of producing natural and even unnatural plant flavonoids, while, in addition, metabolic engineering provided the industry with the opportunity to invest in synthetic biology in order to overcome the currently existing restricted diversification and productivity issues in synthetic chemistry protocols. In this review, is presented an update on the rationalized approaches to the production of natural or unnatural flavonoids through biotechnology, analyzing the significance of combinatorial biosynthesis of agricultural/pharmaceutical compounds produced in heterologous organisms. Also mentioned are strategies and achievements that have so far thrived in the area of synthetic biology, with an emphasis on metabolic engineering targeting the cellular optimization of microorganisms and plants that produce flavonoids, while stressing the advances in flux dynamic control and optimization. Finally, the involvement of the rapidly increasing numbers of assembled genomes that contribute to the gene- or pathway-mining in order to identify

  12. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations.

    Directory of Open Access Journals (Sweden)

    David Toubiana

    Full Text Available To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL. Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i reflect the extensive redundancy of the regulation underlying seed metabolism, (ii demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study

  13. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    Science.gov (United States)

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  14. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    Science.gov (United States)

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  15. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    Science.gov (United States)

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  16. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Ashraf El-Kereamy

    Full Text Available Temperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming. Here, we show that OsMYB55 is induced by high temperature and overexpression of OsMYB55 resulted in improved plant growth under high temperature and decreased the negative effect of high temperature on grain yield. Transcriptome analysis revealed an increase in expression of several genes involved in amino acids metabolism. We demonstrate that OsMYB55 binds to the promoter regions of target genes and directly activates expression of some of those genes including glutamine synthetase (OsGS1;2 glutamine amidotransferase (GAT1 and glutamate decarboxylase 3 (GAD3. OsMYB55 overexpression resulted in an increase in total amino acid content and of the individual amino acids produced by the activation of the above mentioned genes and known for their roles in stress tolerance, namely L-glutamic acid, GABA and arginine especially under high temperature condition. In conclusion, overexpression of OsMYB55 improves rice plant tolerance to high temperature, and this high tolerance is associated with enhanced amino acid metabolism through transcription activation.

  17. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures

    Directory of Open Access Journals (Sweden)

    Richard C. Sicher

    2015-08-01

    Full Text Available Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  18. Quantitatively metabolic profiles of salvianolic acids in rats after gastric-administration of Salvia miltiorrhiza extract.

    Science.gov (United States)

    Liu, Zhanli; Zheng, Xunyang; Guo, Yanlei; Qin, Weihan; Hua, Lei; Yang, Yong

    2016-09-01

    Salvianolic acids, the well-known active components in Salvia miltiorrhiza, have been shown to possess markedly pharmacological activities. However, due to the complex in vivo course after administration, the pharmacologically active forms are still poorly understood. In present study, we evaluated the stability of eight major salvianolic acids from Danshen extract under different chemical and physiological conditions. We also quantitatively explained the absorption, metabolism and excretion of these salvianolic acids in rats after gastric-administration, which was carried out by simultaneously determining the amounts of salvianolic acids and their metabolites in the rat gastrointestinal contents, gastrointestinal mucosa, plasma, bile and urine. We found that: 1) protocatechuic aldehyde (PAL) was much stable whether in acidic environment (pH4.0) or in alkaline environment (pH8.0), while other salvianolic acids were stable in acidic environment and instable in alkaline environment; 2) PAL, salvianoli acid A (SAA) and salvianolic acid B (SAB) were instable whether in rat stomach or in small intestine, while other salvianolic acids were stable in rat stomach and instable in small intestine; 3) after gastric-administration, except PAL and Danshensu (DSS), other phenolic acids would be metabolized into DSS and caffeic acid (CA) in the rat gastrointestinal tract before absorption, and only free and glucuronidated PAL, CA and DSS were detected in rat plasma, bile and urine. In conclusion, it was the free and glucuronidated PAL, CA and DSS rather than the prototypes of other salvianolic acids that were present in plasma with considerable concentrations after gastric-administration. PMID:27370098

  19. Metabolic Syndrome and Inflammation: A Critical Review of In Vitro and Clinical Approaches for Benefit Assessment of Plant Food Supplements

    OpenAIRE

    Chiara Di Lorenzo; Mario Dell'Agli; Elisa Colombo; Enrico Sangiovanni; Patrizia Restani

    2013-01-01

    Metabolic syndrome is defined as the clustering in an individual of several metabolic abnormalities associated with insulin resistance, type 2 diabetes, and obesity, in which low-grade chronic inflammatory activity is commonly observed. Part of the European Project PlantLIBRA is concerned with methods to assess the benefits of plant food supplements (PFSs) in countering inflammatory activity and metabolic syndrome. This paper summarizes the current methods used for benefit assessment of PFS, ...

  20. Metabolic acidosis

    Science.gov (United States)

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  1. CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chester, A.M.

    1993-12-01

    A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

  2. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Gonzalez (PI); J. V. Shanks (Co-PI); K-Y. San (Co-PI).

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  3. Urine acidification and mineral metabolism in growing pigs feddiets supplemented with dietary methionine and benzoic acid

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Eriksen, Jørgen;

    2010-01-01

    Benzoic acid (BA) reduces pH of urine and thereby reduces the emission of ammonia and possibly also odorous sulphur-compounds from slurry. The effect of BA on mineral metabolism in growing pigs is not clear. The objective was therefore to study the effect of BA and methionine (Met) as a sulphur (S...

  4. Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression

    NARCIS (Netherlands)

    Mocking, Roel J T; Ruhe, Eric; Assies, Johanna; Lok, Anja; Koeter, Maarten W J; Visser, Ieke; Bockting, Claudi L H; Schene, Aart H

    2013-01-01

    Alterations in hypothalamic-pituitary-adrenal (HPA)-axis activity and fatty acid (FA)-metabolism have been observed in (recurrent) major depressive disorder (MDD). Through the pathophysiological roles of FAs in the brain and cardiovascular system, a hypothesized relationship between HPA-axis activit

  5. A dynamic mechanistic model of lactic acid metabolism in the rumen

    NARCIS (Netherlands)

    Mills, J.A.N.; Crompton, L.A.; Ellis, J.L.; Dijkstra, J.; Bannink, A.; Hook, S.E.; Benchaar, C.; France, J.

    2014-01-01

    Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated

  6. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Knudsen, Karen Birgitte Moos; Kondrup, Jens;

    2001-01-01

    BACKGROUND & AIMS: High circulating levels of ammonia have been suggested to be involved in the development of cerebral edema and herniation in fulminant hepatic failure (FHF). The aim of this study was to measure cerebral metabolism of ammonia and amino acids, with special emphasis on glutamine...

  7. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    Science.gov (United States)

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  8. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  9. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined b

  10. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    Science.gov (United States)

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  11. Change of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Hua-Ling Ruan; Li Zhao; Kun-Quan Guo; Kun Yang; Lin-Xiu Ye; Xue Sun

    2016-01-01

    Objective:To study the change situation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism.Methods:Eighty-one patients with hyperthyroidism who were treated in our hospital from May 2013 to October 2014 were selected as the observation group, while 81 healthy persons with health examination at the same period were the control group. Then, the serum oxygen free radical indexes and free amino acids of the two groups were respectively detected and compared, and the detection results of patients in the observation group with different etiologic types and basal metabolic rate were also compared. Results:The serum oxygen free radical related indexes of the observation group were all higher than those of the control group; the serum antioxidant related indexes were all lower than those of the control group; and the serum free amino acids levels were all obviously lower than those of the control group. Besides, the detection results of patients with severe hyperthyroidism in the observation group were worse than those of patients with mild and moderate disease, while the detection results of the observation group with different types of hyperthyroidism had no significant differences.Conclusions:The fluctuation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism are obvious, and the detection results of patients with different basal metabolic rates are also quite obvious.

  12. Endogenous surfactant metabolism in critically ill infants measured with stable isotope labeled fatty acids

    NARCIS (Netherlands)

    Cogo, PE; Carnielli, VP; Bunt, JEH; Badon, T; Giordano, G; Zacchello, F; Sauer, PJJ; Zimmermann, LJI

    1999-01-01

    Little is known about endogenous surfactant metabolism in infants, because radioactive isotopes used for this purpose in animals cannot be used in humans. We developed a novel and safe method to measure the endogenous surfactant kinetics in vivo in humans by using stable isotope labeled fatty acids.

  13. Lack of Evidence for 3/4 Scaling of Metabolism in Terrestrial Plants

    Institute of Scientific and Technical Information of China (English)

    Hai-Tao LI; Xing-Guo HAN; Jian-Guo WU

    2005-01-01

    Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model.However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.

  14. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    Science.gov (United States)

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  15. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Science.gov (United States)

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  16. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Science.gov (United States)

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes.

  17. Uptake, translocation and metabolism of decabromodiphenyl ether (BDE-209) in seven aquatic plants.

    Science.gov (United States)

    Deng, Daiyong; Liu, Jin; Xu, Meiying; Zheng, Guolu; Guo, Jun; Sun, Guoping

    2016-06-01

    Terrestrial plant uptake of PBDEs from contaminated soils has been widely reported recently. In this study the fate of deca-BDE within a plant/PBDEs/aquatic environment system was investigated through simulated pot experiments. Accumulations of the total PBDEs and deca-BDE were observed in tissues of seven test aquatic plant species, namely Phragmites australis, Cyperus papyrus, Alternanthera philoxeroides, Colocasia esculenta, Scirpus validus, Acorus calamus and Oryza sativa. In all seven plants, O. sativa leads the uptake and accumulation both in the total PBDEs (444.8 ng g(-1)) and deca-BDE (368.0 ng g(-1)) in roots. Among the six common phytoremediation aquatic plants, A. calamus leads the uptake (236.2 ng g(-1)), and P. australis leads the translocation (Cshoot/Croot = 0.35), while A. philoxeroides (43.4%) and P. australis (80.0%) lead in the metabolism efficiencies in the root and shoot, respectively. The detection of seventeen lesser brominated PBDE congeners provided the debromination evidence, and the specific PBDEs profiles in test plant species indicated there is no common metabolic pattern. Furthermore, a relative high proportion of lesser brominated PBDE congeners in shoots suggested the possible metabolic difference between roots and shoots. Finally, a noticeable percentage of penta- and octa-BDE derived from deca-BDE also hint the ecological risk in deca-BDE use. This comparative research on the aquatic plants provide a broad vision on the understanding of plant/PBDEs/aquatic environment interaction system, and may be applied to remediate PBDEs in contaminated waters and sediments. PMID:26994429

  18. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    Science.gov (United States)

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  19. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    OpenAIRE

    Cooper, George; Reed, Chris; Nguyen,Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact ...

  20. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition

    Directory of Open Access Journals (Sweden)

    Malaisse WJ

    2008-12-01

    Full Text Available Abstract Background There are only few data relating the metabolic consequences of feeding diets very low in n-3 fatty acids. This experiment carried out in mice aims at studying the impact of dietary n-3 polyunsaturated fatty acids (PUFA depletion on hepatic metabolism. Results n-3 PUFA depletion leads to a significant decrease in body weight despite a similar caloric intake or adipose tissue weight. n-3 PUFA depleted mice exhibit hypercholesterolemia (total, HDL, and LDL cholesterol as well as an increase in hepatic cholesteryl ester and triglycerides content. Fatty acid pattern is profoundly modified in hepatic phospholipids and triglycerides. The decrease in tissue n-3/n-6 PUFA ratio correlates with steatosis. Hepatic mRNA content of key factors involved in lipid metabolism suggest a decreased lipogenesis (SREBP-1c, FAS, PPARγ, and an increased β-oxidation (CPT1, PPARα and PGC1α without modification of fatty acid esterification (DGAT2, GPAT1, secretion (MTTP or intracellular transport (L-FABP. Histological analysis reveals alterations of liver morphology, which can not be explained by inflammatory or oxidative stress. However, several proteins involved in the unfolded protein response are decreased in depleted mice. Conclusion n-3 PUFA depletion leads to important metabolic alterations in murine liver. Steatosis occurs through a mechanism independent of the shift between β-oxidation and lipogenesis. Moreover, long term n-3 PUFA depletion decreases the expression of factors involved in the unfolded protein response, suggesting a lower protection against endoplasmic reticulum stress in hepatocytes upon n-3 PUFA deficiency.

  1. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    Science.gov (United States)

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. PMID:27131397

  2. Radioiodinated PHIPA`s; metabolically trapped fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhut, M. [Heidelberg Univ. (Germany). Radiopharmaceutical Chemistry Lab.

    1998-12-31

    Radioiodinated PHIPA 3-10 [13-(4`-iodophenyl)-3-(p-phenylene)tridecanoic acid] has been developed for nuclear-cardiological investigation of coronary artery disease or cardiomyopathies of various origin. The compound features a phenylene group located within the backbone of a long-chain fatty acid. In spite of its bulky structure [{sup 123}I]PHIPA 3-10 is extracted by the myocardium in a manner similar to that for the unmodified fatty acid analogue, [{sup 123}I]IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group which prevents more than one {beta}-oxidation cycle. Only one single, rapidly formed metabolite was found in rat-heart extracts. According to comparative HPLC with synthetic metabolites and mass spectrometric analysis this metabolite was identified as [{sup 123}I]PHIPA 1-10, a by two methylene groups shortened PHIPA derivative. Formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl fransferase I inhibitor, indicating {beta}-oxidation of [{sup 123}I]PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of [{sup 123}I]PHIPA 3-10 was obtained performing density-gradient centrifugation with homogenized rat heart tissue. Labeled free PHIPA 3-10 and free metabolite peaked with the fraction containing mitochondria. With respect to its biochemical characteristics, [{sup 123}I]PHIPA 3-10 may be considered as a useful tool for nuclear cardiological investigations. (orig.) [Deutsch] Radioiodierte PHIPA 3-10 [13-(4`-Iodophenyl)-3-(p-phenylene)tridecanoic acid] wurde fuer Untersuchungen von koronaren Herzerkrankungen und Kardiomyopathien unterschiedlicher Genese entwickelt. Die Verbindung enthaelt eine in der Fettsaeurekette lokalisierte Phenylengruppe. Obwohl dieses Strukturelement raumfordernd ist, wird [{sup 123}I]PHIPA 3-10 aehnlich gut vom Herzmuskel aufgenommen, wie die unmodifizierte Fettsaeure [{sup 123}I]IPPA. Die auffallende

  3. The association between concentration of Uric Acid and metabolic syndrome among adolescents

    Directory of Open Access Journals (Sweden)

    Homeira Rashidi

    2015-11-01

    Full Text Available Background: Metabolic syndromes are known as a set of risk factors for the development of cardio-vascular disease and diabetes in the individual. The association between concentration of uric acid and metabolic syndrome in adolescents has yet to be established thoroughly. The aim of this study was to investigate the relationship between uric acid and metabolic syndrome in a sample of adolescents. Methods: This cross-sectional study was conducted from September 23, 2009 to September 22, 2010 in Jundishapur University of Medical Sciences, Ahvaz, Iran. In this study, 240 individuals aged 10-19 years were randomly selected among participants of the Ahvaz MetS study (120 subjects normal and 120 subjects MetS. The serum levels of UA were measured by a colorimetric method. In the normal group, anyone with abdominal obesity, high systolic or diastolic blood pressure, High-density lipoprotein (HDL≤40 mg/dl, TG≤110 mg/dl, fasting blood sugar (FBS≤100 mg/dl or diabetes was excluded from the study. History of Anticonvulsive drugs or steroids use was the criteria for exclusion for both groups. Results: Of the 240 subjects aged a mean of 14.95±2.64 years, mean of uric acid in metabolic syndrome group was 4.8±1.4 mg/dl and in the control group was 4.18±1.01 mg/d (P=0.001. Participants were divided into three groups based on uric acid levels: ≤4.9 mg/dl, 4.9-5.7 mg/dl and >5.7 mg/dl. The risk of metabolic syndrome was significantly higher in third group of uric acid than the second and first group (odds ratio [OR], 3.7; 95% confidence interval [CI], 1.70 - 8.04 and (OR, 5.9; 95% CI, 2.42-14.35, P<0.001. In addition, uric acid level was inversely associated with hyperglycemia. The ORs of hypertriglyceridemia for the second and third group of uric acid were 4.36 (95% CI, 2.01- 9.47 5.75 (95% CI, 2.43-13.61 respectively, compared with lowest group of UA. Conclusion: The results showed that hyperuricemia was significantly linked with increased risk for

  4. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat.

    Science.gov (United States)

    Roda, Aldo; Pellicciari, Roberto; Gioiello, Antimo; Neri, Flavia; Camborata, Cecilia; Passeri, Daniela; De Franco, Francesca; Spinozzi, Silvia; Colliva, Carolina; Adorini, Luciano; Montagnani, Marco; Aldini, Rita

    2014-07-01

    We report on the relationship between the structure-pharmacokinetics, metabolism, and therapeutic activity of semisynthetic bile acid analogs, including 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid (a selective farnesoid X receptor [FXR] receptor agonist), 6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (a specific Takeda G protein-coupled receptor 5 [TGR5] receptor agonist), and 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-sulfate (a dual FXR/TGR5 agonist). We measured the main physicochemical properties of these molecules, including ionization constants, water solubility, lipophilicity, detergency, and protein binding. Biliary secretion and metabolism and plasma and hepatic concentrations were evaluated by high-pressure liquid chromatography-electrospray-mass spectrometry/mass spectrometry in bile fistula rat and compared with natural analogs chenodeoxycholic, cholic acid, and taurochenodexycholic acid and intestinal bacteria metabolism was evaluated in terms of 7α-dehydroxylase substrate-specificity in anaerobic human stool culture. The semisynthetic derivatives detergency, measured in terms of their critical micellar concentration, was quite similar to the natural analogs. They were slightly more lipophilic than the corresponding natural analogs, evaluated by their 1-octanol water partition coefficient (log P), because of the ethyl group in 6 position, which makes these molecules very stable toward bacterial 7-dehydroxylation. The hepatic metabolism and biliary secretion were different: 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid, as chenodeoxycholic acid, was efficiently conjugated with taurine in the liver and, only in this form, promptly and efficiently secreted in bile. 6α-Ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid was poorly conjugated with taurine because of the steric hindrance of the methyl at C23(S) position metabolized to the C23(R) isomer and partly conjugated with taurine. Conversely, 6

  5. Trade-offs between the metabolic rate and population density of plants.

    Directory of Open Access Journals (Sweden)

    Jian-Ming Deng

    Full Text Available The energetic equivalence rule, which is based on a combination of metabolic theory and the self-thinning rule, is one of the fundamental laws of nature. However, there is a progressively increasing body of evidence that scaling relationships of metabolic rate vs. body mass and population density vs. body mass are variable and deviate from their respective theoretical values of 3/4 and -3/4 or -2/3. These findings questioned the previous hypotheses of energetic equivalence rule in plants. Here we examined the allometric relationships between photosynthetic mass (M(p or leaf mass (M(L vs. body mass (beta; population density vs. body mass (delta; and leaf mass vs. population density, for desert shrubs, trees, and herbaceous plants, respectively. As expected, the allometric relationships for both photosynthetic mass (i.e. metabolic rate and population density varied with the environmental conditions. However, the ratio between the two exponents was -1 (i.e. beta/delta = -1 and followed the trade-off principle when local resources were limited. Our results demonstrate for the first time that the energetic equivalence rule of plants is based on trade-offs between the variable metabolic rate and population density rather than their constant allometric exponents.

  6. Metabolism

    Science.gov (United States)

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  7. [Practical diagnostics of acid-base disorders: part I: differentiation between respiratory and metabolic disturbances].

    Science.gov (United States)

    Deetjen, P; Lichtwarck-Aschoff, M

    2012-11-01

    The first part of this overview on diagnostic tools for acid-base disorders focuses on basic knowledge for distinguishing between respiratory and metabolic causes of a particular disturbance. Rather than taking sides in the great transatlantic or traditional-modern debate on the best theoretical model for understanding acid-base physiology, this article tries to extract what is most relevant for everyday clinical practice from the three schools involved in these keen debates: the Copenhagen, the Boston and the Stewart schools. Each school is particularly strong in a specific diagnostic or therapeutic field. Appreciating these various strengths a unifying, simplified algorithm together with an acid-base calculator will be discussed.

  8. Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism.

    Science.gov (United States)

    Morikawa, Hiromichi; Takahashi, Misa; Sakamoto, Atsushi; Matsubara, Toshiyuki; Arimura, Gen-Ichiro; Kawamura, Yoshifumi; Fukunaga, Kazunari; Fujita, Kounosuke; Sakurai, Naoki; Hirata, Toshifumi; Ide, Hiroshi; Nonoyama, Nobuaki; Suzuki, Hitomi

    2004-05-01

    Plants take up inorganic nitrogen and store it unchanged or convert it to organic forms. The nitrogen in such organic compounds is stoichiometrically recoverable by the Kjeldahl method. The sum of inorganic nitrogen and Kjeldahl nitrogen has long been known to equal the total nitrogen in plants. However, in our attempt to study the mechanism of nitrogen dioxide (NO(2)) metabolism, we unexpectedly discovered that about one-third of the total nitrogen derived from (15)N-labeled NO(2) taken up by Arabidopsis thaliana (L.) Heynh. plants was converted to neither inorganic nor Kjeldahl nitrogen, but instead to an as yet unknown nitrogen compound(s). We here refer to this nitrogen as unidentified nitrogen ( UN). The generality of the formation of UN across species, nitrogen sources and cultivation environments for plants has been shown as follows. Firstly, all of the other 11 plant species studied were found to form the UN in response to fumigation with (15)NO(2). Secondly, tobacco ( Nicotiana tabacum L.) plants fed with (15)N-nitrate appeared to form the UN. And lastly, the leaves of naturally fed vegetables, grass and roadside trees were found to possess the UN. In addition, the UN appeared to comprise a substantial proportion of total nitrogen in these plant species. Collectively, all of our present findings imply that there is a novel nitrogen mechanism for the formation of UN in plants. Based on the analyses of the exhaust gas and residue fractions of the Kjeldahl digestion of a plant sample containing the UN, probable candidates for compounds that bear the UN were deduced to be those containing the heat-labile nitrogen-oxygen functions and those recalcitrant to Kjeldahl digestion, including organic nitro and nitroso compounds. We propose UN-bearing compounds may provide a chemical basis for the mechanism of the reactive nitrogen species (RNS), and thus that cross-talk may occur between UN and RNS metabolisms in plants. A mechanism for the formation of UN

  9. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  10. Influence of trans fatty acids on linoleic acid metabolism in the rat

    NARCIS (Netherlands)

    J.L. Zevenbergen

    1988-01-01

    textabstractAt the start of the work described in this thesis, most reviewers on trans fatty acids agreed that these isomeric fatty acids did not induce undesirable effects, provided sufficient linoleic acid was present in the diet (Beare-Rogers, 1983; Emken, 1983; Gottenbos, 1983; Gurr, 1983). Howe

  11. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    DEFF Research Database (Denmark)

    Hoeft, B.; Linseisen, J.; Beckmann, L.;

    2010-01-01

    Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...... a generalized linear model framework. On the genotype level, hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD), phospholipase A2 group VI (PLA2G6) and transient receptor potential vanilloid 3 were associated with higher risk for CRC, whereas prostaglandin E receptor 2 (PTGER2) was associated with lower CRC...... variants with CRC risk. Our results support the key role of prostanoid signaling in colon carcinogenesis and suggest a relevance of genetic variation in fatty acid metabolism-related genes and CRC risk....

  12. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  13. Fluorine-Tagged 5-Hydroxytryptophan to Investigate Amino Acid Metabolism In Vivo

    Directory of Open Access Journals (Sweden)

    Zofia E. Gagnon

    2010-01-01

    Full Text Available Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay for the tag. Serotonin (5-HT levels were measured with spectrofluorometry and thin-layer chromatography. Plants in treatment conditions had serotonin levels five to six times higher than controls. PF-5-HTP served as a precursor for serotonin in a biosynthetic pathway in this plant model, providing evidence for the bioavailability of the novel molecule. The increase in serotonin in plants grown in media culture supplemented with 5-HTP or PF-5-HTP might have useful applications in pharmacology.

  14. Fluorine-tagged 5-hydroxytryptophan to investigate amino Acid metabolism in vivo.

    Science.gov (United States)

    Gagnon, Zofia E; Dingman, Sherry; Thomas, Rhys N

    2010-01-01

    Auxin a plant growth hormone, has a metabolic pathway that includes molecules and enzymes like those in animal brains. In this study, tomato plant seedlings (Lycopersicon esculenta) were used to investigate the fate of fluorine-tagged 5-hydroxytryptophan (PF-5-HTP) being developed for fluorine spectroscopy and imaging. Seedlings were treated with high or low concentrations of 5-HTP or PF-5-HTP and compared with controls. Metabolites of the PF-5-HTP were quantified using a custom immunoassay for the tag. Serotonin (5-HT) levels were measured with spectrofluorometry and thin-layer chromatography. Plants in treatment conditions had serotonin levels five to six times higher than controls. PF-5-HTP served as a precursor for serotonin in a biosynthetic pathway in this plant model, providing evidence for the bioavailability of the novel molecule. The increase in serotonin in plants grown in media culture supplemented with 5-HTP or PF-5-HTP might have useful applications in pharmacology. PMID:22331995

  15. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; ZHU Cheng; LI Li-ping; SUN Zhong-yang; PAN Xue-bo

    2007-01-01

    Salicylic acid (SA) was an essential component of the plant resistance to pathogens and also plays an important role in mediating plant response to some abiotic stress. The possible effects of SA on the growth and H2O2-metabolizing enzymes in rice seedlings under lead stress were studied. When rice seedlings grown in nutrient solution containing Pb2+ (0, 0.05, 0.15, 0.25 mmol/L) for 18 d, the plant biomass as well as the chlorophyll content of leaves decreased with increased Pb concentration. The pretreatment with SA (treated with 0.1 mmol/L SA for 48 h before Pb stress) partially protected seedlings from Pb toxicity. The chlorophyll contents in leaves were significant higher in leaves of Pb-exposed with SA pre-treatment seedlings than in Pb-exposed plants at the same Pb intensity. SA pre-treated alone could significantly increase the length of shoot and root of seedlings but the vigour difference was not marked under long-term exposure to Pb toxicity. SA pre-treated influence the H2O2 level in leaves of seedlings by up-regulating the activity of superoxide dismutase (SOD) and repressing the activity of catalase (CAT) and ascorbate peroxidase (APX) depending on the concentrations of Pb2+ in the growth medium. The results supported the conclusion that SA played a positive role in rice seedlings against Pb toxicity.

  16. Lysophosphatidic acid metabolism and elimination in cardiovascular disease

    Science.gov (United States)

    Salous, Abdelghaffar Kamal

    The bioactive lipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are present in human and mouse plasma at a concentration of ~0.1-1 microM and regulate physiological and pathophysiological processes in the cardiovascular system including atherothrombosis, intimal hyperplasia, and immune function, edema formation, and permeability. PPAP2B, the gene encoding LPP3, a broad activity integral membrane enzyme that terminates LPA actions in the vasculature, has a single nucleotide polymorphism that been recently associated with coronary artery disease risk. The synthesis and signaling of LPA and S1P in the cardiovascular system have been extensively studied but the mechanisms responsible for their elimination are less well understood. The broad goal of this research was to examine the role of LPP3 in the termination of LPA signaling in models of cardiovascular disease involving vascular wall cells, investigate the role of LPP3 in the elimination of plasma LPA, and further characterize the elimination of plasma LPA. The central hypothesis is that LPP3 plays an important role in attenuating the pathological responses to LPA signaling and that it mediates the elimination of exogenously applied bioactive lipids from the plasma. These hypotheses were tested using molecular biological approaches, in vitro studies, synthetic lysophospholipid mimetics, modified surgical procedures, and mass spectrometry assays. My results indicated that LPP3 played a critical role in attenuating LPA signaling mediating the pathological processes of intimal hyperplasia and vascular leak in mouse models of disease. Additionally, enzymatic inactivation of lysophospholipids by LPP and PLA enzymes in the plasma was not a primary mechanism for the rapid elimination of plasma LPA and S1P. Instead, evidence strongly suggested a transcellular uptake mechanism by hepatic non-parenchymal cells as the predominant mechanism for elimination of these molecules. These results support a model in

  17. Phytic acid and raffinose series oligosaccharides metabolism in developing chickpea seeds.

    Science.gov (United States)

    Zhawar, Vikramjit Kaur; Kaur, Narinder; Gupta, Anil Kumar

    2011-10-01

    Phytic acid and raffinose series oligosaccharides (RFOs) have anti-nutritional properties where phytic acid chelates minerals and reduces their bioavailability to humans and other animals, and RFOs cause flatulence. Both phytic acid and RFOs cannot be digested by monogastric animals and are released as pollutant-wastes. Efforts are being made to reduce the contents of these factors without affecting the viability of seeds. This will require a thorough understanding of their metabolism in different crops. Biosynthetic pathways of both metabolites though are interlinked but not well described. This study was made on metabolism of these two contents in developing chickpea (Cicer arietinum L cv GL 769) seeds. In this study, deposition of RFOs was found to occur before deposition of phytic acid. A decline in inorganic phosphorus and increase in phospholipid phosphorus and phytic acid was observed in seeds during development. Acid phosphatase was the major phosphatase in seed as well as podwall and its activity was highest at early stage of development, thereafter it decreased. Partitioning of (14) C label from (14) C-glucose and (14) C-sucrose into RFOs and phytic acid was studied in seeds in presence of inositol, galactose and iositol and galactose, which favored the view that galactinol synthase is not the key enzyme in RFOs synthesis.

  18. L-(4-/sup 11/C)aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, J.R.; Egbert, J.E.; Henze, E.; Schelbert, H.R.; Baumgartner, F.J.

    1982-01-01

    Sterile, pyrogen-free L-(4-/sup 11/C)aspartic acid was prepared from /sup 11/CO/sub 2/ using phosphoenolpyruvate carboxylase and glutamic/oxaloacetic acid transaminase immobilized on Sepharose supports to determine if it is a useful indicator for in vivo, noninvasive determination of myocardial metabolism. An intracoronary bolus injection of L-(4-/sup 11/C)aspartic acid into dog myocardium showed a triexponential clearance curve with maximal production of /sup 11/CO/sub 2/ 100 s after injection. Inactivation of myocardial transaminase activity modified the tracer clearance and inhibited the production of /sup 11/CO/sub 2/. Positron-computed tomography imaging showed that the /sup 11/C activities retained in rhesus monkey myocardium are higher than those observed in dog heart after intravenous injection of L-(4-/sup 11/C)aspartic acid. These findings demonstrated the rapid incorporation of the carbon skeleton of L-aspartic acid into the tricarboxylic acid cycle after enzymatic transamination in myocardium and suggested that L-(4-/sup 11/C)aspartic acid could be of value for in vivo, noninvasive assessment of local myocardial metabolism.

  19. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  20. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120

    DEFF Research Database (Denmark)

    Ulven, Trond; Christiansen, Elisabeth

    2015-01-01

    for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also......It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides...

  1. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  2. Proposal for field sampling of plants and processing in the lab for environmental metabolic fingerprinting

    Directory of Open Access Journals (Sweden)

    Müller Caroline

    2010-01-01

    Full Text Available Abstract Background Samples for plant metabolic fingerprinting are prepared generally by metabolism quenching, grinding of plant material and extraction of metabolites in solvents. Further concentration and derivatisation steps follow in dependence of the sample nature and the available analytical platform. For plant material sampled in the field, several methods are not applicable, such as, e.g., collection in liquid nitrogen. Therefore, a protocol was established for sample pre-treatment, grinding, extraction and storage, which can be used for analysis of field-collected plant material, which is further processed in the laboratory. Ribwort plantain (Plantago lanceolata L., Plantaginaceae was used as model plant. The quality criteria for method suitability were high reproducibility, extraction efficiency and handling comfort of each subsequent processing step. Results Highest reproducibility of results was achieved by sampling fresh plant material in a solvent mixture of methanol:dichloromethane (2:1, crushing the tissue with a hand-held disperser and storing the material until further processing. In the laboratory the material was extracted threefold at different pH. The gained extracts were separated with water (2:1:1 methanol:dichloromethane:water and the aqueous phases used for analysis by LC-MS, because the polar metabolites were in focus. Chromatograms were compared by calculating a value Ξ for similarities. Advantages and disadvantages of different sample pre-treatment methods, use of solvents and solvent mixtures, influence of pH, extraction frequency and duration, and storing temperature are discussed with regard to the quality criteria. Conclusions The proposed extraction protocol leads to highly reproducible metabolic fingerprints and allows optimal handling of field-collected plant material and further processing in the laboratory, which is demonstrated for an exemplary field data-set. Calculation of Ξ values is a useful tool to

  3. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    Science.gov (United States)

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  4. Fatty Acid Desaturase Gene Polymorphisms and Metabolic Measures in Schizophrenia and Bipolar Patients Taking Antipsychotics

    Directory of Open Access Journals (Sweden)

    Kyle J. Burghardt

    2013-01-01

    Full Text Available Atypical antipsychotics have become a common therapeutic option in both schizophrenia and bipolar disorder. However, these medications come with a high risk of metabolic side effects, particularly dyslipidemia and insulin resistance. Therefore, identification of patients who are at increased risk for metabolic side effects is of great importance. The genetics of fatty acid metabolism is one area of research that may help identify such patients. Therefore, in this present study, we aimed to determine the effect of one commonly studied genetic polymorphism from both fatty acid desaturase 1 (FADS1 and FADS2 gene on a surrogate measure of insulin resistance and lipid levels in a metabolically high-risk population of patients largely exposed to atypical antipsychotics. This study used a cross-sectional design, fasting blood draws, and genetic analysis to investigate associations between polymorphisms, haplotypes, and metabolic measures. A total of 320 subjects with schizophrenia (n=226 or bipolar disorder (n=94 were included in this study. The mean age of the population was 42.5 years and 45% were male. A significant association between FADS1 and FADS2 haplotypes was found with insulin resistance while controlling for confounders. Further investigation is required to replicate this finding.

  5. Effects of rapeseed and soybean oil dietary supplementation on bovine fat metabolism, fatty acid composition and cholesterol levels in milk.

    Science.gov (United States)

    Altenhofer, Christian; Spornraft, Melanie; Kienberger, Hermine; Rychlik, Michael; Herrmann, Julia; Meyer, Heinrich H D; Viturro, Enrique

    2014-02-01

    The main goal of this experiment was to study the effect of milk fat depression, induced by supplementing diet with plant oils, on the bovine fat metabolism, with special interest in cholesterol levels. For this purpose 39 cows were divided in three groups and fed different rations: a control group (C) without any oil supplementation and two groups with soybean oil (SO) or rapeseed oil (RO) added to the partial mixed ration (PMR). A decrease in milk fat percentage was observed in both oil feedings with a higher decrease of -1·14 % with SO than RO with -0·98 % compared with the physiological (-0·15 %) decline in the C group. There was no significant change in protein and lactose yield. The daily milk cholesterol yield was lower in both oil rations than in control ration, while the blood cholesterol level showed an opposite variation. The milk fatty acid pattern showed a highly significant decrease of over 10 % in the amount of saturated fatty acids (SFA) in both oil feedings and a highly significant increase in mono (MUFA) and poly (PUFA) unsaturated fatty acids, conjugated linoleic acids (CLA) included. The results of this experiment suggest that the feeding of oil supplements has a high impact on milk fat composition and its significance for human health, by decreasing fats with a potentially negative effect (SFA and cholesterol) while simultaneously increasing others with positive (MUFA, PUFA, CLA).

  6. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    OpenAIRE

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of...

  7. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    Science.gov (United States)

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  8. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.

    Science.gov (United States)

    Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-02-01

    Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA-rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA-supplemented animals than in PUFA-supplemented ones. These results suggest that the increased capacity for NST in PUFA-supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone.

  9. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    Science.gov (United States)

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  10. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors

    International Nuclear Information System (INIS)

    The advantages of the use of tritium-labelled compounds in radioautographic technique are discussed. Tritium electrons have a maximal energy of 0.018 MeV, corresponding to about 1μm range in a photographic emulsion, and consequently they allow the highest possible resolution at a cellular and subcellular level. This is particularly useful for studying metabolic phenomena of tissues which are composed, as in the case of bone marrow, of different cellular types at various stages of differentiation. This technique has been used for investigating nucleic acids and protein metabolism of normal and leukaemic bone marrow cells. DNA metabolism has been studied utilizing a specific precursor, H3-thymidine. Some significant differences of the percentages of labelled cells have been detected by comparing the normal and leukaemic elements belonging to the same stage of maturation. In acute leukaemia cells, particularly, a strikingly lower incorporation of thymidine was found and these results have been taken as evidence of a decreased proliferative capacity of these cells, as compared to normal myeloblasts. With the same technique, RNA and protein metabolism have been investigated utilizing H3- uridine, H3-leucine and H3-phenylalanine as precursors. The existence of a strict interrelationship between RNA and protein metabolism is now fully accepted in cellular biology. The existence of a constant ratio between uridine and amino acids incorporation has also been demonstrated in normal bone marrow cells. In acute leukaemia cells the incorporation of RNA and protein precursors, although different from case to case, is constantly and significantly lower. Furthermore, the ratio between uridine and amino acids incorporation is constantly altered in these cells. The lower RNA and protein metabolism and its dissociation in acute leukaemia cells is discussed in relation to the well-known maturation defect of these cells. (author)

  11. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

    Science.gov (United States)

    Xue, Zhixiong; Sharpe, Pamela L; Hong, Seung-Pyo; Yadav, Narendra S; Xie, Dongming; Short, David R; Damude, Howard G; Rupert, Ross A; Seip, John E; Wang, Jamie; Pollak, Dana W; Bostick, Michael W; Bosak, Melissa D; Macool, Daniel J; Hollerbach, Dieter H; Zhang, Hongxiang; Arcilla, Dennis M; Bledsoe, Sidney A; Croker, Kevin; McCord, Elizabeth F; Tyreus, Bjorn D; Jackson, Ethel N; Zhu, Quinn

    2013-08-01

    The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is currently limited because they are produced mainly by marine fisheries that cannot keep pace with the demands of the growing market for these products. A sustainable non-animal source of EPA and DHA is needed. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica resulted in a strain that produced EPA at 15% of dry cell weight. The engineered yeast lipid comprises EPA at 56.6% and saturated fatty acids at less than 5% by weight, which are the highest and the lowest percentages, respectively, among known EPA sources. Inactivation of the peroxisome biogenesis gene PEX10 was crucial in obtaining high EPA yields and may increase the yields of other commercially desirable lipid-related products. This technology platform enables the production of lipids with tailored fatty acid compositions and provides a sustainable source of EPA.

  12. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    Science.gov (United States)

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-01-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  13. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  14. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  15. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    Science.gov (United States)

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.

  16. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men

    Science.gov (United States)

    Lee, Mi-Hyang; Kwon, Nayeon; Yoon, So Ra

    2016-01-01

    We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower ( 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β′-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men. PMID:27482523

  17. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    Science.gov (United States)

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  18. Retinoic Acid-Related Orphan Receptors (RORs: Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Directory of Open Access Journals (Sweden)

    Donald N. Cook

    2015-12-01

    Full Text Available In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs. We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.

  19. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    Directory of Open Access Journals (Sweden)

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  20. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia

    OpenAIRE

    Kaliannan, Kanakaraju; Wang, Bin; Li, Xiang-Yong; Kim, Kui-Jin; Kang, Jing X.

    2015-01-01

    Metabolic endotoxemia, commonly derived from gut dysbiosis, is a primary cause of chronic low grade inflammation that underlies many chronic diseases. Here we show that mice fed a diet high in omega-6 fatty acids exhibit higher levels of metabolic endotoxemia and systemic low-grade inflammation, while transgenic conversion of tissue omega-6 to omega-3 fatty acids dramatically reduces endotoxemic and inflammatory status. These opposing effects of tissue omega-6 and omega-3 fatty acids can be e...

  1. Metabolic engineering of lactic acid bacteria and characterization of novel enzymes for the production of industrially important compounds

    OpenAIRE

    Aarnikunnas, Johannes Sakari

    2006-01-01

    Lactic acid bacteria (LAB) are a heterogeneous group of gram-positive bacteria that produce lactic acid as their main end-product during sugar fermentation. Because the LAB are able to rapidly lower pH through acid formation and additionally produce many flavor compounds, they are commonly used in the food and feed industry. LAB are also attractive organisms for metabolic engineering because their energy metabolism is generally not connected to their biosynthetic activity. Therefore, their su...

  2. GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-derivatized amino acids and its application to (13)C-metabolic flux analysis of Escherichia coli central metabolism.

    Science.gov (United States)

    Okahashi, Nobuyuki; Kawana, Shuichi; Iida, Junko; Shimizu, Hiroshi; Matsuda, Fumio

    2016-09-01

    Stable isotope labeling experiments using mass spectrometry have been employed to investigate carbon flow levels (metabolic flux) in mammalian, plant, and microbial cells. To achieve a more precise (13)C-metabolic flux analysis ((13)C-MFA), novel fragmentations of tert-butyldimethylsilyl (TBDMS)-amino acids were investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS). The product ion scan analyses of 15 TBDMS-amino acids revealed 24 novel fragment ions. The amino acid-derived carbons included in the five fragment ions were identified by the analyses of (13)C-labeled authentic standards. The identification of the fragment ion at m/z 170 indicated that the isotopic abundance of S-methyl carbon in methionine could be determined from the cleavage of C5 in the precursor of [M-159](+) (m/z 218). It was also confirmed that the precision of (13)C-MFA in Escherichia coli central carbon metabolism could be improved by introducing (13)C-labeling data derived from novel fragmentations. Graphical Abstract Novel collision-induced dissociation fragmentations of tert-butyldimethylsilyl amino acids were investigated and identified by GC-MS/MS.

  3. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    OpenAIRE

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  4. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli].

    Science.gov (United States)

    Li, Feng; Ma, Jiangfeng; Wu, Mingke; Ji, Yaliang; Chen, Wufang; Ren, Xinyi; Jiang, Min

    2015-04-01

    Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid.

  5. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    Science.gov (United States)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  6. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review.

    Directory of Open Access Journals (Sweden)

    Inge Oudman

    Full Text Available BACKGROUND: Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands. METHODS: We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews. RESULTS: After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5% on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia. CONCLUSION: Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human

  7. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    Science.gov (United States)

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.

  8. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    Science.gov (United States)

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering. PMID:18356490

  9. Metabolism of the phytoalexins camalexins, their bioisosteres and analogues in the plant pathogenic fungus Alternaria brassicicola.

    Science.gov (United States)

    Pedras, M Soledade C; Abdoli, Abbas

    2013-08-01

    The metabolism of the phytoalexins camalexin (1), 1-methylcamalexin (10) and 6-methoxycamalexin (11) by Alternaria brassicicola and their antifungal activity is reported. This work establishes that camalexins are slowly biotransformed (ca. six days) to the corresponding indole-3-thiocarboxamides, which are further transformed to the indole-3-carboxylic acids. These metabolites are substantially less inhibitory to A. brassicicola than the parent camalexins, indicating that these enzyme-mediated transformations are detoxifications. In addition, analyses of the metabolism of synthetic isomers and bioisosteres of camalexin (1) indicate that isomers of camalexin in the thiazole ring are not metabolized. Based on these results, the potential intermediates that lead to formation of indole-3-thiocarboxamides are proposed.

  10. Metabolic Fate of 2,4-Dichlorophenol and Related Plant Residues in Rats

    OpenAIRE

    Pascal-Lorber, Sophie; Despoux, Sabrina; Jamin, Emilien; Canlet, Cécile; Cravedi, Jean-Pierre; Laurent, François

    2012-01-01

    This study compared the metabolic fate of [14C]-DCP, [14C]-residues from radish plants, and purified [14C]-DCP-(acetyl)glucose following oral administration in rats. A rapid excretion of radioactivity in urine occurred for [14C]-DCP, [14C]-DCP-(acetyl)glucose, and soluble residues, 69, 85, and 69% within 48 h, respectively. Radio-HPLC profiles of 0−24 h urine from rats fed [14C]-DCP and [14C]-DCP-(acetyl)glucose were close and qualitatively similar to those obtained from plant residues. No tr...

  11. Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes.

    Science.gov (United States)

    Atkinson, J P; Weiss, A; Ito, M; Kelly, J; Parker, C W

    1979-01-01

    L-ascorbic acid (LAA) augmented cGMP many-fold in highly purified human peripheral blood lymphocytes. The cGMP response occurred within 10 sec and persisted for at least 60 min. D-ascorbic acid (DAA) and dehydroascorbic acid (DHAA) were also equally active in enhancing cGMP concentrations but metabolic precursors of ascorbic acid and other inorganic acids did not increase cGMP levels. Determination of the amount of DHAA contaminating the LAA precluded the possibility that it was solely responsible for the enhanced cGMP levels. The sodium or calcium salts of ascorbic acid did not increase cGMP concentrations. If these neutralized preparations were acidified, increased cGMP concentrations were then noted. In broken cell preparations, LAA, DAA, and DHAA and to a lesser extent sodium ascorbate (NaA) enhanced guanylate cyclase activity while neither inhibited cAMP or cGMP phosphodiesterase (PDE) activity. The possible role of H2O2, fatty acid liberation, prostaglandin production, oxidizing-reducing agents, and free radical formation in mediating the effects of ascorbic acid on cGMP levels were evaluated, but none of these potential mechanisms were definitively proven to be a required intermediary for the cGMP enhancing activity of ascorbic acid. LAA, DHAA or NaA did not induce lymphocyte transformation or modulate lectin-induced mitogenesis. PMID:36416

  12. Metabolism of diclofenac in plants--hydroxylation is followed by glucose conjugation.

    Science.gov (United States)

    Huber, Christian; Bartha, Bernadett; Schröder, Peter

    2012-12-01

    Pharmaceuticals from human or veterinary medication form a new class of micropollutants that poses a serious threat to our aquatic environment and its organisms. The intensively used nonsteroidal anti-inflammatory drug diclofenac is found in the environment worldwide due to its poor elimination during waste water treatment processes. In order to test phytoremediation as a tool for the removal of this drug from waste water, the uptake of the compound into plant tissues and its metabolic pathway was addressed using Hordeum vulgare (barley) and a hairy root cell culture of Armoracia rusticana (horse radish) as model species. Diclofenac is taken up by plants and undergoes rapid metabolization; already after 3h of exposure the drug and its metabolites could be detected in the plant tissues. Similar to its fate in mammalian cells the drug is activated in a phase I reaction resulting in the hydroxylated metabolite 4'OH-diclofenac which is conjugated subsequently in phase II to a glucopyranoside, a typical plant specific metabolite. After exposure to 10 and 100 μM diclofenac a concentration dependent formation of the hydroxylated metabolite was observed, while the formation of the phase II metabolite OH-diclofenac glucopyranoside was not positively affected by the higher concentration. To our knowledge this is the first time these two human painkiller metabolites are shown to occur in plant tissues. PMID:23137548

  13. Development of LC/MS techniques for plant and drug metabolism studies

    OpenAIRE

    Petsalo, A. (Aleksanteri)

    2011-01-01

    Abstract Liquid chromatography (LC) combined with mass spectrometry (MS) is a powerful tool for qualitative and quantitative analytics of organic molecules from various matrices, and the use of this hyphenated technique is very common in bioanalytical laboratories. In this study, LC/MS methods and the required sample preparation applications were developed for plant flavonoid and drug metabolism studies. The main focus was in developing methods to be used during cytochrome P450 (CYP) -spe...

  14. Effects of Different Carbohydrate Sources on Fructan Metabolism in Plants of Chrysolaena obovata Grown in vitro

    OpenAIRE

    Flavio eTrevisan; Vanessa Fatima eOliveira; Maria Angela Machado Carvalho; Marília Gaspar Gaspar

    2015-01-01

    Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabol...

  15. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Science.gov (United States)

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.

  16. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  17. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.

    Science.gov (United States)

    Mayers, Jared R; Torrence, Margaret E; Danai, Laura V; Papagiannakopoulos, Thales; Davidson, Shawn M; Bauer, Matthew R; Lau, Allison N; Ji, Brian W; Dixit, Purushottam D; Hosios, Aaron M; Muir, Alexander; Chin, Christopher R; Freinkman, Elizaveta; Jacks, Tyler; Wolpin, Brian M; Vitkup, Dennis; Vander Heiden, Matthew G

    2016-09-01

    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements. PMID:27609895

  18. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development

    OpenAIRE

    Gallie, Daniel R.

    2013-01-01

    L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps re...

  19. Diverting the flux of the JA pathway in Nicotiana attenuata compromises the plant's defense metabolism and fitness in nature and glasshouse.

    Directory of Open Access Journals (Sweden)

    Michael Stitz

    Full Text Available A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense

  20. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  1. The metabolism of L-[6-14C] ascorbic acid in detached grape leaves

    International Nuclear Information System (INIS)

    Grape leaves (Vitis labrusca L.) that are removed from the position opposite the flower cluster either 28 or 14 days before anthesis cleave L-ascorbic acid (AA) at the C4-C5 bond into a C4 and, presumably, a C2 fragment. Leaves taken from this position 14 days after anthesis fail to cleave AA. The C4 fragment is utilized for L(+)-tartaric acid (TA) biosynthesis while the C2 fragment is recycled into hexose and products of the hexose metabolism. When ( 6-14C ) AA is the source of the label, the sucrose-drived glucose from labeled leaves has a distribution of 14C in the carbon skeleton as follows: C1, 35%; C2, 14%; C3, 4%; C(4 + 5), 13% and C6, 34%. The effect of inhibitors of the glycolate pathway on ( 6-14C ) AA metabolism is examined. (author)

  2. Serum neutral amino acid concentrations in cirrhotic patients with impaired carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-08-01

    Full Text Available Serum neutral amino acid levels in cirrhotic patients with abnormal oral glucose tolerance test patterns were not different from those of subjects without impaired carbohydrate metabolism. However, the characteristic features of serum aminograms in the patients, that is, increased levels of tyrosine, decreased levels of valine and leucine and the diminished ratio of branched chain amino acids to phenylalanine and tyrosine levels, were less pronounced in those treated with insulin. This finding is clinically important for evaluating the serum aminogram of cirrhotic patients under insulin therapy.

  3. Research on Arachidonic Acid and Eicosapentaenoic Acid Anabolic Metabolism in Diasporangium sp.

    Institute of Scientific and Technical Information of China (English)

    DAI Chuan-chao; XU Yu-fen; XIA Shun-xiang; ZHAO Mo; YE Yu-cheng

    2010-01-01

    The fatty acids of a strain of Diasporangium sp.had been analyzed by using GC-MS.The fatty acids of twenty mutants were determined.Based on these results,the producing of eicosapentaenoic acid(EPA)supposed via 18∶2,18∶3,20∶3,20∶4 which all belong to ω-6 fatty acids.The ω-3 desaturation was undertaken at arachidonic acid(AA).In addition,mutant strains resulted in enhanced content of AA which could get two times more than initial strain,but no compact on EPA.

  4. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  5. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  6. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ting-I Lee

    2016-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1, DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.

  7. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    OpenAIRE

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to su...

  8. Intestinal absorption and postabsorptive metabolism of linoleic acid in rats with short-term bile duct ligation

    NARCIS (Netherlands)

    Minich, DM; Havinga, R; Stellaard, F; Vonk, RJ; Kuipers, F; Verkade, HJ

    2000-01-01

    We investigated in bile duct-ligated (BDL) and sham-operated control rats whether the frequent presence of essential fatty acid deficiency in cholestatic liver disease could be related to linoleic acid malabsorption, altered linoleic acid metabolism, or both. In plasma of BDL rats, the triene-to-tet

  9. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.

    Science.gov (United States)

    Song, Chan Woo; Lee, Sang Yup

    2015-10-01

    Fumaric acid is an important C4-dicarboxylic acid widely used in chemical, food, and pharmaceutical industries. Rational metabolic engineering together with flux optimization were performed for the development of an Escherichia coli strain capable of efficiently producing fumaric acid. The initial engineered strain, CWF4N overexpressing phosphoenolpyruvate carboxylase (PPC), produced 5.30 g/L of fumaric acid. Optimization of PPC flux by examining 24 types of synthetic PPC expression vectors further increased the titer up to 5.72 g/L with a yield of 0.432 g/g·glucose. Overexpression of the succinate dehydrogenase complex (sdhCDAB) led to an increase in carbon yield up to 0.493 g/g·glucose. Based on this mutant strain, citrate synthase (CS) was combinatorially overexpressed and balanced with PPC using 48 types of synthetic expression vectors. As a result, 6.24 g/L of fumaric acid was produced with a yield of 0.500 g/g·glucose. Fed-batch culture of this final strain allowed production of 25.5 g/L of fumaric acid with a yield of 0.366 g/g·glucose. Deletion of the aspA gene encoding aspartase and supplementation of aspartic acid further increased the fumaric acid titer to 35.1 g/L with a yield of 0.490 g/g·glucose.

  10. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  11. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    Science.gov (United States)

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.

  12. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA. PMID

  13. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  14. Uric Acid Metabolism in a Sample of Egyptian Hypertensive Patients With Normal Kidney Function

    Directory of Open Access Journals (Sweden)

    Adel Afifi, ¹ Iman Sarhan¹, Magdy El Sharkawy¹, Mostafa Kamel¹, Waleed Anwar ¹,

    2013-07-01

    Full Text Available Background: Hyperuricemia is commonly associated with hypertension. Also, it is well known to coincide with the metabolic syndrome but is still not recognized as a risk factor. So, we aimed to evaluate hyperuricemia among a sample of hypertensive Egyptians with normal renal function.Methods: this study was performed on 303 hypertensive patients aged 30-69 years. Patients were divided into 2 groups according to the level of uric acid: group 1 composed of 168 hypertensive hyperuricemic patient sand group2 composed of 135 hypertensive normouricemic patients. All patients were subjected to complete medical history and detailed clinical examination including body mass index (BMI, complete blood count (CBC, serum creatinine, BUN, FBS, cholesterol, triglycerides, uric acid, sodium, potassium, urinary uric acid, urinary creatinine, urinary uric acid to creatinine ratio and fractional excretion of uric acid(FEUA.Results: The overall prevalence of hyperuricemia was 55.4%. Uric acid correlated significantly with age (p0.05. Serum uric acid found to correlate significantly (p<0.001 with urinary uric acid, urinary creatinine and negatively with FEUA denoting early tubular defect of the kidney. Also, Urinary uric acid, urinary creatinine and urinary uric acid/creatinine ratio were higher in group 1than in group 2 (p values were<0.001, <0.001 and <0.05 respectively. FEUA was found to be significantly lower in group 1 than in group 2 (p<0.01. We found, also, that serum sodium level was significantly higher in the hyperuricemic group than in the normouricemic group (p<0.001 denoting the role of Na+ in the development of hypertension and defective renal excretion of uric acid.Conclusion: We conclude that the incidence hyperuricemia in our sample of Egyptian hypertensive patients was (55.4%. Impaired renal clearance of uric acid occurs before deterioration of GFR. Serum uric acid should be measured in all cases of hypertension together with BMI, total cholesterol

  15. Essential amino acid metabolism in infected/non-infected, poor, Guatemalan children

    International Nuclear Information System (INIS)

    Traditional methods used to evaluate protein metabolism left unanswered some of the relevant questions in public health in developing countries, such as growth retardation in children. Particularly, in developing countries, infection (clinical and subclinical) and malnutrition are still relevant problems, and the most important scientific issues for the application of stable isotope tracer methods are related to the impact of infection, such as the oxidative disposal of essential amino acids in well-nourished and malnourished children. The objectives of the present proposal are: (1) To simplify, make less expensive, less time-consuming, and less invasive, methods in clinical research on amino acid metabolism using stable-isotope tracers in children; and (2) To assess the effects of infection (clinical or subclinical) on whole-body protein turnover in children with and without malnutrition. The objectives involve the engineering and assessment of a portable instrument to be used in evaluations of protein oxidation in the developing world. Methodological issues such as intra- and inter-subject variability, which are of great importance for the interpretation of amino acid metabolism and protein turnover, will also be considered. 18 refs, 2 figs

  16. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  17. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. PMID:26547672

  18. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.

    Directory of Open Access Journals (Sweden)

    En-Hua Xia

    Full Text Available Rapidly driven by the need for developing sustainable sources of nutritionally important fatty acids and the rising concerns about environmental impacts after using fossil oil, oil-plants have received increasing awareness nowadays. As an important oil-rich plant in China, Camellia oleifera has played a vital role in providing nutritional applications, biofuel productions and chemical feedstocks. However, the lack of C. oleifera genome sequences and little genetic information have largely hampered the urgent needs for efficient utilization of the abundant germplasms towards modern breeding efforts of this woody oil-plant.Here, using the 454 GS-FLX sequencing platform, we generated approximately 600,000 RNA-Seq reads from four tissues of C. oleifera. These reads were trimmed and assembled into 104,842 non-redundant putative transcripts with a total length of ∼38.9 Mb, representing more than 218-fold of all the C. oleifera sequences currently deposited in the GenBank (as of March 2014. Based on the BLAST similarity searches, nearly 42.6% transcripts could be annotated with known genes, conserved domains, or Gene Ontology (GO terms. Comparisons with the cultivated tea tree, C. sinensis, identified 3,022 pairs of orthologs, of which 211 exhibited the evidence under positive selection. Pathway analysis detected the majority of genes potentially related to lipid metabolism. Evolutionary analysis of omega-6 fatty acid desaturase (FAD2 genes among 20 oil-plants unexpectedly suggests that a parallel evolution may occur between C. oleifera and Olea oleifera. Additionally, more than 2,300 simple sequence repeats (SSRs and 20,200 single-nucleotide polymorphisms (SNPs were detected in the C. oleifera transcriptome.The generated transcriptome represents a considerable increase in the number of sequences deposited in the public databases, providing an unprecedented opportunity to discover all related-genes associated with lipid metabolic pathway in C

  19. Analysis of Metabolic Changes in Plant Pathosystems by Imprint Imaging DESI-MS

    Science.gov (United States)

    Tata, Alessandra; Perez, Consuelo J.; Hamid, Tanam S.; Bayfield, Mark A.; Ifa, Demian R.

    2015-04-01

    The response of plants to microbial pathogens is based on the production of secondary metabolites. The complexity of plant-pathogen interactions makes their understanding a challenging task for metabolomic studies requiring powerful analytical approaches. In this paper, the ability of ambient mass spectrometry to provide a snapshot of plant metabolic response to pathogen invasion was tested. The fluctuations of glycoalkaloids present in sprouted potatoes infected by the phytopathogen Pythium ultimum were monitored by imprint imaging desorption electrospray ionization mass spectrometry (DESI-MS). After 8 d from the inoculation, a decrease of the relative abundance of potato glycoalkaloids α-solanine ( m/z 706) and α-chaconine ( m/z 722) was observed, whereas the relative intensity of solanidine ( m/z 398), solasodenone ( m/z 412), solanaviol ( m/z 430), solasodiene ( m/z 396), solaspiralidine ( m/z 428), γ-solanine/γ-chaconine ( m/z 560) , β-solanine ( m/z 706), and β-chaconine ( m/z 722) increased. The progression of the disease, expressed by the development of brown necrotic lesions on the potato, led to the further decrease of all the glycoalkaloid metabolites. Therefore, the applicability of imprint imaging DESI-MS in studying the plant metabolic changes in a simple pathosystem was demonstrated with minimal sample preparation.

  20. Analysis of metabolic changes in plant pathosystems by imprint imaging DESI-MS.

    Science.gov (United States)

    Tata, Alessandra; Perez, Consuelo J; Hamid, Tanam S; Bayfield, Mark A; Ifa, Demian R

    2015-04-01

    The response of plants to microbial pathogens is based on the production of secondary metabolites. The complexity of plant-pathogen interactions makes their understanding a challenging task for metabolomic studies requiring powerful analytical approaches. In this paper, the ability of ambient mass spectrometry to provide a snapshot of plant metabolic response to pathogen invasion was tested. The fluctuations of glycoalkaloids present in sprouted potatoes infected by the phytopathogen Pythium ultimum were monitored by imprint imaging desorption electrospray ionization mass spectrometry (DESI-MS). After 8 d from the inoculation, a decrease of the relative abundance of potato glycoalkaloids α-solanine (m/z 706) and α-chaconine (m/z 722) was observed, whereas the relative intensity of solanidine (m/z 398), solasodenone (m/z 412), solanaviol (m/z 430), solasodiene (m/z 396), solaspiralidine (m/z 428), γ-solanine/γ-chaconine (m/z 560) , β-solanine (m/z 706), and β-chaconine (m/z 722) increased. The progression of the disease, expressed by the development of brown necrotic lesions on the potato, led to the further decrease of all the glycoalkaloid metabolites. Therefore, the applicability of imprint imaging DESI-MS in studying the plant metabolic changes in a simple pathosystem was demonstrated with minimal sample preparation.